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Abstract 
We show that the simultaneous stabilization question: 
When are three linear systems stabilizable by  the same 
controller? cannot be solved by a semialgebraic set 
description nor be answered by computational ma- 
chines. 

1 Introduction 
Let P 1 , / 3 2 , P 3  be real numbers. The three first order 
systems 

S + l  S + l  s + l  
s - 1  s - 1  - + P 2  - + P3 (1) +P1 

are said to be simultaneously stabilizable if there ex- 
ists a controller that stabilizes each system. 

It is shown in [6] that, when /31 = 0 and /32 = -P3 = 
P, the three systems are simultaneously stabilizable 
if and only if 1/31 < r4(i)/(47r2) = 4.377.. ., where 
I?( .) is the usual factorial function. 

In this paper we complete this analysis by providing a 
completely general necessary and sufficient condition 
for the three systems (1) to be simultaneously sta- 
bilizable. The condition involves the parameters Pi 
and a transcendental function known as the elliptic 
modular function (see below for a definition). 

From our analysis of these three systems we then draw 
general conclusions on the structure of the set of sys- 
tems that are simultaneously stabilizable. Our con- 
clusions are twofold. First, the set of triplets of sys- 
tems that are simultaneously stabilizable is not semi- 
algebraic; second, simultaneous stabilizability of more 
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than two systems is not decidable by standard com- 
putation machines. 

The paper is organized as follows. 

In Section 2 we show that the stabilizability of the 
systems (1) depends upon the existence of a ratio- 
nal function that satisfies nonclassical interpolation 
constraints. We then use a theorem from geometric 
function theory - Landau’s theorem - to derive nec- 
essary and sufficient conditions for the solvability of 
this interpolation problem. 

In Section 3 we use the condition obtained to show 
that the set of coefficients for which the systems are 
simultaneously stabilizable is not a semialgebraic set. 
This result extends an earlier result of Blondel and 
Gevers [6] and answers a question raised by Ghosh in 
several of his papers (e.g., in [lo] and [ l l ] ) .  Semial- 
gebraic sets are particular subsets of Iw” that can be 
used to describe a large variety of decision problems 
(see later for some examples). 

In a last section we interpret the results of Section 3 
in terms of computability. We prove that the problem 
of determining whether our three systems are simul- 
taneously stabilizable cannot be decided by certain 
computational machines. 

The systems that we consider are linear, time- 
invariant, single-input, single-output and are given 
by their (real rational) transfer functions. A con- 
troller c stabilizes a system p if the four closed loop 
transfer functions cp/( 1 + cp) ,  p / (  1 + c p ) ,  c / (  1 + c p ) ,  
1/(1 + cp) are stable (i.e., are proper and have no 
poles in the closed right half plane). The k systems 
p;  ( i  = 1, .  . . , k) are simultaneously stabilizable if 
there exist a controller c that stabilizes each system 
p i .  We use the following notation: C and Iw are the 
sets of complex and real numbers, % ( z )  and S ( z )  are 
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the real and imaginary parts of z .  R(z) is the set of 
real rational functions. D ( R )  = { z  E @ I IzI < R} is 
the open disc with center 0 and radius R. D = D(1) 
is the open unit disc, and ‘Is is its closure. IIf = { z  E 
C I S ( z )  > 0 )  is the open upper half plane. 

2 Three special systems 

Our condition for the systems (1) to be simultane- 
ously stabilizable involves a function known as the 
elliptic modular function. There are several related 
functions associated with this name. The one that 
we are considering here is a conformal mapping X of 
the upper half plane II+ onto @ \  {0,1}. For the con- 
struction and properties of X, see Segal [16, pp. 68-76] 
and Rudin [14, sec. 16.17-16.201. Local inverses of X 
will be denoted by v. 

Theorem 1: The systems (1) are simultaneously sta- 
bilizable if and and only if 

where 
ao and a1 are defined by a. = (p2 - P3)/(P2 -PI), 
ai = ( P 2  - p3)(P1 - p3)/(P2 - P I ) ,  and is a local 
inverse of the elliptic modular function A. The right 
hand side in (2) does not depend on the particular 
choice of v. 

The proof of this result will follow from an adaptation 
of Landau’s Theorem. 

Landau’s theorem: Suppose that f : D ( R )  --f C \ 
( 0 ,  l} is analytic. Let a0 = f ( O ) ,  a1 = f’(0) and let 
v be a local inverse of X in a neighbourhood of uo. 
Then 

(3) 

Equality holds in (3) if and only if f = X o $, where 

(4) 

and a is a complex number of modulus 1. 
Conversely, suppose that a0 and a1 are complex num- 
bers such that a0 # 0 , l  and inequality (3) holds. 
Then there exists an analytic function f : D ( R )  + 

C \ {0,1} such that f (0)  = a0 and f ’ ( 0 )  = al .  If a0 

and a1 are real numbers, then f can be chosen so that 
f(F) = fo- 

We need a rational version of Landau’s Theorem. 

Landau’s Theorem [rational version]: Suppose 
that a0 and a1 are real numbers such that a0 # 0 , l .  
Then there exists a real rational function q such that 
q ( 0 )  = ao, q’(0) = a1 and q ( z )  # 0,1,00 for all z in 
the closed unit disc B if and only if 

( 5 )  

where U is a local inverse of the elliptic modular func- 
tion A. The right hand side in (5) does not depend 
on the particular choice of v. 

Proof: “Only if” part:  Assume that q is such a func- 
tion. By continuity, there exists an R > 1 such that 
q(z) # 0,1,00 for all z in the open disc D(R) .  Lan- 
dau’s theorem now gives us the inequality (3) ,  from 
which the strict inequality (5) follows since R > 1. 
“If” p a d :  Assume that (5) holds. In the trivial case 

al = 0 we may choose q to be constant. Otherwise, 
define 

The strict inequality (5) shows that R > 1. By 
Landau’s theorem and equality (6), there exists an 
analytic function f : D(R)  -+ @U, I} such that 
f(0) = ao, f ’ (O)  = a1 and f(F) = f(2).  We now ap- 
proximate f with a real polynomial q which does not 
assume the values 0 and 1 in D and satisfies q ( 0 )  = a0 

and q’(0) = al .  This will complete the “if” part. For 
this purpose, let 

9 = min{ inf lf(z)I, inf If(.) - I[}. 
Z E D  Z E D  

Since f(z) # 0 , l  for all z E D ( R ) ,  and since -d is 
compact, p~ > 0. The function defined by h ( z )  = m) - QO - u1z)/z2 is analytic and such that h(F) = 
h(z)  in D(R).  By Runge’s theorem (see Rudin [14, 
Theorem 13.71) there is a polynomial p such that 

A 

(7) IWz) - P(Z)l < rl (Vz E n. 
A Define a real polynomial by p l ( z )  = ( p ( z )  + %)/2. 

Since h(Z) = h(z ) ,  it is easy to see that pl  satisfies 
(7) also. Now the real polynomial q(z) = a0 + a l z  + 
z 2 p l ( z )  satisfies 

A 

lf(z)-q(z)l = I.Z2h(z)-z2p1(~)I < 77 

that q(z)  # 0 , 1  for all z E D. 

(Vz ED). 
In conjunction with the definition of 9, this shows 

I 
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We now have all what is needed to prove the theorem. 

Proof of Theorem 1: Notice first that, using the 
standard bilinear transformation, the three systems 
(1) are simultaneously stabilizable if and only if the 
three systems 

2 z z 
1 + P 2 Z  ' 

- -  
1 + P1 z I 1 + P 3 Z  

are simultaneously stabilizable in the closed unit disc. 
(We have used the fact that systems are simultane- 
ously stabilizable if and only if their inverses are.) 
We now adopt the factorization approach given in 
Vidyasagar [17]. A controller n/d (where n and d a r e  
coprime stable rational functions) in closed loop with 
a system ni/d; (where n; and d; are coprime stable 
rational functions) leads to a stable closed-loop con- 
figuration if and only if n;n + did has no zeros in the 
closed unit disc B. The controller n/d = -P3/l sta- 
bilizes the third system z / ( l  + &). Hence, by the 
Youla-Kucera parametrization, a factorization of all 
the controllers n/d that stabilize this system is given 
by 

(8) n(z) = -P3 + r ( z ) ( l+  P3z),  d ( z )  = 1 - T ( Z ) ~ ,  

where r is an arbitrary real rational function with no 
poles in 5. This controller n/d also stabilizes the first 
and second systems if and only if 

(9) zn(z) + (1 + Piz)d(z)  # 0 

for E and i = 1 ,2 .  Putting (8) into (9) and 
simplifying, we get 

(10) 1 + (Pi - P3)z + ( P 3  - Pi).2.(.) # 0 

for z E 
introduction of 

and i = 1 , 2 .  After division by P; - P3 and 

P2 - P3 

P 2  - P1' 
a0 = ~ 

(P2 - P3)(Pl - p3) a1 = 
P 2  - P1 

1 

the condition (10) can be written as 

(11) a0 + a l z  - u1z2r(z)  # 0,1 

We have thus shown that the systems (1) are simul- 
taneously stabilizable if and only if there exists a real 
rational function T with no poles in D such that (11) 
holds. Denoting the left-hand side of (11) by q(z)  it 
is easy to see that the existence of a rational function 
r that has the required properties is equivalent to the 
existence of a real rational function q that is such that 
q(0)  = ao, q ' (0)  = a1 and q(z) # 0,1,00 for all z in 
D. By the rational version of Landau's Theorem, this 

for z E D. 

- 
is equivalent to the strict inequality (2). 

3 Semialgebraic sets 
Let S be the set of all triplets (P I ,  /3~, P3) E R3 for 
which the systems (1) are simultaneously stabilizable. 
In this section we use the explicit description of S 
given in Theorem 1 to show that S is not a semialge- 
braic set. 

Definition: A set X 
finite union of sets of the type 

R" is semialgebraic if it is a 

{z E R" I Pl(Z) = 0, ..., Pk(C) = 0 ,  
Pk+l (Z)  > 0, ..., P m ( Z )  > 01, 

where Pi(,) = Pi(z1,  ..., I,) (i = 1,2,  ..., m) are 
real polynomials in n variables (general references for 
semialgebraic sets are [2] and [9]). 

As illustrated with the next four examples many con- 
trol problems can be described by semialgebraic sets 
(see [l] for more examples). 

Example 1: Polynomial stability. The set of co- 
efficients (ao, a l ,  ..., a,) E R"+l for which the polyno- 
m i a l a o + a ~ s +  ...+ a,sn is Hurwitz stable (i.e., has no 
zeros in the closed right half plane) is semialgebraic. 
Example 2: The space of systems. Let E, be the 
set of vectors (a*, ..., a,, b o ,  ..., b,) E R2n+2 for which 
the polynomial bo + b l z  + ... + b,zn has highest order 
coefficient equal to  1 and for which the polynomials 
ao+al z+ .  . .+ant" and bO+blz+. . .+b,zn are coprime. 
C, is semialgebraic. In the sequel we often identify a 
system with its coefficient vector in C,, and we speak 
of C, as the space of systems of order at most n. The 
Cartesian product space Ck is the space of all k-tuples 
of systems of order at most n. A set of k-tuples of 
systems of order at most n is called semialgebraic if 
its corresponding subset of C i  is semialgebraic. 
Example 3: Simultaneous stabilization of two 
systems. The set S: of pairs of systems of order at 
most n that are simultaneously stabilizable is semial- 
gebraic. 
Example 4: Simultaneous stabilization with a 
controller of a priori bounded order. The set 
Si,N of all k-tuples of systems that are of order at 
most n and that are are simultaneously stabilizable 
by a controller of order ut most N is semialgebraic 
(for a more comprehensive treatment of this exam- 
ple, see Ghosh [ l l ] ) .  

We now show: 

Theorem 2: The set S of triplets (P I ,  P 2 ,  P3) E R3 
for which the systems (1) are simultaneously stabiliz- 
able is not semialgebraic. Furthermore, the set S is a 
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countable union of semialgebraic sets but its comple- 
nient in E t 3  is not. 

We first need a lemma for proving this. From the 
discussion in Rudin [14] it is easy to see that X has a 
local inverse v, : C \ [0,  CO) --+ @ that is such that 

v+(z) = ilv*(z)l and v:(z) = -ilu:(z)I. 

Lemma: The analytic function F : G \ [0, CO) +. G 
defined by 

is not algebraic. In addition to this we have 

for all 2 < 0. 

Proof: Assume, to get a contradiction, that P is a 
nonzero polynomial such that 

P ( z ,  F ( z ) )  = 0 for all z E @ \ [0 ,  ca) 

As proved in Theorem 16.20(a) of Rudin [14], the 
modular function X has the property that X(z+2n) = 
X(z) for all integers n and z E II+. This implies that 
v,(z) = 2n + v*(z) is a local inverse of X for every 
integer n. Since v, and v, are both local inverses of 
the analytic function A ,  they must be analytic con- 
tinuations of each other (see Theorem 10.7.2 in Hille 

[13]). Hence F,(z) e -2% is an analytic con- 
tinuation of F ,  and likewise P ( z , F n ( t ) )  is an ana- 
lytic continuation of P ( z ,  F ( z ) ) .  But by assumption 
P ( z , F ( z ) )  E 0, and so P(z ,F , (z ) )  G 0. Now fix 
zo E @ \  [O,CO).  Since F,(ZO) = - 2 w  has in- 
finitely many values as n ranges over the integers, this 
shows that the polynomial Pz,(w) = P(z0, w) has in- 
finitely many zeros. Hence Pz, = 0, so P = 0. This 
contradiction shows that the assumption that F is al- 
gebraic was false. 
The statement about the values of F ( x )  for 2 < 0 
follows immediately from the fact that, for all z < 0, 
we have 

A 

A 

v.(z) = i)v,(c)l and vi(.) = -ilvi(z)l. 

m 
Proof of Theorem 2: If S was semialgebraic so 
would be its complement S". Hence, the first asser- 
tion follows from the second one. 
We first prove the easy part of the second assertion. 
Namely, we prove that S is a countable union of semi- 
algebraic sets. 

For that purpose, define S, by 

are sim. stab. by a controller of order n} .  

Then S = S,. By Example 4, the sets S, are 
semialgebraic and thus the first part is proved. 
We now prove the second part of the assertion. As- 
sume, to get a contradiction, that the complement s" 
is a countable union of semialgebraic sets. Since the 
set { ( A , h , P 3 )  E R3 I P1 < P 2  < P 3 }  is semialge- 
braic, the set 

' sc n { ( P i ,  p 2 ,  P 3 )  6 R3 I Pi < P 2  < P 3 )  

is a countable union of semialgebraic sets. Theorem 
1 implies that 

{ ( P l , P 2 , @ 3 )  E R3 1 P1 < p2 < a 3  

where 
a0 and a1 are defined by a0 = (P2 - P 3 ) / ( / 3 2  - Ol) ,  

a1 = (Pz - P3)(P1 - P 3 ) / ( P 2  - P I ) .  The function 
which maps (P I ,  ,&, p3) to (uo, u l )  maps B onto A = 
{ ( a o , u l )  E R2 1 a0 < 0 and a1 2 w}. By us- 
ing the Tarski-Seidenberg theorem, it is easy to prove 
that A is a countable union of semialgebraic sets, so 
we can write A = 

A 

A,, where 

An = {(zj 9) E R 2  I Pn, l ( z ,  Y) = 0 ,  ..., Pn,k,(z, Y) = 0 ,  
P n , k , + l ( Z ,  Y) > 0 ,  ' " 7  p,,rn,(., Y) : 

0 5 kn < CO, kn 5 mn < CO and P , , i ( z , y )  are 
nonzero real polynomials. With the help of the non- 
algebraic function F in the lemma we can write 

A = {(z, y) E R2 1 z < 0 and y 2 F ( z ) } .  

Now fix zo < 0. Then ( z o . P ( ~ ) )  E A ,  so 
(zo, F ( z 0 ) )  E An, for some no. If k,, = 0, then A,, 
would be open, so (20, F(z0 ) )  would be an interior 
point of A.  But (z0,y) g! A if 0 < y < F(c0).  Hence 

Therefore the sets 2, = {z < 0 I P n , l ( z . F ( z ) )  = 
0 )  (n  = 1,2, ...) have union ( - C O , ~ ) .  One of these 
sets, say Z,,, must be uncountable, and must thus 
have a limit point in (-m,O). This means that the 
set of zeros of the analytic function Pnl , l ( z l  F ( z ) )  has 
a limit point in its domain of definition, so it must be 
identically zero. Since Pnl,l is nonzero, this shows 
that F is an algebraic function, a contradiction. 

ha > 0, SO p n o , l ( z o >  F ( ~ o ) )  = 0. 
A 
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4 Computability 
In this section we show that the question of deciding 
whether the three systems (1) are simultaneously sta- 
bilizable cannot be decided by certain computational 
machines. 

We first define what we mean by a computational ma- 
chine over real numbers. Our model is an extension 
of the classical Blum-Shub-Smale or BSS model [8]. 

Definition: A machine consists of a possibly infinite 
set of nodes N .  Associated to each node n there is: 

1) A set X,, the input space. 

2) A function t ,  : X, ---i N ,  the transition function. 

3) For each node m in the range of t , ,  a function 
fn-, : t;l(m) --+ X,, the d a t a  transformation. 

One node n, is singled out as the start node, and an- 
other one is the end node ne. The machine works in 
discrete time steps 0,1,2,. . . . At each time k the ma- 
chine is at a certain node n k  and has a certain value 
Zk E X,, of its stored data. The machine starts at 
the start node (no = n,) and its data is initialized 
with an input C O  belonging to the input space Xn,  
of the start node. At time k two things can happen: 
If the machine is at the end node ( n k  = ne) ,  then it 
stops and outputs the value zk. Otherwise, the ma- 
chine goes to node nktl = tnk(zk) and transforms 
the data according to zt+l = fnk-+nk+l(zk). 

We impose the following restrictions on our machines. 
For each node n 

a) The input space X, is a semialgebraic subset of 
some euclidean space Rdn. 

b) The transition function t ,  has a finite range. 
This means that at each node there is only a fi- 
nite number of nodes to which the machine may 
make a transition. 

A c) The inverse images Xn-rm = t;l(m) are semial- 
gebraic subsets of Rdn. Note that the set X,,, 
is the set of data in Rdn that make the machine 
transit from node n to node m. 

d) The data transformations fn-., are semialge- 
braic functions (Let X be a semialgebraic subset 
of Rn. A function f : X .--) Rk is called semial- 
gebraic if its graph {(z, U) E X x Rk I f(z) = y} 
is a semialgebraic subset of Fin+'). 

Behind these abstract definitions lies a very natural 
idea of machine; basically one that uses an algorithm 

that involve only semialgebraic functions. Rational 
operations (addition, substraction, multiplication, di- 
vision) are examples of operations that lead to alge- 
braic functions. A less trivial example is polynomial 
root extract ion. 

Decidable sets for our machine are defined in the fol- 
lowing way: 

Definition: Let E and I be sets such that E C I .  
We say that E is decidable in I ,  if there is a machine 
such that: 

1) The input space of the start node is I .  The input 
space of the end node is ( 0 , l ) .  

2) For every input zo E E ,  the machine eventually 
stops and outputs 1. 

3) For every input zo E I \ E ,  the machine eventu- 
ally stops and outputs 0. 

Theorem 3: The set of triplets ( P I ,  ,&, P3) E R3 for 
which the systems (1) are simultaneously stabilizable 
is not decidable. E 

The proof of this result follows at once from the sec- 
ond part of Theorem 2 and from the following char- 
acterisation of decidable sets. 

Lemma: Let I be a semialgebraic set and let E be 
a subset of I .  Then E is decidable in I if and only if 
both E and I \ E are countable unions of semialge- 
braic sets. 

Proof of Lemma: See the full version of the paper. 

The results obtained in this paper are for triplets of 
systems belonging to the set { 5 +/3 I /3 E R}. How- 
ever it is clear that our conclusions also hold for larger 
subsets of R(s) and for any number of systems greater 
or equal to three. 

General Corollary: Assume that k 2 3, P is a 
subset of R(s), and P contains {s +/3 I /3 E R} (for 
example P is the set of first order systems). Then the 
set of k-uples of systems in P that are simultaneously 
stabilizable does not form a semialgebraic set, and 
simultaneous stabilizability of k systems in P is not 
decidable by the machines introduced in the fourth 
section. E 
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5 Conclusion 
We have shown that simultaneous stabilizability of 
three systems is not a "semialgebraic problem" and 
that it cannot be decided by our machines, which are 
allowed to evaluate semialgebraic functions. 
Thus, every solution of the simultaneous stabiliza- 
tion problem for three or more first order systems 
must necessarily include some transcendental func- 
tion. We have given one example of such triplets 
of systems whose stabilization condition can be ex- 
pressed in terms of an inequality involving the elliptic 
modular function. 
Can the general simultaneous stabilization problem 
be solved in terms of the elliptic modular function 
only? We believe not, but this remains an open prob- 
lem. 
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