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Semianalytic Numerical Studies
of Turning Points Arising

in Stiff Boundary Value Problems

By W. L. Miranker* and J. P. Morreeuw

Abstract.   A numerical algorithm for solving stiff boundary value problems with turn-

ing points is presented.   The stiff systems are characterized as singularly perturbed dif-

ferential equations.   The numerical method is derived by appropriately discretizing the

boundary layer and connection theory for such systems.   Numerical results demonstrate

the effectiveness of the method.   In many cases the calculation proceeds with mesh in-

crements which are orders of magnitude larger than those used by other known methods.

1.  Introduction.  Numerical methods for approximating the solution of boundary
value problems subjected to singular perturbations have recently begun to appear (cf.
F.W.Dorr [1], A.M.Il'in [3],R.E.O'Malley [5], C. E. Pearson [6], as well as unpub-
lished work of H. Keller and H. Kress). ■

The canonical form of such a problem is

My = ey" + f{x)y + g{x)y = h{x),      0 < x < 1,
(1.1)

y{0) = a,     yil) = ß

where  e  is considered to be small.
Singularly perturbed problems arise commonly in applications so that numerical

methods for approximating their solutions are of considerable interest.   The interest is
all the more enlarged when the observation is made that such problems comprise
classes of problems of the so-called stiff type.  Thus, numerical methods developed for
singularly perturbed problems will automatically be of use for the numerical solution
of stiff problems.  This connection between these two classes of problems was noted
already by one of us (cf. [4] ) in a study concerning stiff initial value problems.  In
that study, as in the present one, the asymptotic methods, usually called boundary
layer techniques, known to describe the solution of the singularly perturbed problem,
are exploited to generate the numerical methods.
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1018 W. L. MIRANKER AND J. P. MORREEUW

The boundary value problem (1.1) is further complicated enormously, when
compared to the initial value problem, by the presence of points where / vanishes,
the so-called turning points.  The analytic value of the solution in the presence of such
points as well as the relationship between the values of the solution on adjoining sides
of such points is the subject of the so-called connection theory (i. e., WKB analysis, cf.
R. O'Malley [5]).

Our numerical methods deal with the turning points by casting the connection
theory into a numerically exploitable form, moreover, in combination with the bound-
ary layer methods just referred to.

The resulting numerical methods inherit the favorable feature of the analytic
methods, namely, they improve rather than degrade with increasing stiffness (decreas-
ing e)  in the problem.  Moreover, the mesh increments which are used are frequently
orders of magnitude larger than those required by other numerical methods for similar
problems.

In the present study, our results concern only the linear form (1.1) of the prob-
lem.  We also set aside the especially difficult phenomena of resonance in the solutions
which occurs when / has multiple zeros or when at a simple zero of / the quantity
g/f'  is an integer.

Our numerical method provides a pointwise approximation to the solution y  of
(1.1) which is  O(Ax).  The approximation is probably uniform within  G\Ax)  in
cases where the maximum principle prevails for (1.1).  Improvements in the order of
the approximation are directly obtainable, as may be seen.

In Section 2, we review the asymptotic theory of turning points which describes
the structure of the solution of (1.1).    We do this in a form which is designed for the
numerical work to follow.   In Section 3, we give the formal presentation of our algo-
rithm consisting of a discretization of the boundary layer methods and connection the-
ory developed in Section 2.  In Section 4, we comment on limitations of the algorithm
and we present an algebraic point of view which leads to a rapid iteration method for
executing the algorithm introduced in Section 3.   In Section 5, we give the results of
calculations performed on a large number of cases.

2.   Analytic Aspects of the Solution.   In this section, we derive various analytic
properties of solutions of (1.1).

2.1. Preliminaries.   We proceed by introducing some terminology by means of
the following definitions.  In these definitions, all points and sets lie in [0, 1].

Definition 2.1.  A point x  is said to be an irregular point if in every neighbor-
hood of x,   the function f{x)  is neither larger than a positive number nor smaller
than a negative number.

Remark 2.1.   Turning points are irregular points.
Definition 2.2.   An interval of regularity is an interval containing no irregular

points.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TURNING POINTS IN STIFF BOUNDARY VALUE PROBLEMS 1019

Definition 2.3.  A neighborhood of irregularity is an open interval containing
exactly one irregular point.

Definition 2.4. A right (left) sided neighborhood of irregularity is an open interval
containing no point of irregularity and whose greatest lower (least upper) bound is a point
of irregularity.  When we need not specify the right or left sidedness, we will refer to
these neighborhoods as demineighborhoods of irregularity.

2.2.  Form of the Solution  in an Interval of Regularity.   In a closed interval of
regularity, the solution y  of (1.1) may be written in the form

(2.1) y = u + v

with
(a)       u = e-*/ew,

(2.2) <b)     4"1
(c) M« = h,
(d) Mu = 0.

From these, in turn, we obtain

(e) ew" - d(fw)¡dx + gw = 0.

Introducing the operators   L   and its adjoint   L*   through

Lz = fdz/dx + gz,
L*z = - d(fz)/dx + gz,

we may write (2.2) (c) and (2.2) (e), respectively, as

(2.4)
(a) eu" + Lu = h,
(b) ew" + L*w=0.

Indeed, (2.2) (e) may be written as

(2.4) (c)    M*w = 0,

where   M*   is the adjoint of  M.
Remark 2.2.  The decomposition (2.1) is unique up to  0(e)  under suitable regu-

larity conditions on  u, v,   Lu   and  e_*'e L*w.
To see this, let y = uQ + v0   and y = u, + v.   be two such decompositions.

Let u = u. - uQ   and  v = vl — v0   so that  u + v =0.  Then

(2.5) 0=L(«+û)= Lu +ie-*leL*{e^ev))-i2g-f')v-f2eie.

Solving (2.5) for  v   and using suitable regularity conditions as cited gives  t; = O(e).
Using this in turn along with  u + v = 0,  we can obtain the same result for u
demonstrating the remark.
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1020 W. L. MIRANKER AND J. P. MORREEUW

2.3.  Form of the Solution in a Neighborhood of Irregularity.   We will now re-
view the connection theory which characterizes the behavior of solutions of (1.1) in
neighborhoods of irregularity. We will follow the development of R. O'Malley with modi-
fications which will be of importance for the numerical considerations to follow.

We will limit ourselves to the case in which / has nonvanishing right and left
sided derivatives at the irregular point, hereafter denoted by x^.  In each demineighbor-
hood of Xç, f may be written as

(2.6) f(x) = a{x - xm) [1 + % fix. + 9ix - x¿) ix - xja],

where here and hereafter

(2.7) * =/(**)■

We introduce the new variable  tj  in place of x  through
r 11/2

(2.8) V = v{x)= \2lafXxJ{s)ds^      ,

where
(2.9) ix-x^n{x)>0.

Note that  n{x*) = 0, n'{x*) = 1   and that  t?' > 0  in the demineighborhood.
Thus, the change of variables is a valid one and, from (1.1), we obtain

«.» , , »,, -,2A       ,    i V2   g{x) b{x)
(2.10) <,„ +(«i-«i/<*))*,+« -2^-^y=z~¡y-

The solutions of (2.10) are characterized by the following Proposition.
Proposition.  There exist functions M(tj, e), /V(t?, e), hin, e) and oie),  ana-

lytic in  e and continuously differentiable in  r¡ such that

(2.11) y{v, e) = Mir,, e)z + eNin, e)z„

is a solution of (2.10) where  z  is a solution of

(2.12) ez^ + aVzv + (b + eoie))z = hin, e).

Here and hereafter
(2.13) b=g(xj.

Proof. With
(a) m = -ri"Kv')\
(b) Bin) =(« V*(*) - x2if'{x))2b) lnx2{f{x))2,

(2.10) may be written as

(2.15) gym + ian + e$in))yv +{b+ ye{n))y - h{x)l{n')2.
Inserting (2.11) into (2.15) and using (2.12), we get

(2.16) Az + eBzv + C = 0,
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turning points in stiff boundary value problems 1021

where
(a)   A = n{aMn +6M) + e{Mm + fAi,, - oM - (b + eo){2Nr} + fJV)),

(2.17) (b)    B = 2Mn-iNan)r¡+enN + SiM-Nan) + eiNr}r]+CNr1-oIV),
(c)    C = Mh -h + eiNJi + $Nh + {Nh)nY

Setting
oo oo

(2.18) M=\TeiMi    and   N = £  eVV,-,
¿=0 '=0

then the terms of order zero in  e   in (2.17)(a) and (2.17)(b) yield

(a) aMn _ + 6Mn = 0,
(2.19) 0,T1 °

(b) 2M0iV - iN0an\ + 0T7WO + f (Aí0 - aTV» = 0.

Let M0   be the solution of (2.19)(a) satisfying M0(0) = 1.  Then the solution of
(2.19)(b), which is bounded at  t? = 0,  is given by

(2.20) aN0n = M0 - exp J^ (0/a - f) dV.

Similarly, to order i  in  e,  the Eqs. (2.17) yield

(a) ritaM,    +0M,)-ol_lAfo+Ki_l(ri)  =0,
(2.21)

(b) - iNfln)' + {d/a) anN¡ - ÇanN: + 2Mir] + f/lí, + J,_ . = 0.

Here, K¡_. which depends on MQ, ••• , M¡_,, N0, • • • , N¡_ t, a8, • • *, a¡_2 is con-
tinuous at 17 = 0. /,_ j   depends on N0, • • •, Aff_ j, o0, • • •, o¡_ 2.

Upon choosing a^j = K¡_.(0), (2.21)(a) may be solved for M¡ which is con-
tinuous at 1? = 0. With this M¡, (2.21)(b) may be solved in turn for N¡an with A^-
being bounded at r? = 0. In this manner, M and N may be constructed. Similarly,
h = S("0/2¿e'  may also be obtained.

This demonstrates the Proposition.
If z   is a solution of (2.12) such that  ez     is bounded, then from (2.11)

(2.22a) y = MQz + eN0zv + Oie).

Differentiating (2.11) with respect to  17  and using (2.12) and the boundedness of
ezn  gives

(2.22b) yn = iM0-N0an)zv+Oil).

From (2.22) it is then clear that if we restrict our attention to quantities deter-
mined up to  O(e),  then we may use  z,   obtained from the restriction of (2.12), to

(2.23) ezvr] + anz^ + bz = h 0(r?).

This equation possesses a solution of the form, h0i0)/b + 0(17) + O(e),  whose
derivative, moreover is bounded with respect both to  17  and to  e.  Thus, all bounded
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solutions y  of our original Eq. (1.1) may be written in the form

(a) y = M0iz + A(*.)M*.)) + eN0zn + Oie, 77), **
(2.24)

(b) yn = iM0-N0an)zr]+O{l\e^,

where here  z   is a bounded solution of the homogeneous equation (2.23), viz.

(2.25) eznn + anzv + bz = 0.

For the bounded solution, it may be verified that  tjz     as well as  ez       are bounded.
Thus, since x - n = 0{n2),  we find that z(x) - z(t?) = O(tj)  and  ez Jx) - ez^in) =
Oin).  Using these observations and the regularity of M0   and N0,  we may write
(2.24) as

(a) y^ = Mo(z + *(**)/«(*•)) + eAV* + 0{e, x - x¿,
(2.26)

(b) y'ix) = {M0 - N0a{x - xm))zx + 0{l\ex).

As we will see further on, we may adopt the normalization M0{x^) = 1.  Thus, (2.26)
may be further simplified to

(a) y = z + hixjlgixj + eNoi0)z' + 0(e, x - xj,
(2.27)

(b) y' = z' + 0{i\e^Xt),

where z   is a solution of

(2.28) ez" + a{x - xjz + bz = 0.

We are now directed to the solution of Eq. (2.28).
This equation has the parabolic cylinder functions for its solutions.  We will now

summarize the properties of these solutions which we will require for our numerical
method.

In the following Table 2.1,  «,   and  u2   are approximations to independent solu-
tions of (2.28) (which are bounded in neighborhoods of xj.   Here and throughout
p = b/a.   From this table, we can deduce properties of z + eA/o(0)z'   and  z'   needed
for y   and y   in (2.27) by taking appropriate (and as yet unspecified) combinations
of u,   and  u2.  We recombine the entries in Table 2.1 calling them   Y¡,  i — 1, 2
where

(a) Y, = «f + erV0(0)«;,      i =1,2,
(2.29)

(b) r;. = w;, i =1,2.

These quantities are needed for determining y  (as in (2.27)).  In terms of our original
notation, the relevant data are then displayed in the following Table 2.2.

In Table 2.2,  w2   and  w,   are, respectively, normalized solutions of   Lw = 0

/= 0(x.y) =* f/(\x\ + \y\) < const   for   (lyl + lyl) < const.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



turning points in stiff boundary value problems 1023

and   L w = 0. The normalization is such that there exist constants pi  for i = 1, 2
such that

(2.30) lim
w.

lim
fwx

x-**.   \x-xAP2      *-*.   \x-xApi
1.

Thus, from (2.27), we see that in each demineighborhood of irregularity the so-
lution of (1.1) is a combination of  Yl   and   y2,viz.

Restrictions

«CO exp [-ï/;.a*]l»-x.l'-' l*-x.|-"
|x-x,|

u'(x) "f exp [    e/r.odo   s'8(*_x») I*-*» I .(x-x.lpix-x.r'-'
Ix-xJ-*- » 1

"(x.) =»-""r<S-((î)"""") \V   e/     I r((l +r«i +p)/2)

"'(x.) —""-'S-feri 5*<x-x.)2— «£¿ffi *((=*)->

TABLE 2.1. Properties of Solutions of (2.28)

r,(x) r2(x)

r(x) exp    --J* /(»)*     »j(x) Wj(jc) + 0(e/(x - x»), x - x.)

m» sig(x-x.)      IX1/2)
2e IXI-p/2) (am m i2)

rt(i +p)/2)» *■((?)"■)

W /(x) *pI~ ïXT, mm »,(X)
f (x)        , ,

-7TT  w2<x)
/(x)

+ 0(1)

^(0)
J^      ÍX- 1/2)
2e  r«l-p)/2)

Re ((a/2e)-''/:!) IX- 1/2)
r(p/2)

!(x-x,)Re((-iI/2e)(''+')'2)

TABLE 2.2
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(a) y = ^*j + Xr2 + pY, + 0(e/(x - x,), x - xm),

(2.31)
(b) y-íi^+OÍOíe/í,-,.)^-«.)-

Thus, we see that up to terms which are  0{l),€ x_x s,  Y.   may be identified
with the function  u  and   Y2   with the function  u  introduced in (2.1).  Thus, in an
appropriate sense, the values of u  and  t;  and their derivatives at an irregular point
may be read off from Table 2.2.

This concludes our description of the solution of (1.1) in a neighborhood of irreg-
ularity.

3.   Description of the Algorithm.   In this section we derive our numerical method.
3.1. Preliminaries.   Our calculation will be performed on the mesh of points,

{x{|/ = 0, ••' ,N} where

(3.1) 0 = xo<X!<  •••<xN = l.

The mesh points consist of three types:   irregular points, neighboring points and
regular points.  These are defined as follows:

Definition 3.1.  An irregular mesh point is an irregular point in the sense of Defi-
nition 2.1. We assume that all irregular points are to be found among the mesh points.
We also assume that each pair of irregular mesh points are separated by at least two
points of the mesh.

Definition 3.2. x¡  is a neighboring mesh point if either xi+.   or x¡_ x   are
irregular points.

Definition 3.3. x¡  is a regular mesh point if it is neither an irregular mesh point
nor a neighboring mesh point.

We will hereafter drop the qualifying word, mesh, associated with these points,
since no confusion will result.

Let / denote a discretization of / That is a function which interpolates / on
the mesh.  Similarly,  u   and  v   will denote discretizations of u  and  v  respectively.
A A.

0   will denote a primitive of /.
In addition to the usual forward and backward divided difference operators, which

will be denoted by a subscript x or x respectively, we will make use of a directional
divided difference operator used by F. W. Dorr [1].  This is given by

„,x ^o^f   s      /«(O*.    if *>0>(3.2) a — (•) = \to U(*)*>   if a<0.

The dual of this operator is given by
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3.2.  77ie Discretization at a Regular Point.   At a regular point x¡, M« = h  and
Hv = 0  are discretized as

(3-4) e&xx-.i+fii: {uY+gfi^b,

and
dx

(3-5) e-td* [etf«»"^, - ¿ ifv #'% + g^'%] = 0

respectively.
Since (3.5) may be multiplied by a constant, the choice of the primitive $ oc-

curring therein is arbitrary.
Remark 3.1.  The directionally discretized terms in (3.4) and (3.5) respectively

involve u¡ and ui+,   and  v¡  and  u¡_,   or they involve u¡  and u¡_.   and  v¡
and vi+.   depending on the sign of /

3.3.   Treatment at a Neighboring Point.   The principal difficulty at a neighboring
point x¡  involves the evaluation of the second divided difference.  We are ill advised
to use (3.4) and (3.5) at a neighboring point since the terms  ( • )xx ,  will involve
values at both an irregular point and at a neighboring point, these points delimiting a
region of rapid change of u  and/or  v,  when  e  is small.   Let x*   denote the irreg-
ular point for which x¡  is a neighbor.

We proceed to obtain an alternate approximation to the second derivatives. Let
r  denote the second derivative of u.   Then (2.2)(c) becomes

(3.6) er +fu +gu = h.

Differentiating (3.6) gives

(3.7) fr + if' + g)u + g'u = tí - er.

Combining (3.6) and (3.7) gives

(3.8) r \f2 - e(f' + g)] = igu - h) if' + g) + /[(ft' - er') + g'u].

If the last bracket here is bounded at x¡,  we may neglect it, since its coefficient /
is small at x¡; (provided of course that   \x¡ - x¡* \  is small, which we assume).   Then
for r,   we have the approximation

(3.9) er = Xl{gu-h),

where

(3.10) Xx = e{g+f')l{f2-e(f' +g)).
A

Similarly, denoting the second derivative of w = e*lev by s, we obtain from
(2.2)(d) the following four equations in place of (3.6), (3.7), (3.9) and (3.10), respec-
tively,
(3.11) es-fw +ig-f')w=0,
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1026 W. L. MIRANKER AND J. P. MORREEUW

(3.12) -/s + ig - 2/') w +ig- f')'w = - es'
and

(3.13) es = x2ig-f)w
where

(3.14) x2 = eig - 2f')l(f2 - eig - 2/')).

Using  r  and  s  in (3.4) and (3.5), respectively, in place of the divided second
differences, Remark 3.1 shows that one of the resulting equations does not make use
of data at the irregular point.  We use this equation to calculate the associated function
{u  or  w)  as the case may be at the neighboring point.  We call this function the prin-
cipal function (relative to this neighboring point).  The remaining function is called the
minor function.

Let y  denote the principal function  («  or e       '*    v,  as the case may be)
and let y   denote the minor function.

Consider first the case where  v   is u.   Then write (3.6) as

(3.15) Ly=h-er.

We may solve this equation to obtain

(3.16) y = \ + pw,

where  X  is a particular solution to (3.15),  p  a constant and  w  is a normalized
solution (in the sense of (2.30)) of Ly = 0.  Writing

(3.17) j^X + pw,,

we may approximate  À  as

(3.18) \ = ihi-eri)lgi,
while
(3.19) w,= \xt-xr\~st,fi.

In (3.18), r  is computed by means of (3.9) and (3.10) and in (3.9) we may set
u  equal to y¡   which is known to us.  Since y  is the principal function, y¡  is
known and so then from (3.17)—(3.19), p  is known.

In the case that the principal function y  is identified with  e       '*    v,  we
similarly derive (3.17).   But now

(3.20) X = - es,/gt

approximately; and  vv¿  is obtained from the normalized solution of L y = 0,  and is

(3.21) w¿ = illfi)\xi-xi*\g>/f'>.

For the minor function, the same development may be made, representing it as

(3.22) y = X + pw.
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X  is computed as in (3.18), however since y   is not known, we use a prior value
of v   (i.e., y   from the previous iteration).  The Eqs. (3.17)—(3.21) hold for the
minor function with bars inserted as necessary.   However, because y   is the minor
function, y¡  is not known and so p   is unknown as well.  To determine y¡,  we
must determine  p   and this will be done in the following paragraph.

3.4.  Treatment at an Irregular Point.   Our study of the principal function at neigh-
boring points permits us to express this function as
(3.23) X_ + p_ w_
to the left of an irregular point and as
(3.24) X+ + p+ w+
to the right.  Similarly, the minor functions to the left and to the right of an irregular
point may be written as

(3.25) X_ +p_ w_
and
(3.26) X+ + p+w +
respectively.

We may identify  X+ + X+ + p+w + + p+w+   with (2.31)(a) as an approxima-
tion to the solution y,   to one side of an irregular point.   From Table 2.2 as   x¡ ->
x¿ ,  the limiting values of  Y¡(x)  and   Y2ix)  are known and approximate the normal-
ized solutions (at x¡ )  which are  w+   and  w+   in some order.  Call   Y.   and   Y2
the functions   Y  and   Y as the case may be.  Thus, by the continuity of y  at an
irregular point, we have

(3.27) X_ +X„ +p_Y_i0) + p_Y_i0) = X+ +\+  + p+r+(0) + p+7+(0).

Similarly, from (2.31)(b) and the continuity of y   at an irregular point, we have

(3.28) p_F'_(0) + p_ ? (0) = p+1"+(0) + p+ Y'+ (0).

(3.27) and (3.28) form a system for the determination of p+   and p_.  Except
in the case where the determinant of this system vanishes (an analogue of the resonance
phenomena), we may solve this system for p+   and  p_.

4.   Execution of the Algorithm.
4.1.  Comments and Limitations,   (i) As we have remarked above, there must be

at least two mesh points between each pair of irregular points.
(ii)  The treatment of neighboring points and irregular points required division by

g (cf. (3.20)).   Thus, as stated, the algorithm imposes the constraint that g  not van-
ish in the vicinity of an irregular point.  Nevertheless, by ignoring the status of neighbor-
ing and irregular points and applying (3.4) and (3.5) to all points, an alternate algorithm
is formally defined.  Although we have not tested it, this alternate algorithm is probably
reasonable in some cases.
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(iii)  At an irregular point, the values of the right and left sided derivatives of /
(as well as the values of g)  must not cause the vanishing of the determinant arising
out of (3.27) and (3.28), for solving for p+ and p_   (i.e. the discrete analogue of the
resonance phenomenon, already referred to, must be avoided).

(iv)  If algorithmic resonance but not real resonance does occur, it can be elimi-
nated by small changes in / in the vicinity of irregular points.  The effect of these
changes is likely to result in small changes in the numerical results.   For example, this
is the case for those problems for which the maximum principle maintains.

4.2. An Algebraic Point of View.   The algorithm yields in effect a linear system
for the vectors  u¡  and  v¡.  A special ordering of this linear system results in a coef-
ficient matrix which in turn makes for an efficient solution procedure.

If /( < 0,  we call  ùi  a rightward function, while we call it a leftward function
if f¡ > 0.  We use the reverse designations for  v(.  (This terminology devolves from
the directional divided differences (3.2) and (3.3) as well as the wave-like behavior of
the solution.)

Now, reorder the  u¡  and  v¡  so that all the rightward functions are contiguous
and likewise the leftward functions.  We also preserve the ordering of the subscript, i,
within each of the two groups.  The matrix   C  of the resulting linear system has the
following form.

RIGHTWARD FUNCTION    LEFTWARD FUNCTION

Figure 4.1. Schematic of the matrix of the linear system.
The  £,- correspond to the turning points
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Thus   C  is a five diagonal matrix.  The entries along the diagonals a  and e  are
sparse and come from endpoints and the coupling in (3.27) and (3.28) (irregular points).
The off-diagonal, b,  has terms which are  0(e)  corresponding to the rightward func-
tions while the off-diagonal, d, has terms which are  0(e)  corresponding to the leftward
functions.  (These  0(e)  terms result respectively from the second divided difference
terms in (3.4) or (3.5) as the case may be, and are schematized in Fig. 4.1 by the dashed
segments.)

This form of  C  suggests a relaxation procedure which consists of pairs of passes
for solving the associated linear system.

(i) First Pass.   Relax from left to right the equations corresponding to rightward
functions. ■

(ii) Second Pass.   Relax from right to left the equations corresponding to the left-
ward functions.

Coupling between the two passes occurs through the far off-diagonals a  and e.
This method essentially results in a rapid movement of information flow by relaxation
in the system, since the  0(e)  coefficients of  C  are arranged so that they do not slow
down this flow.   Because the nonzero entries in   C  are of widely different magnitude, a
relaxation step produces widely varying corrections in different variables.  We found it
necessary to smooth out this instability by use of the method of false position.   In par-
ticular, let  f = («p u2, •••, un, Uj, ••• , vn)  and let the result of a relaxation with-
out smoothing be represented by F(fm ~l ).  Including the smoothing we have

+ 1 F,(r-i)rr-F.(r)rri
rm_fr-l+F.(r-l)_F.(r)-

For small  e,  the algorithm converges in a few iterations (4 or 5 for the cases of
interest); the fewer, the smaller  e.

5.  Numerical Results.   In subsection 5.1, we characterize the errors arising
through use of our algorithm corresponding to various cases for the equation ey" +
axy  + by = 0.   In subsection 5.2, we give a compendium of examples for linear equa-
tions with a variety of variable coefficients.  We also include some of the results of
C. E. Pearson [6] for comparison.

5.1. Solution of the Boundary Value Problem   ey" + axy' + by = 0  with
y{- 1) = l,y{l) = 2.  We take  e = 10"~7.  Two typical cases are

(i) a = -l,b<0,
(ii) fl= l,ft = - 1.0001 (-1).

In case (i), the algorithm gives zero at all interior mesh points if b  is not a
(machine) integer.  This corresponds to an error of less than   10-8.

In case (ii), the exact solution is linear to within   10-4   on each side of the turn-
ing point, where it vanishes.   Fig. 5.1 displays the approximate solution.  In Fig. 5.2, we
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plot the maximum error versus  f,  the mesh increment  Ax   The linearity of the plot
in Fig. 5.2 is not surprising since all of the discretization procedures in the various as-
pects of the algorithm were of the first order in  Ax.

Exact solution of I0~7y+xy-l.000ly=0
Figure  5.1.  Approximate solution in case (ii)

ERROR f,

0.05

0.025

Increment Ax—^.
141   81 41 21    No. of points N
Numerical error for I0~7y + xy-l.000l y=0

Figure 5.2. Maximum error Ax in case (ii)

5.2. Variable Coefficient Cases. In this subsection we present a sequence of figures
exhibiting-the coefficient fix) of the term y , and the corresponding results.

Pearson [6] has studied some of these cases by a refinement method.  We get ex-
actly the same results as he in the cases: 5.3, 5.5, 5.6, 5.7;  and close to his results in
cases:   5.4, 5.8, 5.9, 5.10, 5.11, 5.12.  We compare also our result to an exact solution
in cases:  5.14, 5.15, 5.16.   In all these cases, the difference goes to zero with the mesh
increment and, when the maximum principle is satisfied, is less than the mesh increment.
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f(x)=x3-l/2x f(x)=x + l/2 x2

l\

OZ-i

Ax=0.05

IO"7y*(x3-l/2x)y+H)y=0
Figure 5.3

IO"7r(x*l/2 x2)y+(-M/2 x cos x)=0
Figure 5.4

f(xH/2-x: f(x)=xz-l/2

\Ax=0.05

0
IO'9y+(l/2-x2)ytxy=0

Figure 5.5

10
Ax=0.05

V!
I0"9y + (x2-l/2)y+xy=0

Figure 5.6

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1032 W. L. MIRANKER and j. p. morreeuw

tf

'"' 0 I

IO"V|x|y+(x-l/2) y=0
Figure 5.7

I

0

-I

-10

-I02

-I03

-I04

0.5   \

Ax=O.I
Ax=0.05

Pearson's
result

/«x)=|x|

Ax=0.2

I0"7y+|x|y+l/2y=0

Figure 5.8

f (x)=sin27rx

y»
Ax=0.05

Ax=0.025      >;y
Ax=O.OI3^

I0"7y+(sin7rx)2y+(x-a)y=0

Figure 5.9

f (xH-x2

Pearson's Result

0
I0"8y'+(l-x2)y+xy=0

Figure 5.10
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f(x)=x-.3

0>

-V
f(x)=x-v3

Pearsons Result

Ax=0.2

IO"8y+x3y-y=0

Vibralion case: f'(0)=0
Figure 5.11

3 cycles of oscillations with amplitude~IO'20

-0.5      0   KQ5      I
-8 "        3 '

Pearson1 s  Result for 10      y+x   y - xy = 0

In this case,    our method is unstable

Figure 5.12

,*     Exact solution-

nai

IO"7yt|x|y-y=-(l+7r2IO"7)cOS7rX-ir|x|sinTrX

Exact solution y=cos tx

IO'7y't(xt|/2x2)yt(-|+l/2xcosx)y=X(-3+sin(xtcosx))

Figure 5.13
Elliptic equation

Figure 5.14
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-2

Ax=0.025.
Ax=0.05-
Ax=O.U

I0"7y'+|x|y+y=
I2xl0"7x2 +
4|x|x3+x4

Exact solution

Non elliptic
equation

0.5 -'•»

IO"V|x|y-y=l2»IO'V+
4|x|x3-x4
Exact solution

y=x4
Elliptic equation

Figure 5.16

Figure 5.15
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