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Abstract

Semi-supervised learning has attracted a sig-
nificant amount of attention in machine
learning. Most previous studies have focused
on designing special algorithms to effectively
exploit the unlabeled data. Our goal is to im-
prove the classification accuracy of any given
supervised learning algorithm by using the
available unlabeled examples. This problem
is particularly important when we need to
train a hand-crafted, supervised learning al-
gorithm with a limited number of labeled ex-
amples and a multitude of unlabeled exam-
ples. We present a boosting framework for
semi-supervised learning, termed as Semi-
Boost. Our empirical study on 21 differ-
ent datasets demonstrates that the proposed
framework is effective for improving the per-
formance of several supervised learning algo-
rithms given a large number of unlabeled ex-
amples. We also show that our algorithm,
SemiBoost often outperforms state-of-the-art
semi-supervised learning algorithms.

1. Introduction

Semi-supervised learning has received significant in-
terest in machine learning. The key idea of semi-
supervised learning is to exploit both labeled and un-
labeled data for learning a classification model. A
number of algorithms have been proposed for semi-
supervised learning, such as graphical models (Nigam
et al., 2000), graph-based approaches (Zhou et al.,
2005), Gaussian process (Lawrence & Jordan, 2005),
kernel learning (Zhu et al., 2005), transductive Sup-
port Vector Machine (Joachims, 1999), and manifold
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regularization (Belkin et al., 2004). One of the key
assumptions in many semi-supervised learning algo-
rithms is the clustering assumption (Chapelle et al.,
2006), which requires the decision boundary to pass
through the region where the density of the unlabeled
data is low. This assumption allows the unlabeled data
to regularize the decision boundary, which in turn in-
fluences the choice of classification models.

Most semi-supervised learning algorithms design spe-
cialized learning algorithms to effectively utilize both
labeled and unlabeled data. However, it is often the
case that a user already has a favorite supervised
learning algorithm, and would like to improve its per-
formance by utilizing the available unlabeled data.
To solve this problem, we need a general framework
that can be applied to improve the performance of
any given supervised learning algorithm by utilizing
the unlabeled examples. We refer to this problem as
Semi-supervised Improvement to differentiate our
work from the standard semi-supervised learning prob-
lems.

To address the semi-supervised improvement, we pro-
pose a boosting framework, termed SemiBoost, for
improving a given supervised learning algorithm with
unlabeled data. Similar to most boosting algo-
rithms (Freund & Schapire, 1996), SemiBoost im-
proves the classification accuracy iteratively. At each
iteration, a number of unlabeled examples will be se-
lected and used to train a new classification model
using the given supervised learning algorithm. The
trained classification models from each iteration are
combined to form a final classification model. The
key difficulties in designing SemiBoost are: (1) how to
sample the unlabeled examples for training a new clas-
sification model at each iteration?, and (2) what class
labels should be assigned to the selected unlabeled ex-
amples? It is important to note that unlike supervised
boosting algorithms where we select labeled examples
that are difficult to classify, SemiBoost needs to select
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unlabeled examples.

One way to address the above questions is to exploit
the clustering assumption and the large margin cri-
terion. One can improve the classification margin by
selecting the examples with the highest classification
confidence, and assign them with the class labels that
are predicted by the current classifier. This strategy
was adopted by in MarginBoost (d’Alche Buc et al.,
2002). However, a problem with this strategy is that
the introduction of examples with predicted class la-
bels may only help to increase the classification mar-
gin, without actually providing any novel information
to the classifier.

We propose to use the pairwise similarity measure-
ments to guide the selection of unlabeled examples at
each iteration, as well as for assigning class labels to
them. For each unlabeled example xi, we compute

• Consistency pi between xi and examples in its
local neighborhood labeled as +1 if the class label
assigned to xi is +1, and

• Consistency qi between xi and examples in its lo-
cal neighborhood labeled as −1 if the assigned
class label to xi is −1.

These consistencies are computed based on pairwise
similarities and are used to decide which examples
should be selected and which class label should be as-
signed to each selected example.

2. Related Work

A large number of approaches have been developed for
semi-supervised learning which can be grouped into
following three categories.

2.1. Graph Based Approaches

Graph-based approaches represent both the labeled
and the unlabeled examples by a connected graph, in
which each example is represented by a vertex, and
pairs of vertices are connected by an edge if the corre-
sponding examples have large similaritiy. The optimal
class labels for the unlabeled examples are found by
minimizing their inconsistency with both the super-
vised class labels and the graph structure. The well
known approaches in this category include harmonic
function based approach (Zhu et al., 2003), spectral
graph transducer (SGT), Gaussian process based ap-
proach (Lawrence & Jordan, 2005), manifold regular-
ization (Belkin et al., 2004) and label propagation ap-
proach (Bengio et al., 2006). The proposed frame-
work is closely related to the graph-based approaches
in the sense that both utilize the example similarities

for semi-supervised learning. However, unlike most
graph-based approaches that are non-parametric and
do not build specific classification models, we create
a specific classification model by learning from both
the labeled and the unlabeled examples. This is par-
ticularly important for semi-supervised improvement,
whose goal is to improve a given supervised learning
algorithm with massive amounts of unlabeled data.

2.2. Clustering Assumption and the Maximum
Margin Criterion

These approaches utilize the unlabeled data to regu-
larize the decision boundary. In particular, the de-
cision boundary that passes through the region with
low density of unlabeled examples is preferred to the
one that is heavily populated with unlabeled examples.
Approaches in this category include transductive sup-
port vector machine (TSVM) (Joachims, 1999), null
category approach (Lawrence & Jordan, 2005), and
MarginBoost algorithm (d’Alche Buc et al., 2002).

2.3. Kernel Learning Methods

Kernel learning methods compute the optimal ker-
nel matrices using both the labeled and the unla-
beled examples. Cluster kernel (Chapelle et al., 2002),
kernel alignment method (Cristianini et al., 2001),
Semi-definite Programming approach (Lanckriet et al.,
2004), graph kernel approach (Zhu et al., 2005) take
this approach.

3. Semi-supervised Boosting

We first describe the semi-supervised improvement
problem, and then present the SemiBoost algorithm

3.1. Semi-supervised Improvement

Let D = {x1,x2, . . . ,xn} denote the entire dataset, in-
cluding both the labeled and the unlabeled examples.
Suppose that the first nl examples are labeled given by
yl = (yl

1, y
l
2, . . . , y

l
nl

) where each class label yl
i is either

+1 or −1. We denote by yu = (yu
1 , yu

2 , . . . , yu
nu

) the
class labels (assigned) of unlabeled examples, where
nu = n − nl. Let the labels for the entire dataset be
denoted as y = [yl;yu]. Let S = [Si,j ]n×n denote
the symmetric similarity matrix, where Si,j ≥ 0 repre-
sents the similarity between xi and xj . Let A denote
the given supervised learning algorithm. The goal of
semi-supervised improvement is to improve the per-
formance of A using the unlabeled examples and the
pairwise similarity S.
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3.2. SemiBoost

To improve the given learning algorithm A, we follow
the idea of boosting by running the algorithm A iter-
atively. A new classification model will be learned at
each iteration using the algorithm A, and the learned
classification models in different iterations will be lin-
early combined to form the final classification model.

3.2.1. Objective Function

Our objective function F (y, S) is a combination of two
terms, one measuring the inconsistency between la-
beled and unlabeled examples Fl(y, S), and the other
measuring the inconsistency among the unlabeled ex-
amples Fu(yu, S).

Inspired by the harmonic function approach, we define
Fu(y, S), the inconsistency between class labels y and
the similarity measurement S, as

Fu(yu, S) =
nu∑

i,j=1

Si,j cosh(yu
i − yu

j ) (1)

where cosh(yi−yj) = (exp(−yi+yj)+exp(yi−yj))/2 is
the hyperbolic cosine function. Note that cosh(x) is a
convex function with its minimum at x = 0. Eq (1) can
be expanded as Fu(yu, S) = 1

2

∑
Sj,i exp(yu

j − yu
i ) +

1
2

∑
Si,j exp(yu

i − yu
j ), and due to the symmetry of S,

we have Fu(yu, S) =
∑

ij Si,j exp(yu
i − yu

j ).

We then define the inconsistency between labeled and
unlabeled examples Fl(y, S) as

Fl(y, S) =
nl∑

i=1

nu∑
j=1

Si,j exp(−2yl
iy

u
j ). (2)

Combining Eqs (1) and (2) leads to the objective func-
tion,

F (y, S) = Fl(y, S) + CFu(yu, S). (3)

The constant C is introduced to weight the importance
between the labeled and the unlabeled data. Given the
objective function in (3), the optimal class label yu is
found by minimizing F . This is a convex optimiza-
tion problem, and therefore can be solved effectively
by numerical methods. However, since our goal is to
improve the given learning algorithm A by the unla-
beled data and the similarity matrix S, we present a
boosting algorithm that can efficiently minimize the
objective function F .

3.2.2. Algorithm

Let ht(x) : X → {−1,+1} denote the classification
model that is learned at the t-th iteration by the algo-
rithm A. Let H(x) : X → R denote the classification

model learned after the first T iterations. It is com-
puted as a linear combination of the first T classifica-
tion models, i.e.,

H(x) =
T∑

t=1

αtht(x)

where αt is the combination weight. At the (T + 1)-st
iteration, our goal is to find a new classifier h(x) and
the combination weight α that can efficiently minimize
the objective function F . This leads to the following
optimization problem:

arg min
h(x),α

nl∑
i=1

nu∑
j=1

Si,j exp(−2yl
i(Hj + αhj))

+C

nu∑
i,j=1

Si,j exp(Hi −Hj) exp(α(hi − hj))

where Hi ≡ H(xi) and hi ≡ h(xi).

To simplify the computation, we construct the upper
bound of the objective function. We first bound the
quantity exp(α(hi − hj)) as

exp(α(hi − hj)) ≤ 1
2

(exp(2αhi) + exp(−2αhj)) ,

and then upper bound the objective function F by the
following expression:

F ≤
nl∑

i=1

nu∑
j=1

Si,j exp(−2yl
iHj) exp(−2αyl

ihj)

+C

nu∑
i,j=1

Si,j

2
exp(Hi −Hj) (exp(2αhi) + exp(−2αhj))

We denote the above upper bound by F 1, which can
be rewritten as:

F 1 =
nu∑
i=1

exp(−2αhi)pi + exp(2αhi)qi (4)

where

pi =
nl∑

j=1

Si,je
−2Hiδ(yj , 1) +

C

2

nu∑
j=1

Si,je
Hj−Hi(5)

qi =
nl∑

j=1

Si,je
2Hiδ(yj ,−1) +

C

2

nu∑
j=1

Si,je
Hi−Hj(6)

and δ(x, y) is one when x = y and zero otherwise. The
quantities pi and qi can be interpreted as the confi-
dence in classifying the example xi into the positive
class and the negative class, respectively.
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• Compute the pairwise similarity Si,j between
any two examples.

• Initialize H(x) = 0

• For t = 1, 2, . . . , T

– Compute pi and qi for every example using
Equations (5) and (6)

– Compute the class label zi = sign(pi − qi)
for each example

– Sample example xi by the weight |pi − qi|
– Apply the algorithm A to train a binary

classifier ht(x) using the sampled examples
and their class labels zi

– Compute αt using Equation (7)
– Update the classification function as

H(x)← H(x) + αtht(x)

Figure 1. The SemiBoost algorithm

The upper bound in Eq (4) is not very useful for a
boosting algorithm because it is difficult to compute
the weights of examples directly from Eq (4). To fur-
ther simplify the expression in Eq (4), we use the fol-
lowing inequality

exp(γx) ≤ exp(γ) + exp(−γ)− 1 + γx, ∀x ∈ [−1,+1],

which leads to an upper bound for F 1:

F 1 ≤
nu∑
i=1

(pi + qi)(exp(2αhi) + exp(−2αhi)− 1)

−
nu∑
i=1

2αhi(pi − qi).

We denote the upper bound in the above equation by
F 2. To minimize F 2, the optimal class label zi for the
example xi is zi = sign(pi − qi), and the weight for
sampling example xi is |pi − qi|. The optimal α that
minimizes F 2 is

α =
1
4

ln
∑nu

i=1 piδ(hi, 1) +
∑nu

i=1 qiδ(hi,−1)∑nu

i=1 piδ(hi,−1) +
∑nu

i=1 qiδ(hi, 1).
(7)

Figure 1 summarizes the SemiBoost algorithm.

Similar to most boosting algorithms, we can show that
the proposed semi-supervised boosting algorithm re-
duces the original objective function F exponentially.
This result is summarized in the following Theorem.

Theorem 1 Let α1, ..., αt be the combination weights
that are computed by running the SemiBoost algorithm

(Figure 1). Then, the objective function at (t + 1)st
iteration, i.e., Ft+1, is bounded as follows:

Ft+1 ≤

 nu∑
i=1

 nl∑
j=1

Si,j + C

nu∑
j=1

Si,j

 exp

(
−

t∑
i=1

γi

)
where γi = log(cosh(αi)).

Due to the space limitation, we omit the proof.

The theorem justifies the relaxations made in the
above derivation. At each relaxation, the “touch-
point” is maintained between the objective func-
tion and the bound. Conventional derivation of
boosting algorithms follows the function gradient ap-
proach (Mason et al., 1999), which can also be viewed
as a relaxation approach to approximate the original
objective function by a linear function.

4. Results and Discussion

4.1. Datasets

We use 8 datasets from UCI, 3 synthetic datasets,
5 datasets from Statlog (D.J. Newman & Merz,
1998), ethnicity dataset from (Jain & Lu, 2004), 3-
newsgroups datasets from (Basu et al., 2004), and
texture dataset (Jain & Farrokhina, 1991). A total
of 21 datasets were used, which are summarized in
the first three columns of Table 1 (shortened name
of the dataset, number of samples, and dimensional-
ity). Since the proposed algorithm is applicable for
two-class problem, the multi-class datasets are con-
verted into two class datasets by selecting the samples
corresponding to the two most populated classes in the
dataset.

We use the Radial Basis Function similarity inspired
from its success in graph based approaches. For any
two given samples xi and xj , the similarity Si,j is com-
puted as, Si,j = exp(‖xi − xj‖22/σ2), where σ is the
scale parameter controlling the spread of the radial ba-
sis function. It is well known that the choice of σ has a
large impact on the performance of the algorithm (Zhu
et al., 2003).

4.2. Experimental Setup

The experimental setup aims to study the following
important aspects of the performance of the algorithm:

• Does SemiBoost improve the performance of any
base classifier?
• How does SemiBoost algorithm compare with

other semi-supervised algorithms?
• How does the SemiBoost algorithm behave with

increase in the number of training samples?
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Figure 2. Decision boundary obtained by SemiBoost with the increase in the number of unlabeled training samples on
“two concentric rings” data, using J48 as the base classifier. There are 5 labeled training samples per class (� and N).
The number of unlabeled training samples (+) added per class is shown below the plot.

• How stable is SemiBoost with respect to the scale
parameter σ and any imbalance in class priors?

We use % accuracy as the evaluation measure. All
the experiments are run 10 times each, with differ-
ent random selection of the training data. Mean and
standard deviation of the % accuracy are reported.
The proposed algorithm samples the data labeled from
each iteration of boosting and builds a classifier ht(x).
The number of such classifiers built will depend on the
number of iterations T in boosting. T was set to 10
and we stop the boosting when weights αt computed
from Eq (7) become negative. We set the value of C in
the objective function Eq (3) to be the ratio of number
of labeled samples to the number of unlabeled samples
C = nl/nu.

The first experiment studies the improvement in the
performance of three different base classifiers (ht(x))
after applying SemiBoost: Decision Stump (DS), the
J48 decision tree algorithm (J48), the Support vec-
tor machine with the sequential minimal optimization
(SVM) algorithm. We compare the improvement on
DecisionStump with SemiBoost’s supervised counter-
part Adaboost.M1 with Decision Stump as the base
classifier. Software WEKA (Witten & Frank, 2005)
was used to implement all the classifiers. All the al-
gorithms are run with their default parameters (e.g.
default C and a linear kernel was used for SVM algo-
rithm) except for Adaboost.M1 where the resampling
option was selected in WEKA instead of reweight-
ing. We randomly selected 5 samples per class for
use as labeled samples and the rest of them were
used as unlabeled samples. The scale parameter σ
was set to 3. These four classifiers cover a wide vari-
ety of supervised learning paradigms, and all of them
have been shown to be successful in literature. We
also compare the performance of the proposed algo-
rithm to that of four state-of-the-art semi-supervised
learning algorithms, Self Training (Rosenberg et al.,
2005) with SVM (STSVM), Low Density Separation
(LDS) (Chapelle & Zien, 2005), Spectral Graph Trans-

ducer (SGT) (Joachims, 2003) and Harmonic Function
approach (Zhu et al., 2003). These four algorithms are
selected as they are highly scalable to large datasets
that we used in our experiments. SGT was compared
to TSVM (Joachims, 1999) in (Joachims, 2003) and
shown to perform better overall.

We study the change in performance of the algorithm
with an increase in the number of unlabeled training
samples, for a fixed number of labeled training sam-
ples. We split the dataset into two halves, the training
set and the induction set. To train the SemiBoost, we
take 5 labeled samples per class, and add unlabeled
samples in inceasing steps of 20. The resulting classi-
fier from this training is tested on the induction set.

To evaluate the stability of the algorithm with respect
to scale parameter σ, we again use 5 labeled train-
ing samples per class, SVM as the base classifier, and
σ ∈ {0.5, 1, 2, 3, 4}. We also study the stability of
SemiBoost with respect to an imbalance in the class
prior. Keeping the priors on the labeled samples equal,
we choose a fraction ρ, 0 < ρ ≤ 1, of the unlabeled
samples from class 2 and all the samples from class 1.
For a fixed σ = 3, SVM classifier and 5 labeled train-
ing samples per class, the performance of SemiBoost
is evaluated for different values of

4.3. Results

An illustration of the decision boundary achieved us-
ing SemiBoost is shown in Figure 2 on “two concentric
rings” dataset. The experimental setup uses σ = 3,
and J48 as the base classifier. The plots (a)-(d) in
Figure 2 show the decision boundary achieved by ad-
dition of increasing number of unlabeled samples for a
fixed set of labeled training samples. As the number
of unlabeled samples increases, the decision boundary
obtained approaches the desired decision boundary. ρ.
Table 1 compares the supervised and semi-supervised

algorithms to the SemiBoost algorithm. The columns
DS, J48 and SVM are the performances of the corre-
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Figure 3. Performance of SemiBoost vs. number of unla-
beled samples on UCI Sat-image dataset.

sponding base classifiers. The column Adaboost.M1
is the performance of the Adaboost.M1 algorithm us-
ing Decision Stump as its base classifier. The columns
SB-X, where X is any one of the four base classifiers,
show the performance obtained by semi-supervised im-
provement of the base classifier using SemiBoost. Re-
sults demonstrate that the supervised boosting algo-
rithm Adaboost.M1 does not always improve the per-
formance of the classifier, and in several cases it de-
grades the performance, especially when the base clas-
sifier is a strong classifier. However, SemiBoost signifi-
cantly improves the performance of all the base classi-
fiers. Sometimes there is a drop in the performance of
AdaBoost due to overfitting, that can be alleviated by
using several regularization approaches. We may argue
here that broadly, the consistency requirement in un-
labeled data is acting as a regularizer to the boosting
process. Also, the classifier is more stable after semi-
improvement as the variance in the performance drops
using SemiBoost compared to the base classifiers. The
best classification performance for each dataset is pre-
sented in the bold face in Table 1. SemiBoost-SVM
performs best on most real datasets, and SemiBoost-
J48 performs best on the synthetic datasets. The syn-
thetic datasets were created to have a highly non-linear
decision boundary, and a linear SVM is not able to
separate them even with boosting.

The last four columns in Table 1 correspond to
the semi-supervised algorithms HF, SGT, LDS and
STSVM. Although not very common, there are cases
where the base classifiers which do not use the un-
labeled samples, outperform these algorithms (e.g.,
SVM outperforms HF, SGT and ST-SVM on the
datasets satimage, image-seg, vehicle and ion). This
is because SGT and HF do not always utilize the best
available classifier for the given data. On the other
hand, SemiBoost improves any base classifier. The
poor performance of the HF algorithm observed in
some cases is due to its sensitivity to σ, and due to
the small number of labeled training samples. Self-

training is similar to SemiBoost in the sense that it
aims to improve the performance of any available clas-
sifier using unlabeled samples. However, self-training
solely relies on the classifier predictions to obtain train-
ing data from unlabeled samples. A small number of
training samples may result in a classifier with high
variance, and any error in the learning of base classi-
fier gets magnified over the self-training iterations. For
this reason, on most of the datasets, self-training per-
forms worse than the base classifier. Similar observa-
tions were made in (Ando & Zhang, 2005). SemiBoost,
on the other hand, gives more reliable predictions as
it combines the similarity information effectively with
classifier predictions.

LDS is another popular approach which is shown
to outperform several semi-supervised learning algo-
rithms (Huang & Kecman, 2005). We adopted the
choice of ρ = 4 from (Chapelle & Zien, 2005), and ob-
served that LDS performs better than SB-SVM only
on the synthetic-datasets. In most of those cases,
SemiBoost using decision tree (SB-J48) outperforms
it. The synthetic datasets have well-defined low-
density regions between the classes making them easy
for the LDS algorithm.

The performance of SemiBoost with an increase in the
number of unlabeled training samples is presented in
Figure 3. Due to limited space, we show the results
only on the UCI sat-image classification task. Results
on the remaining datasets are very similar. Figure 3
shows that for a fixed labeled training set, as more
number of unlabeled samples increases, the perfor-
mance on the induction set increases. This shows that
the unlabeled samples are indeed helping in improving
the generalization of the classifier.

SemiBoost is relatively more stable to the scale pa-
rameter, and performs better than the HF and SGT
at all scales (Figures 4(a) and 4(c)). This is a desir-
able property given the fact that it is a difficult prob-
lem to choose the right scale parameter. The plots
in Figure 4(b) and Figure 4(d) show the sensitivity of
SemiBoost to an imbalance in the prior. These figures
show that SemiBoost is more stable compared to the
baseline algorithms.

5. Conclusions and Future Work

We have proposed an algorithm for semi-supervised
learning using a boosting framework. The strength of
SemiBoost lies in its abilitiy to improve the perfor-
mance of any given base classifier. Overall, the results
demonstrate the feasibility of this approach and the
superior performance of SemiBoost compared to the
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Table 1. Performance of different algorithms with 5 training samples per class. The algorithms chosen as base classifiers
for boosting are Decision Stump (DS), Decision Tree (J48) and Support Vector Machine (SVM). For each algorithm,
the SB- prefixed column shows the improvement achieved by using the SemiBoost algorithm. Harmonic Function (HF),
Spectral Graph Transducer (SGT), Low Density Separation (LDS) and Self-training SVM (STSVM) approaches were
used for comparison. Adaboost was used with DecisionStump as the base classifier for comparison.

Dataset n d DS AdaB SB-DS J48 SB-J48 SVM SB-SVM HF SGT LDS ST-SVM

austra 690 15
60.8 61.1 79.0 57.6 81.3 71.2 85.0 56.1 76.1 79.37 65.16

(12.5) (10.8) (2.2) (13.6) (3.5) (8.5) (2.3) (0.7) (8.0) (6.29) (15.19)

german 1000 24
56.2 53.6 66.2 56.6 66.3 59.1 69.2 59.7 52.9 59.41 65.03
(8.1) (7.9) (5.2) (6.7) (7.9) (8.3) (7.9) (0.5) (4.4) (8.67) (5.81)

heart 270 9
72.7 60.1 82.0 67.2 83.2 68.4 82.6 63.9 75.0 72.35 64.04

(14.4) (12.8) (1.7) (15.9) (2.2) (6.7) (1.3) (2.9) (5.4) (11.22) (9.39)

ion 351 10
65.1 69.3 81.1 64.5 90.5 75.3 87.3 34.4 73.3 79.77 64.87
(9.0) (8.6) (8.6) (8.4) (3.4) (4.6) (3.0) (0.9) (7.8) (7.50) (2.98)

iris 100 4
93.0 84.2 100.0 87.7 99.9 100.0 100.0 100.0 100.0 100.00 100.0
(9.1) (4.9) (0.0) (10.9) (0.4) (0.0) (0.0) (0.0) (0.0) ( 0.0) (0.0)

wdbc 569 14
74.2 58.3 88.8 85.1 92.0 75.5 95.3 29.6 86.9 88.30 68.75

(18.5) (5.8) (2.0) (9.6) (2.5) (5.7) (0.8) (2.4) (3.5) (9.79) (10.22)

vehicle 435 16
59.6 66.3 76.9 62.6 91.9 80.6 95.1 42.8 77.6 72.66 78.38
(9.4) (06.6) (6.9) (5.0) (5.0) (6.5) (1.5) (3.5) (7.1) (14.97) (10.62)

image 660 18
94.3 74.9 100.0 90.6 99.5 100.0 100.0 98.3 95.1 100.0 100.00
(7.3) (9.2) (11.8) (0.0) (0.2) (0.1) (0.0) (0.0) (4.2) (0.00) (0.00)

derm 184 33
97.1 80.0 99.9 97.4 99.9 100.0 100.0 98.0 58.8 100.0 100.00
(1.8) (12.1) (0.4) (3.2) (0.4) (0.0) (0.0) (0.4) (9.6) (0.00) (0.00)

isolet 600 51
72.9 60.3 93.2 66.2 92.9 90.8 99.3 55.1 98.4 85.90 90.98

(15.9) (4.2) (0.5) (16.3) (1.3) (3.7) (0.4) (1.4) (0.8) (20.40) (12.84)

mfeat 400 76
92.5 91.5 98.3 86.6 97.9 97.5 100.0 97.4 100.0 100.0 99.23
(2.3) (2.4) (0.5) (14.9) (1.7) (2.9) (0.0) (0.2) (0.0) (0.00) (1.39)

optdig 1143 42
72.5 58.8 91.7 74.1 96.6 87.8 99.6 53.2 99.7 94.70 88.94

(13.4) (6.5) (1.5) (14.7) (0.9) (2.3) (0.1) (2.2) (0.0) (15.81) (12.90)

sat 3041 36
79.3 86.1 89.7 82.0 95.8 99.2 99.7 34.4 63.9 94.09 99.83
(1.6) (10.2) (5.1) (1.8) (8.4) (0.5) (0.1) (1.9) (5.9) (10.72) (0.06)

texture 2026 19
91.6 85.1 99.3 88.7 99.3 98.8 100.0 89.3 100.0 100.0 99.73
(9.7) (7.9) (0.2) (9.6) (0.6) (1.0) (0.0) (2.8) (0.0) (0.00) (0.36)

ethn 2630 30
62.9 71.5 78.7 61.8 86.4 68.2 92.7 75.5 79.6 79.69 64.61
(9.2) (3.7) (3.0) (9.3) (2.4) (6.9) (3.2) (0.1) (6.0) (11.19) (10.88)

hf-rings 500 2
77.4 79.5 83.5 76.7 96.3 85.5 87.1 82.6 82.3 97.92 83.00
(6.1) (08.7) (1.2) (7.0) (2.9) (2.0) (1.1) (2.6) (4.0) (6.58) (11.82)

rings 300 2
63.8 71.8 76.0 61.1 98.2 53.7 60.2 95.8 48.8 90.62 49.83
(2.1) (8.1) (9.0) (11.1) (0.7) (7.7) (5.1) (1.8) (2.0) (10.78) (0.71)

spiral 300 2
59.0 65.6 67.3 62.3 92.7 54.4 58.8 73.7 49.0 85.93 50.28
(5.0) (7.6) (11.8) (6.7) (2.7) (5.0) (5.9) (4.0) (1.9) (10.50) (4.62)

same300 199 20
68.4 71.1 75.6 64.3 85.8 68.3 87.2 61.6 79.4 71.96 59.84

(12.3) (9.1) (13.5) (11.4) (6.9) (6.5) (4.0) (1.8) (8.1) (11.07) (11.62)

sim300 195 20
57.7 61.1 68.1 58.9 76.6 62.3 73.0 45.8 66.4 53.89 57.19
(5.9) (6.8) (3.3) (5.4) (4.1) (6.7) (7.5) (1.8) (9.2) (4.05) (7.89)

diff300 200 20
91.1 82.9 95.8 81.0 95.4 72.4 89.7 53.7 93.6 82.42 66.68
(5.3) (11.4) (0.4) (10.9) (2.2) (6.3) (5.5) (3.1) (6.2) (6.66) (9.42)

10 15 20 25 30 35 40 45 50
0.7

0.75

0.8

0.85

0.9

0.95

Scale

%
 A

cc
ur

ac
y

ethn

 

 
Boost
SGT
HF

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Prior Imbalance

%
 A

cc
ur

ac
y

ethn

 

 
Boost
SGT
HF

10 15 20 25 30 35 40 45 50
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Scale

%
 A

cc
ur

ac
y

heart

 

 
Boost
SGT
HF

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Prior Imbalance

%
 A

cc
ur

ac
y

heart

 

 
Boost
SGT
HF

(a) ethnicity-Scale (b) ethnicity-ρ (c) heart-Scale (d) heart-ρ

Figure 4. Performance of SemiBoost with change in values of parameters scale and ρ.



SemiBoost: Boosting for Semi-supervised Learning

state-of-the-art semi-supervised learning algorithms.
The observed stability of SemiBoost suggests that it
can be quite useful in practice. One of the main limi-
tations of SemiBoost is that it is a two-class algorithm.
We are exploring the multiclass extension by redefining
the consistency measures to handle multiple classes.
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