Semicanonical basis generators of the cluster algebra of type $A_{1}^{(1)}$

Andrei Zelevinsky*
Department of Mathematics
Northeastern University, Boston, USA
andrei@neu.edu

Submitted: Jul 27, 2006; Accepted: Dec 23, 2006; Published: Jan 19, 2007
Mathematics Subject Classification: 16S99

Abstract

We study the cluster variables and "imaginary" elements of the semicanonical basis for the coefficient-free cluster algebra of affine type $A_{1}^{(1)}$. A closed formula for the Laurent expansions of these elements was given by P.Caldero and the author. As a by-product, there was given a combinatorial interpretation of the Laurent polynomials in question, equivalent to the one obtained by G.Musiker and J.Propp. The original argument by P.Caldero and the author used a geometric interpretation of the Laurent polynomials due to P.Caldero and F.Chapoton. This note provides a quick, self-contained and completely elementary alternative proof of the same results.

1 Introduction

The (coefficient-free) cluster algebra \mathcal{A} of type $A_{1}^{(1)}$ is a subring of the field $\mathbb{Q}\left(x_{1}, x_{2}\right)$ generated by the elements x_{m} for $m \in \mathbb{Z}$ satisfying the recurrence relations

$$
\begin{equation*}
x_{m-1} x_{m+1}=x_{m}^{2}+1 \quad(m \in \mathbb{Z}) . \tag{1}
\end{equation*}
$$

This is the simplest cluster algebra of infinite type; it was studied in detail in $[2,6]$. Besides the generators x_{m} (called cluster variables), \mathcal{A} contains another important family of elements s_{0}, s_{1}, \ldots defined recursively by

$$
\begin{equation*}
s_{0}=1, s_{1}=x_{0} x_{3}-x_{1} x_{2}, \quad s_{n}=s_{1} s_{n-1}-s_{n-2} \quad(n \geq 2) . \tag{2}
\end{equation*}
$$

[^0]As shown in $[2,6]$, the elements s_{1}, s_{2}, \ldots together with the cluster monomials $x_{m}^{p} x_{m+1}^{q}$ for all $m \in \mathbb{Z}$ and $p, q \geq 0$, form a \mathbb{Z}-basis of \mathcal{A} referred to as the semicanonical basis.

As a special case of the Laurent phenomenon established in [3], \mathcal{A} is contained in the Laurent polynomial ring $\mathbb{Z}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}\right]$. In particular, all x_{m} and s_{n} can be expressed as integer Laurent polynomials in x_{1} and x_{2}. These Laurent polynomials were explicitly computed in [2] using their geometric interpretation due to P. Caldero and F. Chapoton [1]. As a by-product, there was given a combinatorial interpretation of these Laurent polynomials, which can be easily seen to be equivalent to the one previously obtained by G. Musiker and J. Propp [5].

The purpose of this note is to give short, self-contained and completely elementary proofs of the combinatorial interpretation and closed formulas for the Laurent polynomial expressions of the elements x_{m} and s_{n}.

2 Results

We start by giving an explicit combinatorial expression for each x_{m} and s_{n}, in particular proving that they are Laurent polynomials in x_{1} and x_{2} with positive integer coefficients. By an obvious symmetry of relations (1), each element x_{m} is obtained from x_{3-m} by the automorphism of the ambient field $\mathbb{Q}\left(x_{1}, x_{2}\right)$ interchanging x_{1} and x_{2}. Thus, we restrict our attention to the elements x_{n+3} for $n \geq 0$.

Following [2, Remark 5.7] and [4, Example 2.15], we introduce a family of Fibonacci polynomials $F\left(w_{1}, \ldots, w_{N}\right)$ given by

$$
\begin{equation*}
F\left(w_{1}, \ldots, w_{N}\right)=\sum_{D} \prod_{k \in D} w_{k}, \tag{3}
\end{equation*}
$$

where D runs over all totally disconnected subsets of $\{1, \ldots, N\}$, i.e., those containing no two consecutive integers. In particular, we have

$$
F(\emptyset)=1, F\left(w_{1}\right)=w_{1}+1, F\left(w_{1}, w_{2}\right)=w_{1}+w_{2}+1 .
$$

We also set

$$
\begin{equation*}
f_{N}=\left.x_{1}^{-\left\lfloor\frac{N+1}{2}\right\rfloor} x_{2}^{-\left\lfloor\frac{N}{2}\right\rfloor} F\left(w_{1}, \ldots, w_{N}\right)\right|_{w_{k}=x_{\langle k+1\rangle}^{2}}, \tag{4}
\end{equation*}
$$

where $\langle k\rangle$ stands for the element of $\{1,2\}$ congruent to k modulo 2 . In view of (3), each f_{N} is a Laurent polynomial in x_{1} and x_{2} with positive integer coefficients. In particular, an easy check shows that

$$
\begin{equation*}
f_{0}=1, \quad f_{1}=\frac{x_{2}^{2}+1}{x_{1}}=x_{3}, \quad f_{2}=\frac{x_{1}^{2}+x_{2}^{2}+1}{x_{1} x_{2}}=s_{1} . \tag{5}
\end{equation*}
$$

Theorem 2.1 [2, Formula (5.16)] For every $n \geq 0$, we have

$$
\begin{equation*}
s_{n}=f_{2 n}, \quad x_{n+3}=f_{2 n+1} . \tag{6}
\end{equation*}
$$

In particular, all x_{m} and s_{n} are Laurent polynomials in x_{1} and x_{2} with positive integer coefficients.

Using the proof of Theorem 2.1, we derive the explicit formulas for the elements x_{m} and s_{n}.

Theorem 2.2 [2, Theorems 4.1, 5.2] For every $n \geq 0$, we have

$$
\begin{align*}
x_{n+3} & =x_{1}^{-n-1} x_{2}^{-n}\left(x_{2}^{2(n+1)}+\sum_{q+r \leq n}\binom{n-r}{q}\binom{n+1-q}{r} x_{1}^{2 q} x_{2}^{2 r}\right) \tag{7}\\
s_{n} & =x_{1}^{-n} x_{2}^{-n} \sum_{q+r \leq n}\binom{n-r}{q}\binom{n-q}{r} x_{1}^{2 q} x_{2}^{2 r} . \tag{8}
\end{align*}
$$

3 Proof of Theorem 2.1

In view of (3), the Fibonacci polynomials satisfy the recursion

$$
\begin{equation*}
F\left(w_{1}, \ldots, w_{N}\right)=F\left(w_{1}, \ldots, w_{N-1}\right)+w_{N} F\left(w_{1}, \ldots, w_{N-2}\right) \quad(N \geq 2) \tag{9}
\end{equation*}
$$

Substituting this into (4) and clearing the denominators, we obtain

$$
\begin{equation*}
x_{\langle N\rangle} f_{N}=f_{N-1}+x_{\langle N-1\rangle} f_{N-2} \quad(N \geq 2) \tag{10}
\end{equation*}
$$

Thus, to prove (6) by induction on n, it suffices to prove the following identities for all $n \geq 0$ (with the convention $s_{-1}=0$):

$$
\begin{align*}
x_{1} x_{n+3} & =s_{n}+x_{2} x_{n+2} ; \tag{11}\\
x_{2} s_{n} & =x_{n+2}+x_{1} s_{n-1} . \tag{12}
\end{align*}
$$

We deduce (11) and (12) from (2) and its analogue established in [6, formula (5.13)]:

$$
\begin{equation*}
x_{m+1}=s_{1} x_{m}-x_{m-1} \quad(m \in \mathbb{Z}) . \tag{13}
\end{equation*}
$$

(For the convenience of the reader, here is the proof of (13). By (1), we have

$$
\frac{x_{m-2}+x_{m}}{x_{m-1}}=\frac{x_{m-1}^{2}+x_{m}^{2}+1}{x_{m} x_{m-1}}=\frac{x_{m-1}+x_{m+1}}{x_{m}}
$$

So $\left(x_{m-1}+x_{m+1}\right) / x_{m}$ is a constant independent of m; setting $m=2$ and using (2), we see that this constant is s_{1}.)

We prove (11) and (12) by induction on n. Since both equalities hold for $n=0$ and $n=1$, we can assume that they hold for all $n<p$ for some $p \geq 2$, and it suffices to prove them for $n=p$. Combining the inductive assumption with (2) and (13), we obtain

$$
\begin{aligned}
x_{1} x_{p+3} & =x_{1}\left(s_{1} x_{p+2}-x_{p+1}\right) \\
& =s_{1}\left(s_{p-1}+x_{2} x_{p+1}\right)-\left(s_{p-2}+x_{2} x_{p}\right) \\
& =\left(s_{1} s_{p-1}-s_{p-2}\right)+x_{2}\left(s_{1} x_{p+1}-x_{p}\right) \\
& =s_{p}+x_{2} x_{p+2},
\end{aligned}
$$

and

$$
\begin{aligned}
x_{2} s_{p} & =x_{2}\left(s_{1} s_{p-1}-s_{p-2}\right) \\
& =s_{1}\left(x_{p+1}+x_{1} s_{p-2}\right)-\left(x_{p}+x_{1} s_{p-3}\right) \\
& =\left(s_{1} x_{p+1}-x_{p}\right)+x_{1}\left(s_{1} s_{p-2}-s_{p-3}\right) \\
& =x_{p+2}+x_{1} s_{p-1}
\end{aligned}
$$

finishing the proof of Theorem 2.1.

4 Proof of Theorem 2.2

Formulas (7) and (8) follow from (11) and (12) by induction on n. Indeed, assuming that, for some $n \geq 1$, formulas (7) and (8) hold for all the terms on the right hand side of (11) and (12), we obtain

$$
\begin{aligned}
x_{n+3}= & x_{1}^{-1}\left(s_{n}+x_{2} x_{n+2}\right) \\
= & x_{1}^{-n-1} x_{2}^{-n}\left(\sum_{q+r \leq n}\binom{n-r}{q}\binom{n-q}{r} x_{1}^{2 q} x_{2}^{2 r}\right. \\
& \left.+\left(x_{2}^{2(n+1)}+\sum_{q+r \leq n-1}\binom{n-1-r}{q}\binom{n-q}{r} x_{1}^{2 q} x_{2}^{2(r+1)}\right)\right) \\
= & x_{1}^{-n-1} x_{2}^{-n}\left(x_{2}^{2(n+1)}+\sum_{q+r \leq n}\binom{n-r}{q}\left(\binom{n-q}{r}+\binom{n-q}{r-1}\right) x_{1}^{2 q} x_{2}^{2 r}\right) \\
= & x_{1}^{-n-1} x_{2}^{-n}\left(x_{2}^{2(n+1)}+\sum_{q+r \leq n}\binom{n-r}{q}\binom{n+1-q}{r} x_{1}^{2 q} x_{2}^{2 r}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
s_{n}= & x_{2}^{-1}\left(x_{n+2}+x_{1} s_{n-1}\right) \\
= & x_{1}^{-n} x_{2}^{-n}\left(x_{2}^{2 n}+\sum_{q+r \leq n-1}\binom{n-1-r}{q}\binom{n-q}{r} x_{1}^{2 q} x_{2}^{2 r}\right. \\
& \left.+\sum_{q+r \leq n-1}\binom{n-1-r}{q}\binom{n-1-q}{r} x_{1}^{2(q+1)} x_{2}^{2 r}\right) \\
= & x_{1}^{-n} x_{2}^{-n} \sum_{q+r \leq n}\left(\binom{n-1-r}{q}+\binom{n-1-r}{q-1}\right)\binom{n-q}{r} x_{1}^{2 q} x_{2}^{2 r} \\
= & x_{1}^{-n} x_{2}^{-n} \sum_{q+r \leq n}\binom{n-r}{q}\binom{n-q}{r} x_{1}^{2 q} x_{2}^{2 r},
\end{aligned}
$$

as desired.

References

[1] P. Caldero, F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), 595-616.
[2] P. Caldero, A. Zelevinsky, Laurent expansions in cluster algebras via quiver representations, Moscow Math. J. 6 (2006), 411-429.
[3] S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002), 497-529.
[4] S. Fomin, A. Zelevinsky, Y-systems and generalized associahedra, Ann. in Math. 158 (2003), 977-1018.
[5] G. Musiker, J. Propp, Combinatorial interpretations for rank-two cluster algebras of affine type, Electron. J. Combin. 14 (2007), R15.
[6] P. Sherman, A. Zelevinsky, Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Moscow Math. J. 4 (2004), 947-974.

[^0]: *Research supported by NSF (DMS) grant \# 0500534 and by a Humboldt Research Award

