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Abstract

We study the cluster variables and “imaginary” elements of the semicanonical

basis for the coefficient-free cluster algebra of affine type A
(1)
1 . A closed formula for

the Laurent expansions of these elements was given by P.Caldero and the author.
As a by-product, there was given a combinatorial interpretation of the Laurent
polynomials in question, equivalent to the one obtained by G.Musiker and J.Propp.
The original argument by P.Caldero and the author used a geometric interpretation
of the Laurent polynomials due to P.Caldero and F.Chapoton. This note provides
a quick, self-contained and completely elementary alternative proof of the same
results.

1 Introduction

The (coefficient-free) cluster algebra A of type A
(1)
1 is a subring of the field Q(x1, x2)

generated by the elements xm for m ∈ Z satisfying the recurrence relations

xm−1xm+1 = x2
m + 1 (m ∈ Z) . (1)

This is the simplest cluster algebra of infinite type; it was studied in detail in [2, 6].
Besides the generators xm (called cluster variables), A contains another important family
of elements s0, s1, . . . defined recursively by

s0 = 1, s1 = x0x3 − x1x2, sn = s1sn−1 − sn−2 (n ≥ 2). (2)
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As shown in [2, 6], the elements s1, s2, . . . together with the cluster monomials xp
mxq

m+1

for all m ∈ Z and p, q ≥ 0, form a Z-basis of A referred to as the semicanonical basis.
As a special case of the Laurent phenomenon established in [3], A is contained in

the Laurent polynomial ring Z[x±1
1 , x±1

2 ]. In particular, all xm and sn can be expressed
as integer Laurent polynomials in x1 and x2. These Laurent polynomials were explicitly
computed in [2] using their geometric interpretation due to P. Caldero and F. Chapoton
[1]. As a by-product, there was given a combinatorial interpretation of these Laurent
polynomials, which can be easily seen to be equivalent to the one previously obtained by
G. Musiker and J. Propp [5].

The purpose of this note is to give short, self-contained and completely elementary
proofs of the combinatorial interpretation and closed formulas for the Laurent polynomial
expressions of the elements xm and sn.

2 Results

We start by giving an explicit combinatorial expression for each xm and sn, in particular
proving that they are Laurent polynomials in x1 and x2 with positive integer coefficients.
By an obvious symmetry of relations (1), each element xm is obtained from x3−m by the
automorphism of the ambient field Q(x1, x2) interchanging x1 and x2. Thus, we restrict
our attention to the elements xn+3 for n ≥ 0.

Following [2, Remark 5.7] and [4, Example 2.15], we introduce a family of Fibonacci
polynomials F (w1, . . . , wN) given by

F (w1, . . . , wN) =
∑

D

∏

k∈D

wk, (3)

where D runs over all totally disconnected subsets of {1, . . . , N}, i.e., those containing no
two consecutive integers. In particular, we have

F (∅) = 1, F (w1) = w1 + 1, F (w1, w2) = w1 + w2 + 1.

We also set

fN = x
−bN+1

2
c

1 x
−bN

2
c

2 F (w1, . . . , wN)|wk=x2
〈k+1〉

, (4)

where 〈k〉 stands for the element of {1, 2} congruent to k modulo 2. In view of (3), each
fN is a Laurent polynomial in x1 and x2 with positive integer coefficients. In particular,
an easy check shows that

f0 = 1, f1 =
x2

2 + 1

x1

= x3, f2 =
x2

1 + x2
2 + 1

x1x2

= s1. (5)

Theorem 2.1 [2, Formula (5.16)] For every n ≥ 0, we have

sn = f2n, xn+3 = f2n+1. (6)

In particular, all xm and sn are Laurent polynomials in x1 and x2 with positive integer
coefficients.
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Using the proof of Theorem 2.1, we derive the explicit formulas for the elements xm

and sn.

Theorem 2.2 [2, Theorems 4.1, 5.2] For every n ≥ 0, we have

xn+3 = x−n−1
1 x−n

2 (x
2(n+1)
2 +

∑

q+r≤n

(

n − r

q

)(

n + 1 − q

r

)

x2q
1 x2r

2 ); (7)

sn = x−n
1 x−n

2

∑

q+r≤n

(

n − r

q

)(

n − q

r

)

x2q
1 x2r

2 . (8)

3 Proof of Theorem 2.1

In view of (3), the Fibonacci polynomials satisfy the recursion

F (w1, . . . , wN) = F (w1, . . . , wN−1) + wNF (w1, . . . , wN−2) (N ≥ 2). (9)

Substituting this into (4) and clearing the denominators, we obtain

x〈N〉fN = fN−1 + x〈N−1〉fN−2 (N ≥ 2). (10)

Thus, to prove (6) by induction on n, it suffices to prove the following identities for all
n ≥ 0 (with the convention s−1 = 0):

x1xn+3 = sn + x2xn+2; (11)

x2sn = xn+2 + x1sn−1. (12)

We deduce (11) and (12) from (2) and its analogue established in [6, formula (5.13)]:

xm+1 = s1xm − xm−1 (m ∈ Z). (13)

(For the convenience of the reader, here is the proof of (13). By (1), we have

xm−2 + xm

xm−1

=
x2

m−1 + x2
m + 1

xmxm−1

=
xm−1 + xm+1

xm

.

So (xm−1 + xm+1)/xm is a constant independent of m; setting m = 2 and using (2), we
see that this constant is s1.)

We prove (11) and (12) by induction on n. Since both equalities hold for n = 0 and
n = 1, we can assume that they hold for all n < p for some p ≥ 2, and it suffices to prove
them for n = p. Combining the inductive assumption with (2) and (13), we obtain

x1xp+3 = x1(s1xp+2 − xp+1)

= s1(sp−1 + x2xp+1) − (sp−2 + x2xp)

= (s1sp−1 − sp−2) + x2(s1xp+1 − xp)

= sp + x2xp+2,
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and

x2sp = x2(s1sp−1 − sp−2)

= s1(xp+1 + x1sp−2) − (xp + x1sp−3)

= (s1xp+1 − xp) + x1(s1sp−2 − sp−3)

= xp+2 + x1sp−1,

finishing the proof of Theorem 2.1.

4 Proof of Theorem 2.2

Formulas (7) and (8) follow from (11) and (12) by induction on n. Indeed, assuming that,
for some n ≥ 1, formulas (7) and (8) hold for all the terms on the right hand side of (11)
and (12), we obtain

xn+3 = x−1
1 (sn + x2xn+2)

= x−n−1
1 x−n

2 (
∑

q+r≤n

(

n − r

q

)(

n − q

r

)

x2q
1 x2r

2

+(x
2(n+1)
2 +

∑

q+r≤n−1

(

n − 1 − r

q

)(

n − q

r

)

x2q
1 x

2(r+1)
2 ))

= x−n−1
1 x−n

2 (x
2(n+1)
2 +

∑

q+r≤n

(

n − r

q

)

(

(

n − q

r

)

+

(

n − q

r − 1

)

)x2q
1 x2r

2 )

= x−n−1
1 x−n

2 (x
2(n+1)
2 +

∑

q+r≤n

(

n − r

q

)(

n + 1 − q

r

)

x2q
1 x2r

2 ),

and

sn = x−1
2 (xn+2 + x1sn−1)

= x−n
1 x−n

2 (x2n
2 +

∑

q+r≤n−1

(

n − 1 − r

q

)(

n − q

r

)

x2q
1 x2r

2

+
∑

q+r≤n−1

(

n − 1 − r

q

)(

n − 1 − q

r

)

x
2(q+1)
1 x2r

2 )

= x−n
1 x−n

2

∑

q+r≤n

(

(

n − 1 − r

q

)

+

(

n − 1 − r

q − 1

)

)

(

n − q

r

)

x2q
1 x2r

2

= x−n
1 x−n

2

∑

q+r≤n

(

n − r

q

)(

n − q

r

)

x2q
1 x2r

2 ,

as desired.
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