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SEMICIRCLE LAW ON SHORT SCALES AND DELOCALIZATION
OF EIGENVECTORS FOR WIGNER RANDOM MATRICES
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We consider N × N Hermitian random matrices with i.i.d. entries.
The matrix is normalized so that the average spacing between consecutive
eigenvalues is of order 1/N . We study the connection between eigenvalue
statistics on microscopic energy scales η � 1 and (de)localization proper-
ties of the eigenvectors. Under suitable assumptions on the distribution of
the single matrix elements, we first give an upper bound on the density of
states on short energy scales of order η ∼ logN/N . We then prove that the
density of states concentrates around the Wigner semicircle law on energy
scales η � N−2/3. We show that most eigenvectors are fully delocalized in
the sense that their �p-norms are comparable with N1/p−1/2 for p ≥ 2, and
we obtain the weaker bound N2/3(1/p−1/2) for all eigenvectors whose eigen-
values are separated away from the spectral edges. We also prove that, with
a probability very close to one, no eigenvector can be localized. Finally, we
give an optimal bound on the second moment of the Green function.

1. Introduction. Denote the (ij)th entry of an N × N matrix H by hij . We
shall assume that the matrix is Hermitian, that is, hij = hji . These matrices form
a Hermitian Wigner ensemble if

hij = N−1/2[xij + √−1yij

]
(i < j) and hii = N−1/2xii,(1.1)

where xij , yij (i < j ) and xii are independent real random variables with
mean zero. We assume that xij , yij (i < j ) all have a common distribution
ν with variance 1/2 and with a strictly positive density function: dν(x) =
(const)e−g(x) dx. The diagonal elements, xii , also have a common distribution,
dν̃(x) = (const)e−g̃(x) dx, that may be different from dν. We remark that the spe-
cial case g(x) = x2 and g̃(x) = x2/2 is called the Gaussian Unitary Ensemble
(GUE). Let P and E denote the probability and the expectation value, respectively,
w.r.t. the joint distribution of all matrix elements.

E. Wigner has introduced random matrices to model Hamiltonians, H , of atomic
nuclei. Lacking precise knowledge about the interaction among different quantum
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states, he assumed that the matrix elements (ϕ,Hψ) for any two orthogonal states
ϕ,ψ are identically distributed and as maximally independent as the unitary sym-
metry group acting on the Hilbert space of states allows. These assumptions al-
ready imply that the distribution of H is GUE (modulo changing the expectation
value and the variance). Astonishingly, this simple model very accurately repro-
duced the energy level statistics of various large nuclei.

Random Hamiltonians are also used in solid state physics to study electrons in
disordered metallic lattices. The simplest example is the Anderson model on a dis-
crete lattice, where the disorder is modeled by i.i.d. on-site potentials. The Ander-
son model can be generalized to continuous space and to include magnetic fields.
These models are commonly referred to as random Schrödinger operators. Their
key feature is that they have an underlying spatial structure and only matrix ele-
ments connecting nearby sites are nonzero, in contrast to the mean-field character
of the Wigner ensembles.

The conductance properties of metallic lattices are strongly influenced by the
spatial localization of the eigenfunctions of the corresponding Hamiltonian. De-
pending on the energy range, on the disorder strength and on the spatial dimension,
random Schrödinger operators are believed to exhibit a transition between local-
ized (L2-normalizable) and delocalized eigenstates. These two regimes can also
be characterized by the pure point or absolutely continuous spectrum, respectively.
While the localization regime is fairly well understood, it remains an outstanding
open problem to prove the existence of the delocalization regime. An even more
ambitious conjecture states that the level spacing statistics of consecutive eigenval-
ues (of the finite dimensional approximation) of the random Schrödinger operator
also characterizes these two regimes. In the localization regime, consecutive eigen-
values should be independent and should follow the statistics of a Poisson point
process. In the delocalization regime, the level spacing statistics is believed to be
identical to that of the GUE.

Random matrices are mostly studied from the point of view of eigenvalue statis-
tics such as density of states (e.g., Wigner semicircle law) or level statistics of con-
secutive eigenvalues. The density of states is well understood for general Wigner
matrices on macroscopic energy windows where the number of eigenstates is pro-
portional to N . In our normalization this corresponds to energy windows of order
one. On the finest energy scale of order 1/N , where individual eigenvalues are
observed, a universal level spacing distribution is believed to emerge that is called
the Wigner–Dyson statistics. This has been proven only for Gaussian and related
models (see [6] and references therein) and for Wigner matrices where the distri-
bution of the matrix elements were Gaussian convolutions [10]. The proofs use
explicit formulae for the eigenvalue correlation functions which are available only
for Gaussian related models.

The eigenvalue distribution of general Wigner matrices is poorly understood
on microscopic energy scales η � 1 due to the lack of explicit formulae for the
eigenvalue distribution. The fluctuations of the density of states are known to be
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negligible down to energy windows of order N−1/2 [8, 9] and the expected value
is also known to follow the semicircle law on scales N−1/2 and larger [2]. Un-
der somewhat different moment assumptions, the semicircle law was shown on
scales � N−1/4 in [11] and the fluctuation around its mean was proven to be
Gaussian in [4]. It is an open problem to show that both the fluctuation and the
expected value of the density of states can be controlled down to energy scales
of order 1/N . This would be the first step toward the proof of Wigner–Dyson
universality for Wigner matrices. Moreover, given the presumed connection be-
tween eigenvalue statistics and eigenfunction localization in the case of random
Schrödinger operators, it is natural to investigate the (de)localization properties of
the eigenvectors of random matrices. Due to the mean field character of the Wigner
matrix, the eigenvectors are believed to be extended, a conjecture that is consistent
with the expected repulsion of neighboring eigenvalues.

We remark that in finite dimensional Hilbert spaces extended states are char-
acterized by �p-norms with p �= 2 instead of the absolute continuity of the spec-
trum. If all components of an �2-normalized vector v ∈ C

N are equal, then ‖v‖p =
N1/p−1/2. Thus, deviations of the �p-norm of an eigenvector from N1/p−1/2

can be used to quantify the delocalization properties of the state. In particular,
T. Spencer has posed the question to prove that the �4-norm of all eigenvectors are
of order N−1/4.

In this paper we prove several results in these directions for general Hermitian
Wigner matrices. In Theorem 2.1 we give an upper bound on the eigenvalue density
down to energy scales of order η ≥ logN

N
.

Theorem 3.1 states that the density of states concentrates around its mean in
probability sense down to energy windows of order η � N−2/3 (modulo logarith-
mic corrections), improving the fluctuation result of [9] from scales η � N−1/2. In
Theorem 4.1 we prove that the expectation value of the density of states on scales
η � N−2/3 converges to the Wigner semicircle law. The previous best result [2]
was valid for scales η � N−1/2. These two theorems establish the validity of the
Wigner semicircle law for all energy windows of order η � N−2/3.

In Theorem 5.1 we show that most eigenvectors are fully extended in the sense
that their �∞-norm is of order N−1/2 (modulo logarithmic corrections). We remark
that this result can be easily obtained for all eigenvectors in the GUE case, by using
the underlying unitary symmetry group. The reason why our proof of Theorem 5.1
does not apply to all eigenvectors is the lack of the lower bound on the density of
states on the very short scales of η � 1/N . However, the results of Section 3 imply
a bound of order N2/3(1/p−1/2) for the �p-norm (p ≥ 2) of all eigenvectors away
from the spectral edge (Corollary 5.3).

In Theorem 6.1, by using the bounds on the eigenvectors, we give an estimate
on the second moment of the Green function. Finally, in Theorem 7.1 we prove
that no eigenvector is strongly localized in the sense that no eigenvector can be
essentially supported on a small percentage of the sites. As a corollary, we show
that the �p-norm of the eigenvectors is N1/p−1/2 for 1 ≤ p < 2.
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We remark that all our results hold for the Wigner ensemble of real symmetric
matrices as well. We will present the Hermitian case only, as the proofs for the real
case require only obvious modifications.

In some of our results we need to assume further conditions on the distributions
of the matrix elements in addition to (1.1). For convenience, we list the conditions
we use in some of our theorems:

(C1) The function g is twice differentiable and it satisfies

g′′(x) ≤ M,(1.2)

with some finite M .
(C2) There exists a δ > 0 such that∫

eδx2
dν(x) < ∞,(1.3)

and the same holds for ν̃.
(C3) The measures ν, ν̃ satisfy the spectral gap inequality, that is, there exists a

constant C such that for any function u∫ ∣∣∣∣u −
∫

udν

∣∣∣∣2 dν ≤ C

∫
|∇u|2 dν,(1.4)

and the same holds for ν̃.
(C4) The measures ν, ν̃ satisfy the logarithmic Sobolev inequality, that is, there

exists a constant C such that for any density function u > 0 with
∫

udν = 1,∫
u logudν ≤ C

∫ ∣∣∇√
u
∣∣2 dν(1.5)

and the same holds for ν̃.

We remark that (C4) implies (C3) and that all conditions are satisfied if c1 ≤
g′′, g̃′′ ≤ c2 for some positive constants c1, c2.

NOTATION. We will use the notation |A| both for the Lebesgue measure of
a set A ⊂ R and for the cardinality of a discrete set A ⊂ Z. The usual Hermitian
scalar product for vectors x,y ∈ C

N will be denoted by x · y or by (x,y). We will
use the convention that C denotes generic large constants and c denotes generic
small positive constants whose values may change from line to line. Since we are
interested in large matrices, we always assume that N is sufficiently large.

2. Upper bound on the density of states. The typical number of eigenvalues
in an interval I within the spectrum is expected to be of order N |I |. The following
theorem proves the corresponding upper bound.
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THEOREM 2.1. Let H be an N × N Wigner matrix as described in (1.1) and
we assume condition (1.2). Let I ⊂ R be an interval with |I | ≥ (logN)/N and
denote by NI the number of eigenvalues of H in the interval I . Then there exists a
constant c > 0 such that, for any K large enough,

P{NI ≥ KN |I |} ≤ e−cKN |I |.(2.1)

For a fixed spectral parameter, z = E + iη with E ∈ R, η > 0, we denote Gz =
(H − z)−1 the Green function. Let μ1 ≤ μ2 ≤ · · · ≤ μN be the eigenvalues of H

and let F(x) be the empirical counting function of the eigenvalues

F(x) = 1

N
|{α :μα ≤ x}|.(2.2)

We define the Stieltjes transform of F as

m = m(z) = 1

N
TrGz =

∫
R

dF(x)

x − z
(2.3)

and we let

ρ = ρη(E) = Imm(z)

π
= 1

Nπ
Im TrGz = 1

Nπ

N∑
α=1

η

(μα − E)2 + η2(2.4)

be the normalized density of states of H around energy E and regularized on
scale η. The random variables m and � also depend on N , and when necessary, we
will indicate this fact by writing mN and �N .

The counting function NI for intervals of length |I | = η and the regularized
density of states are closely related. On the one hand, for the interval I = [E −
η
2 ,E + η

2 ], we obviously have

NI ≤ CN |I |�η(E).(2.5)

On the other hand, Theorem 2.1 provides the following upper bound for m(z)

under an additional assumption.

COROLLARY 2.2. Let z = E + iη with E ∈ R and η ≥ logN/N . We assume
conditions (1.2) and (1.3). Then there exists c > 0 such that, for any sufficiently
large K ,

P

{
sup
E

|m(E + iη)| ≤ K logN

}
≥ 1 − e−cKNη.(2.6)

In particular, there exists a universal constant C such that

sup
E

E|m(E + iη)| ≤ C logN.(2.7)

The same bounds hold for the density without logarithmic factors

P

{
sup
E

�η(E) ≤ K

}
≥ 1 − e−cKNη, sup

E

E�η(E) ≤ C.
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PROOF. It is well known that if the tail of the distribution of the matrix el-
ements decays sufficiently fast, then the eigenvalues of H lie within a compact
set with the exception of an exponentially small probability. For completeness, we
will prove in Lemma 7.4 that there is a universal constant c0 depending only on δ

in (1.3) such that, for any sufficiently large K0, we have

P

{
max

α
|μα| ≥ K0

}
≤ e−c0K

2
0 N.(2.8)

Cover the interval [−K0,K0] by the union of subintervals In = [(n − 1
2)η,

(n + 1
2)η] of length η where the integer index n runs from −[K0η

−1] − 1 to
[K0η

−1] + 1 (here [·] denotes the integer part). Clearly,

|m(E + iη)| ≤ logN

Nη
max

n
NIn, �η(E) ≤ 1

Nη
max

n
NIn,(2.9)

assuming that maxα |μα| ≤ K0. Adding up the probabilities of the exceptional
sets where NIn ≥ K0Nη and recalling η ≥ logN/N , we proved (2.6). The proof
of (2.7) obviously follows from (2.6) and from the deterministic bounds |m(E +
iη)| ≤ η−1. The bounds for the density �η are proven similarly. This completes the
proof of Corollary 2.2. �

In order to prove Theorem 2.1, we start with the following lemma:

LEMMA 2.3. Suppose that xj and yj , j = 1,2, . . . ,N , are i.i.d. real random
variables with mean zero and with a density function (const)e−g(x). The expecta-
tion w.r.t. their joint probability measure dμ = (const)

∏N
j=1 e−g(xj )−g(yj ) dxj dyj

is denoted by E. We assume that g satisfies

g′′(x) < M(2.10)

with some finite constant M . We set zj = xj + √−1yj and let z = (z1, . . . , zN) ∈
C

N . Let P be an orthogonal projection of rank m in C
N . Then for any constant

c > 0 there exists a positive constant c̃, depending only on c and M , such that

E exp[−cX] ≤ e−c̃m, X = (P z,P z).

PROOF. Let μt be the probability measure on R
2N ∼= C

N given by

dμt := Z−1
t exp[−tX]dμ, Zt =

∫
exp[−tX]dμ

and denote the expectation w.r.t. μt by Et . In case t = 0, we shall drop the sub-
script. The covariance of two random vectors Y,Z ∈ C

N w.r.t. the measure μt is
denoted by

〈Y;Z〉μt := Et (Y,Z) − (EtY,EtZ).
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Simple differentiation gives

∂t log E exp[−tX] = −EtX = −〈P z;P z〉μt − (EtP z,EtP z) ≤ −〈P z;P z〉μt .

Let νt denote the product measure on R
2N ∼= C

N , with density for zj = xj +√−1yj to be proportional to e−(M+2t)|zj |2/2, j = 1,2, . . . ,N . We can rewrite

dμt = Z−1
t exp[−tX]dμ = dμt

dνt

dνt .

From the assumption (2.10) on g and from 0 ≤ P ≤ I , we obtain that dμt

dνt
is log

convex on R
2N . From the Brascamp–Lieb inequality (Theorem 5.4 in [5]) we have

〈P z;P z〉μt ≥ 〈P z;P z〉νt .

By computing the Gaussian covariance explicitly, there exists a constant c′ > 0,
depending only on M and c, such that

〈P z;P z〉νt ≥ c′m ∀t ∈ [0, c].
We have thus obtained that

∂t log E exp[−tX] ≤ −c′m ∀t ∈ [0, c].
Integrating this inequality from t = 0 to c, we obtain the lemma. �

REMARK. J. Bourgain [3] has informed us that the condition (2.10) can be
removed.

We will use this result in the following setup. Let v1,v2, . . . ,vN−1 form an
orthonormal basis in C

N−1. Let

ξα := |z · vα|2,
where the components of z = x + √−1y ∈ C

N−1 are distributed according to
(const)

∏
j e−g(xj )−g(yj ) dxj dyj . With this notation, a standard large deviation ar-

gument yields the following corollary to Lemma 2.3:

COROLLARY 2.4. Under the condition (2.10), there exists a positive c such
that, for any δ small enough,

P

(∑
α∈A

ξα ≤ δm

)
≤ e−cm(2.11)

for all A ⊂ {1, . . . ,N − 1} with cardinality |A| = m.
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PROOF OF THEOREM 2.1. To prove (2.1), we decompose the Hermitian
N × N matrix H as follows:

H =
(

h a∗
a B

)
,(2.12)

where a = (h12, . . . , h1N)∗ and B is the (N − 1) × (N − 1) matrix obtained by
removing the first row and first column from H . Recall that μ1 ≤ μ2 ≤ · · · ≤ μN

denote the eigenvalues of H and let λ1 ≤ λ2 ≤ · · · ≤ λN−1 denote the eigenvalues
of B . Note that B is an (N − 1) × (N − 1) Hermitian Wigner matrix with a nor-
malization off by a factor (1 − 1

N
)1/2. The following lemma is well known and we

include a short proof for completeness.

LEMMA 2.5. (i) With probability one, the eigenvalues of any Hermitian
Wigner matrix (1.1) are simple.

(ii) The eigenvalues of H and B are interlaced:

μ1 < λ1 < μ2 < λ2 < μ3 < · · · < μN−1 < λN−1 < μN.(2.13)

PROOF. The proof of (i) follows directly from the continuity of the distribution
of the matrix elements and is left to the reader. For the proof of (ii), suppose that μ

is one of the eigenvalues of H . Let v = (v1, . . . , vN)t be a normalized eigenvector
associated with μ. From the continuity of the distribution it also follows that v1 �= 0
almost surely. From the eigenvalue equation Hv = μv and from (2.12) we find that

hv1 + a · w = μv1 and av1 + Bw = μw,(2.14)

with w = (v2, . . . , vN)t . From these equations we obtain

w = (μ − B)−1av1 and, thus,
(2.15)

(μ − h)v1 = a · (μ − B)−1av1 = v1

N

∑
α

ξα

μ − λα

using the spectral representation of B , where we set

ξα = ∣∣√Na · uα

∣∣2,
with uα being the normalized eigenvector of B associated with the eigenvalue λα .
Since v1 �= 0, we have

μ − h = 1

N

∑
α

ξα

μ − λα

,(2.16)

where ξα’s are strictly positive almost surely (notice that a and uα are inde-
pendent). In particular, this shows that μ �= λα for any α. In the open interval
μ ∈ (λα−1, λα) the function

�(μ) := 1

N

∑
α

ξα

μ − λα
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is strictly decreasing from ∞ to −∞, therefore, there is exactly one solution to
the equation μ − h = �(μ). Similar argument shows that there is also exactly one
solution below λ1 and above λN−1. This completes the proof. �

We continue the proof of Theorem 2.1. Using the decomposition (2.12), we
obtain the following formula for the Green function Gz = (H − z)−1, z = E + iη

with E ∈ R, η > 0:

Gz(1,1) = 1

h − z − a · (B − z)−1a
=
[
h − z − 1

N

N−1∑
α=1

ξα

λα − z

]−1

.(2.17)

This formula in this context has already appeared in [1]. In particular, by consid-
ering only the imaginary part, we obtain

|Gz(1,1)| ≤ η−1

∣∣∣∣∣1 + 1

N

N−1∑
α=1

ξα

(λα − E)2 + η2

∣∣∣∣∣
−1

.

Similarly, for any k = 1,2, . . . ,N , we define B(k) to be the (N − 1) × (N − 1)

minor of H obtained after removing the kth row and kth column. Let a(k) =
(hk1, hk2, . . . , hk,k−1, hk,k+1, . . . , hkN)∗ be the kth column of H without the hkk

element. Let λ
(k)
1 < λ

(k)
2 < · · · be the eigenvalues and u(k)

1 ,u(k)
2 , . . . the correspond-

ing eigenvectors of B(k) and set ξ
(k)
α := N |a(k) · u(k)

α |2. Then we have the estimate

|Gz(k, k)| ≤ η−1

∣∣∣∣∣1 + 1

N

N−1∑
α=1

ξ
(k)
α

(λ
(k)
α − E)2 + η2

∣∣∣∣∣
−1

.(2.18)

For the interval I ∈ R given in Theorem 2.1, set E to be its midpoint and η = |I |,
that is, I = [E − η

2 ,E + η
2 ]. From (2.4), (2.5) and (2.18) we obtain

NI ≤ Cη

N∑
k=1

|Gz(k, k)| ≤ CNη2
N∑

k=1

∣∣∣∣∣ ∑
α:λ(k)

α ∈I

ξ (k)
α

∣∣∣∣∣
−1

,(2.19)

where we restricted the α summation in (2.18) only to eigenvalues lying in I .
For each k = 1,2, . . . ,N , we define the event

�k :=
{ ∑

α:λ(k)
α ∈I

ξ (k)
α ≤ δ(NI − 1)

}

for some small δ > 0. By the interlacing property of the μα and λ
(k)
α eigenvalues,

we know that there is at least NI − 1 eigenvalues of B(k) in I . By Corollary 2.4,
there exists a positive universal constant c such that P(�k) ≤ e−c(NI −1). Setting
�̃ =⋃N

k=1 �k , we see that

P(�̃ and NI ≥ KN |I |) ≤ Ne−c(NI −1) ≤ e−c′KN |I |(2.20)
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if K is sufficiently large, recalling that η = |I | ≥ logN/N . On the complement
event, �̃c, we have from (2.19) that

NI ≤ CN2η2

δ(NI − 1)
,

that is, NI ≤ (C/δ)1/2Nη. Choosing K sufficiently large, we obtain (2.1) from
(2.20). This proves Theorem 2.1. �

3. Fluctuations of the density of states.

THEOREM 3.1. Let H be an N × N Wigner matrix as described in (1.1) and
we assume the condition (1.2) and (1.3). Fix E,η ∈ R with (logN)/N ≤ η ≤ 1
and set z = E + iη.

(i) Suppose that the measures ν, ν̃ satisfy the spectral gap condition (1.4),
then there exists a constant C such that the covariance of the Stieltjes transform of
the empirical eigenvalue distribution (2.3) satisfies

〈m(z);m(z)〉 = E|m(z) − Em(z)|2 ≤ C

N2η3 .

(ii) Suppose that the measures ν and ν̃ satisfy the logarithmic Sobolev inequal-
ity (1.5), then there exists c > 0 such that

P{|m(z) − Em(z)| ≥ ε} ≤ e−cNηε min{(logN)−1,Nη2ε}(3.1)

holds for any ε > 0.

The same bounds hold if m(z) is replaced with the density of states �η(E) =
1
π

Imm(z).

We remark that estimates on the covariance were obtained in [1, 2] down to
scale η � N−1/2. Concentration estimates down to the same scale were proven
in [9].

PROOF. We start proving (i). Denote by μα,α = 1, . . . ,N , the eigenvalues
of H . Since, by the first order perturbation theory,

∂μα

∂ Rehij

= vα(i)vα(j) + vα(j)vα(i) = 2 Re(vα(i)vα(j))

(3.2)
∂μα

∂ Imhij

= √−1[vα(i)vα(j) − vα(j)vα(i)] = 2 Im(vα(j)vα(i))

for all 1 ≤ i < j ≤ N and
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∂μα

∂hii

= vα(i)vα(i)

for all i = 1, . . . ,N , we obtain

〈m(z);m(z)〉

≤ C

N∑
i<j

E

(∣∣∣∣ ∂m(z)

∂
√

N Rehij

∣∣∣∣2 +
∣∣∣∣ ∂m(z)

∂
√

N Imhij

∣∣∣∣2)

+ C

N∑
i=1

E

∣∣∣∣ ∂m(z)

∂
√

Nhii

∣∣∣∣2

= C

N3

N∑
i<j

E

(∣∣∣∣∣∑
α

1

(μα − z)2

∂μα

∂ Rehij

∣∣∣∣∣
2

+
∣∣∣∣∣∑

α

1

(μα − z)2

∂μα

∂ Imhij

∣∣∣∣∣
2)

+ C

N3

N∑
i=1

E

∣∣∣∣∣∑
α

1

(μα − z)2

∂μα

∂hii

∣∣∣∣∣
2

= C

N3 E

N∑
i<j

∑
α,β

1

(μα − z)2

1

(μβ − z̄)2(3.3)

× [Re(vα(i)vα(j))Re(vβ(i)vβ(j))

+ Im(vα(j)uα(i)) Im(vβ(j)vβ(i))]

+ C

N3 E

N∑
i=1

∑
α,β

1

(μα − z)2

1

(μβ − z̄)2 |vα(i)|2|vβ(i)|2

= C

N3 E
∑
α,β

1

(μα − z)2

1

(μβ − z̄)2

∑
i,j

vα(i)vβ(i)vβ(j)vα(j)

= C

N3 E
∑
α

1

|μα − z|4 .

Note that these identities hold without expectation as well. Now, for arbitrary
n ∈ Z, we define the interval

In = [E + (n − 1
2

)
η;E + (n + 1

2

)
η
]
.(3.4)

Let NIn = |{α :μα ∈ In}| denote the number of eigenvalues of H in the interval In.
For any η ≥ (logN)/N it follows from Theorem 2.1 that

P{NIn ≥ KNη} ≤ e−cKNη.
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Therefore, for any fixed K0 large enough, we find a constant D such that Dη−1

is an integer and

∑
α

1

|μα − z|4 ≤
Dη−1∑

n=−Dη−1

∑
α:μα∈In

1

|μα − z|4 + ∑
α:|μα |≥K0

1

η4

(3.5)

≤ C

η4 sup
|n|≤Dη−1

NIn + 1

η4

∣∣{α : |μα| ≥ K0}
∣∣.

From (3.3), we obtain

〈m(z);m(z)〉 ≤ C

N3η4 E sup
|n|≤Dη−1

NIn + 1

N3η4 E
∣∣{α : |μα| ≥ K0}

∣∣
≤ CK

N2η3 + C

N2η4 P

{
sup

|n|≤Dη−1
NIn ≥ KNη

}
(3.6)

+ 1

N2η4 P{∃ eigenvalue μ with |μ| ≥ K0}

≤ CK

N2η3 + CD

N2η5 e−cKNη + 1

N2η4 e−c0K
2
0 N,

where we applied (2.1) for the second term with a sufficiently large K and we
used (2.8) in the third term to estimate the probability of finding an eigenvalue
|μ| ≥ K0. This proves part (i) of Theorem 3.1.

Next, we prove (ii). We will show how to control the real part of m(z)−Em(z),
the imaginary part is controlled identically. Let dP denote the probability measure
of the Hermitian Wigner matrix described in (1.1). Remark that

d

dβ

[
e−β log

∫
exp
(
eβ Re[m(z) − Em(z)])dP

]
= e−β

∫
u logudP,(3.7)

where we defined the probability density

u = exp (eβ Re[m(z) − Em(z)])∫
exp (eβ Re[m(z) − Em(z)]) dP

.

From (3.7), we find, using the logarithmic Sobolev inequality and the bounds (3.3)
and (3.5),

d

dβ

[
e−β log

∫
exp
(
eβ Re[m(z) − Em(z)])dP

]
≤ Ce−β

∫ ∣∣∇√
u
∣∣2 dP(3.8)

≤ Ceβ
∫ { N∑

i<j

[∣∣∣∣ ∂m(z)

∂
√

N Rehij

∣∣∣∣2 +
∣∣∣∣ ∂m(z)

∂
√

N Imhij

∣∣∣∣2]+ N∑
i=1

∣∣∣∣ ∂m(z)

∂
√

Nhii

∣∣∣∣2
}
udP
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≤ Ceβ

N3η4

∫
u sup

|n|≤Dη−1
NIn dP + Ceβ

N3η4

∫ ∣∣{α : |μα| ≥ K0}
∣∣udP

≤ CKeβ

N2η3 +∑
�≥1

CKeβ(� + 1)

N2η3

×
∫

1
(
K�ηN ≤ sup

|n|≤Dη−1
NIn ≤ K(� + 1)ηN

)

× 1
(

max
α

|μα| ≤ K0

)
udP

+ Ceβ

N3η4 ‖u‖∞P{∃α : |μα| ≥ K0},

where we used the same intervals In introduced in (3.4), and where the constants
K , D and K0 have to be chosen sufficiently large.

To bound the second term on the r.h.s. of (3.8), we observe that, if
sup|n|≤Dη−1 NIn ≤ KNη(� + 1) and if there is no α with |μα| ≥ K0, then, by
using (2.9),

u ≤ eeβ Re[m(z)−Em(z)] ≤ e2K�eβ logN,

where we also used (2.7) and that K is sufficiently large. Therefore, we obtain, for
a large K ,

∑
�≥1

CKeβ(� + 1)

N2η3

∫
1
(
K�ηN ≤ sup

|n|≤Dη−1
|{α :μα ∈ In}| ≤ K(� + 1)ηN

)

× 1
(

max
α

|μα| ≤ K0

)
udP

(3.9)

≤∑
�≥1

CKeβ(� + 1)

N2η3 e2K�eβ logN
P

(
sup

|n|≤Dη−1
|{α :μα ∈ In}| ≥ K�ηN

)

≤∑
�≥1

CKeβ(� + 1)

N2η3 e−K�(cNη−2eβ logN) ≤ CKeβ

N2η3 ,

as long as eβ ≤ cNη
4 logN

, where c > 0 is the constant from Theorem 2.1.

To bound the last term on the r.h.s. of (3.8), we use that |m(z)| ≤ η−1 and (2.8):

Ceβ

N3η4 ‖u‖∞P{∃α : |μα| ≥ K0} ≤ Ceβ

N3η4 eCη−1eβ

e−c0K
2
0 N ≤ Ceβ

N3η4 ,

as long as eβ ≤ Nη/C0 with a sufficiently big C0.



828 L. ERDŐS, B. SCHLEIN AND H.-T. YAU

Putting everything together, we obtain, from (3.8),

d

dβ

[
e−β log

∫
exp
(
eβ Re[m(z) − Em(z)])dP

]
≤ Ceβ

N2η3(3.10)

for all β such that eβ ≤ Nη
C1 logN

with a sufficiently big C1. Integrating this inequal-

ity from β = β0 to β = logL with some L ≤ Nη
C1 logN

, we find that

log EeLRe[m(z)−Em(z)] ≤ Le−β0 log E exp
(
eβ0 Re[m(z) − Em(z)])+ CL2

N2η3 .

Since E Re[m(z) − Em(z)] = 0 and |Re[m(z) − Em(z)]| ≤ η−1 is uniformly
bounded, by a second order Taylor expansion, we obtain that the first term on
the r.h.s. vanishes as β0 → −∞. Thus,

EeLRe[m(z)−Em(z)] ≤ exp (CL2N−2η−3).

Therefore,

P{Re[m(z) − Em(z)] ≥ ε} ≤ exp (CL2N−2η−3 − εL)
(3.11)

≤ e−cNηε min{(logN)−1,Nη2ε}

with a sufficiently small c > 0 after optimizing for L under the condition
L ≤ Nη

C1 logN
. Replacing m(z) with −m(z) in the same proof, we obtain the esti-

mate for P{|Re[m(z) − E,m(z)]| ≥ ε}. �

4. Semicircle law on short scales. For any z = E + iη, we let

msc = msc(z) =
∫

R

�sc(x) dx

x − z

be the Stieltjes transform of the Wigner semicircle distribution function whose
density is given by

�sc(x) = 1

2π

√
4 − x21(|x| ≤ 2) dx.

For κ, η̃ > 0, we define the set

SN,κ,η̃ := {z = E + iη ∈ C : |E| ≤ 2 − κ, η̃ ≤ η ≤ 1}
and for η̃ = N−2/3 logN , we write

SN,κ :=
{
z = E + iη ∈ C : |E| ≤ 2 − κ,

logN

N2/3 ≤ η ≤ 1
}
.
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THEOREM 4.1. Let H be an N × N Wigner matrix as described in (1.1)
and assume the conditions (1.2), (1.3) and (1.5). Then for any κ > 0, the Stieltjes
transform mN(z) [see (2.3)] of the empirical eigenvalue distribution of the N × N

Wigner matrix satisfies

lim
N→∞ sup

z∈SN,κ

|EmN(z) − msc(z)| = 0.(4.1)

Combining this result with Theorem 3.1, we obtain the following corollary:

COROLLARY 4.2. Let κ > 0 and η ∈ [N−2/3 logN,1] and assume the condi-
tions of Theorem 4.1. Then we have

P

{
sup

z∈SN,κ,η

|mN(z) − msc(z)| ≥ ε

}
≤ e−cNηε min{(logN)−1,Nη2ε}(4.2)

for any ε > 0 and sufficiently large N . In particular, the density of states �η(E)

converges to the Wigner semicircle law in probability uniformly for all energies
away from the spectral edges and for all energy windows at least N−2/3 logN .

Let η∗ = η∗(N) such that η � η∗ � 1 as N → ∞, then we have the conver-
gence of the counting function as well:

P

{
sup

|E|≤2−κ

∣∣∣∣Nη∗(E)

2Nη∗ − �sc(E)

∣∣∣∣≥ ε

}
≤ e−cNηε min{(logN)−1,Nη2ε}(4.3)

for any ε > 0 and sufficiently large N , where Nη∗(E) = |{α : |μα − E| ≤ η∗}|
denotes the number of eigenvalues in the interval [E − η∗,E + η∗].

We remark that Bai et al. [2] have investigated the speed of convergence of the
empirical eigenvalue distribution to the semicircle law. Their results directly imply
(4.1) for η = Im z � N−1/2 and (4.3) for η ≥ N−2/5.

PROOF OF COROLLARY 4.2. For any two points z, z′ ∈ SN,κ,η, we have

|mN(z) − mN(z′)| ≤ CN4/3|z − zj |,
since the gradient of mN(z) is bounded by C| Im z|−2 ≤ CN4/3 on SN,κ,η. We
can choose a set of at most M = Cε−2N4 points, z1, z2, . . . , zM , in SN,κ,η such
that, for any z ∈ SN,κ,η, there exists a point zj with |z − zj | ≤ εN−2. In particular,
|mN(z) − mN(zj )| ≤ ε/4 if N is large enough. Then using (3.1), we obtain

P

{
sup

z∈SN,κ,η

|mN(z) − EmN(z)| ≥ ε

}
≤

M∑
j=1

P

{
|mN(zj ) − EmN(zj )| ≥ ε

2

}

≤ e−cNηε min{(logN)−1,Nη2ε}
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under the condition that η ≥ N−2/3 logN since Im zj ≥ η. Combining this estimate
with (4.1), we have proved (4.2).

To prove (4.3), we set

R(λ) = 1

π

∫ E+Mη

E−Mη

η

(λ − x)2 + η2 dx

= 1

π

[
arctan

(
E − λ

η
+ M

)
− arctan

(
E − λ

η
− M

)]
and let 1I∗(λ) denote the characteristic function of the interval I ∗ = [E − η∗,
E + η∗] with η∗ = Mη. From elementary calculus it follows that 1I∗ − R can
be decomposed into a sum of three functions, 1I∗ − R = T1 + T2 + T3 with the
following properties:

|T1| ≤ CM−1/2, supp(T1) ∈ I1 = [E − 2η∗,E + 2η∗];
|T2| ≤ 1, supp(T2) = J1 ∪ J2,

where J1 and J2 are two intervals of length M1/2η with midpoint at E − η∗ and at
E + η∗, respectively; and

|T3(λ)| ≤ Cηη∗

(λ − E)2 + [η∗]2 , supp(T3) ∈ I c
1 .

We thus have
Nη∗(E)

2Nη∗ = 1

2η∗
∫

1I∗(λ) dF (λ)

(4.4)

= 1

2η∗
∫

R(λ)dF (λ) + 1

2η∗
∫

[T1(λ) + T2(λ) + T3(λ)]dF(λ).

The last three terms are estimated trivially by
1

2η∗
∫

|T1 + T2 + T3|dF

≤ ‖T1‖∞
NI1

2Nη∗ + NJ1 + NJ2

2Nη∗ + Cη

η∗ �η∗(E)

≤ C

M1/2 [�2η∗(E) + �M1/2η(E − η∗) + �M1/2η(E + η∗) + �η∗(E)].
Using the bound (2.6), this error term is bounded by CM−1/2 uniformly in E apart
from an event of exponentially small probability. In particular, this term is smaller
than ε/3 if M = η∗/η is sufficiently large.

The main term in (4.4) is computed as

1

2η∗
∫

R(λ)dF (λ) = 1

2η∗
∫ E+η∗

E−η∗
�η(x) dx

= 1

2η∗
∫ E+η∗

E−η∗
�sc(x) dx + 1

2η∗
∫ E+η∗

E−η∗
[�η(x) − �sc(x)]dx
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and the first term converges to �sc(E) as long as η∗ → 0. Using (4.2), the
second term is smaller than ε/3 apart from a set of probability exp (−cNηε×
min{(logN)−1,Nη2ε}). Putting these estimates together, we arrive at (4.3). �

PROOF OF THEOREM 4.1. Recall from the proof of Theorem 2.1 that B(k)

denotes the (N − 1) × (N − 1) minor of H after removing the kth row and kth
column. Similarly to the definition of m(z) in (2.3), we also define the Stieltjes
transform of the density of states of B(k):

m(k) = m(k)(z) = 1

N − 1
Tr

1

B(k) − z
=
∫

R

dF (k)(x)

x − z

with the empirical counting function

F (k)(x) = 1

N − 1

∣∣{α :λ(k)
α ≤ x

}∣∣,
where λ

(k)
α are the eigenvalues of B(k). The spectral parameter z is fixed throughout

the proof and we will omit from the argument of the Stieltjes transforms.
From a formula analogous to (2.17) but applied to the kth minor we get

m = 1

N

N∑
k=1

Gz(k, k) = 1

N

N∑
k=1

1

hkk − z − a(k) · (1/(B(k) − z))a(k)
,(4.5)

where recall that a(k) is the kth column without the diagonal. Let Ek denote the
expectation value w.r.t. the random vector a(k). Define the random variable

Xk := a(k) · 1

B(k) − z
a(k) − Eka(k) · 1

B(k) − z
a(k)(4.6)

and note that

Eka(k) · 1

B(k) − z
a(k) = 1

N

∑
α

1

λ
(k)
α − z

=
(

1 − 1

N

)
m(k).

With this notation, it follows from (4.5) that

Em = −E

[
1
/{

X1 +
(

1 − 1

N

)[
m(1) − Em(1)]

(4.7)

+
[(

1 − 1

N

)
Em(1) − Em

]
+ [Em + z] − h11 − 1

N
Em(1)

}]
,

where we used that the distribution of Xk and m(k) is independent of k.
Fix ε > 0. The first term in the denominator of (4.7) is estimated in the following

lemma whose proof is given at the end of the section.
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LEMMA 4.3. For the random variable X1 from (4.6), we have

E|X1|4 ≤ C(logN)2

N2η2 ,(4.8)

in particular,

P{|X1| ≥ ε} ≤ C(logN)2

N2η2ε4 .

For the second term in the denominator in (4.7), we apply the large deviation
estimate from Theorem 3.1, to the Stieltjes transform of B(1):

P
{∣∣m(1) − Em(1)

∣∣≥ ε
}≤ e−cNηε min{(logN)−1,Nη2ε}.

For the third term, we use that∣∣∣∣m −
(

1 − 1

N

)
m(1)

∣∣∣∣= ∣∣∣∣ ∫ dF(x)

x − z
−
(

1 − 1

N

)∫
dF1(x)

x − z

∣∣∣∣
= 1

N

∣∣∣∣ ∫ NF(x) − (N − 1)F1(x)

(x − z)2 dx

∣∣∣∣.
By the interlacing property between the eigenvalues of H and B(1), we have
maxx |NF(x) − (N − 1)F1(x)| ≤ 1, thus,∣∣∣∣m −

(
1 − 1

N

)
m(1)

∣∣∣∣≤ 1

N

∫
dx

|x − z|2 ≤ C

Nη

and, therefore, |Em − (1 − N−1)Em(1)| ≤ C(Nη)−1. Finally, from Ex2
11 < ∞ we

have

P{|h11| ≥ ε} ≤ C

Nε2 .

We define the set of events

� := {|X1| ≥ ε} ∪ {∣∣m(1) − Em(1)
∣∣≥ ε
}∪ {|h11| ≥ ε},

then

P(�) ≤ e−cNηε min{1,Nη2ε} + C

Nε2 + C(logN)2

N2η2ε4 .

Let

Y = X1 + (1 − N−1)
[
m(1) − Em(1)]+ [(1 − N−1)Em(1) − Em

]− h11,

then, similarly to (2.18), we have

|Y + Em + z| ≥
∣∣∣∣ Im z + a(k) · 1

B(k) − z
a(k)

∣∣∣∣≥ η.



SEMICIRCLE LAW ON SHORT SCALES 833

We also have |Em + z| ≥ η since Imm ≥ 0. Set Ỹ := Y · 1�c , then obviously
|Ỹ | ≤ 4ε. Moreover, from (4.7) we have

Em + 1

Em + z
(4.9)

= E1�c

[
1

Em + z
− 1

Em + z + Ỹ

]
+ E1�

[
1

Em + z
− 1

Em + z + Y

]
.

The second term is bounded by∣∣∣∣E1�

[
1

Em + z
− 1

Em + z + Y

]∣∣∣∣≤ 2η−1
P(�) ≤ C

ε4 logN
≤ Cε

uniformly for z ∈ SN,κ if N ≥ N(ε). In the first term we use the stronger bounds

|Em + z| ≥ Imm(z) + η, |Em + z + Ỹ | ≥ Imm(z) + η − 4ε

on the denominators. Thus, from (4.9) we obtain∣∣∣∣Em + 1

Em + z

∣∣∣∣≤ Cε

[Imm(z) + η][Imm(z) + η − 4ε] + Cε(4.10)

uniformly for z ∈ SN,κ .
We note that the equation

M + 1

M + z
= 0(4.11)

has a unique solution for any z ∈ SN,κ with ImM > 0, namely, M = msc(z), the
Stieltjes transform of the semicircle law. Note that there exists c(κ) > 0 such that
Immsc(E + iη) ≥ c(κ) for any |E| ≤ 2 − κ , uniformly in η.

The equation (4.11) is stable in the following sense. For any small δ, let M =
M(z, δ) be a solution to

M + 1

M + z
= δ,(4.12)

with ImM > 0. Subtracting (4.11) with M = msc from (4.12), we have

(M − msc)

[
msc + z − 1

M + z

]
= δ(msc + z)

and

Im
[
msc + z − 1

M + z

]
≥ Immsc ≥ c(κ).

Since the function msc + z on the compact set z ∈ SN,κ is bounded, we get that

|M − msc| ≤ Cκδ(4.13)

for some constant Cκ depending only on κ .
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Now we perform a continuity argument in η to prove that

|Em(E + iη) − msc(E + iη)| ≤ C∗ε(4.14)

uniformly in z ∈ SN,κ with a sufficiently large constant C∗. Fix E with |E| ≤ 2−κ .
For η = [1

2 ,1], (4.14) follows from (4.10) with some small ε, since the right-hand
side of (4.10) is bounded by Cε. Suppose now that (4.14) has been proven for
some η ∈ [2N−2/3 logN,1] and we want to prove it for η/2. By integrating the
inequality

η/2

(x − E)2 + (η/2)2 ≥ 1

2

η

(x − E)2 + η2

with respect to dF(x), we obtain that

Imm

(
E + i

η

2

)
≥ 1

2
Imm(E + iη) ≥ 1

2
c(κ) − C∗ε >

c(κ)

4

for sufficiently small ε, where (4.14) and Immsc(E + iη) ≥ c(κ) were used. Thus,
the r.h.s. of (4.10) for z = E + i

η
2 is bounded by Cε, the constant depending only

on κ . Applying the stability bound (4.13), we get (4.14) for η replaced with η/2.
This completes the proof of Theorem 4.1. �

PROOF OF LEMMA 4.3. Recall that λ
(1)
α denote the eigenvalues and u(1)

α de-
note the eigenvectors of B(1) for α = 1,2, . . . ,N − 1. We also defined ξ

(1)
α =

|b(1) · uα(1)|2 with the vector b(1) = (b1, . . . , bN−1) = √
Na(1) = √

N(h12, h13,

. . . , h1N)∗ whose components are i.i.d. random variables with real and imaginary
parts distributed according to ν. Dropping the sub- and superscripts, we have

X = 1

N

N−1∑
α=1

ξα − 1

λα − z
= 1

N

∑
α

∑
i,j bi b̄j ūα(i)uα(j) − 1

λα − z
,

where all summations run from 1 to N − 1.
Since the distribution ν satisfies the spectral gap inequality (1.4), we have

E|X|2 ≤ CE
∑
k

[∣∣∣∣ ∂X

∂bk

∣∣∣∣2 +
∣∣∣∣ ∂X

∂b̄k

∣∣∣∣2],(4.15)

where ∂/∂b = 1
2 [∂/∂(Reb)− i∂/∂(Imb)] and ∂/∂b̄ = 1

2 [∂/∂(Reb)+ i∂/∂(Imb)].
We compute

∑
k

[∣∣∣∣ ∂X

∂bk

∣∣∣∣2 +
∣∣∣∣ ∂X

∂b̄k

∣∣∣∣2]

=∑
k

[∣∣∣∣∣ 1N∑
α,j

b̄j ūα(k)uα(j)

λα − z

∣∣∣∣∣
2

+
∣∣∣∣∣ 1N∑

α,i

bi ūα(i)uα(k)

λα − z

∣∣∣∣∣
2]

(4.16)
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= 1

N2

∑
k

∑
α,β,i,j

[
b̄j bi ūα(k)uβ(k)uα(j)ūβ(i)

(λα − z)(λβ − z̄)

+ bi b̄j ūα(i)uβ(j)uα(k)ūβ(k)

(λα − z)(λβ − z̄)

]

= 2

N2

∑
α,i,j

b̄j biuα(j)ūα(i)

|λα − z|2 .

Here we used the orthonormality of the eigenfunctions,
∑

k uα(k)ūβ(k) = δα,β .
We insert this into (4.15) and take the expectation with respect to the b variables,
Eb̄j bi = δij , by using the fact that the components of b are independent of the λα’s
and uα’s:

E|X|2 ≤ C

N2 E
∑
α,i,j

b̄j biuα(j)ūα(i)

|λα − z|2 = C

N2 E
∑
α

1

|λα − z|2

≤ C

Nη
E

1

N

∑
α

1

|λα − z| .

To estimate the last term, we have

E
1

N

∑
α

1

|λα − z| ≤
∫
|λ|≤K0

E�η(λ)

|λ − z| dλ + 1

η
P{max |λα| ≥ K0}

(4.17)
≤ C logN.

In the last step, by choosing K0 sufficiently large, we used the uniform estimate
(2.7) on E�η(λ) and the bound (2.8) for the eigenvalues of the (N − 1) × (N − 1)

Wigner matrix B(1). Thus, we have showed that

E|X|2 ≤ C logN

Nη
.(4.18)

To estimate the fourth moment, we have

E|X|4 = [E|X|2]2 + E[|X|2 − E|X|2]2

≤ (C logN)2

(Nη)2 + CE
∑
k

[∣∣∣∣∂|X|2
∂bk

∣∣∣∣2 +
∣∣∣∣∂|X|2

∂b̄k

∣∣∣∣2].
We will compute only the first term in the summation, the second one is identical.
We have

CE
∑
k

∣∣∣∣∂|X|2
∂bk

∣∣∣∣2 ≤ 2CE

[
|X|2∑

k

(∣∣∣∣ ∂X

∂bk

∣∣∣∣2 +
∣∣∣∣ ∂X

∂b̄k

∣∣∣∣2)
]

≤ 1

4
E|X|4 + CE

[∑
k

(∣∣∣∣ ∂X

∂bk

∣∣∣∣2 +
∣∣∣∣ ∂X

∂b̄k

∣∣∣∣2)
]2

,
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therefore,

1

2
E|X|4 ≤ (C logN)2

(Nη)2 + CE

[∑
k

(∣∣∣∣ ∂X

∂bk

∣∣∣∣2 +
∣∣∣∣ ∂X

∂b̄k

∣∣∣∣2)
]2

.(4.19)

For the last term, we use (4.16):

E

[∑
k

(∣∣∣∣ ∂X

∂bk

∣∣∣∣2 +
∣∣∣∣ ∂X

∂b̄k

∣∣∣∣2)
]2

= 1

N4 E

[∑
α,i,j

b̄j biuα(j)ūα(i)

|λα − z|2
]2

= 1

N4 E
∑
α,β

∑
i,j,�,m

E[b̄j bi b̄�bm]uα(j)ūα(i)uβ(�)ūβ(m)

|λα − z|2|λβ − z|2

= 1

N4 E
∑
α,β

∑
i �=�

|uα(i)|2|uβ(�)|2
|λα − z|2|λβ − z|2 + 1

N4 E
∑
α,β

∑
i �=j

uα(j)ūα(i)uβ(i)ūβ(j)

|λα − z|2|λβ − z|2(4.20)

+ c4

N4 E
∑
α,β

∑
i

|uα(i)|2|uβ(i)|2
|λα − z|2|λβ − z|2

≤ C

N4 E
∑
α,β

∑
i,�

|uα(i)|2|uβ(�)|2
|λα − z|2|λβ − z|2

≤ C

(Nη)2 E

[
1

N

∑
α

1

|λα − z|
]2

.

In the second line we used that

E[b̄j bi b̄�bm] = δij δ�m(1 − δi�) + δi�δjm(1 − δim) + c4δij δj�δ�m,

where c4 = E|b|4 = ∫ (x2 + y2)2 dν(x) dν(y). Finally, the last expectation value is
estimated as

E

(
1

N

∑
α

1

|λα − z|
)2

≤ E

(∫
|λ|≤K0

�η(λ)

|λ − z| dλ

)2

+ η−2
P{max |λα| ≥ K0}.

The second term is exponentially small by (2.8). In the first term we use (2.6)
to conclude that �η(λ) ≤ K uniformly in λ, apart from an event of exponentially
small probability. Inserting this bound into (4.20) and (4.19), we obtain the desired
bound E|X|4 ≤ C(logN)2/(Nη)2 in Lemma 4.3. �
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5. Extended states. Recall that the eigenvalues of H are denoted by μ1 <

μ2 < · · · < μN and the corresponding normalized eigenvectors by v1,v2, . . . ,vN .

THEOREM 5.1. Let H be an N × N Wigner matrix as described in (1.1) and
satisfying the conditions (1.2) and (1.3). Then there exist positive constants, C1,C2
and c, depending only on the constants M in (1.2) and δ in (1.3), such that, for any
q > 0,

P

{
1

N

∣∣∣∣{β : max
j

|vβ(j)|2 ≥ C1q
2(logN)2

N

}∣∣∣∣≥ C2

q

}
≤ e−c(logN)2

.(5.1)

REMARK. Suppose that ‖v‖2∞ ≤ 1/L holds for an �2-normalized vector v =
(v1, v2, . . .). Then the support of v contains at least L elements. Thus, the quan-
tity ‖v‖−2∞ can be interpreted as the localization length of v. With this interpreta-
tion, Theorem 5.1 states that the density of eigenstates with a localization length
L ≤ Nq−2 (with logarithmic corrections) is bounded from above by C/q .

It also follows from Theorem 5.1 that, for every p ≥ 2,

P

{
1

N

∣∣{β :‖vβ‖�p ≥ C1N
1/p−1/2(logN)2−4/p}∣∣≥ C2

logN

}
≤ e−c(logN)2

.(5.2)

In other words, with high probability, all the N eigenvectors, apart from a fraction
converging to zero as N → ∞, have the expected delocalization properties up to
logarithmic corrections.

Note that, by duality, (5.2) immediately implies that

P

{
1

N

∣∣{β :‖vβ‖�p ≤ C−1
1 N1/p−1/2(logN)2−4/p}∣∣≥ C2

logN

}
≤ e−c(logN)2

(5.3)

for all 1 ≤ p ≤ 2. In Section 7 we will improve (5.3) by showing, in Corollary 7.2,
that, up to an event with exponentially small probability, every eigenvector v of H

satisfies ‖v‖p ≤ cN1/p−1/2 for all 1 ≤ p ≤ 2.

PROOF OF THEOREM 5.1. For brevity, we introduce the notation

θ = [logN ]2,

where [·] denotes the integer part. For q > 0, let Oq denote the set of eigenvalue
indices α such that the distance between the eigenvalues μα+θ and μα−θ is less
than qθ/N :

Oq =
{
α : |μα−θ − μα+θ | ≤ qθ

N

}
.(5.4)

Here we used the notation μα = μ1 if α < 1 and μα = μN if α > N . Given K0 > 0,
we define � to be the event characterized by all eigenvalues of H being in the
interval [−K0,K0], that is,

� = {ω :σ(H) ⊂ [−K0,K0]}.
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By (2.8), we have

P(�) ≥ 1 − e−cN

if K0 is sufficiently large. We have

P

{
1

N

∣∣∣∣{β : max
j

|vβ(j)|2 ≥ C1q
2θ

N

}∣∣∣∣≥ C2

q

}

≤ P

{
1

N

∣∣∣∣{β : max
j

|vβ(j)|2 ≥ C1q
2θ

N

}∣∣∣∣≥ C2

q
and �

}
+ e−cN

(5.5)

≤ P

{
1

N

∣∣∣∣{β : max
j

|vβ(j)|2 ≥ C1q
2θ

N

}
∩ Oq

∣∣∣∣≥ C2

2q
and �

}

+ P

{
|Oc

q | ≥ C2N

2q
and �

}
+ e−cN .

A simple counting shows that the cardinality of the complement of Oq is bounded
by

|Oc
q | ≤ CN

q

on �. Therefore, by choosing C2 sufficiently large, we have

P

{
1

N

∣∣∣∣{β : max
j

|vβ(j)|2 ≥ C1q
2θ

N

}∣∣∣∣≥ C2

q

}

≤ P

{
1

N

∣∣∣∣{β ∈ Oq : max
j

|vβ(j)|2 ≥ C1q
2θ

N

}∣∣∣∣≥ C2

2q

}
+ e−cN

≤ P

{
∃β ∈ Oq : max

j
|vβ(j)|2 ≥ C1q

2θ

N

}
+ e−cN

≤ N sup
β

P

{
β ∈ Oq and max

j
|vβ(j)|2 ≥ C1q

2θ

N

}
+ e−cN ,

where we used that q � N [if q ≥ N1/2, (5.1) is trivial]. The theorem now follows
from Lemma 5.2 below. �

LEMMA 5.2. Under the assumptions of Theorem 5.1, there exists a constant
c > 0 such that, for any sufficiently large C and for any q > 0, we have

sup
β

P

{
β ∈ Oq and max

j
|vβ(j)|2 ≥ Cθq2

N

}
≤ e−cθ .(5.6)
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PROOF. It is enough to prove that, for arbitrary β ∈ {1, . . . ,N},

P

{
β ∈ Oq and max

j
|vβ(j)|2 ≥ Cθq2

N

}
≤ e−cθ .

Therefore, we fix β ∈ Oq and we consider first the j = 1 component v1 = vβ(1)

of vβ ; for brevity, we drop the index β from the notation μβ and vβ . Set κ :=
qθ/N . Recall that λα denotes the eigenvalues of B in the decomposition (2.12).
Denote by A the set

A := {α : |μ − λα| ≤ κ}.
From the interlacing property of the eigenvalues, |A| ≥ θ (if θ ≤ β ≤ N − θ , then
actually |A| = 2θ ).

Recall the equations (2.14) and (2.15) obtained from the eigenvalue equation
Hv = μv and from the decomposition (2.12). In particular, from (2.15) we find

‖w‖2 = w · w = |v1|2a · (μ − B)−2a.(5.7)

Since ‖w‖2 = 1 − |v1|2, we obtain

|v1|2 = 1

1 + a · (μ − B)−2a
= 1

1 + 1/N
∑

α ξα/(μ − λα)2 ,(5.8)

recalling the notation ξα = N |a · uα|2, where uα is the normalized eigenvector of
B associated with the eigenvalue λα . Thus, we have

|v1|2 ≤ 1

1 + N−1κ−2∑
α∈A ξα

= Nκ2

Nκ2 +∑α∈A ξα

.(5.9)

Fix a small δ > 0. Let Q be the following event:

Q =
{∑

α∈A

ξα > θδ

}
.

On this set Q we have the bound for |v1|2

1Q|v1|2 ≤ 1Q

Nκ2

Nκ2 +∑α∈A ξα

≤ δ−1Nκ2θ−1 = θq2

Nδ

and for δ small enough, we have

P(Qc) ≤ e−cθ

by Corollary 2.4.
So far we have considered the j = 1 component of v. We can repeat the ar-

gument for each j = 1,2, . . . ,N . Thus, Q should carry a subscript 1 and we can
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define Qj accordingly. Clearly, P{(⋂j Qj )
c} ≤ Ne−cθ ≤ e−c′θ . On the other hand,

on the set
⋂

j Qj we have

max
j

|vβ(j)|2 ≤ θq2

Nδ
for any β ∈ Oq. �

Theorem 5.1 implies that all eigenvectors of H , apart from a fraction vanishing
in the limit N → ∞, are completely extended, in the sense that, up to logarithmic
corrections, ‖v‖∞ ≤ const/N1/2. The reason we cannot prove this bound for all
eigenvectors of H is the lack of information about the microscopic distribution
of the eigenvalues of H (and of its minors) on scales of order O(1/N). From
Corollary 4.2, which gives precise information on the eigenvalue distribution up to
scales of order O(N−2/3 logN), we can nevertheless get a nonoptimal bound on
‖v‖∞ for all eigenvectors of H .

PROPOSITION 5.3. Let H be an N × N Wigner matrix as described in (1.1)
and satisfying the conditions (1.2), (1.3) and (1.5). Fix κ > 0, and assume that C

is large enough, depending on κ . Then there exists c > 0 such that

P

{
∃ v with Hv = μv, ‖v‖ = 1, μ ∈ [−2 + κ,2 − κ] and ‖v‖∞ ≥ C(logN)

N1/3

}
≤ e−c(logN)2

.

REMARK. The bound ‖v‖∞ ≤ CN−1/3 logN obtained in this proposi-
tion trivially implies the upper bound ‖v‖p ≤ C(logN)1−2/pN2/3(1/p−1/2) for
2 ≤ p < ∞ as well.

PROOF OF PROPOSITION 5.3. Let η∗ = N−2/3(logN)2 and define

In = [−2 + κ + (n − 1)η∗;−2 + κ + nη∗]
for n = 1, . . . , nmax = [(4 − 2κ)/η∗] + 1,

where [x] denotes the integer part of x ∈ R. Then

nmax⋃
n=1

In ⊃ [−2 + κ,2 − κ] and |In| = η∗ = N−2/3(logN)2

for all n = 1, . . . , nmax.

As before, let NI = |{β :μβ ∈ I }| for any I ⊂ R. Using (4.3) in Corollary 4.2, we
have

P

{
max

n
NIn ≤ εNη∗

}
≤ e−c(logN)2
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if ε is sufficiently small (depending on κ). Suppose that μ ∈ In, and that Hv = μv.
From (5.8), we obtain

|v1|2 = 1

1 + 1/N
∑

α ξα/(λα − μ)2 ≤ 1

1 + 1/4Nη2∑
λα∈In

ξα

≤ 4Nη2∑
λα∈In

ξα

and from the interlacing property, there exist at least NIn − 1 eigenvalues λα in In.
Therefore,

P

(
∃ v with Hv = μv, ‖v‖ = 1, μ ∈ [−2 + κ,2 − κ] and ‖v‖∞ ≥ C(logN)

N1/3

)

≤
nmax∑
n=1

N∑
j=1

P

(
∃ v with Hv = μv, ‖v‖ = 1, μ ∈ In and

|vj |2 ≥ C(logN)2

N2/3

)
≤ Nnmax sup

n
P

(
∃ v with Hv = μv, ‖v‖ = 1, μ ∈ In and

|v1|2 ≥ C(logN)2

N2/3

)
(5.10)

≤ constN5/3 sup
n

P

( ∑
λα∈In

ξα ≤ 4Nη∗

C

)

≤ constN5/3 sup
n

P

( ∑
λα∈In

ξα ≤ 4Nη∗

C
and NIn ≥ εNη∗

)

+ constN5/3 sup
n

P(NIn ≤ εNη∗)

≤ constN5/3e−cN1/3 + constN5/3e−c(logN)2 ≤ e−c′(logN)2
,

using Corollary 2.4 and choosing C ≥ 4(δε)−1, where δ is from Corollary 2.4. �

6. Second moment of the Green function. In this section we use the result
of Theorem 5.1 to obtain bounds on the second moment of the diagonal elements
of the Green function of H . Recall the notation θ = [logN ]2.

THEOREM 6.1. Let H be an N × N Wigner matrix as described in (1.1) and
satisfying the conditions (1.2) and (1.3). Let z = E + iη be the spectral parameter
of the Green function GE,η = Gz = (H − z)−1. Then there exist c,C > 0 such
that, for any η,

P

(∣∣∣∣∣
{
E :

1

N

N∑
j=1

|GE,η(j, j)|2 ≥ C(logN)12

}∣∣∣∣∣≥ C

logN

)
≤ e−c(logN)2

.(6.1)
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REMARK. This theorem states that, with the exception of a very small prob-
ability, the second moment of the Green function, averaged over all sites, remains
bounded (modulo logarithmic corrections) for all but a negligible set of energies
in the sense of the Lebesgue measure.

PROOF. For any k ∈ Z, we define the random sets

Mk :=
{
α :

2k

N
< |μα−θ − μα+θ | ≤ 2k+1

N

}
,

where we used again the convention that μα = μ1 for all α ≤ 1 and μα = μN for
all α ≥ N . For given κ,K0 > 0, let

�1 :=
{κ logN⋃

k=0

Mk = {1,2, . . . ,N}
}

∩ {σ(H) ⊂ [−K0,K0]}.

From (2.8) we know that

P{σ(H) ∈ [−K0,K0]} ≥ 1 − e−cN ,

for a sufficiently large K0, so we obtain that Mk = ∅ for all k ≥ κ logN , if κ

is large enough, apart from an exponentially small event. From Theorem 2.1 we
obtain that

P{Mk = ∅ for all k < 0} ≥ 1 − e−cθ

and, therefore, if K0 and κ are large enough,

P(�1) ≥ 1 − e−cθ .

In the sequel we will work on the set �1, that is, we can assume that the index k

runs from 0 to (const) logN and that all eigenvalues lie in [−K0,K0].
By a simple counting, the cardinality of Mk is bounded by

|Mk| ≤ (const)2−kNθ(6.2)

on the event �1.
For any α ∈ Mk , denote

�k(α) :=
{

max
j

|vα(j)|2 ≤ C
22k

4Nθ

}
,(6.3)

where vα is the normalized eigenvector to the eigenvalue μα . From Lemma 5.2,
we obtain, for every k = 0, . . . , κ logN ,

P

{ ⋃
α∈Mk

�c
k(α)

}
≤ e−cθ
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for some c > 0. Let

� := �1 ∩⋂
k

⋂
α∈Mk

�k(α),

then

P(�) ≥ 1 − e−cθ

for some c > 0. In the sequel we will work on the event �.
Define the following random set of energies:

E := R

∖⋃
k

⋃
α∈Mk

{
E : |μα − E| ≤ 2k

Nθ2

}
.

The Lebesgue measure of the complement of E is bounded by

|E c| ≤∑
k

∑
α∈Mk

2k+1

Nθ2 ≤ C

logN
.

Let E ∈ E and ω ∈ �. We compute

1

N

N∑
j=1

|GE,η(j, j)|2 ≤ 1

N

N∑
j=1

κ logN∑
k,�=0

∑
α∈Mk

∑
β∈M�

|vα(j)|2
|μα − E|

|vβ(j)|2
|μβ − E|

≤ 2

N

N∑
j=1

κ logN∑
k≤�

∑
α∈Mk

∑
β∈M�

|vα(j)|2
|μα − E|

|vβ(j)|2
|μβ − E|(6.4)

≤ 2

N

κ logN∑
k≤�

22kC

4Nθ

∑
α∈Mk

∑
β∈M�

1

|μα − E|
1

|μβ − E| .

In the second line we used the symmetry between α and β , in the third line we
used the estimate on |vα(j)|2 from (6.3) and that

∑
j |vβ(j)|2 = 1.

We now perform the α ∈ Mk summation; the β ∈ M� summation will be iden-
tical. Let I be an arbitrary interval of length |I | = 2k/N . We claim that the num-
ber of eigenvalues μα ∈ I with α ∈ Mk is at most 2θ . We label the elements of
Mk in increasing order; α1 < α2 < · · · < α|Mk |. Let μαi

be the smallest eigen-
value in the set I with index in Mk . If i > |Mk| − 2θ , then there cannot be more
than 2θ eigenvalues with indices in Mk in I . Otherwise, if i ≤ |Mk| − 2θ , we
have

μαi+2θ
− μαi

≥ μαi+θ+θ − μαi+θ−θ >
2k

N

and, therefore, since |I | = 2k/N , μαi+2θ
cannot be in I .
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We now define the intervals

Im :=
[
E + 2k(m − 1/2)

N
,E + 2k(m + 1/2)

N

]
for each m ∈ Z, |m| ≤ CN · 2−k . Clearly, each Im contains at most 2θ eigenvalues
μα with index α ∈ Mk .

Notice that, for any μ ∈ Im, m �= 0, we have |μ − E| ≥ 2k−1m/N . For μα ∈ I0,
with α ∈ Mk , by the choice of E ∈ E , we have |μα − E| ≥ 2k/(Nθ3). Therefore,∑

α∈Mk

1

|μα − E| ≤ 2θ
∑

|m|≤CN ·2−k

max
{

1

|μα − E| :α ∈ Mk,μα ∈ Im

}

≤ 2θ

[
max
{

1

|μα − E| :α ∈ Mk

}
+ 2

CN ·2−k∑
m=1

N

2k−1m

]
(6.5)

≤ Cθ3N

2k
.

Using (6.5) both for the α and β summations in (6.4), we obtain

1

N

N∑
j=1

|GE,η(j, j)|2 ≤ 2

N

κ logN∑
k=0

κ logN∑
�=k

22k

4Nθ

Cθ3N

2k

Cθ3N

2�
≤ Cθ6

for any E ∈ E and ω ∈ �. This completes the proof of Theorem 6.1. �

7. Absence of localized eigenvectors. In this section we show that eigenvec-
tors of Wigner random matrices, up to events with exponentially small probability,
cannot be localized in a strong sense given by the following definition.

DEFINITION 7.1. Let L ≥ 1 be an integer and η > 0. We say that an
�2-normalized vector v = (v1, . . . , vN) ∈ C

N exhibits (L,η)-localization if there
exists a set A ⊂ {1,2, . . . ,N} such that |A| = L and

∑
j∈Ac |vj |2 ≤ η.

THEOREM 7.1. Let H be an N × N Hermitian random matrix from the
Wigner ensemble defined in (1.1), satisfying also the condition (1.2) and (1.3).
Suppose that η and ν = L/N are sufficiently small. Then, with a constant c > 0
that depends only on M and δ from (1.2), (1.3), we have

P{∃ a normalized eigenvector v of H exhibiting (L,η)-localization} ≤ e−cN .

PROOF. Since, by (2.8),

P{∃ eigenvalue μ of H with |μ| ≥ K0} ≤ e−cN
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if K0 is large enough, it is sufficient to prove that

sup
β∈{1,...,N}

P{vβ exhibits (L,η) localization and |μβ | ≤ K0} ≤ e−cN ,(7.1)

where μ1 ≤ μ2 ≤ · · · ≤ μN denote the eigenvalues of H , and v1,v2, . . . ,vN the
corresponding normalized eigenvectors. To prove (7.1), we fix β , and consider the
eigenvector vβ associated with the eigenvalue μβ ; for brevity, we drop the index β

from μβ and vβ .
By the definition of (L,η)-localization and by the permutation symmetry

P{v is (L,η)-localized and |μ| ≤ K0}

= P

{
∃A ⊂ {1, . . . ,N} : |A| = L and

∑
j∈Ac

|vj |2 ≤ η and |μ| ≤ K0

}
(7.2)

≤
(
N

L

)
P

{
N∑

j=L+1

|vj |2 ≤ η and |μ| ≤ K0

}
.

We introduce the notation u = (v1, . . . , vL)t , w = (vL+1, . . . , vN)t and for j =
L + 1, . . . ,N ,

cj = 1√
N

(hj1, hj2, . . . , hjL)∗ ∈ C
L and

dj = 1√
N

(hj,L+1, . . . , hjN)∗ ∈ C
N−L.

From the eigenvalue equation Hv = μv, we obtain, for all j ≥ L + 1,

μvj = cj · u + dj · w

and, thus,

N∑
j=L+1

|cj · u|2 =
N∑

j=L+1

|μvj − dj · w|2 ≤ 2μ2‖w‖2 + 2
N∑

j=L+1

|dj · w|2.

Denoting by D1 the (N − L) × L matrix with rows given by c∗
L+1, . . . , c∗

N and
by D2 the (N − L) × (N − L) matrix with rows given by d∗

L+1, . . . ,d∗
N , the last

equation implies

(u,D∗
1D1u) ≤ 2μ2‖w‖2 + 2(w,D∗

2D2w) ≤ 2‖w‖2(μ2 + λmax(D
∗
2D2)
)
.

Thus, from (7.2), we conclude that

P{v is (L,η)-localized and |μ| ≤ K0}

≤
(
N

L

)
P{‖w‖2 ≤ η and |μ| ≤ K0}(7.3)
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≤
(
N

L

)
P
{
(u,D∗

1D1u) ≤ 2η
(
μ2 + λmax(D

∗
2D2)
)

and |μ| ≤ K0
}

≤
(
N

L

)
P
{
(1 − η)λmin(D

∗
1D1) ≤ 2η

(
K2

0 + λmax(D
∗
2D2)
)}

≤
(
N

L

)
P

{
(1 − η)

N − L

N
λmin(X

∗
1X1)

≤ 2η

(
K2

0 + N − L

N
λmax(X

∗
2X2)

)}

≤
(
N

L

)
[P{λmin(X

∗
1X1) ≤ c} + P{λmax(X

∗
2X2) ≥ C}]

for any positive constants c and C if η and ν = L/N are sufficiently small [because
(1 − η)(1 − ν)c ≥ 2η(K2

0 + (1 − ν)C) if η, ν are sufficiently small]. Here λmin(F )

and λmax(F ) denotes the minimal and, respectively, the maximal eigenvalue of the
Hermitian matrix F , and X1 = √

N/(N − L)D1, X2 = √
N/(N − L)D2. From

Lemmas 7.3 and 7.4 below, we know that, for any sufficiently small ν = L/N , for
sufficiently large C, and for c < 1/2, there exists α > 0 such that

P{λmin(X
∗
1X1) ≤ c} ≤ e−α(N−L) and

(7.4)
P{λmax(X

∗
2X2) ≥ C} ≤ e−α(N−L).

Thus, from (7.3), we obtain that, for η > 0 and ν = L/N small enough,

P {v is (L,η)-localized and |μ| ≤ K0}
(7.5)

≤ 2

(
N

L

)
e−α(N−L) ≤

(
e

ν

)νN

e−αN(1−ν) ≤ e−αN/4.

Since the constant α is independent of the eigenvalue μ, (7.1) follows. �

COROLLARY 7.2. Suppose that the random matrix H satisfies the same as-
sumptions as in Theorem 7.1. Then, for every κ > 0 sufficiently small, there exists
a constant c > 0 such that

P{∃ normalized v ∈ C
N such that Hv = μv and ‖v‖p ≤ κN1/p−1/2} ≤ e−cN

for any 1 ≤ p ≤ 2.

REMARK. If the eigenvector v is uniformly extended, that is, |vj |2 = 1
N

,
then ‖v‖p = N1/p−1/2. This corollary indicates that the behavior of all eigenvec-
tors is consistent with the extended states hypothesis as far as the low �p-norms
(1 ≤ p ≤ 2) are concerned.
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PROOF OF COROLLARY 7.2. From (2.8) with a sufficiently large K0 we have

P(∃ normalized v ∈ C
N such that Hv = μv and ‖v‖p ≤ κN1/p−1/2)

≤ e−cK0N + P(∃ normalized v ∈ C
N such that Hv = μv,(7.6)

|μ| ≤ K0 and ‖v‖p ≤ κN1/p−1/2).

Now, if v is a normalized eigenvector of H , associated with an eigenvalue |μ| ≤
K0, we can apply Theorem 7.1. To this end, we fix ν and η small enough, and let
L = νN . After relabeling, we can assume that |v1| ≥ |v2| ≥ · · · ≥ |vL| ≥ |vL+1| ≥
· · · ≥ |vN |. Then, by Theorem 7.1,

P

{∑
j≤L

|vj |2 ≥ η

}
≤ e−cN .

Thus, with the exception of an event with exponentially small probability,

L|vL|2 ≤
L∑

j=1

|vj |2 ≤ η.

This implies that |vL| ≤ √
η/L. Therefore,

1 − η ≤ ∑
j≥L+1

|vj |2 ≤ |vL|2−p
∑

j≥L+1

|vj |p ≤ (η/L)1−p/2
N∑

j=1

|vj |p

and, hence,

P

(
N∑

j=1

|vj |p ≤ L1−p/2 1 − η

η1−p/2 = κpN1−p/2

)
≤ e−cN ,

which, together with (7.6), completes the proof. �

In the next two lemmas we prove effective the large deviation estimate on the
largest and the smallest eigenvalue of some covariance matrices.

LEMMA 7.3. Let X = (Xij ) be a complex N × L matrix, with N > L, such
that, for all i = 1, . . . ,N and j = 1, . . . ,L, ReXij , ImXij are i.i.d. random vari-
ables with

EXij = 0, E|Xij |2 = 1

2N
and EeδN |Xij |2 ≤ Kδ < ∞

for some δ > 0 and with Kδ independent of N :

(i) For C > 0 large enough,

P
(
λmax(X

∗X) ≥ C
)≤ e−c0CN

for a constant c0 depending only on δ.
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(ii) For ν = L/N sufficiently small and for all 0 < c < 1/2, there exists α0 =
α0(δ, c, ν) > 0 such that

P
(
λmin(X

∗X) ≤ c
)≤ e−αN

for all α < α0.

REMARK. The precise large deviation rate function for λmin and λmax was
determined recently in [7] in the limit N → ∞ under the additional condition that
L = o(N/ log logN). Our proof is somewhat different and it also applies to the
case L ≤ νN , with ν small enough, but the decay rate we obtain is not precise.
The history and earlier results in this direction were reviewed in [7] and we shall
not repeat it here.

PROOF. We begin by proving (i). First, fix z ∈ C
L, with ‖z‖ = 1. We claim

that

P{(z,X∗Xz) ≥ C} ≤ e−c1CN(7.7)

for a constant c1 depending only on δ. In fact, for arbitrary κ > 0,

P{(z,X∗Xz) ≥ C} ≤ e−κCN
EeκN(z,X∗Xz)

(7.8)
= e−κCN

Ee
κN
∑N

j=1 |Xj ·z|2
,

where, for j = 1, . . . ,N , Xj = (Xj1, . . . ,XjL)∗ denotes the adjoint of the j th row
of X. Since different rows of X are independent and identically distributed, we
find

P{(z,X∗Xz) ≥ C} ≤ e−κCN
N∏

j=1

EeκN |Xj ·z|2 = e−κCN (
EeκN |X1·z|2)N.(7.9)

Consider now the random vector Y = √
NX1 = (y1, . . . , yL)∗ with i.i.d. compo-

nents. We have

Eeκ|Y·z|2 = const
∫

R×R

dq dp e−(q2+p2)/4
Ee

√
κ(q Re(Y·z)+p Im(Y·z))

= const
∫

R×R

dq dp e−(q2+p2)/4
L∏

i=1

Ee
√

κ(q Re(ziyi )+p Im(ziyi ))

(7.10)
= const

∫
R×R

dq dp e−(q2+p2)/4

×
L∏

i=1

Ee
√

κ(q Re zi+p Im zi)Reyi Ee
√

κ(−q Im zi+p Re zi) Imyi
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with an appropriate normalization constant. Since E Reyi = 0, we find, for arbi-
trary r ∈ R,

Eer Reyi =∑
n≥0

rn

n! E(Reyi)
n

(7.11)

= 1 +∑
n≥1

r2n

(2n)!E(Reyi)
2n +∑

n≥1

r2n+1

(2n + 1)!E(Reyi)
2n+1.

Using that, for all n ≥ 1,

r2n+1

(2n + 1)!E(Reyi)
2n+1 ≤ r2n

(2n)!E(Reyi)
2n + r2n+2

(2n + 2)!E(Reyi)
2n+2,

we obtain that

Eer Reyi =∑
n≥0

rn

n! E(Reyi)
n = 1 + 3

∑
n≥1

r2n

(2n)!E(Reyi)
2n

≤ 1 +∑
n≥1

n!(3r)2n

δ2n(2n)!Eeδ(Reyi)
2

(7.12)

≤ 1 +∑
n≥1

(3r)2nKn
δ

n!δ2n
≤ e9Kδr

2/δ2
,

where we chose δ > 0 small enough, and we used that Kδ = Eeδy2 =∫
eδy2

e−g(y) dy < ∞. Since ‖z‖ = 1, from (7.10) we obtain

Eeκ|Y·z|2 ≤ const
∫

R×R

dq dp e−(q2+p2)(1/4−36κ(Kδ/δ
2)) ≤ const(7.13)

by choosing κ > 0 small enough. Inserting in (7.9) and choosing C large enough,
we find (7.7).

Now, for fixed 0 < ε < 1/4, we choose a family {zj }j∈I with zj ∈ C
L, ‖zj‖ ≤ 1

for all j ∈ I , such that |I | ≤ (2/ε)2L, and such that, for all z ∈ C
L with ‖z‖ = 1,

there exists j ∈ I with ‖z − zj‖ ≤ ε. For a suitable j ∈ I , we have

‖X∗X‖ = sup
z∈CN

(z,X∗Xz) = (zmax,X
∗Xzmax)

(7.14)
≤ 2‖zmax − zj‖‖X∗X‖ + (zj ,X

∗Xzj ) ≤ 2ε‖X∗X‖ + (zj ,X
∗Xzj )

and, thus, if λmax(X
∗X) ≥ C, there must be at least one j ∈ I such that

(zj ,X
∗Xzj ) ≥ (1 − 2ε)C.
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Therefore, since |I | ≤ (2/ε)2L, we can apply (7.7) to obtain

P{λmax(X
∗X) ≥ C} ≤ P{∃j ∈ I : (zj ,X

∗Xzj ) ≥ (1 − 2ε)C}
≤ (2/ε)2L sup

j

P{(zj ,X
∗Xzj ) ≥ (1 − 2ε)C}(7.15)

≤ (2/ε)2Le−c1CN

and, thus, for C large enough (and since L ≤ N ),

P{λmax(X
∗X) ≥ C} ≤ e−(c1/2)CN .

Next, we prove (ii). Again, we first fix z ∈ C
L, and prove that, for 0 < c < 1/2,

and for all α sufficiently small,

P{(z,X∗Xz) ≤ c} ≤ e−αN .(7.16)

To this end, we observe that, for β > 0,

P{(z,X∗Xz) ≤ c} ≤ eβNc
Ee−βN(z,X∗Xz) = (eβc

Ee−β|Y·z|2)N,(7.17)

where we defined, as before, Y = √
NX1 = (y1, . . . , yL)∗. Since e−βr ≤ 1 − βr +

β2r2/2 for all r ≥ 0, we obtain

Ee−β|Y·z|2 ≤ 1 − βE|Y · z|2 + β2

2
E|Y · z|4 = 1 − β

2
+ O(β2) ≤ e−β/2+O(β2)

if β > 0 is sufficiently small depending only on Ey4
1 . Therefore, we find

eβc
Ee−β|Y·z|2 ≤ e−β(1/2−c)+O(β2),

which proves (7.16) from (7.17) with a sufficiently small α, depending on c.
To conclude the proof of (ii), we fix ε > 0 and a family {zj }j∈I with zj ∈ C

L,
‖zj‖ ≤ 1 for all j ∈ I , such that, for all z ∈ C

L with ‖z‖ = 1, there exists j ∈ I

with ‖z − zj‖ ≤ ε and |I | ≤ (2/ε)2L. Then, for a suitable j ∈ I ,

λmin(X
∗X) = inf‖z‖=1

(z,X∗Xz) = (zmin,X
∗Xzmin)

≥ (zj ,X
∗Xzj ) − 2‖zmin − zj‖λmax(X

∗X)(7.18)

≥ (zj ,X
∗Xzj ) − 2ελmax(X

∗X).

Therefore, we find

P{λmin(X
∗X) ≤ c}

≤ P{λmin(X
∗X) ≤ c and λmax(X

∗X) ≤ C} + P{λmax(X
∗X) ≥ C}

(7.19)
≤ P{∃j : (zj ,X

∗Xzj ) ≤ c + 2εC} + P{λmax(X
∗X) ≥ C}

≤
(

2

ε

)2L

P{(z1,X
∗Xz1) ≤ c + 2εC} + P{λmax(X

∗X) ≥ C}.
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Part (ii) now follows using the result of part (i) with a sufficiently large C, choosing
ε > 0 sufficiently small and using that L/N = ν is small enough. �

LEMMA 7.4. Let X be a N × N Hermitian random matrix as described
in (1.1) and we assume condition (1.3). Then, for K0 > 0 large enough,

P{λmax(X) ≥ K0} ≤ e−c0K
2
0 N

with a constant c0 depending only on δ in (1.3).

PROOF. Fix z ∈ C
N with ‖z‖ = 1. Then, with the notation Xj = (Xj1, . . . ,

XjN)∗ for j = 1, . . . ,N ,

P{(z,X∗Xz) ≥ C}
≤ e−κCN

EeκN
∑

j |Xj ·z|2
(7.20)

≤ e−κCN
Ee2κN

∑
j |∑l≤j Xjl ·zl |2e2κN

∑
j |∑l>j Xjl ·zl |2

≤ e−κCN (
Ee4κN

∑
j |∑l≤j Xjl ·zl |2)1/2(

Ee4κN
∑

j |∑l>j Xjl ·zl |2)1/2
.

Next, choosing κ > 0 sufficiently small, we can show that, similarly to (7.13),

Ee4κN
∑

j |∑l≤j Xjl ·zl |2 =
N∏

j=1

Ee4κN |∑l≤j Xjl ·zl |2 ≤ constN(7.21)

and

Ee4κN
∑

j |∑l≥j Xjl ·zl |2 =
N∏

j=1

Ee4κN |∑l≤j Xjl ·zl |2 ≤ constN(7.22)

because
∑

l≤j |zl|2 ≤ 1 and
∑

l>j |zl|2 ≤ 1. Thus, from (7.20), we have, for C large
enough,

P{(z,X∗Xz) ≥ C} ≤ e−c1CN

for a constant c1 only depending on δ. From the last equation, the lemma follows
with C = K2

0 by the same argument that was used at the end of the proof of part (i)
of Lemma 7.3. �
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