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High harmonic generation (HHG) in solids is investigated. We find that interband emission is dominant for

the midinfrared laser driver frequencies, whereas intraband emission dominates the far-infrared range. Interband

HHG is similar to atomic HHG and therewith opens the possibility to apply atomic attosecond technology to

the condensed matter phase. Interband emission is investigated with a quasiclassical method, by which HHG

can be modeled based on the classical trajectory analysis of electron-hole pairs. This analysis yields a simple

approximate cutoff law for HHG in solids. Differences between HHG in atoms and solids are identified that are

important for adapting atomic attosecond technology to make it applicable to condensed matter.

DOI: 10.1103/PhysRevB.91.064302 PACS number(s): 42.65.Ky, 42.50.Hz, 78.47.−p, 72.20.Ht

I. INTRODUCTION

The interaction of intense laser fields with solid matter has
been studied since the advent of nonlinear optics. Most of
it happens in the perturbative realm, and the major outcome
of such interactions is the parametric conversion of a few
pump laser photons to a single photon of higher energy, i.e.,
a radiation field with frequency being a harmonic of the laser
frequency is created [1]. The process of harmonic generation
has been revolutionized by the availability of more intense
lasers capable of converting tens to hundreds of photons
to produce coherent soft x-ray radiation. This phenomenon,
dubbed high-order harmonic generation (HHG) [2,3], operates
in a highly nonperturbative regime that cannot be understood
with conventional nonlinear optics techniques. So far, research
has focused on HHG in atomic and molecular gases. Only
recently, high harmonics have been measured from the bulk of
semiconductor crystals thereby opening the way to the study
of nonperturbative optical phenomena in the condensed matter
phase [4–6]. Experiments have been performed in two different
wavelength domains, for mid-infrared (IR) [4] and for far-IR
[terahertz (THz)] driving wavelengths [5,6]. Further, HHG has
been studied via single- and two-color experiments. HHG oc-
curs when electron-hole pairs are generated and subsequently
accelerated by the same intense pump field [4,6]. In two-color
experiments [5], conducted on semiconductor heterostruc-
tures, bound excitons are created by resonant excitation with a
weak near-infrared field, followed by high harmonic sideband
generation driven by THz fields. Our analysis focuses on
single-color HHG in semiconductor bulk materials.

The physical mechanisms driving HHG in atoms and solids
are closely related. In the limit of intense fields nonperturbative
mechanisms dominate the perturbative nonlinear response.
In atoms there are two main nonperturbative sources of
harmonic emission: (i) when an electron is tunnel ionized and
subsequently undergoes sinusoidal motion in the laser field,
the nonlinear dependence of tunnel ionization on the laser
field strength creates a nonlinear refractive index contributing
to harmonic generation [7] and (ii) the oscillating free electron

*gvamp015@uottawa.ca
†cmcdo059@uottawa.ca

recollides with the atom, recombines to the ground state, and
emits a high-energy photon [2]. Whereas the first mechanism
contributes mainly to low-order harmonic generation, recolli-
sion dominates generation of the higher harmonic orders.

HHG in solids behaves very similarly [8,9], with electrons

and holes moving in the conduction and valence bands,

respectively. The ionization step corresponds to a transition of

electrons from the valence (lower) to the conduction (higher)

band. The first mechanism is richer in solids than in atoms,

due to a different relation between energy and momentum: the

band structure contains anharmonic terms beyond second order

in the crystal momentum. These terms result in a nonlinear

dependence of the band velocity and therewith of the current

on the laser field resulting in HHG [10]. As a result, both,

tunnel ionization and the nonlinear band velocity, contribute to

harmonic generation. These contributions are termed intraband

HHG, as they arise from the nonsinusoidal dynamics of

electrons and holes in their respective conduction and valence

bands. The second (interband) mechanism is due to the

build-up of polarization between the valence and conduction

band [6,11], and is analogous to recollision in atoms [9]. In

theoretical investigations for THz drivers it was suggested

that an interplay between intra- and interband emission is

responsible for HHG [6]. By contrast, so far, intraband HHG

has been assumed to be responsible for high harmonic emission

[12–14] with mid-IR driver frequencies. A recent theoretical

investigation comparing inter- and intraband HHG for mid-IR

driving laser wavelengths [9] found that interband HHG is the

dominant contribution. A strong similarity of atomic HHG and

mid-IR driven interband HHG in solids was demonstrated.
Atomic HHG is the foundation on which attosecond science

is built. It is fundamental to the realization of attosecond XUV
pulses that allow for electron dynamics to be studied with
unprecedented temporal and spatial resolution in pump-probe
experiments [15–18]. Furthermore, it allows for the generating
medium [19,20] and its interaction with strong fields to be
probed [21–23]. The similarity of atomic HHG and mid-IR
driven interband HHG in solids [9] opens the potential to adapt
and apply the rich reservoir of atomic attosecond technology
to the condensed matter phase.

In this work, we build on Ref. [9] to gain a deeper
understanding of harmonic generation in solids, a prerequisite
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for adapting atomic attosecond methodology to condensed
matter systems. We begin by exploring interband versus
intraband emission in more detail and over a broader wave-
length range. This reveals that recollision and interband HHG
dominates only for mid-IR driving laser wavelengths. As
dephasing increasingly suppresses recollision and interband
HHG, intraband emission becomes the favored mechanism for
driving lasers in the far-IR regime.

The rest of the paper treats interband HHG in the mid-IR
regime. Similar to atomic HHG, quasiclassical equations are
derived by applying saddle point integration to the interband
current cast into an integral form by using the Keldysh
approximation [9,24]. The main focus of this work lies on
a detailed analysis of the quasiclassical trajectories obtained
from these equations. Based on the trajectories, a number of
important properties of interband HHG can be explained.

(i) In the absence of dephasing, the harmonic spectrum
shows a continuum like structure due to interference from
multiple collisions. Only for dephasing times comparable to
a laser half cycle, a clean harmonic spectrum emerges. The
presence of dephasing, in the form of collisions, destroys the
coherence between the electron and the hole. As a result,
harmonic emission from higher re-encounters occurring at
times greater than the dephasing time are suppressed.

(ii) A cutoff law is derived and its prediction agrees with
numerical simulations. The maximum obtainable harmonic
energy in the two-band approximation is capped by the
maximum energy difference between valence and conduction
bands [11].

(iii) Differences between HHG in atoms and solids are
analyzed. We find that at low field strengths the trajectories are
similar to those in atoms. By contrast, for higher field strengths,
the trajectories are strongly modified. As a consequence of the
anharmonic band structure and the boundedness of the cutoff,
those trajectories that would create harmonic energies above
the maximum band gap appear at lower energies with modified
recombination/emission times. This has profound implications
for the application of atomic attosecond technologies, such
as the synthesis of subfemtosecond pulses, to the condensed
matter phase.

The article is organized as follows. In the first section, we
review the theoretical framework. In Sec. III, the importance of
interband and intraband HHG is investigated as a function of
the driving laser wavelength. In this section, the band structure
of ZnO is used, as obtained from numerical analysis [25]. In
the remaining sections the ZnO band structure is simplified by
using a nearest neighbor (NN) approximation. In Sec. IV, we
derive an intuitive recollision model for interband harmonic
emission, and in Secs. V and VI, we use it to extract an
approximate cutoff law and study the electron-hole trajectories
in more detail.

II. THEORETICAL MODEL

Our analysis of the interaction of strong lasers with ZnO
crystals is based on a 3D two-band single active electron model
solid with general band dispersion,

Em(k) = Em,x(kx) + Em,y(ky) + Em,z(kz) (1)

TABLE I. Coefficients of the expansion of the NL-EPM bands

from Ref. [25] for the crystal-field split valence band and the first

conduction band.

Valence band Conduction band

a0,x − 0.0928 0.0898

a1,x 0.0705 − 0.0814

a2,x 0.0200 − 0.0024

a3,x − 0.0012 − 0.0048

a4,x 0.0029 − 0.0003

a5,x 0.0006 − 0.0009

a0,y − 0.0307 0.1147

a1,y 0.0307 − 0.1147

a0,z − 0.0059 0.0435

a1,z 0.0059 − 0.0435

with m = (v,c) for the valence and conduction bands, respec-
tively. We use the lowest conduction band and the crystal field
split valence band in our calculations [25]. For each direction
in the reciprocal space (i = x,y,z),

Ev,i(ki) =

∞
∑

j=0

α
j

v,i cos(jkiai), (2a)

Ec,i(ki) = Eg +

∞
∑

j=0

α
j

c,i cos(jkiai) (2b)

with ai = 2π/κi where κi the reciprocal space wave vector
along coordinate i. The orientation of the reciprocal lattice
of ZnO (wurtzite structure) is chosen so that x̂‖Ŵ-M , ŷ‖

Ŵ-K , and ẑ‖Ŵ-A (optical axis); along these directions [25]
(ax,ay,az) = (5.32,6.14,9.83) a.u. Atomic units are used
throughout the paper unless otherwise indicated. The expan-

sion coefficients α
j

m,i (i = x,y,z, j = 0,1 . . .) for valence
(m = v) and conduction (m = c) band are obtained from
expanding the bands calculated with a nonlocal empirical
pseudopotential method (NL-EPM, described in Ref. [25]) up
to j = 5 for Ŵ-M; the nearest-neighbor expansion is used for
Ŵ-K and Ŵ-A. The resulting coefficients are listed in Table I.
These bands are plotted in Fig. 1. The band-gap energy at the Ŵ

point is given by Eg = 0.1213 a.u. (3.3 eV). It should be noted
here that, in Ref. [9], both the local density approximation
(LDA-ABINIT) and NL-EPM were used to determine the
ZnO band structure. However, only the spectra using the
LDA-ABINIT bands were shown. In this work we will show
the spectra obtained using the NL-EPM bands (for Ŵ-M).
While some quantitative differences exist, the conclusions
remain unchanged. This highlights the difficulty in obtaining
highly-accurate band structures for ZnO.

There exist two main mechanisms/sources for the gen-
eration of harmonic radiation in solids. Under the action
of the strong laser field, electrons tunnel to the conduction
band, leaving holes in the valence band. The electron-hole
pairs thus formed are subsequently accelerated by the field.
High harmonics are generated as a result of the electron’s
and hole’s independent motion in their respective bands
(intraband current) and of the polarization buildup between
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FIG. 1. (Color online) The first conduction (red line) and the

split-off valence (blue line) bands along the Ŵ-M direction of the

BZ are extracted from Ref. [25]; for the expansion coefficients see

Table I.

them (interband current). These currents can be calculated as
[9]

jra(t) =
∑

m=c,v

∫

BZ

vm(K + A(t)) nm(K,t) d3K, (3a)

jer(t) =
d

dt

∫

BZ

p(K,t) d3K, (3b)

where the band velocity is defined by vm(k) = ∇kEm(k),
A(t) = −A0 sin(ωt) is the laser vector potential, F(t) =

−dA/dt = F0 cos(ωt) is the laser electric field, and crystal
momentum k has been transformed into a frame moving with
the vector potential, K = k − A(t). In experiments [4], the
vacuum field strength Fv is measured. Due to surface reflection
(here considered at normal incidence) the peak electric field
strength in the material is reduced to F0 = 2Fv/(n + 1), with
n = 1.8992 the material refractive index at the fundamental
frequency. The high harmonic spectrum is obtained from
the Fourier transform (FT) of jt = jra + jer, as |FT{jt}|

2. The
population of band m, nm(K,t), and the interband polarization
p(K,t) are governed by the semiconductor Bloch equations:

π̇ (K,t) = −
π (K,t)

T2

− i�(K,t) w(K,t) e−iS(K,t), (4a)

ṅm(K,t) = ism �∗(K,t) π (K,t) eiS(K,t) + c.c., (4b)

Here, w = nv − nc is the population difference, S(K,t) =
∫ t

−∞
εg(K+A(t ′))dt ′ is the classical action, εg = Ec − Ev

is the band gap between conduction and valence bands,
�(K,t) = F(t) d(K+A(t)) is the Rabi frequency, and sm =

−1,1 for m = v,c, respectively.
Finally, π (K,t) is related to the polarization p(K,t) by

p(K,t) = d(K+A(t))π (K,t)eiS(K,t) + c.c., (5)

where d(k) = i
∫

d3x u∗
v,k(x)∇kuc,k(x) is the transition dipole

moment, with um,k the periodic part of the Bloch function;

d = (3.46,3.46,3.94) is assumed to be k-independent in our
analysis [9]. Initially, all electrons are in the valence band. For
a more detailed derivation see Ref. [9].

Equation (4) describe the creation and annihilation of
electron-hole pairs and their dynamics in their respective
bands. The acceleration of the electron-hole pairs by the
laser field, and therefore the relative transfer of population
between different crystal momenta k, occurs through the
temporal variation of εg(K + A(t ′)) in the action S(K,t). This
mechanism is the main driver of the HHG process, as is
confirmed by the semiclassical analysis of Sec. IV.

Multielectron effects are neglected in our treatment. We
expect that the excitonic electron-hole interaction will result
in corrections, but will not substantially alter the high harmonic
generation mechanism—similar to what was found for atomic
HHG. Other many-body effects, such as band-gap renormal-
ization, will introduce new features that were not observed in
atomic HHG, as they are characteristic of the condensed matter
phase. Dephasing of the interband polarization is introduced
in Eq. (4) in the relaxation-time approximation, through the
parameter T2. It is a parameter of our simulations and its effects
on the high harmonic spectrum are investigated in the next
section.

III. DISCUSSION OF HIGH HARMONIC SPECTRA

Figure 2 shows the high harmonic spectrum of the intraband
(red) and interband (blue) currents obtained from a wurtzite
ZnO crystal for two dephasing times T2 for field strength
F0 = 0.003 a.u. (0.15 V/Å), (mid-IR) laser central frequency
ω = 0.014 a.u. (3.25 μm), and laser polarization and wave
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FIG. 2. (Color online) Harmonic spectrum for interband

(|FT {jer}|
2, blue line) and intraband (|FT {jra}|

2, red line) currents

for a field strength F0 = 0.003 a.u.; we use a temporal Gaussian

envelope with a FWHM of ten cycles and cosine carrier with

frequency ω = 0.014 a.u., corresponding to a laser period

T0 = 2π/ω = 10.9 fs. The dephasing time is (a) T2 = ∞ and (b)

T2 = T0/4. The laser polarization is parallel to the Ŵ-M direction

of the reciprocal space of a wurtzite ZnO crystal. The dashed black

vertical line represents the minimum band gap at the center of the

Brillouin zone.
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vector aligned along the Ŵ-M and Ŵ-A directions of the
reciprocal space, respectively. The currents are calculated from
Eq. (3) with nm(K,t) and p(K,t) obtained by a 3D numerical
integration of Eq. (4). The same method is used as in Ref. [9].

The spectrum of both harmonic sources depends on the
dephasing time. Figure 2(a) shows the harmonic spectrum in
the absence of dephasing. Contrary to experimental findings,
no clear harmonic structure is observed. Only for dephasing
times equal to or shorter than a laser half cycle does the
harmonic structure become resolved; see Fig. 2(b) for T2 =

2.7 fs corresponding to a laser quarter cycle. This finding has
been explained in Ref. [9] in the following way.

Interband HHG occurs through laser induced tunneling
and creation of electron-hole pairs, which are accelerated
back and forth in the laser field. When they re-encounter,
the electron hole pair recombines and a harmonic photon is
created. The structure of the interband harmonics is washed
out by interference between the first and higher order recolli-
sions, see Fig. 2(a). Only when higher-order recollisions are
suppressed, T2 � T0/2, the odd harmonic spectrum becomes
clearly visible. Even for interband harmonics below the band
gap, recollision appears to remain the dominant mechanism,
as the odd harmonic structure can only be observed for
T2 � T0/2. Note that for harmonics above the cutoff only a
single recollision is possible, which is why the odd harmonic
structure remains visible even in the absence of dephasing.

Intraband HHG occurs through three main mechanisms:
it can by driven by the nonlinearity of the band velocities,
by the nonlinearity arising from tunnel ionization [7,14], or
it can result from scattering during recollision of electron
and hole [9]. For intraband harmonics above the band gap,
the recollision contribution dominates the other two, as the
intraband spectrum in Fig. 2 is blurred in the absence of
dephasing, similar to interband HHG. Below the band gap,
a clear intraband HH spectrum can be seen in the absence of
dephasing. This indicates that for below band gap intraband
harmonics, the other two nonrecollision mechanisms are
dominant.

Finally, above the band gap, interband HHG is dominant,
which was confirmed for a wide range of laser intensities (F0 =

0.003 − 0.1). For harmonics below the band gap in Fig. 2,
intraband emission is dominant instead. However, no universal
conclusion can be drawn, as the relative strength of inter- and
intraband HHG below the band gap is found to be sensitive
to laser intensity. For example, increasing the field strength
to F0 = 0.0058 and leaving all other parameters in Fig. 2
unchanged, we find interband HHG to be dominant for most
of the harmonics below the band gap.

So far, we have investigated inter- and intraband HHG for
one mid-IR laser wavelength. However, HHG experiments
in solids have also been performed in the far-IR (THz)
range [5,6]. Therefore it is interesting to compare the relative
importance of the two emission mechanisms over a broader
range of laser wavelengths. Figure 3 compares the spectral
intensity of interband (solid lines) and intraband (dashed
lines) HHG for several harmonic orders as a function of
laser wavelength. All other parameters are the same as in
Fig. 2. The arrows mark the wavelengths above which a given
harmonic order falls below the minimum band gap. As long as
HHG is above the band gap, interband emission dominates.
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FIG. 3. (Color online) Harmonic intensity vs laser wavelength

for various high harmonic (HH) orders; laser and band parameters

are as in Fig. 2; circles, triangles pointed upward, squares, triangles

pointed downward, and diamonds refer to HH order 11, 13, 15, 17,

and 19, respectively. The solid and dashed lines show the interband

and intraband contributions for T2 = 2.7 fs (T0/4 for λ = 3.25 μm),

respectively. The arrows mark the wavelength above which a given

harmonic falls below the minimum band gap.

Around the position of the arrows, where the harmonics
slip below the band gap, intraband HHG becomes dominant.
The exact point at which inter- and intraband yield cross is
laser intensity dependent. Over the range of investigated field
strengths (F0 = 0.003–0.1), the crossing wavelength increases
with increasing field strength and varies over a range of
about 1 μm. Thus our analysis indicates that the intraband
mechanism dominates HHG in solids in the far-IR laser
wavelength regime. In particular, nonrecollision mechanisms
are expected to be dominant in this range, as the ratio T2/T0 is
reduced and the relative importance of dephasing is augmented
for increasing wavelength, suppressing more and more the
recollision contribution to HHG.

In the rest of the paper, we will focus on the mid-IR
laser wavelength range and on above band gap harmonics for
which interband HHG is dominant. Harmonic generation in
this regime is very promising, as the mechanism of interband
emission is closely related to HHG in atoms. This presents
the opportunity to adapt attosecond metrology methods de-
veloped for atoms and apply them to solids. Our analysis
will focus on the saddle point integration of interband HHG
and on the resulting quasiclassical trajectory formalism. The
intuitive picture revealed by the trajectory analysis presents
a useful basis for developing attosecond methodology for the
condensed matter phase.

IV. DERIVATION OF TRAJECTORIES

In order to better understand the physical process driving
interband HHG in solids, it is useful to consider the limit of
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low ionization where nv − nc ≈ 1. In this limit, the interband
spectrum can be cast into the following integral form [9]:

jer(�) = �

∫

BZ

d3k d(k)

∫ ∞

−∞

dtei�t

∫ t

−∞

dt ′F (t ′)d∗(κ t ′)

×e−iS(k,t ′,t)−(t−t ′)/T2 + c.c., (6)

where κ t ′ = k + A(t ′) − A(t) and S(k,t ′,t) =
∫ t

t ′
εg(κτ )dτ is

the action.
Similar to atomic HHG [26], the integrals can be evaluated

with the saddle point method. The dominant contributions to
the integral occur at the stationary phase points, for which the
first derivative of the phase S is zero. The resulting saddle
point conditions are

∇kS =

∫ t

t ′
v(k − A(t) + A(t ′′))dt ′′ = 0, (7a)

dS

dt ′
= εg(k − A(t) + A(t ′)) −

i

T2

= 0, (7b)

dS

dt
= εg(k) − � +

i

T2

= 0, (7c)

where v(k) = ∇kεg(k) = vc − vv is the difference of the
velocities of the electron and the hole in their respective
bands. Further, xc,v(t ′,t) =

∫ t

t ′
dt ′′vc,v is the space excursion

of electron and hole.
The resulting saddle points in k,t,t ′ are functions of the

harmonic frequency � and are in general complex. The
imaginary parts arise from the tunneling of the electron
from the valence to the conduction band, which is a purely
quantum-mechanical process [26,27]. The six equations for
real and imaginary parts of the three saddle points are coupled
and have to be solved self consistently. However, to first
order, the equations for the imaginary parts can be neglected,
which gives a good approximation of the classical electron and
hole trajectories after their birth through tunnel ionization. In
this case, the saddle point conditions have a simple physical
interpretation.

Equation (7a), ∇kS = �xc − �xv = 0, states that the total
distance traveled by the electron equals that traveled by
the hole. Since they are born at the same position, the
condition implies that high harmonics are emitted only upon
re-encounter of electron and hole.

In the limit T2 = ∞, Eqs. (7b) and (7c) also have a classical
interpretation. The first one defines the birth time at which
the electron-hole pair is formed by tunnel ionization. It also
determines the quasiclassical evolution of electron and hole
crystal momentum in the laser field. The second condition
ensures conservation of energy: the electron recombines with
the hole and emits one photon with energy equal to the energy
band gap at the crystal momentum of recombination.

Thus the essence of high harmonic generation from solids
is similar to the three-step model of atomic HHG: an electron-
hole pair is created at time of birth t ′ (step one); the electron
and hole are accelerated by the field in opposite directions (step
two); when the field changes sign they are driven back towards
their point of origin and eventually re-encounter each other at
time t with nonzero crystal momentum. The crystal momentum
determines the band gap energy difference between electron

and hole and therewith the energy of the photon that is emitted
upon recombination.

Because the minimum band gap is never zero, Eq. (7b)
implies a complex birth time. In fact, by writing εg(k) = Eg +

h(k), where Eg is the minimum band gap of the material and
h(k) � 0, Eq. (7b) reads

h(k − A(t) + A(t ′)) = −Eg, (8)

which can only be solved for a complex t ′. The classical
approximation implies setting Eg = 0, which allows for a
real solution. The tunneling process and its effects on the
electron-hole pair trajectories are then disregarded. For direct
band-gap materials, for which the minimum band gap is at the
Ŵ point (k = 0), the solution of the resulting equation is

k = A(t) − A(t ′), (9)

which is the classical equation of motion for electron-hole pairs
in a lattice (see, for example, Ref. [10], Chap. 12). Regarded
as a function of t the above equation implies that the pairs
are born with zero momentum at time t ′ (at the Ŵ point). In
indirect band-gap materials, where the minimum band gap is
not at the Ŵ point, electron-hole pairs are created with (possibly
large) nonzero crystal momentum. In our view, this represents
an interesting point for further study, theoretically as well as
experimentally.

We solve the saddle point equations in the classical approx-
imation as follows. For each birth time t ′, an electron and a
hole are propagated with velocity v[k(τ )] = v[A(τ ) − A(t ′)]
until time t when they re-encounter with momentum k = k(t).
Equations (7a) and (7b) are thus satisfied. The two stationary
times define a classical trajectory, which is associated to a
high harmonic photon energy εg(k) via Eq. (7c). As a result,
in a two band system the highest achievable harmonics are
determined by the maximum band gap between valence and
conduction bands, in agreement with what was found in
previous theoretical studies [11].

The classical description is used in the following two
sections to derive an approximate high harmonic cutoff law
and to discuss the physics driving interband HHG based
on a trajectory analysis. The main difference between HHG
in atoms and solids comes from the fact that most of the
band structure in nonparabolic. Electrons and holes can be
approximated as free particles only in the vicinity of the Ŵ

point, where the bands are a quadratic function of the crystal
momentum. This holds only for harmonic orders close to the
minimum band-gap energy. In this range, HHG in atoms and
solids are very similar. For higher harmonics, electrons and
holes explore the nonparabolic parts of the band structure,
displaying different effects from those normally present in
atomic HHG.

V. DERIVATION OF THE CUTOFF LAW

The saddle point analysis of the interband emission mecha-
nism is particularly useful in that it allows to predict the cutoff
photon energy. Conservation of energy, Eq. (7c), requires that
the cutoff harmonic �c is determined by electron-hole pairs
recolliding with the highest momentum kc, that is,

�c = εg(kc). (10)
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As a result, the variation of the cutoff with field strength
directly reflects the momentum dependent band gap: as the
crystal momentum increases linearly with field strength, a band
gap that is a linear function of the crystal momentum yields
a linear dependence of the cutoff harmonic on the driving
radiation field. Likewise, a parabolic dispersion yields a cutoff
that scales quadratically with the field, or linearly with the
intensity. This is the case in atomic HHG, where the energy of
the electron in vacuum varies quadratically with momentum.

In a solid, the band energy can be a complicated function of
momentum. Fortunately, in most cases, εg(k) is almost linear
near the half-point of the BZ—between Ŵ and κi/2—as the
curvature changes sign between the bottom and the top of
the bands. We use this property to derive an approximate
analytical scaling law of the cutoff as a function of laser and
crystal parameters. By expanding εg(k) up to first order around
k = κx/4, we obtain

�c ≃ εg

(

κx

4

)

+
dεg(kc)

dkc

∣

∣

∣

∣

kc=κx/4

(

kc −
κx

4

)

. (11)

The momentum of recollision is determined by a trajectory
born at time t ′c and recolliding at time tc,

kc =
F0

ω
[sin(ωt ′c) − sin(ωtc)] =

F0δ

ω
. (12)

This trajectory can be found with the numerical procedure
described in the previous section. In the following, we will
discuss the case of nearest neighbours (NN) bands, where
a0c = �c, a1c = −�c, a0v = −�v , a1v = �v . Inserting the
NN approximation in Eq. (11) yields the cutoff law

�c = Eg + (�c + �v)

(

1 −
π

2
+

F0axδ

ω

)

. (13)
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FIG. 4. (Color online) The simulated high harmonic cutoff (red

circles, red dash-dotted line) lies slightly above the cutoff predicted

with classical trajectory analysis [Eq. (13)]. The band parameters are

given in the caption of Table II. The laser polarization is aligned along

the Ŵ-M direction of the hexagonal Brillouin zone of ZnO, the central

frequency is ω = 0.014 a.u.

TABLE II. Parameters describing the cut-off trajectory as a

function of field strength for a NN band structure with coefficients:

�c = 0.0872 a.u., �v = 0.0925 a.u., a = 10.64 a.u., and Eg =

0.1213 a.u. Birth (t ′) and recollision (t) times are given in units of

optical cycles (T0). The trajectory responsible for the cutoff emission

changes slightly as a function of the laser field strength.

F0 t ′/T0 t/T0 δ Two-band cutoff

0.001 0.050 0.701 1.26 10.1

0.002 0.052 0.702 1.27 14.3

0.003 0.057 0.700 1.30 20.4

0.004 0.063 0.708 1.35 27.5

0.005 0.077 0.728 1.45 33.4

0.006 0.107 0.630 1.35 34.3

The blue line in Fig. 4 represents the cutoff calculated with the
above formula for a NN band structure that best approximates
the real ZnO bands used for Fig. 2. The band parameters are
reported in the caption of Table II. Table II reports the birth
and recollision times for the cutoff trajectory along with δ

defined in Eq. (12) for increasing field strengths. As Eq. (13)
is based on an expansion around the crystal momentum at
half BZ, δ can be taken from the trajectory that recollides at
�c = εg[κx/4]. This yields δ ≃ 1.32.

The validity of Eq. (13) is tested against a simulation of
the high harmonic spectrum obtained as described in Sec. II.
Instead of the full band model we have also used the NN band
defined above in the numerical solution to make a comparison
with Eq. (13) possible. The cutoff is extracted from a windowed
Fourier transform of the interband current, where a 0.34 cycles
wide Blackman window is scanned across one optical cycle
around the peak of the laser pulse. The resulting spectrum
is continuous, rather than composed of discrete harmonics,
because only one recollision event is allowed inside the narrow
temporal window. The cutoff corresponds to the maximum
photon energy in the plateau region of the spectrum, before
the exponential roll-off of the high harmonic intensity (as in
Fig. 2). This photon energy is plotted in Fig. 4. As a result of
the continuous spectrum, this method provides a more accurate
way of determining the cutoff than by inferring it from the
discrete harmonic structure. As Fig. 4 shows, the numerical
result (red circles and red dashed line) lies about one to two
harmonic orders above the theoretical prediction (blue line),
but their slope is identical.

The small difference between numerical and analytical
cutoff is probably due to the neglect of the imaginary parts
of the saddle points. Taking into account the complex nature
of the saddle points [26,27], electrons and holes are not born at
the same position �x(t ′) = xc(t ′) − xv(t ′) 	= 0. For recollision
to occur, the electron and the hole have to travel the extra
distance �x(t ′). The work done by the field gives the pair an
extra energy δ� = F (t)�x(t ′). A classical description fails to
account for this fact and returns a lower cutoff.

In our two-band model, the maximum attainable photon
energy is limited by the maximum band gap (black dashed
line), in agreement with our discussion above. Higher har-
monics are possible but require excitation to higher bands.
If the electron reaches the top of the first conduction band
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it can tunnel to the second one and gain additional energy.
This effect has been investigated in Ref. [28]. At the laser
frequency considered in this work and for polarization aligned
along the Ŵ-M direction, electrons start to reach the edge of
the BZ for F0 � 0.0045 a.u. However, the band gap between
the two conduction bands is too large to result in substantial
population transfer for the field strengths considered here. The
role of recollision in higher bands is an extremely interesting
venue of research that will be pursued in future work.

The derived cutoff law is accurate as long as the band gap
is approximately a linear function of momentum. Deviations
from the cutoff law are expected around the minimum and
maximum energies, where quadratic terms dominate the
dispersion. Indeed, deviations from the linear scaling are
evident in Fig. 4 near the lowest and the highest photon
energies. Most notably, Eq. (13) fails in the limit F0 → 0
since it predicts a cutoff lower than the minimum band gap.
In our quasiclassical analysis, the energy available to the
electron-hole pair for recombination must always be higher
or equal to Eg .

The classical analysis can also be used to estimate the
validity of the one electron-hole exciton approximation used
in our work. Whether coherent emission can arise from
an electron recolliding with a different hole than the one
that it created upon ionization, or if it can arise only from
recombination with its own in a correlated fashion is under
debate. For the parameters of Fig. 4, we find that the maximum
excursion of an electron relative to the hole until their first
recollision is between 15 and 27 lattice cells, depending on
field strength, which is determined by the time of birth.
For example, in the case of 27 cells, the electron moves
a maximum of 14 lattice cells, whereas the hole moves 13
lattice cells in the opposite direction. For the short trajectories,
the maximum excursion ranges between 14 (cutoff) and 4
lattice cells depending on birth time and harmonic order. The
ionization rate is around 10−3 corresponding to an average
distance of 10 atomic cells between neighboring excitonic
electron-hole pairs. As a result, neighboring excitons can
encounter each other during the first recollision. However,
even when neighboring excitons collide, results from atomic
HHG [29] indicate that this will not lead to coherent harmonic
emission. Further work will be required to establish whether
solids behave similar to atomic gases in this respect.

Finally, the coefficient δ in Table II is approximately
independent of electric field strength, up to the field strength
for which the cut-off approaches the maximum band gap (see
Table II). However, we find that the birth and recollision times
shift for increasing fields, a behavior that has not been observed
for atomic HHG. The variation of the trajectory with field
strength arises from the cutoff electrons (and holes) exploring
the nonparabolic part of the band structure. This feature will
be further explored in the next section.

VI. TRAJECTORY ANALYSIS

The classical trajectory evolution is analysed in the follow-
ing for the model ZnO crystal with NN bands. The trajectories
are propagated in a CW laser field with frequency ω = 0.014.
The effect of the pulse envelope on the trajectory can be safely
neglected.

Figures 5(a)–5(d) show the harmonic photon energy as a
function of the recollision time for increasing field strengths.
Electrons born at a specific time can recollide with the hole
multiple times. These higher returns are color coded from the
first (blue) to the fifth (black). The thin green line represents
the energy of the first recollision in an atomic system, for a
field strength that yields the same cutoff; for the atomic system
it is assumed that the ionization potential Ip = Eg .

Whereas the atomic trajectories are independent of the field
strength, in a crystal they are not. For example, the blue line
in Fig. 5(b), calculated with F0 = 0.0053 a.u., is distorted
with respect to that of Fig. 5(a), where F0 = 0.0046 a.u.
For the higher field, the cutoff originates from trajectories
that are born and recollide almost 10◦ later in the cycle as
compared to the lower field case. The differences between
the solid and atomic case become even more pronounced as
the field is further increased, see Figs. 5(c) and 5(d). This
striking difference is a consequence of the nonparabolic band
dispersion. For higher field strengths electron and hole start to
explore the nonquadratic part of the band. When this happens
the quadratic energy-momentum relation and therewith the
velocity is strongly modified and the trajectories are no longer
invariant with respect to F .

Similar to atomic HHG, the cutoff energy separates two
sets of trajectories that recollide within one optical cycle
and contribute to the same harmonic. Those that travel a
longer time, the long trajectories, are born after the peak of
the field but before the birth time of the cutoff trajectory
t ′c; the short trajectories instead are born at times later
than t ′c.

For field strengths F0 � 0.0053 a.u., the cutoff is below or
equal to the maximum possible photon energy (black dashed-
dotted line), which is determined by the maximum energy
difference between valence and conduction bands. Here the
long and short branches are clearly identifiable. When the
intensity is increased beyond this point, see Figs. 5(c) and
5(d), the cutoff saturates. As a result, the simple long/short
trajectory picture is lost. For F0 = 0.0058 a.u., Fig. 5(c), the
first recollision is prohibited for part of the long trajectories
and does not occur continuously throughout the cycle. During
the part of the cycle where first returns are prohibited, higher
re-encounters occur.

For F0 = 0.008 a.u., Fig. 5(d), the long trajectory does
not recollide at all, but short trajectories can recollide a second
time within the optical cycle. This field strength corresponds to
0.43 V/Å in the crystal. With the refractive index n = 1.8992
of ZnO at λ = 3.62 μm, it corresponds to Fv = 0.62 V/Å,
which has been reached in experiments [4].

The classical trajectories are validated by comparison with
the simulated interband harmonic spectrum. Figures 5(e)–5(h)
show the spectral intensity (color coded) as a function of
time (horizontal axis) and harmonic order (vertical axis). A
windowed Fourier transform, identical to that used in Sec.
V, allows for the investigation of the harmonic emission
with sub-cycle temporal resolution. For the simulations, the
NN approximation is used. The dephasing time is T2 = T0/2
(5.4 fs). Classical trajectories recolliding within the optical
cycle are represented by the solid white lines. Since trajectories
are launched at each peak of the laser field, the simulation
shows replicas of the emission delayed by multiples of a
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FIG. 5. (Color online) [(a)–(d), left panels] High harmonic photon energy as a function of recollision time for a ZnO crystal with NN bands

for various field strengths. Subsequent recollision events are numbered sequentially and color coded as follows: first, second, third, fourth,

fifth. The thin green line is the recollision energy of atomic HHG normalized to the cutoff of the crystal case. The dashed-dotted black line is

the maximum band gap at the edge of the Brillouin zone. [(e)–(h), right panels] Simulated high harmonic spectral intensity (color code) as a

function of harmonic order (vertical axis) and time (horizontal axis). The classical trajectories recolliding within the cycle, found in (a)–(d),

are the solid white lines and they are numbered like in (a)–(d). Replicas of this emission at following laser half-cycles arise from the intrinsic

periodicity of the HHG process.
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FIG. 6. (Color online) Harmonic order vs time for three different dephasing times: (a) T2 = T0/4, (b) T0/2, and (c) ∞. The laser frequency

is ω = 0.014 a.u. and the field strength is F0 = 0.0046 a.u. The shorter the dephasing time the weaker the long trajectories are. In (c), multiple

returns significantly modify the recollision.

laser half-cycle. These replicas are not plotted in the trajectory
analysis curves.

Emission of high harmonic photons happens four times
per cycle, corresponding to a set of one long and one short
trajectories for each half cycle. Seven recollision events
are thus observed in the 1.75 cycles window considered in
Fig. 5. The long and short branches come out clearly up to
F0 = 0.0053 a.u. The small discrepancies, such as the higher
cutoff photon energy reached in the simulation, arise from
approximations, such as the neglect of the ionization process
in the classical trajectory calculation, see the previous section.
Further, in Figs. 5(e)–5(f), we find a temporal overlap between
long trajectories in one half-cycle and short trajectories of
the next half-cycle. This results in spectral interference and
modulation of the spectral intensity of the stronger short
trajectories.

Figure 5(g) confirms the existence of the second recollision
of the short branch within one half cycle that is predicted
for F0 = 0.0058 by the trajectory analysis. Furthermore, in
agreement with trajectory analysis, the long branch is absent
for harmonics above order 27.

For F0 = 0.008 a.u., the differences between trajectory
and numerical analysis are striking. Although the slope of
the harmonic emission in time seems to agree with the
short branch, all other trajectories vanish and the emission
is shifted in time. At such high field strengths the ionized
fraction reaches 2.5% at the end of the pulse. Clearly the
low-ionization/depletion Keldysh limit, on which our analysis
is based, breaks down. It appears that the interband current
cannot be analysed on the basis of Eq. (6) and an extended
model needs to be developed for the high-field regime.

Figure 5 also reveals the lack of higher order recollisions af-
ter the first return. In atomic HHG, long returns are suppressed
by quantum diffusion resulting in a small recombination cross
section between free electrons and atomic ground state. In
solids, the short dephasing times (≈5 fs) are responsible
for suppressing higher-order returns. This was found in
Fig. 2 and is confirmed by the trajectory analysis in Fig. 6, for
T2 = T0/4 (a), T0/2 (b) and T∞ (c). For increasing dephasing
times the spectral intensity of the long trajectories becomes
stronger. When the dephasing time is long enough to allow
returns longer than a laser cycle (c), multiple recollisions
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FIG. 7. (Color online) (a) and (b) Same plots as in Fig. 5, but for ZnO bands obtained from Ref. ([25]) at a field strength F0 = 0.0058 a.u.

The band parameters are reported in the caption of Fig. 2.
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interfere and lead to an aperiodic photon emission. This results
in the loss of the clear harmonic structure in the spectrum.
The simulation confirms the role of dephasing in suppressing
multiple recollisions.

In Figs. 7(a) and 7(b), the importance of the band structure
is investigated by comparing trajectory analysis results for
NN approximated bands and for the full bands used in
Sec. III. All other parameters are the same as in Figs. 5(c) and
5(g) where the NN band has been used. Comparison between
Figs. 7(a), 7(b) and 5(c), 5(g) reveals that HHG is quantitatively
sensitive to the band structure for high field strengths, for
which electron hole pairs explore a substantial fraction of the
Brillouin zone. However, no qualitatively new features are
introduced by using the full band structure.

VII. CONCLUSION

We have compared the importance of the two main
mechanisms contributing to HHG in solids over a wide range
of wavelengths. For mid-IR lasers, generation is dominated
by interband emission and it is driven by a three step process
similar to atomic HHG. In contrast, for far-IR (THz) pump
lasers, intraband emission arising from nonlinear band veloci-
ties and ionization dominates. The main part of our theoretical
investigation has focused on a semiclassical understanding of
the interband current. Our analysis reveals that the trajectory
picture of atomic HHG is applicable to solids with some
modifications.

In the atomic case, a plot of harmonic order normalized to
the cutoff versus recollision and/or birth time normalized to
the laser period is universally valid, independent of the laser
field strength. This remains true in solids provided the electron
hole pair only explores the quadratic region of the band gap.
However, for field strengths strong enough that the pair is
driven into the nonquadratic part of the band, the field strength
independence is lost.

The implications have to be considered for developing
attosecond solid state technology and devices based on the
following atomic HHG processes. In atomic HHG, single
attosecond pulses are routinely isolated from this pulse train by
gating, allowing only one recollision to occur. Similar methods
can be applied to solids allowing the generation of isolated
subfemtosecond pulses (or light transients [30]). Furthermore,
techniques that rely on the perturbation of the HHG process to

gather information about the phase of the harmonic radiation
[31,32], the strong-field ionization step [21], or about the
generating medium itself [19,20] can be directly translated
from atoms to solids.

The harmonic cutoff relation derived from trajectory anal-
ysis reveals a connection between band gap parameters and
cutoff. By measuring the cutoff as a function of the laser field
strength we will be able to determine the band gap of materials
as a function of crystal momentum.

For many of the applications outlined above, the maximum
achievable harmonic order is important. The maximum cutoff
is limited by the maximum band gap between valence and
conduction bands. One route to realizing higher cutoffs is the
use of large band gap materials, such as dielectrics. Another
route might be to use higher laser intensities for which higher
conduction bands will be populated [28].

Long linear molecules can be viewed as 1D solids. In such
systems both, the solid and atomic HHG, mechanisms could be
of relevance: an electron can either propagate along the chain
or become ionized and propagate in vacuum, before recolliding
with the hole. If the HHG mechanism can be identified in
molecular chains, either solid state or atomic methods would
become available to probe these systems. This will be the
first step to extending attosecond research to larger molecules
and, possibly, liquids. Interesting questions regarding the HHG
process are: what is its efficiency in confined systems? Are
there surface effects at the ends of the chain? Is recollision
still dominating harmonic emission?

Finally, the three step process of HHG in solids can
be expanded and tailored by using materials doped with
impurities. In this case, the electron/hole will make a tran-
sition from the negatively/positively charged impurity to the
conduction/valence band, propagate in the band and recombine
with the impurity upon return. This process resembles atomic
HHG even more closely. As a result, translation of atomic
HHG to impurity doped solids will result in a novel tool for
the investigation of impurities in condensed matter. As an
example, it could be possible to image the atomic orbital of
the initial state of the impurity by extending the method of
molecular tomography [19] developed for atomic HHG.
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