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Semiclassical approximations for the calculation of thermal rate constants
for chemical reactions in complex molecular systems

Haobin Wang, Xiong Sun, and William H. Miller
Department of Chemistry, University of California, Berkeley, California, and Chemical Sciences Division,
Lawrence Berkeley National Laboratory, Berkeley, California 94720

~Received 3 February 1998; accepted 11 March 1998!

Two different semiclassical approaches are presented for extending flux correlation function
methodology for computing thermal reaction rate constants, which has been extremely successful
for the ‘‘direct’’ calculation of rate constants in small molecule (;3 – 4 atoms) reactions, to
complex molecular systems, i.e., those with many degrees of freedom. First is the popular mixed
quantum-classical approach that has been widely used by many persons, and second is an
approximate version of the semiclassical initial value representation that has recently undergone a
rebirth of interest as a way for including quantum effects in molecular dynamics simulations. Both
of these are applied to the widely studied system-bath model, a one-dimensional double well
potential linearly coupled to an infinite bath of harmonic oscillators. The former approximation is
found to be rather poor while the latter is quite good. ©1998 American Institute of Physics.
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I. INTRODUCTION

Considerable progress has been made over the last
years in the development of quantum mechanical meth
for the calculation of thermal~and also microcanonical! rate
constants for chemical reactions.1 These methods are bot
‘‘direct,’’ in that they avoid the necessity of having to solv
the state-to-state quantum reactive scattering problem,
also ‘‘correct,’’ in principle exact and limited only by nu
merical parameters. Applications to a number of reacti
~O1HCl→OH1Cl,2 Cl1H2→HCl1H,3 F1H2→HF1H,4

and O1OH→O21H5! have been carried out successfully u
ing this methodology.

To summarize the approach in brief, the thermal r
constant,k(T), is expressed as the time integral of a flux
flux autocorrelation function6,7

k~T!5Qr~T!21E
0

`

dtCf f~ t !, ~1.1a!

where

Cf f~ t !5tr@e2bĤ/2F̂e2bĤ/2eiĤ t/\F̂e2 iĤ t/\#, ~1.1b!

or in the integrated form6~b! as the long time limit of the
flux-position correlation function,

k~T!5Qr~T!21 lim
t→`

Cf s~ t !, ~1.2a!

where

Cf s~ t !5tr@e2bĤ/2F̂e2bĤ/2eiĤ t/\ĥe2 iĤ t/\#. ~1.2b!

Here F̂ is the flux operator,

F̂5
i

\
@Ĥ,ĥ#, ~1.3!

whereh is a function of coordinates that is 0 or 1, respe
tively, on the reactant or product side of a dividing surfa
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Qr(T) is the reactant partition function per unit volume, a
b5(kBT)21. Since the Boltzmannized flux operator,F̂(b),

F̂~b![e2bĤ/2F̂e2bĤ/2, ~1.4!

is of low rank, a Lanczos iteration procedure8,9 provides an
extremely efficient way to obtain the small number of
eigenvectors$uum&% with eigenvalues$ f m% significantly dif-
ferent from zero.2–5 F̂(b) is then expressed in terms of it
eigenfunction expansion,

F̂~b!5(
m

f muum&^umu, ~1.5!

and the trace in Eq.~1.1b! can be evaluated in this muc
smaller basis. It should also be noted that Lightet al.,10 Me-
tiu et al.,11 and Mantheet al.12 have developed approache
similar in spirit to that described here, though differing
various specifics.

Even with this ‘‘considerable progress,’’ however, the
completely rigorous quantum approaches are only applica
at present to chemical reactions involving a few~3–4! atoms.
This is because these finite basis~e.g., discrete variable rep
resentation! methods are based on a quadrature discretiza
for each degree of freedom of the molecular system, and
resulting number of grid points increases exponentially w
the number of degrees of freedom. Some kind of approxim
tion is thus necessary in order to deal with complex mole
lar systems, those with many degrees of freedom. One co
of course, immediately revert to the use of classical mech
ics, i.e., molecular dynamics simulations, but there will c
tainly be many situations where quantum effects are imp
tant. We thus wish to retain as much of the above rigoro
quantum formulation as possible.

In this paper we consider two approximate approach
First is the popular mixed quantum-classical mode13

whereby one integrates the time-dependent Schro¨dinger
6 © 1998 American Institute of Physics
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equation for~a few! degrees of freedom~with coordinatess!
that are treated quantum mechanically, simultaneously w
the classical equations of motion for the~many! degrees of
freedom ~with coordinatesq! that are treated by classica
mechanics. The two sets of degrees of freedom are cou
in that the quantum degrees of freedom see a time-depen
potential,

VQM~s,t !5V~s,q~ t !!, ~1.6!

whereV(s,q) is the total potential energy function andq(t)
the trajectory of the classical degrees of freedom, and
classical degrees of freedom see a time-dependent pote
that is the Ehrenfest average over the quantum degree
freedom,

VCL~q,t !5^C~ t !uVuC~ t !&

5E dsC~s,t !* V~s,q!C~s,t !. ~1.7!

This model can be thought of as the~partial! classical limit
of the time-dependent self-consistent field~TDSCF!
approximation14 and has been widely used by man
persons.13,15 Section II shows explicitly how it can be
adapted to the ‘‘direct’’ rate constant methodology summ
rized above.

The second approximate approach we consider is ba
on the semiclassical initial value representation16 ~SC-IVR!
that has had a rebirth of interest17–23 as a way for including
quantum effects in molecular dynamics simulations. The S
IVR, which treats all degrees of freedom within the sam
framework, provides an explicit~approximate! representa-

tion for the time evolution operatore2 iĤ t/\ which can be
immediately applied in Eqs.~1.1! and ~1.2! above. Section
III shows how this is carried out and also introduces so
approximations that make the resulting approach quite p
tical for complex systems.

Both of these approximate approaches are tested by
plication to the well-studied system-bath model, a on
dimensional double well potential linearly coupled to an
finite bath of harmonic oscillators, for which the Hamiltonia
is

H5
ps

2

2ms
1Vs1(

j
F Pj

2

2mj
1

1

2
mjv j

2S Qj2
cjs

mjv j
2D 2G ,

~1.8!

and which has been widely used to model the effect o
condensed phase environment on a reaction coordinat
interest.24 The essential property of the harmonic bath is
spectral density25

J~v!5
p

2 (
j

cj
2

mjv j
d~v2v j !, ~1.9!

which is chosen in the continuous Ohmic form with an e
ponential cutoff25

J~v!5hve2v/vc, ~1.10!

where the cutoff frequencyvc is chosen as 500 cm21. Vs is
the 1-d double well potential
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1

2
msvb

2s21
ms

2vb
4

16V0
‡ s4, ~1.11!

wherevb is the imaginary harmonic frequency at the top
the barrier, andV0

‡ the barrier height with respect to th
bottom of the well. The specific parameters we have cho
for study correspond to the DW1 model potential used in
previous work of Topaler and Makri,26 who performed es-
sentially exact quantum path integral calculations wh
serve as the benchmark for the present approximate tr
ments. The barrier height and imaginary frequency for
DW1 potential are 2085 and 500 cm21, respectively, and the
mass of the ‘‘system’’ is that of a proton. A quadrature d
cretization scheme is used to cast Eq.~1.10! in the form of
Eq. ~1.9!; we found that 300 bath modes provide an adequ
description for the problem. After discretization, the co
plings in Eq.~1.8! are directly related to the spectral densit

Section II presents the mixed quantum-classical
proach and its application to the system-bath model, and
SC-IVR methodology and its application are presented
Sec. III. Quite surprisingly~to us!, the former approximation
is found to be rather poor, while the latter~even approximate
version of the! SC-IVR approach is quite good, over esse
tially the entire range from weak to strong coupling betwe
the system and bath. Section IV summarizes and conclu

II. THERMAL RATE CONSTANTS VIA A MIXED
QUANTUM-CLASSICAL APPROACH

A. General methodology

For chemical reactions in a complex molecular system
is often useful to divide the total Hamiltonian into thre
parts,

Ĥ5Ĥs1Ĥb1Ĥc , ~2.1!

whereĤs is the Hamiltonian for the ‘‘system,’’ which con
sists of a few degrees of freedom most important in the
action,Ĥb the Hamiltonian for the ‘‘bath,’’ which consists o
the many degrees of freedom less central to the reaction,
Ĥc the Hamiltonian for the coupling between the two. T
specific way the total Hamiltonian is divided up in Eq.~2.1!
may, as we will see, be quite critical.

To keep the approach simple enough to be applicabl
complex molecular systems, it is necessary to neglect
coupling termĤc in the Boltzmann operator@but see Eq.
~2.5! below#. Denoting the ‘‘system’’ and ‘‘bath’’ coordi-
nates bys andq, respectively, the dividing surface separati
reactants and products is chosen to be a function only of
‘‘system’’ coordinatess, so that the flux operator involve
only thes degrees of freedom, i.e.,F̂5F̂s . It is then straight-
forward to show that the time-dependent self-consistent fi
~TDSCF! approximation14—with the classical limit for the
bath degrees of freedom—gives the flux correlation funct
as
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Cf f~ t !5E dp0E dq0rb~p0 ,q0!tr@ F̂s~b!Û1~ t !F̂sÛ~ t !#,

~2.2!

where (p0 ,q0) are the initial conditions for a classical traje
tory of the ‘‘bath’’ degrees of freedom,F̂s(b) is the Boltz-
mannized flux operator of the ‘‘system,’’

F̂s~b!5e2bĤs/2F̂se
2bĤs/2, ~2.3!

and Û(t) is the time evolution operator for the quantu
‘‘system’’ with the time-dependent Hamiltonian operator,

ĤQM~ t !5Ĥs1V̂c@ ŝ,q~ t !#, ~2.4!

where it has been assumed that the couplingĤc5V̂c is a
potential energy type operator. The trace in Eq.~2.2! in-
volves only operators of the ‘‘system’’ degrees of freedo
but since the ‘‘bath’’ trajectoryq(t) depends on the initia
conditions (p0 ,q0), then so doĤc(t), Û(t), and thus the
value of the trace in Eq.~2.2!. @We also considered the effec
of including the couplingĤc in the Boltzmannized flux op-
erator, i.e., replacing Eq.~2.3! by

F̂s~b,q0!5e2b@Ĥs1Ĥc~s,q0!#/2F̂se
2b@Ĥs1Ĥc~s,q0!#/2, ~2.5!

but this made negligible difference in the results presente
the next section, so we do not consider it further.# rb(p0 ,q0),
the distribution of initial conditions for the ‘‘bath’’ trajec
tory, is the Wigner distribution function of the ‘‘bath,’’

rb~p0 ,q0!5
1

~2p\! f

3E dDqe2 i Dq•p0 /\

3 K q01
Dq

2
ue2bHbuq02

Dq

2 L , ~2.6a!

wheref is the number of degrees of freedom of the ‘‘bath
and we note that the~quantum! partition function of the
‘‘bath’’ is given by its integral over all phase space,

Qb~T!5E dp0E dq0rb~p0 ,q0!5trb~e2bĤb!. ~2.6b!

Since the Boltzmannized flux operator of Eq.~2.3! involves
only the few degrees of freedom of the ‘‘system,’’ it is d
agonalized by the same procedure as in the rigorous quan
calculation summarized in the Introduction, yielding the
genvalues$ f m% and eigenvectors$uum&%, and the trace in Eq
~2.2! is evaluated in this basis, so that Eq.~2.2! becomes

Cf f~ t !5E dp0E dq0rb~p0 ,q0!(
m

f m^um~ t !uF̂suum~ t !&,

~2.7a!

where

uum~ t !&5Û~ t !uum&. ~2.7b!

The split-operator algorithm27 can still be used to carry ou
the time evolution in Eq.~2.7b! even though the Hamiltonian
of Eq. ~2.4! is time dependent; the specific form we ha
found to be most stable is
Downloaded 19 May 2005 to 169.229.129.16. Redistribution subject to A
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uum~ t1Dt !&5e2 iĤ c~ t1Dt !Dt/4\e2 iV̂sDt/2\e2 iĤ c~ t1D3t/4!Dt/4\

3e2 i T̂sDt/\e2 iĤ c~ t1Dt/2!Dt/4\

3e2 iV̂sDt/2\e2 iĤ c~ t1Dt/4!Dt/4\uum~ t !&. ~2.8!

Finally, for each value ofm in Eq. ~2.7b!, i.e., each eigen-
vector uum&, the classical Hamiltonian which determines t
‘‘bath’’ trajectory q(t) is

HCL~p,q!5Hb~p,q!1^um~ t !uV̂cuum~ t !&~q!. ~2.9!

To summarize the overall procedure, the average o
the initial conditions of the ‘‘bath’’ trajectory is most conve
niently evaluated by Monte Carlo, i.e., by selecting init
conditions from the normalized distributionrb(p0 ,q0)/
Qb(T). If ( p0

j ,q0
j ) is the j th such selection of ‘‘bath’’ initial

conditions, then Eq.~2.7! for the flux correlation function
becomes

Cf f~ t !5Qb~T!
1

N (
j 51

N

(
m

f m^um
j ~ t !uF̂suum

j ~ t !&, ~2.10!

whereum
j (t) is the time-evolved vector for thej th ‘‘bath’’

trajectory. The diagonalization ofF̂s(b) ~to obtain the eigen-
values $ f m% and eigenvectors$uum&%! must be carried out
only once~for a given temperatureT! but the quantum and
classical time evolution to produce$uum

j (t)&% and $qm
j (t)%

must be carried out for each set of initial conditions of t
‘‘bath.’’

Wahnstro¨m et al.28 have earlier employed a semiclass
cal TDSCF approach very similar to that described abo
Besides a different initial distribution function@i.e.,
these authors utilized the classical distributi
exp@2bHb(p0 ,q0)#, rather than the Wigner distribution
function of Eq.~2.6a!#, perhaps the most significant differ
ence is that the above development utilizes the eigenvec
of the Boltzmannized flux operator as the initial states for
time evolution of the ‘‘system,’’ while Wahnstro¨m et al. use
a different basis that applies specifically for a on
dimensional ‘‘system.’’ We believe that the present tre
ment is the most systematic way to exploit the low ra
character of the quantum trace, especially if the ‘‘system
has several degrees of freedom. We also note the work
Matzkies and Manthe,12~b! where they treat the entire mo
lecular system via a multiconfiguration TDSCF expans
and do not deal explicitly with a ‘‘system’’–‘‘bath’’ separa
tion. It would, however, be possible to do so within the
formulation; e.g., one would use multiconfiguration~i.e.,
‘‘correlation’’ ! only within the ‘‘system’’ degrees of free
dom, and retain a single configuration for each ‘‘bath’’ d
gree of freedom. This approach is certainly a viable one
dealing with ‘‘system’’-‘‘bath’’ type problems, although in
most cases even a single configuration treatment of
‘‘bath’’ is difficult if a fully quantum description is retained

B. Application to the system-bath model

The above approach can be readily applied to
system-bath model described by Eqs.~1.8!–~1.11! in the In-
troduction. A Lanczos procedure is first used to find t
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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eigenvectors with largest absolute eigenvalues for the ‘‘s
tem’’ degree of freedom2–5 ~in this one-dimensional case
there are only two eigenvectors with nonzero eige
values10,29!. The initial conditions of the ‘‘bath’’ trajectories
are sampled from the Wigner distribution at the saddle po
(s50). For a collection of harmonic oscillators, the norm
ized Wigner distribution is given by

rb~P,0 ,Q0!5)
i

tanh~ui !

p\

3expF2
2 tanh~ui !

\v i
S Pi0

2

2
1

v i
2

2
Qi0

2 D G ,
~2.11!

whereui5\bv i /2. The real time propagation is then carrie
out via Eq. ~2.8! to generate the flux correlation functio
Cf f(t). Approximately 100 sinc-function discrete variab
representation~DVR! functions30 were used for the ‘‘sys-
tem’’ degree of freedom and 3000 trajectories for t
‘‘bath.’’ The results are reported in terms of the transmiss
coefficient, defined by

k5k/kTST,CL, ~2.12!

wherekTST,CL is the classical transition state theory rate co
stant for the original one-dimensional double well,

kTST,CL5
vs0

2p
e2bV0

‡
. ~2.13!

With the quantum‘‘system’’ and classical ‘‘bath’’ de
fined as in Eq.~1.8!, however, the rate constants obtain
from the methodology of Sec. II A@i.e., Eq.~2.10!, etc.# are
in quite poor agreement with the accurate quantum result
Topaler and Makri.26 Figure 1~a! shows the rate constant a
300 K as a function of the dimensionless coupling param
h/msvb , together with the quantum path integral resul
one sees that the mixed quantum-classical approxima
gives answers at least twice as large as the accurate qua
mechanical results, which is clearly inadequate.

We attribute the failure of this natural and most co
monly used choice of the quantum ‘‘system’’ and classi
‘‘bath’’ to the fact that thes andQ degrees of freedom ar
strongly coupled in the transition state region that is m
crucial for determining the reaction rate. Matters can thus
somewhat improved by making a different choice for t
~quantum! ‘‘system’’ and the ~classical! ‘‘bath,’’ one that
reduces the coupling between them in the transition s
region. This is done by transforming to the normal coor
nates at the transition state.31 Written in these new~mass-
weighted! coordinates, (x,q), the total Hamiltonian is sepa
rated into three parts as follows,

H5Hx1Hb~q,p!1Vc~x,q!, ~2.14a!

where

Hx5
1

2
px

22
1

2
l‡2

x21
1

16V0
‡ l‡4

x4, ~2.14b!

Hb~q,p!5
1

2 (
i

~pi
21l i

2qi
2!, ~2.14c!
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FIG. 1. Transmission coefficientk5k/kTST,CL as a function of coupling
parameterh/msvb at T5300 K; the solid line is the result from the mixe
quantum-classical methodology described in Sec. II, and the solid circle
from the accurate quantum path integral calculations of Topaler and Ma
Ref. 26.~a! The ‘‘system’’-‘‘bath’’ separation is done via Eq.~1.8!; ~b! the
‘‘system’’-‘‘bath’’ separation is done via Eq.~2.14!; ~c! same as~b!, but for
T5200 K.
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Vc~x,q!5
vb

4

16V0
‡ S U11x1(

i
U1,i 11qi D 4

2
1

16V0
‡ l‡4

x4,

~2.14d!

wherel‡ is the imaginary frequency of the unstable norm
mode obtained by diagonalizing the full force constant m
trix F at the transition state,l i ’s are the frequencies of th
stable normal modes, andU is the eigenvector matrix ofF,
all of which change as a function of the coupling parame
h. The new ‘‘system’’ is still chosen as a double well32 in the
unstable normal mode direction, with barrier heightV0

‡ in-
variant to the couplingh.

With this improved definition of the ‘‘system’’ and
‘‘bath,’’ the rate constants given by the mixed quantu
classical model are decidedly better, as seen in Fig. 1~b!,
though still not particularly good: Figure 1~c! shows the re-
sults of the calculations at the lower temperature,T
5200 K, where agreement with the correct quantum res
becomes decidedly worse, which is perhaps to be expe
since quantum effects are more prominent at lower temp
ture. ~With the original choice of ‘‘system’’ and ‘‘bath’’ the
results are even worse.! Overall, the results given by th
mixed quantum-classical model are not very good, a so
ing observation for such a widely used approach.

Finally, we note that in previous work33 Stock has per-
formed semiclassical TDSCF calculations for a spin-bo
~i.e., two state! system coupled to the harmonic bath in
similar fashion as done in this paper, and observed ‘‘go
agreement’’ with accurate quantum path integral calculati
for the survival probability of an initial state of the ‘‘sys
tem.’’ The dimensionless parameters used by Stock, h
ever, are so far from the range of our physical model t
little comparison with these calculations is possible. For
ample, using simple semiclassical arguments,34 one can esti-
mate from our barrier height (V0

‡52085 cm21.6 kcal/mol)
and frequency that the exchange matrix element between
two lowest localized vibrational states in the two minima
our double well potential is;1023 cm21, which is at least
four orders of magnitude smaller than Stock’s compara
parameter for a reasonable choice of the temperature.

III. THERMAL RATE CONSTANTS VIA THE
SEMICLASSICAL INITIAL VALUE REPRESENTATION

A. General formulation

To employ the semiclassical initial value represe
tation16–23 ~SC-IVR!, we find it most convenient to use th
integrated form of the rate expression, Eq.~1.2b!:

k~T!5Qr~T!21 lim
t→`

Cf s~ t !, ~3.1!

wheret is a large positive value. Specifically,

Cf s~ t !5tr@ F̂~b!eiĤ t/\ĥ~ ŝ!e2 iĤ t/\#

5E dqE dq8E dq0E dq08^quF̂~b!uq8&

3^q8ueiĤ t/\uq08&^q08uĥ~ ŝ!uq0&^q0ue2 iĤ t/\uq&.

~3.2!
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Heres(q) is some function of the coordinatesq that is posi-
tive ~negative! on the product~reactant! side of the dividing
surface—i.e.,s(q)50 defines the dividing surface—so tha

^q08uĥ~ ŝ!uq0&5h@s~q0!#d f~q082q0!, ~3.3!

whereh(s) is the Heaviside function~50 or 1 for s,0 or
.0, respectively!. We also note the following symmetry re
lations of the matrix elements of the time evolution operat

^q8ue2 iĤ t/\uq&5^que2 iĤ t/\uq8& ~3.4a!

5^q8ueiĤ t/\uq&* . ~3.4b!

The semiclassical initial value representation16–23 ~SC-IVR!
is now used for the time evolution operator, i.e.,

^que2 iĤ t/\uq0&5E dp0d f(q2qt)

3FdetS ]qt

]p0
D Y (2ip\) f G1/2

eiSt(p0,q0)/\,

~3.5!

whereqt(p0,q0) is the trajectory determined by initial cond
tions (p0,q0) andSt(p0,q0) the classical action integral alon
it. Utilizing Eqs. ~3.3!–~3.5! in Eq. ~3.2! gives the basic SC-
IVR result for the integrated flux correlation function,

Cf s~ t !5~2p\!2 fE dq0h@s~q0!#

3E dp0E dp08^qtuF̂~b!uqt8&exp$ i @St~p0,q0!

2St~p08 ,q0!#/\%FdetS ]qt

]p0
D G1/2FdetS ]qt8

]p08
D G1/2

,

~3.6!

whereqt5qt(p0,q0) andqt85qt(p08 ,q0).
Equation~3.6! is the general result of the SC-IVR for th

thermal rate constant, and it is what we would indeed like
evaluate. In this paper, however, we consider an approxi
tion to the full-blown SC-IVR expression, one that leads to
much simpler result. Similar to the analysis used previou
by two of us,23~c! we make a sum and difference change
integration variables fromp0 andp08 to p̄0 andDp0,

p̄05
1

2
~p01p08!, ~3.7a!

Dp05p02p08 , ~3.7b!

and then make a linear expansion of all relevant quantitie
the difference variableDp0,

qt~p0!5qt~ p̄01Dp0/2!.qt~ p̄0!1
]qt~ p̄0!

]p̄0
•

Dp0

2
, ~3.8a!

qt8~p08!5qt~ p̄02Dp0/2!.qt~ p̄0!2
]qt~ p̄0!

]p̄0
•

Dp0

2
, ~3.8b!

]qt~p0!

]p0
.

]qt8~p08!

]p08
.

]qt~ p̄0!

]p̄0
, ~3.8c!
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StS p̄01
Dp0

2
,q0D2StS p̄02

Dp0

2
,q0D

.
]St~ p̄0,q0!

]p̄0
• Dp05p̄t•

]qt

]p̄0
•Dp0. ~3.8d!

~Our abbreviated notation is, for example, that]qt /]p̄0 is the
matrix (]qt /]p̄0) i ,i 85]qi ,t /] p̄i 8,0 .! Equation~3.6! then be-
comes

Cf s~ t !5~2p\!2 fE dq0h@s~q0!#

3E dp̄0E dDp0expS i p̄t•
]qt

]p̄0
•Dp0 /\ D

3detS ]qt

]p̄0
D K qt1

]qt

]p̄0
•

Dp0

2

3uF̂~b!uqt2
]qt

]p̄0
•

Dp0

2 L . ~3.9!

If we make the further change of integration variables fro
Dp0 to Dq,

Dq5
]qt

]p̄0
•Dp0, ~3.10!

then the correlation function simplifies to

Cf s~ t !5E dq0E dp̄0h@s~q0!#Fw
b~qt,2p̄t!, ~3.11!

where Fw
b(qt,2p̄t) is the Wigner/Weyl transform35 of the

Boltzmannized flux operatorF̂(b), which is defined as

Fw
b~q,p!5~2p\!2 fE dDqe2 ip•Dq/\

3 K q1
Dq

2
uF̂~b!uq2

Dq

2 L . ~3.12!

Finally, we make some ‘‘housecleaning’’ changes to E
~3.11!: it is easy to show thatFw

b(q,p) is an odd function of
p, and it is well known6~b! thatCf s(t) is an odd function oft,
so the changest→2t and pt→2pt leave the result un-
changed,

Cf s~ t !5E dq0E dp0h@s~q0!#Fw
b~q2t,p2t!, ~3.13!

where we have also dropped the ‘‘bar’’ overp0 andp2t since
they no longer serve any purpose. Liouville’s theorem is n
used to change the phase space integral from one
(q0,p0) to one over (q2t ,p2t), and the new zero of time is
taken to be2t, so that (q2t ,p2t)→(q0,p0), and (q0,p0)
→(qt,pt), whereby the final and central result of this a
proximate SC-IVR approach is given by

Cf s~ t !5E dq0E dp0Fw
b~q0,p0!h@s~qt!#. ~3.14!

Equation~3.14!, along with Eq.~3.1!, provides an ex-
tremely practical procedure for computing thermal rate c
stants: one averages over the phase space of initial co
tions, weighted by the distribution functionFw

b(q0,p0), and
Downloaded 19 May 2005 to 169.229.129.16. Redistribution subject to A
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er

-
di-

then integrates the classical trajectory with these initial c
ditions to determine whether limt→`h@s(qt)#50 or 1, i.e.,
whether the trajectory goes to reactants or products, res
tively. The only difference between this and an ordina
classical trajectory calculation is the weighting function f
the initial conditions, which classically would be as follow

Fw
b~q0,p0!→~2p\!2 fe2bH~q0,p0!d@s~q0!#

]s~q0!

]q0
•p0 /m.

~3.15!

We note that this ‘‘Wigner overlap’’ type result in Eq
~3.14! has appeared in many approximate dynamical th
ries. For example, it is very similar to one put forth ma
years ago by one of us;6~a! that work had the Wigner distri-

bution function for the Boltzmann operator,e2bĤ, and the
classical factor forF̂ĥ( ŝt). Heller36 has given a very illumi-
nating discussion of this type of approximation~and its limi-
tations! and used it for photodissociation.36~b! Lee and
Scully37 have used it to treat inelastic scattering. More
cently, Filinov38 has presented an approach for evaluat
time correlation functions, such asCf s(t) above, that starts
with the Wigner transform of the quantum trace expressi
the lowest order approximation to which is Eq.~3.14!. Also,
Pollak et al.39 have presented a ‘‘quantum transition sta
theory’’ that corresponds to Eq.~3.14! with a further ap-
proximation to the time-evolved factor~that of a separable
one-dimensional reaction coordinate! that allows no recross
ing trajectories~which is the basic transition state theory a
proximation!. Finally, it is interesting that unlike this earlie
work, the above development leading to Eq.~3.14! did not
begin with the Wigner transformation of the trace expre
sion, but rather the Wigner transform ofF̂(b) falls out ‘‘au-
tomatically’’ once the linearization approximation is made
the general SC-IVR expression.

B. Normal mode approximation for the Boltzmannized
flux operator

The major task in applying Eq.~3.14! is the construction
of the Wigner distribution function for the Boltzmannize
flux operator,Fw

b(q0,p0), defined by Eq.~3.12!. For small
molecular systems one can use the approach summariz
the Introduction, i.e., exploit the low rank ofF̂(b) and use
Eq. ~1.5! to give

Fw
b~q0,p0!5(

m
f m~2p\!2 fE dDqe2 ip0•Dq/\

3 K q01
Dq

2 UumL K umUq02
Dq

2 L . ~3.16!

We note that the above formula contains no real time dyna
ics. It requires essentially the same calculational effort as
quantum~nonseparable! transition state theory and is thu
much less expensive than a rigorous quantum dynamics
culation. It would be quite interesting to use Eq.~3.16!, to-
gether with a classical trajectory calculation, to evaluate
~3.14! for the rate constants of some small molecule re
tions.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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For systems with many degrees of freedom, howeve
will not be possible even to evaluateFw

b(q0,p0) without fur-
ther approximations. Note, though, that this does not en
any further approximation to the real time dynamics, b
rather to the weighting of the initial conditions for the re
time trajectories. A common approximation,40,41 often used
for sampling initial conditions in classical trajectory calcul
tions, is a harmonic approximation in normal mode coor
nates at the transition state, which we now employ for
purpose of constructingFw

b(q0,p0). Thus the Hamiltonian is
approximated by

H.H f1Hb , ~3.17a!

whereH f involves the one mode with imaginary frequen
~the reaction coordinate! and Hb the f 21 modes with real
frequencies,

H f5
1

2mf
pf

22
1

2
mfv

‡2
qf

21V0
‡ , ~3.17b!

Hb5(
j 51

f 21

Hb j5(
j 51

f 21 S 1

2mj
pj

21
1

2
mjv j

2qj
2D , ~3.17c!

v‡ and v j are the imaginary and real frequencies at
saddle point, andqf ,pf andqj ,pj are the corresponding co
ordinates and momenta, respectively. Since the flux oper
involves only the reaction coordinateqf , the Wigner distri-
bution Fw

b(q0,p0) can be written as

Fw
b~q0,p0!5Fw

b, f~qf 0 ,pf 0!rw
b ~q0

b ,p0
b!, ~3.18a!

where

Fw
b, f~qf 0 ,pf 0!5~2p\!21E dDqfe

2 ip f 0Dqf /\

3 K qf 01
Dqf

2
uF̂ f~b!uqf 02

Dqf

2 L ,

~3.18b!

F̂ f~b!5e2bĤ f /2
i

\
@Ĥ f ,ĥ~ q̂f !#e

2bĤ f /2, ~3.18c!

and

rw
b ~q0

b ,p0
b!5~2p\!2~ f 21!E dDqbe2 ip0

b
•Dqb/\

3 K q0
b1

Dqb

2
ue2bĤbuq0

b2
Dqb

2 L
5)

j 51

f 21

~2p\!21E dDqje
2 ip j 0Dqj /\

3 K qj 01
Dqj

2
ue2bĤb juqj 02

Dqj

2 L ,

~3.18d!

where $qb,pb% denote thef 21 coordinates and moment
perpendicular to the reaction coordinate. Making use of
following matrix elements:
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^qf uF̂ f uqf8&5
\

2imf
@d8~qf !d~qf8!2d~qf !d8~qf8!#,

~3.19a!

^qf ue2bĤ f /2uqf8&5e2bV0
‡F mfv

‡

2p\ sin~u‡!G
1/2

3expH 2
mfv

‡

2\ sin~u‡!
@~qf

21qf8
2!

3cos~u‡!22qfqf8#J , ~3.19b!

^qj ue2bĤb juqj8&5F mjv j

2p\ sinh~2uj !
G1/2

3expH 2
mjv j

2\ sinh~2uj !
@~qj

21qj8
2!

3cosh~2uj !22qjqj8#J , ~3.19c!

where we denoteu‡5\bv‡/2 anduj5\bv j /2, it is not hard
to show that Eqs.~3.18! give

Fw
b, f~qf 0 ,pf 0!5

mfv
‡e2bV0

‡

2p sin~2u‡! H Fmfv
‡ cot~u‡!

p\ G1/2

3exp@2mfv
‡ cot~u‡!qf 0

2 /\#J
3H 2pf 0

\mfv
‡ cot~u‡!

3expF2
pf 0

2

\mfv
‡ cot~u‡!

G J , ~3.20a!

rw
b ~q0

b ,p0
b!5)

j 51

f 21
1

2 sinh~uj !
H tanh~uj !

p\

3expF2
2 tanh~uj !

\v j
S pj 0

2

2mj
1

1

2
mjv j

2qj 0
2 D G J .

~3.20b!

Equation~3.20!, with Eq. ~3.18a!, thus provides a simple
analytic result for the Wigner function of the Boltzmannize
flux operator within the normal mode approximation. It c
readily be used in Eq.~3.14! to provide the distribution of
initial conditions for classical trajectories to obtainCf s(t
→`) and thus the rate constant. The procedure is really
more difficult than a standard classical trajectory calculati

Due to the thermodynamic properties of the parabo
barrier, Eq.~3.20a! is only valid for u‡5\bv‡/2,p/2 or
T.Tc5\v‡/pkB . Furthermore, for temperatures on
slightly aboveTc , the coordinate distribution in Eq.~3.20a!
is so broad that the quadratic approximation to the poten
may fail. Higher order expansions of the potential are th
needed to account for these and other anharmonic effec
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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It is quite simple to include diagonal anharmonicity f
any ~or all! of the modes at the transition state. Though it
unlikely that the Wigner function can be obtained in analy
form, the necessary integrals,

Fw
b, f~qf 0 ,pf 0!5~2p\!21E dDqfe

2 ip f 0Dqf /\

3 K qf 01
Dqf

2
uF̂ f~b!uqf 02

Dqf

2 L
~3.21a!

and

rw, j
b ~q0 j ,p0 j !5~2p\!21E dDqje

2 ip j 0Dqj /\

3 K qj 01
Dqj

2
ue2bĤb juqj 02

Dqj

2 L
~3.21b!

are all one-dimensional Fourier transforms and thus rea
obtained numerically.

To account for off-diagonal anharmonicity, i.e., no
separability, is of course more difficult. The evaluation
Eq. ~3.12! to obtain Fw

b(q0,p0) without approximation in-
volves an f -dimensional Fourier transform, and with effi
ciency provided by the fast Fourier transform~FFT! algo-
rithm can thus be evaluated for moderately large syste
One can also resort to approximations in the spirit of Sec
i.e., assume that the complete set of degrees of freedom
be divided into a small set that is most important to t
reaction, that is treated fully anharmonically, and the rema
der that are less important and approximated more pr
tively ~e.g., harmonically!. Thus the ability to construct the
Wigner functionFw

b(q0,p0) should not prohibit one from be
ing able to apply Eq.~3.16! to a wide range of interesting
molecular problems. Also, it should be emphasized that
Wigner distribution function of the Boltzmannized flux op
erator is only used for weighting initial conditions of class
cal trajectories; the real time dynamics is still solved with t
full Hamiltonian as in any molecular dynamics simulatio
thus including the full anharmonicity and nonseparability
the potential energy surface.

C. Applications

Before considering application to the system-bath pr
lem of Eqs.~1.8!–~1.11!, it is of pedagogical interest to show
how it applies to the one-dimensional parabolic barri
Equations~3.1! and ~3.14! give

k~T!Qr~T!5E
2`

`

dq0E
2`

`

dp0h~qt→`!Fw
b~q0 ,p0!,

~3.22!

which we break up into four terms as follows,

k~T!Qr~T!5E
0

`

dq0E
0

`

dp0h~qt→`!1Fw
b~q0 ,p0!

~3.23a!
Downloaded 19 May 2005 to 169.229.129.16. Redistribution subject to A
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1E
2`

0

dq0E
0

`

dp0h~qt→`!2Fw
b~q0 ,p0!

~3.23b!

1E
0

`

dq0E
2`

0

dp0h~qt→`!3Fw
b~q0 ,p0!

~3.23c!

1E
2`

0

dq0E
2`

0

dp0h~qt→`!4Fw
b~q0 ,p0!,

~3.23d!

where the initial Wigner distribution function is given in Eq
~3.20a!. Since this is a one-dimensional problem, the react
probability h(qt→`) is determined for the above integra
simply by the energy,

h~qt→`!151, ~3.24a!

h~qt→`!25h~E02V0
‡!, ~3.24b!

h~qt→`!35h~V0
‡2E0!, ~3.24c!

h~qt→`!450, ~3.24d!

where

E05
1

2m
p0

22
1

2
mv‡2

q0
21V0

‡ . ~3.25!

Changing variables and merging the integrals in Eq.~3.23a!,
one obtains

k~T!Qr~T!52E
0

`

dq0E
0

`

dp0h~E02V0
‡!Fw

b~q0 ,p0!

52E
0

`

dq0E
0

`

dp0h~p02mv‡q0!Fw
b~q0 ,p0!

5
v‡e2bV0

‡

4p sin~\bv‡/2!
~3.26a!

5k
kBT

h
e2bV0

‡
, ~3.26b!

with

k5
\bv‡/2

sin~\bv‡/2!
, ~3.27!

which is recognized to be the exact result for the parab
barrier.

Application of Eq.~3.14! to obtain the thermal rate con
stant of the system-bath model of Eqs.~1.8!–~1.11! is
straightforward. Calculations were performed as a funct
of the coupling parameterh at two temperatures, 200 an
300 K. At T5300 K, the temperature is sufficiently fa
aboveTc5\v‡/pkB for all h’s of interest that the harmonic
approximation of Eqs.~3.18! and ~3.20! gives accurate re-
sults for the Wigner distribution function. We found 300
trajectories to be sufficient to obtain converged rate c
stants. AtT5200 K, however, the temperature is below
near Tc in the smallh regime, and Eq.~3.20a! no longer
valid. At this temperature we therefore included diagon
anharmonicity in the reaction coordinate, i.e., still applyi
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Eq. ~3.20b! for the stable normal modes, but performing
numerical evaluation ofFw

b, f(qf 0 ,pf 0) via Eq. ~3.21a!. In
this case, it is difficult to employ importance sampling, b
we nevertheless found that 10 000 trajectories is sufficien
converge the rate constant via simple Monte Carlo sampl

The results are plotted in Fig. 2 as the transmission
efficient,k, defined by

k5k/kTST,CL, ~3.28!

wherekTST,CL is the classical transition state theory rate co
stant of Eq.~2.13!, versus the dimensionless coupling para
eter h/msvb . Figure 2~a! shows results forT5300 K, for
which there is almost quantitative agreement with the ac
rate quantum path integral results of Topaler and Makr26

The T5200 K results are shown in Fig. 2~b!, and though
there is some disagreement with the accurate quantum re
near the maximum of the curve, the agreement is still v
good. Overall, the agreement is excellent, which is very
couraging for this quite practical approach.

FIG. 2. Transmission coefficientk5k/kTST,CL as a function of coupling
parameterh/msvb at T5300 K; the solid line is the result from the SC-IVR
methodology described in Sec. III, and the solid circles are from the a
rate quantum path integral calculations of Topaler and Makri, Ref.
~a! T5300 K; ~b! T5200 K.
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To gain some insight into the nature of the dynamic
Fig. 3 shows the time dependence ofk(t) which is related to
the correlation functionCf s(t) by

k~ t !5~QrkTST,CL!
21 Cf s~ t !, ~3.29!

at T5300 K for a case of strong coupling@Fig. 3~a!# and also
one of weak coupling@Fig. 3~b!#. The long time limit ofk(t)
would be the quantum transmission coefficientk defined in
Eq. ~3.28!. Figure 3~a! is a classic example of ‘‘direct’’ bar-
rier crossing dynamics for which transition state theory is
good approximation. As seen in many of our previo
applications,1–5 it takes a time of;\b ~27 fs at 300 K! for
k(t) to reach its transition state theory~TST! ‘‘plateau’’
value, and there is no hint of any recrossing dynamics in t
case. Figure 3~b!, on the other hand, shows strong characte
istic of recrossing: by\b527 fs k(t) has reached its TST
plateau value, but here coupling to the bath is not stro
enough to prevent trajectories from recrossing the dividi
surface. One can recognize at least three recrossings be
the t→` limit of the correlation function is reached. It is
impressive that the approximate semiclassical theory,
~3.14!, is able to describe both of these situations accurate

u-
.

FIG. 3. The time dependence ofk(t) @see Eq.~3.29!# for two cases atT
5300 K, ~a! strong coupling;~b! weak coupling.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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IV. CONCLUDING REMARKS

We have tested two semiclassical approaches in this
per for extending the flux autocorrelation functio
methodology6,7 to treat chemical reactions in complex m
lecular systems, i.e., those with many degrees of freed
The problem treated is that of a double well potential~i.e., a
model of unimolecular isomerization! linearly coupled to an
infinite bath of harmonic oscillators. The first approach
vestigated, the popular mixed quantum-classical approxi
tion described in Sec. II, does not give very satisfactory
sults. An important lesson learned from this study is that
rate constant obtained from the mixed quantum-class
method is, due to its approximate nature, quite sensitive
the specific definition of the quantum ‘‘system’’ and the cla
sical ‘‘bath.’’ The guideline should be to choose the defi
tion of the ‘‘system’’ and the ‘‘bath’’ in order to minimize
the coupling between them, and this will of course depend
the specific problem under study. The results in Sec
showed that defining the~quantum! ‘‘system’’ and the~clas-
sical! ‘‘bath’’ in terms of normal modes at the transition sta
worked better than another obvious choice, yet even w
this choice the results of the mixed quantum-classical
proach were not so good. This suggests that caution mus
taken in using the mixed quantum-classical approximat
for the study of chemical reactions in complex molecu
systems.

The second approach, presented in Sec. III, is base
semiclassical initial value representation16–23 ~SC-IVR! plus
some further approximations that make it easier to apply,
was found to give excellent results over the whole range
coupling strengths and also at low temperature. This
proach treats all degrees of freedom equivalently and en
little more effort than a classical molecular dynamics sim
lation ~the primary difference being the weighting of the in
tial condition for the trajectories!. This is thus a very prom-
ising result, and it would clearly be of interest to test th
approach on other problems, as well as to pursue the
blown SC-IVR approach@i.e., Eq.~3.6!# without the simpli-
fying approximations we have utilized in this paper. Prelim
nary results from work of ours in progress suggest that
approximate SC-IVR approach, Eq.~3.14!, provides the cor-
rect quantum description of the short time~direct barrier-
crossing! dynamics, with the longer time~recrossing! dy-
namics described at the level of classical mechanics.
good agreement seen in Fig. 2 thus suggests that the
monic bath quenches quantum coherence effects in the
crossing dynamics for these cases.
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