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Semiclassical approximations for the calculation of thermal rate constants
for chemical reactions in complex molecular systems
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Two different semiclassical approaches are presented for extending flux correlation function
methodology for computing thermal reaction rate constants, which has been extremely successful
for the “direct” calculation of rate constants in small molecule-3—4 atoms) reactions, to
complex molecular systems, i.e., those with many degrees of freedom. First is the popular mixed
quantum-classical approach that has been widely used by many persons, and second is an
approximate version of the semiclassical initial value representation that has recently undergone a
rebirth of interest as a way for including quantum effects in molecular dynamics simulations. Both
of these are applied to the widely studied system-bath model, a one-dimensional double well
potential linearly coupled to an infinite bath of harmonic oscillators. The former approximation is
found to be rather poor while the latter is quite good. 1898 American Institute of Physics.
[S0021-960698)01323-3

I. INTRODUCTION Q/(T) is the reactant partition function per unit volume, and

_ -1 g :
Considerable progress has been made over the last fekt~ (KeT) " Since the Boltzmannized flux operaté(3),

years in the development of quantum mechanical methods

for the calculation of thermaland also microcanonicatate

constants for chemical reactiohdThese methods are both is of low rank, a Lanczos iteration proced®ifeprovides an

“direct,” in that they avoid the necessity of having to solve extremely efficient way to obtain the small number of its

the state-to-state quantum reactive scattering problem, beigenvectord|uy,)} with eigenvaluegf} significantly dif-

also “correct,” in principle exact and limited only by nu- ferent from zerd> F(B) is then expressed in terms of its

merical parameters. Applications to a number of reactiongigenfunction expansion,

(O+HCIHOH+CI,25 Cl+H,—HCI+H,® F+H,—HF+H,*

and O+ OH—O,+H>) have been carried out successfully us- - —

ing this methodology. F(B) ; Finl U} @9
To summarize the approach in brief, the thermal rate

. . . and the trace in Eq(1.1b can be evaluated in this much
constantk(T), is expressed as the time integral of a flux— ller basi hould also b d that Lighal. 20
flux autocorrelation functidi’ smaller basis. It should also be noted that Lighal,”™ Me-

[E(B)Ee—ﬁﬁlzl":e—/;ﬁ/z! (1.4

tiu et al,'! and Mantheet al!? have developed approaches
P similar in spirit to that described here, though differing in
k(T)=Q:(T) 0 dtCy(V), 113 yarious specifics.
Even with this “considerable progress,” however, these
where completely rigorous quantum approaches are only applicable

at present to chemical reactions involving a f@a4) atoms.
This is because these finite bagisg., discrete variable rep-
or in the integrated forfiP’ as the long time limit of the resentatiohmethods are based on a quadrature discretization

Cir(t)= tr[e—ﬁﬁ/zlge—ﬁﬁ/zeiﬁt/ﬁlge—iﬁt/h]' (1.1b

flux-position correlation function, for each degree of freedom of the molecular system, and the
k(T)=Q,(T) timC (1), (1.23 resulting number of grid points increases e_xponentially yvith
t oo the number of degrees of freedom. Some kind of approxima-

tion is thus necessary in order to deal with complex molecu-

where lar systems, those with many degrees of freedom. One could,
cfs(t):tr[e—ﬁﬁ/zﬁe—ﬂﬁ/zeiﬁt/hﬁe—iﬁn/ﬁ]_ (1.2b _of course, immediately revert to the use of classical m_echan—
. ics, i.e., molecular dynamics simulations, but there will cer-
HereF is the flux operator, tainly be many situations where quantum effects are impor-
A tant. We thus wish to retain as much of the above rigorous
F= 7 [H,h], 1.3 quantum formulation as possible.

In this paper we consider two approximate approaches.
whereh is a function of coordinates that is 0 or 1, respec-First is the popular mixed quantum-classical mddel,
tively, on the reactant or product side of a dividing surfacewhereby one integrates the time-dependent Sihger
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equation for(a few) degrees of freedortwith coordinates) V= —a;s°+a,s?,
that are treated quantum mechanically, simultaneously with
. . . 2 4
the classical equations of motion for tlmany) degrees of 1 2, Ms®p
; : . =— — MgwpS°+ sY, 1.1y
freedom (with coordinatesq) that are treated by classical 2 16VE

mechanics. The two sets of degrees of freedom are coupled

in that'the guantum degrees of freedom see a t|me-dependg%ere‘ob is the imaginary harmonic frequency at the top of
potential, the barrier, andV{ the barrier height with respect to the
Vom(st)=V(s,q(t)), (1.6) bottom of the well. The specific parameters we have c_hosen
for study correspond to the DW1 model potential used in the
whereV(s,q) is the total potential energy function anft)  previous work of Topaler and Maldf, who performed es-
the trajectory of the classical degrees of freedom, and thgentially exact quantum path integral calculations which
classical degrees of freedom see a time-dependent potentigdiye as the benchmark for the present approximate treat-
that is the Ehrenfest average over the quantum degrees gfents. The barrier height and imaginary frequency for the
freedom, DW1 potential are 2085 and 500 ¢t respectively, and the
Vel(@,0) = (W (1) VT (1)) mass of the “system” is that of a proton. A quadrature dis-
cretization scheme is used to cast EB10 in the form of
Eq. (1.9); we found that 300 bath modes provide an adequate
description for the problem. After discretization, the cou-
This model can be thought of as theartia) classical limit pllngssegigr?.(l}.flsc))rz;rseeg;rseitrll)é ri?)t(z(; u;;giiﬁi{:égg;f'gb_
of thg tlr_ne-4dependent self—conglstent fieldrDSChH proach and its application to the system-bath model, and the
approxm;allgoﬁ gnd has been W'.d,ely used. by many SC-IVR methodology and its application are presented in
persons: Sec‘:‘tpn I!, shows explicitly how it can be Sec. lll. Quite surprisinglyto ug, the former approximation
adapted to the “direct” rate constant methodology summasg ¢5und to be rather poor, while the lati@ven approximate

rized above. rsion of th¢ SC-IVR approach is quite good, over essen-

. L Vi

The second approximate approach we consider is baseifilly the entire range from weak to strong coupling between
on the semiclassical initial value representatfoSC-IVR) the system and bath. Section IV summarizes and concludes.
that has had a rebirth of interést*>as a way for including

guantum effects in molecular dynamics simulations. The SC-
IVR, which treats all degrees of freedom within the same

framework, provides an explicitapproximatg representa- Il. THERMAL RATE CONSTANTS VIA A MIXED
tion for the time evolution operatoe™ """ which can be QUANTUM-CLASSICAL APPROACH

immediately applied in Eqg.1.1) and (1.2) above. Section A. General methodology
[ll shows how this is carried out and also introduces some For chemical reactions in a complex molecular system, it
approximations that make the resulting approach quite PraGs often useful to divide the total Hamiltonian into thre;a
tical for complex systems. arts

Both of these approximate approaches are tested by ag— '
plication to the well-studied system-bath model, a one-
dimensional double well potential linearly coupled to an in-

finite bath of harmonic oscillators, for which the Hamiltonian .
is whereHy is the Hamiltonian for the “*system,” which con-

sists of a few degrees of freedom most important in the re-
action,H, the Hamiltonian for the “bath,” which consists of
the many degrees of freedom less central to the reaction, and
(1.9  H the Hamiltonian for the coupling between the two. The

and which has been widely used to model the effect of aPeCific way the total Hamiltonian is divided up in Bg.1)

condensed phase environment on a reaction coordinate gy, as we will see, be qun_e critical. .
interest?* The essential property of the harmonic bath is its To keep the approach smplg enough to be applicable to
spectral densif? comp!ex molegulqr systems, it is necessary to neglect the
coupling termH_ in the Boltzmann operatdut see Eq.
i (2.5 below]. Denoting the “system” and “bath” coordi-
J(w)= 2 2 M- 5= wj), 1.9 nates bys andq, respectively, the dividing surface separating
i reactants and products is chosen to be a function only of the
which is chosen in the continuous Ohmic form with an ex-“system” coordinatess, so that the flux operator involves
ponential cutoff® only thes degrees of freedom, i.e5,=F. It is then straight-
I w) = el (1.10 forward to show that the time-dependent self-consistent field
’ (TDSCP approximatiohn*—with the classical limit for the
where the cutoff frequency, is chosen as 500 cm. V. is  bath degrees of freedom—gives the flux correlation function
the 1-d double well potential as

_ J dsW (s,1)* V(s,q) ¥ (s,1). (1.7

H=H+Hy+H,, 2.1

2

2 2
Ps Py 1 ) ¢S
=tV D == +=-mow’ Q-
A= om, Vst 4 [2mj 2 M| A 2

2

Downloaded 19 May 2005 to 169.229.129.16. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



9728 J. Chem. Phys., Vol. 108, No. 23, 15 June 1998

Cir(t)= f dpo f ddopn(Po,do) T F<(B)U *(DFU(D)],
(2.2
where o,qo) are the initial conditions for a classical trajec-

tory of the “bath” degrees of freedonk4(B) is the Boltz-
mannized flux operator of the “system,”

Fo(B)=e BRI o PRS2, (2.3

and O(t) is the time evolution operator for the quantum

“system” with the time-dependent Hamiltonian operator,
Hom(t) =Hs+V8a(t)], (2.4

where it has been assumed that the coupfrngz\A/C is a
potential energy type operator. The trace in Eg2) in-

volves only operators of the “system” degrees of freedom

but since the “bath” trajectoryq(t) depends on the initial

conditions ©g,qg), then so doH(t), U(t), and thus the

value of the trace in Eq2.2). [We also considered the effect
of including the couplingH,. in the Boltzmannized flux op-

erator, i.e., replacing Eq2.3) by

Fo(B,qo) = e~ AHs+He(sa12F g AlHs+He(sa012 (2.5

but this made negligible difference in the results presented i

the next section, so we do not consider it furthgg(pg,qo),
the distribution of initial conditions for the “bath” trajec-
tory, is the Wigner distribution function of the “bath,”

1
Pb(Po,0) = 2ai)

xf dAge'Ad-Po/h

A A
X<Qo+7q le” Ao gy — 7q> (2.69

wheref is the number of degrees of freedom of the “bath,”

and we note that théquantum partition function of the
“bath” is given by its integral over all phase space,

Qb(T):f dpof dQOpb(pO,QO):trb(eiﬁﬁb)- (2.6b

Since the Boltzmannized flux operator of Eg.3) involves

Wang, Sun, and Miller

|um(HAt»:e—iﬁc<t+m)m/4he—i\?sAt/zﬁe—i|3|c<t+A3t/4)At/4ﬁ
e~ ifSAt/he— iH o(t+AU2) At/

% e—ivsAt/zﬁe—iHC(t+At/4)At/4ﬁ| Um(1)). (2.8

Finally, for each value ofn in Eq. (2.7b, i.e., each eigen-
vector|u,,), the classical Hamiltonian which determines the
“bath” trajectory q(t) is

Hel(p,a) =Hp(p,0) + (Un(t) V| um()) (). (2.9

To summarize the overall procedure, the average over
the initial conditions of the “bath” trajectory is most conve-
niently evaluated by Monte Carlo, i.e., by selecting initial
conditions from the normalized distributiopy,(pg,do)/
Qu(T). If (p,qb) is thejth such selection of “bath” initial

'conditions, then Eq(2.7) for the flux correlation function

becomes

N
3 3 fulub[Fubt), (210

Zl -

Ci(1)=Qp(T)

where u{'n(t) is the time-evolved vector for thgth “bath”
trajectory. The diagonalization &%(83) (to obtain the eigen-

Ix{alues{fm} and eigenvector$|u,,)}) must be carried out

only once(for a given temperatur&) but the quantum and
classical time evolution to produdgul (t))} and {g),(t)}
must be carried out for each set of initial conditions of the
“bath.”

Wabhnstren et al~° have earlier employed a semiclassi-
cal TDSCF approach very similar to that described above.
Besides a different initial distribution functiori.e.,
these authors utilized the classical distribution
exd —BHu(Po.q0)], rather than the Wigner distribution
function of Eq.(2.63], perhaps the most significant differ-
ence is that the above development utilizes the eigenvectors
of the Boltzmannized flux operator as the initial states for the
time evolution of the “system,” while Wahnstno et al. use
a different basis that applies specifically for a one-
dimensional “system.” We believe that the present treat-
ment is the most systematic way to exploit the low rank
character of the quantum trace, especially if the “system”
has several degrees of freedom. We also note the work by
Matzkies and Manth&® where they treat the entire mo-

|28

only the few degrees of freedom of the “system,” it is di- lecular system via a multiconfiguration TDSCF expansion
agonalized by the same procedure as in the rigorous quantu@id do not deal explicitly with a “system”—"bath” separa-
calculation summarized in the Introduction, yielding the ei-tion. It would, however, be possible to do so within their
genvalueqf .} and eigenvector§u,)}, and the trace in Eq. formulation; e.g., one would use multiconfiguratidne.,

(2.2) is evaluated in this basis, so that E8.2) becomes “correlation”) only within the “system” degrees of free-
dom, and retain a single configuration for each “bath” de-

gree of freedom. This approach is certainly a viable one for
dealing with “system”-"bath” type problems, although in
most cases even a single configuration treatment of the
“bath” is difficult if a fully quantum description is retained.

Cff(t):f dpof dQOPb(vaQO)§ fm<Um(t)||Es|Um(t)>,
(2.79
where
|Um()) =0 () U, (2.7h

The split-operator algorithf can still be used to carry out
the time evolution in Eq(2.7b even though the Hamiltonian The above approach can be readily applied to the
of Eqg. (2.9 is time dependent; the specific form we have system-bath model described by E¢s8)—(1.11) in the In-

found to be most stable is troduction. A Lanczos procedure is first used to find the

B. Application to the system-bath model
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eigenvectors with largest absolute eigenvalues for the “sys 4.0
tem” degree of freedoAT® (in this one-dimensional case,
there are only two eigenvectors with nonzero eigen-
values®?9. The initial conditions of the “bath” trajectories
are sampled from the Wigner distribution at the saddle point:
(s=0). For a collection of harmonic oscillators, the normal-
ized Wigner distribution is given by

tanh(u;)
pu(P.0.Qo) =11 W—kﬁi

2t D [Ph w?
xexp{——ina:u) (70+%Qi20”1

(2.11
whereu; =% Bw;/2. The real time propagation is then carried %0 10 20 30 40 5.0
out via Eq.(2.8) to generate the flux correlation function (a) n/mao,
Cs:(t). Approximately 100 sinc-function discrete variable
representatioDVR) functions® were used for the “sys- 20

tem” degree of freedom and 3000 trajectories for the
“bath.” The results are reported in terms of the transmission
coefficient, defined by

K— k/kTST,CL' (212 15|
wherekrst ¢, is the classical transition state theory rate con-
stant for the original one-dimensional double well, %

wWsp +
=—— @ BV |
KtsT.CL P e ) (2.13 10

With the quantum‘“system” and classical “bath” de-

fined as in Eq.(1.8), however, the rate constants obtained
from the methodology of Sec. Il p.e., Eq.(2.10, etc] are
in quite poor agreement with the accurate quantum results ¢ %55 10 20 30 20 5.0
Topaler and Makrf® Figure 1a) shows the rate constant at (p) n/mo,
300 K as a function of the dimensionless coupling paramete
nlmew,, together with the quantum path integral results;
one sees that the mixed quantum-classical approximatio
gives answers at least twice as large as the accurate quantt
mechanical results, which is clearly inadequate.

We attribute the failure of this natural and most com-
monly used choice of the quantum “system” and classical
“bath” to the fact that thes andQ degrees of freedom are
strongly coupled in the transition state region that is mos,,
crucial for determining the reaction rate. Matters can thus bt
somewhat improved by making a different choice for the
(quantum “system” and the (classical “bath,” one that
reduces the coupling between them in the transition stat
region. This is done by transforming to the normal coordi-
nates at the transition stateWritten in these newmass-
weighted coordinates, X,q), the total Hamiltonian is sepa-

. 1.0 ‘ .
rated into three parts as follows, 00 1.0 20 30
(© 1/ m@,
H=H+Hy(a,p) +Vc(x,0), (2.14a
where
1 1 1 FIG. 1. Transmission coefficient=k/krsr . as a function of coupling
T A2 Ty f32 14,4 parameterp/mgyw,, at T=300 K; the solid line is the result from the mixed
Hx 2 Px 2 AT X 16\/0f ATXE, (2.14b guantum-classical methodology described in Sec. Il, and the solid circles are
from the accurate quantum path integral calculations of Topaler and Makri,
1 Ref. 26.(a) The “system”-"bath” separation is done via Eq1.8); (b) the
H b(q’p) = E E (pi2+ )\iZQiz)v (2_14() “system”-"bath” separation is done via Eq2.14); (c) same asb), but for

i T=200 K.
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w‘g 4 1 . Heres(q) is some function of the coordinatgsthat is posi-
Ve(x,q) = IV U+ > Usjsali| — TovE A x4, tive (negativé on the productreactant side of the dividing
0 ' 0 (2.14d surface—i.e.s(q) =0 defines the dividing surface—so that

where\* is the imaginary frequency of the unstable normal (q6h(3)|do)=h[s(do) 15:(ap— do), (3.3

mode obtained by diagonalizing the full force constant ma’vvhereh(s) is the Heaviside functioi=0 or 1 fors<0 or

trix F at the transition statey;'s are the frequencies of the >0, respectively. We also note the following symmetry re-

stable normal modes, and is the eigenvector matrix &, |5tions of the matrix elements of the time evolution operator,
all of which change as a function of the coupling parameter

7. The new “system” is still chosen as a double weélh the <q’|e—iﬁt/ﬁ|q>=<q|e—iﬁt/h|q’) (3.43
unstable normal mode direction, with barrier heigt in- -
variant to the couplingy. =(q’|e"V"|q)*. (3.4b

With this improved definition of the ‘“system” and
“bath,” the rate constants given by the mixed quantum-
classical model are decidedly better, as seen in Fig), 1
though still not particularly good: Figure(d shows the re- R\
sults of the calculations at the lower temperatufe, (dle |QO>—j dpodr(q—a)
=200 K, where agreement with the correct quantum results
becomes decidedly worse, which is perhaps to be expected de( ﬁ) / (2i wh)
since quantum effects are more prominent at lower tempera- dPo
ture. (With the original choice of “system” and “bath” the

. (3.5
results are even worgeQOverall, the results given by the ) ) ) o )
mixed quantum-classical model are not very good, a sobei/hereq,(po,do) is the trajectory determined by initial condi-
ing observation for such a widely used approach. tions (po,do) andS;(po,do) the classical action integral along

Finally, we note that in previous wotkStock has per- it- Utilizing Egs. (3.3 (3.5 in Eq. (3.2 gives the basic SC-
formed semiclassical TDSCF calculations for a spin-bosodVR result for the integrated flux correlation function,

(i.e., two statg¢ system coupled to the harmonic bath in a

similar fashion as done in this paper, and observed “good Cfs(t)=(277ﬁ)*fJ daoh[s(do)]
agreement” with accurate quantum path integral calculations

The semiclassical initial value representatfoi® (SC-IVR)
is now used for the time evolution operator, i.e.,

1/2

x eiSPo o)/

for the survival probability of an initial state of the “sys- A , .

tem.” The dimensionless parameters used by Stock, how- Xf dpof dpo(cklF (8)]at)expli[ Si(Po.do)
ever, are so far from the range of our physical model that 1 112
little comparison with these calculations is possible. For ex- —S(ph, a0 1A} de( ﬂ” de( ‘9&)
ample, using simple semiclassical arguméfisne can esti- 010 Po apyl |

mate from our barrier height\l[*,=2085 cm =6 kcal/mol)

and frequency that the exchange matrix element between the

two lowest localized vibrational states in the two minima of Whered;=d(Po,do) andd; =a(Po ,do)-
our double well potential is-10~% cm™%, which is at least Equation(3.6) is the general result of the SC-IVR for the
four orders of magnitude smaller than Stock’s Comparab|éherma| rate constant, and it is what we would indeed like to

parameter for a reasonable choice of the temperature. ~ €valuate. In this paper, however, we consider an approxima-
tion to the full-blown SC-IVR expression, one that leads to a

much simpler result. Similar to the analysis used previously
by two of us?*® we make a sum and difference change of
integration variables fronp, andpg to pg and Ap,

(3.6

Ill. THERMAL RATE CONSTANTS VIA THE
SEMICLASSICAL INITIAL VALUE REPRESENTATION

A. General formulation

1
To employ the semiclassical initial value represen-  Po=7 (Pot Po), (3.79
tationt®~23 (SC-IVR), we find it most convenient to use the
integrated form of the rate expression, Ef.2b): ApPo=Po— Py (3.7
k(T)=Q(T)~Him Cyy(t), (3.)  and then make a linear expansion of all relevant quantities in

t—oo

the difference variabldp,,

wheret is a large positive value. Specifically, Ja(Py  Ap
t\ MO, 0

Cro(t) =t F(B)eMUHH(8) e U] 0(Po) = t(Pot+ APe/2) = qy(Po) + e 2 (3.8a
- _ _ da(py A
=quf dq’quof dag(alF(B)|a") q{(pé)=qt(po—Apo/2):qt(po)—%20) : %’, (3.8b
x(a’'|e"¥*|ag){asl(®)] o) (ole " |q). dck(Po) _ 9% (Py) _ 9a(Po) 380
(3.2 dpo Py dPo '
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Ap — Apg then integrates the classical trajectory with these initial con-
S| Pot —5— o S[(po— T,%) ditions to determine whether lim..h[s(q)]=0 or 1, i.e.,
o whether the trajectory goes to reactants or products, respec-
9S(Po.do) — g tively. The only difference between this and an ordinary
= Py Po=Pr Po ~Apo. (3-8d  (jassical trajectory calculation is the weighting function for

. L . the initial conditions, which classically would be as follows:
(Our abbreviated notation is, for example, thgt/dp, is the

matrix (dd;/dpe)i i+=dd; +/Ipi+ o.) Equation(3.6) then be-

comes F&(do.po)— (2mh) ~fe PH%0P0 5[ 5(q) ] (q°)

-Po/M
_ (3.19
Cis(t)=(271) ff ddoh[s(qo) ]
We note that this “Wigner overlap” type result in Eq.
— — I (3.14 has appeared in many approximate dynamical theo-
XJ deJ dApOeX;{Ip" 9Po -Apolﬁ) ries. For example, it is very similar to one put forth many
years ago by one of & that work had the Wigner distri-

qt (9qt Apo BH
Xdet — T gct+ o bution function for the Boltzmann operata, ”", and the
Po Po classical factor fth(st) Heller® has given a very illumi-
aqt Apo nating discussion of this type of approximati@nd its limi-
<IF(B)la S dpe 2 (3.9  tationg and used it for photodissociatid#® Lee and

Scully®” have used it to treat inelastic scattering. More re-
If we make the further change of integration variables fromcenﬂy’ Filinov®® has presented an approach for evaluating
Apo to Aq, time correlation functions, such &(t) above, that starts
a0, with the Wigner transform of the quantum trace expression,
Ag=—==-Apo, (3.10  the lowest order approximation to which is E§.14). Also,
Po Pollak et al®° have presented a “quantum transition state
then the correlation function simplifies to theory” that corresponds to Eq3.14) with a further ap-
proximation to the time-evolved factdthat of a separable
Cfs(t)zf dqof dpoh[s(do) IFE(aw —po), (3.1  one-dimensional reaction coordinathat allows no recross-
ing trajectoriegwhich is the basic transition state theory ap-
where F2(q,,—py) is the Wigner/Weyl transforfi of the  proximation. Finally, it is interesting that unlike this earlier
Boltzmannized flux operatdf (), which is defined as work, the above development leading to E8.14) did not
begin with the Wigner transformation of the trace expres-
Ff‘v(q,p):(zwﬁ)—ff dAge'P-Adn sion, but rather the Wigner transform 6{ 8) falls out “au
tomatically” once the linearization approximation is made to
q> the general SC-IVR expression.

AqQ -~ A
xX{qg+—|F - ). 3.1
<q 2 IF(B)la 2 (.12 B. Normal mode approximation for the Boltzmannized

Finally, we make some “housecleaning” changes to Eq.ﬂux operator

(3.11): it is easy to show thaE2(q,p) is an odd function of The major task in applying Eq3.14) is the construction

p, and it is well know® thatC(t) is an odd function of, of the Wigner distribution function for the Boltzmannized

so the change$s— —t and p,— —p; leave the result un- flux operator,Fﬁ(qo,po), defined by Eq.(3.12. For small

changed, molecular systems one can use the approach summarized in
the Introduction, i.e., exploit the low rank &f(8) and use

Ca(t)= [ dao dphlstapIFé(a wp . (313 Eq.(L5 0 give

A
to— 7q> (3.16

where we have also dropped the “bar” oygyandp_; since _
they no longer serve any purpose. Liouville’s theorem is now Fi(do. pO):% fm(27) ff dAge™'Poraat
used to change the phase space integral from one over
(do.po) to one over ¢_;,p_1), and the new zero of time is Aq
taken to be—t, so that §_;,p_1)—(do,Pg), and @o,Po) <q0+7 um><um
—(qi,py), Whereby the final and central result of this ap-
proximate SC-IVR approach is given by We note that the above formula contains no real time dynam-
ics. It requires essentially the same calculational effort as in
Cfs(t)=f dqof dpoFA (o, po)hLs(ay)]- (3.149  quantum(nonseparabletransition state theory and is thus
much less expensive than a rigorous quantum dynamics cal-
Equation(3.14), along with Eq.(3.1), provides an ex- culation. It would be quite interesting to use E§.16), to-
tremely practical procedure for computing thermal rate congether with a classical trajectory calculation, to evaluate Eq.
stants: one averages over the phase space of initial condi3.14 for the rate constants of some small molecule reac-
tions, weighted by the distribution functidﬁvﬁv(qo,po), and tions.
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For systems with many degrees of freedom, however, it
will not be possible even to evalualfﬁ(qo,po) without fur-
ther approximations. Note, though, that this does not entail
any further approximation to the real time dynamics, but
rather to the weighting of the initial conditions for the real
time trajectories. A common approximatiéh?! often used
for sampling initial conditions in classical trajectory calcula-
tions, is a harmonic approximation in normal mode coordi-
nates at the transition state, which we now employ for the
purpose of constructinﬁﬁ(qo, Po). Thus the Hamiltonian is
approximated by

H=H;+H,, (3.17a3

whereH; involves the one mode with imaginary frequency
(the reaction coordinateand H,, the f—1 modes with real
frequencies,

1 1 ) ;
Hf=2—mf p%—imfwi aZ+V§, (3.17h
f—-1 f-1 1
2 2.2
Hy, ,Zle' 2‘,1 om pi+ 5 moaf |, (3.179
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. f
(arlFrlar) = 57, [9"(an 8(ai) — 8(an 8" (ap) ],
(3.193

m; wi 1/2

~BH{2| o\ = @~ BV
(ae gy = WO

mfwi

_ 2 12
xXex 2% Sin(u ) [(qf+qf )

xcos(U*)—quqf’]], (3.199

m] ] 1/2

CHERGIY [Zq-rh sinh(2u;)

xexp| — =L [(q?+ )
2fh sinh(2u;) =1 Y

XcosﬂZuj)—quqj’]}, (3.190

where we denote*=7 Bw*/2 andu;=1 Bw;/2, it is not hard
o* and wj are the imaginary and real frequencies at theyo show that Eqs(3.18 give

saddle point, andj;,p; andg;,p; are the corresponding co-

ordinates and momenta, respectively. Since the flux operator
f —
Fvﬁv (dfo,Pro) =

involves only the reaction coordinatg, the Wigner distri-
bution F£(qo,pe) can be written as

F&(do,Po) =F2 (ds0,P10)p2(aD,PY), (3.183

where

F&(dro.Pro) = (Zﬂﬁ)_lf dAqe 'Prodar /A

Agy - Agy
X<Qfo+7 |Ff(,3)|Qfo_T ,

b, b by __
PW(QOva)_Jl:[l 2 sinf(u;)

mfwi cof( Ui) 12

h

mfwie_ﬁvg
2 sin(2u®)

x exf] — mfo* cot(u*)quolﬁ]]

« 2pso
fimio* cot(u)

2
Pto
XEXF{—W—) ], (3.20a9

1 1 tanh(u;)
h

2tanhu)) [ pH 1 -
Xexr{_ﬁ—wj(Z_mj—{_Emjqujo .
(3.20b

(3.180
~ ~ | R . .
Fr(B)=e P2 = [H¢ h(@y) e "7, (3.189
and
P\?v(qupg)Z(th)*(f’l)f dAq o= iPg-AQP/A
A - AqP
X<q8+7 |le™ Mol g — —-
f-1
:H (Zwﬁ)_lf quje‘ipjoqu/h
=1
X<q]O+ % |eﬁHb|qlo_ﬂ>,
(3.189

Equation(3.20, with Eq. (3.183, thus provides a simple
analytic result for the Wigner function of the Boltzmannized
flux operator within the normal mode approximation. It can
readily be used in Eq(3.14) to provide the distribution of
initial conditions for classical trajectories to obtafy(t
—) and thus the rate constant. The procedure is really no
more difficult than a standard classical trajectory calculation.

Due to the thermodynamic properties of the parabolic
barrier, Eq.(3.203 is only valid for u*=#%Bw*/2< /2 or
T>T.=hw'/7kg. Furthermore, for temperatures only
slightly aboveT,, the coordinate distribution in E¢3.203

where {g®,p°} denote thef—1 coordinates and momenta is so broad that the quadratic approximation to the potential
perpendicular to the reaction coordinate. Making use of thenay fail. Higher order expansions of the potential are then

following matrix elements:

needed to account for these and other anharmonic effects.
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It is quite simple to include diagonal anharmonicity for
any (or all) of the modes at the transition state. Though it is
unlikely that the Wigner function can be obtained in analytic
form, the necessary integrals,

F&"(dro.Pro) = (27Th)_1j dAqe'Prodat/h
ﬂ>

x(q +ﬂ|ﬁ(ﬁ)|q -
fo 2 f fo 2
(3.213

and

pu,i(Goj 7p01)=(277ﬁ)71J’ dAg;e”Piotd

2

|

(3.21H

Ady
><<qu+ Tj le”AMbilq;o

are all one-dimensional Fourier transforms and thus readily

obtained numerically.

To account for off-diagonal anharmonicity, i.e., non-
separability, is of course more difficult. The evaluation of
Eq. (3.12 to obtain F2(qo,po) without approximation in-
volves anf-dimensional Fourier transform, and with effi-
ciency provided by the fast Fourier transfortaFT) algo-
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0 o
+ | da | "apohta.)oFiao.po)
(3.23H

® 0
+ | “dao | apohta.)sFiao.po)
(3.239

0 0
+f_mquf_mdpoh(qt%)fﬁ(qo,po),
(3.230
where the initial Wigner distribution function is given in Eq.
(3.204. Since this is a one-dimensional problem, the reaction

probability h(g;_..) is determined for the above integrals
simply by the energy,

h(Qrx)1=1, (3.243

h(G—»)2=h(Eo— V), (3.24b

h(d)s=h(V§—Ey), (3.240

h(dt—)4=0, (3.249
where

Eo=% Po— % mo* 3+ V. (3.25

rithm can thus be evaluated for moderately large system&hanging variables and merging the integrals in B33,

One can also resort to approximations in the spirit of Sec. 119N€ obtains
i.e., assume that the complete set of degrees of freedom can o o

be divided into a small set that is most important to the k(T)Qr(T)sz d%f dpoh(Eo—V§)Fh(do.po)
reaction, that is treated fully anharmonically, and the remain- ° 0
der that are less important and approximated more primi-

tively (e.g., harmonically Thus the ability to construct the
Wigner functioanﬁv(qO, Po) should not prohibit one from be-
ing able to apply Eq(3.16 to a wide range of interesting

molecular problems. Also, it should be emphasized that the

Wigner distribution function of the Boltzmannized flux op-
erator is only used for weighting initial conditions of classi-

cal trajectories; the real time dynamics is still solved with the

full Hamiltonian as in any molecular dynamics simulation,
thus including the full anharmonicity and nonseparability of
the potential energy surface.

C. Applications

Before considering application to the system-bath prob-

lem of Egs.(1.8)—(1.11), it is of pedagogical interest to show

how it applies to the one-dimensional parabolic barrier.

Equations(3.1) and(3.14) give

KUM= | dao | dpoh(a . Fiiao.po).
(3.22

which we break up into four terms as follows,

k(T)Q(T)= f:dqo J:dpoh(qtﬂw)va”;(qo,po)
(3.233

=2fo dqofo dpoh(po—Maw*do) Fi(do,Po)

wte AV
= TSRS (3.263
—x "BTT e BV, (3.260
with
B2 (3.27)

SN Bw™2)

which is recognized to be the exact result for the parabolic
barrier.

Application of Eq.(3.14) to obtain the thermal rate con-
stant of the system-bath model of Egdl.8—(1.11) is
straightforward. Calculations were performed as a function
of the coupling parameter at two temperatures, 200 and
300 K. At T=300K, the temperature is sufficiently far
aboveT.=%w'/ 7kg for all 7's of interest that the harmonic
approximation of Eqs(3.18 and (3.20 gives accurate re-
sults for the Wigner distribution function. We found 3000
trajectories to be sufficient to obtain converged rate con-
stants. AtT=200 K, however, the temperature is below or
nearT. in the small  regime, and Eq(3.203 no longer
valid. At this temperature we therefore included diagonal
anharmonicity in the reaction coordinate, i.e., still applying
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FIG. 2. Transmission coefficient=Kk/krsr . as a function of coupling ~ FIG. 3. The time dependence aft) [see Eq.(3.29] for two cases afl
parameten/mqwy, at T=300 K; the solid line is the result from the SC-IVR =300 K, (&) strong coupling(b) weak coupling.
methodology described in Sec. Ill, and the solid circles are from the accu-
rate quantum path integral calculations of Topaler and Makri, Ref. 26.
(@ T=300K; (b) T=200 K.
To gain some insight into the nature of the dynamics,
Fig. 3 shows the time dependencexdt) which is related to

Eqg. (3.20b for the stable normal modes, but performing athe correlation functiorCs(t) by

numerical evaluation oFfv'f(qfo,pfO) via Eg. (3.213. In k(1) =(Qkrstc) b Ciglt), (3.29
this case, it is difficult to employ importance sampling, but _ e
we nevertheless found that 10 000 trajectories is sufficient tgt 1 — 300 K for a case of strong coupliri§ig. 3a)] and also

converge the rate constant via simple Monte Carlo sampling®€ ©f weak couplingFig. 3(b)]. The long time limit ofi(t)
The results are plotted in Fig. 2 as the transmission coould be the quantum transmission coefficientiefined in

efficient, , defined by Eg. (3.28)._ Figure :{a} is a classic exam.plle of “direct” bar.-
rier crossing dynamics for which transition state theory is a
k=k/KtsT L (3.28 good approximation. As seen in many of our previous
' applications: ™ it takes a time of~% 3 (27 fs at 300 K for
wherekrst ¢, is the classical transition state theory rate con-«(t) to reach its transition state theofiffST) “plateau”
stant of Eq(2.13), versus the dimensionless coupling param-value, and there is no hint of any recrossing dynamics in this
eter n/mw, . Figure Za) shows results foif=300 K, for  case. Figure @), on the other hand, shows strong character-
which there is almost quantitative agreement with the accuistic of recrossing: by =27 fs x(t) has reached its TST
rate quantum path integral results of Topaler and M#kri. plateau value, but here coupling to the bath is not strong
The T=200 K results are shown in Fig.(d, and though enough to prevent trajectories from recrossing the dividing
there is some disagreement with the accurate quantum resultarface. One can recognize at least three recrossings before
near the maximum of the curve, the agreement is still verythe t—o limit of the correlation function is reached. It is
good. Overall, the agreement is excellent, which is very enimpressive that the approximate semiclassical theory, Eqg.
couraging for this quite practical approach. (3.149), is able to describe both of these situations accurately.
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