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Semiclassical description of nonadiabatic quantum dynamics:
Application to the S1 –S2 conical intersection in pyrazine
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A recently proposed semiclassical approach to the description of nonadiabatic quantum dynamics
@G. Stock and M. Thoss, Phys. Rev. Lett.78, 578~1997!, X. Sun and W. H. Miller, J. Chem. Phys.
106, 916~1997!# is applied to theS1–S2 conical intersection in pyrazine. This semiclassical method
is based on a transformation of discrete quantum variables to continuous variables, thereby
bypassing the problem of a classical treatment of discrete quantum degrees of freedom such as
electronic states. Extending previous work on small systems, we investigate the applicability of the
semiclassical method to larger systems with strong vibronic coupling. To this end, we present results
for several pyrazine models of increasing dimensionality and complexity. In particular, we discuss
the quality and performance of the semiclassical approach when the number of nuclear degrees of
freedom is increased. Comparison with quantum-mechanical calculations and experimental results
shows that the semiclassical method is able to describe the ultrafast dynamics in this system.
© 2000 American Institute of Physics.@S0021-9606~00!01323-4#
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I. INTRODUCTION

The photophysics and photochemistry of excited el
tronic states in polyatomic molecules represents a field
continuing interest in chemical physics. Recent experime
and theoretical investigations have revealed that for
photoinduced dynamics of polyatomic molecules transitio
between different Born–Oppenheimer~adiabatic! potential-
energy surfaces~PES! are the rule rather than th
exception.1–4 A variety of interesting processes is describ
by nonadiabatic dynamics, for example, radiationless tra
tions ~internal-conversion and intersystem-crossing p
cesses!, electron-transfer processes, and photoindu
isomerization reactions.

A realistic theoretical description of these proces
typically involves the treatment of two or more electron
states and several or~for larger molecules! many vibrational
modes with strong electronic–vibrational interaction
Therefore, the applicability of exact quantum-mechani
basis-set methods is, in general, limited to smaller molec
or models with reduced dimensionality. In recent years, th
has been significant progress in the development
quantum-mechanical approaches for describing nonadiab
dynamics in larger molecules or in the condensed phase
cluding time-dependent self-consistent field~TDSCF!
schemes,5–8 multiconfigurational extensions of the TDSC
approximation such as the multiconfiguration tim
dependent Hartree~MCTDH! method,9–11 path-integral
formulations,12–18 and the reduced-density matr
approach.19–25 Besides these fully quantum-mechanical a

a!Electronic mail: miller@neon.cchem.berkeley.edu
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proaches, numerous methods based on classical or sem
sical concepts have been developed. In particular for lar
systems, classical methods are an interesting alternative
cause they are expected to overcome some of the limitat
of fully quantum mechanical approaches such as, for
ample, the exponential scaling of the computational eff
with the number of degrees of freedom~DoF! in basis-set
methods or the restriction to quadratic potentials for the b
DoF in influence-functional-based path-integral methods.

A classical description is straightforward in cases wh
both the system under consideration and the observable t
calculated have an obvious classical analog. It is less cl
however, how to incorporate discrete quantum-mechan
DoF which do not possess an obvious classical counter
~such as the electronic states in nonadiabatic dynamics! into
a classical theory.

A natural strategy is to describe the nuclear dynamics
classical mechanics while still retaining a quantum desc
tion for the discrete~electronic! DoF. There are several way
this mixed quantum-classical methodology has be
implemented,26–44 most notably the classical-path approa
~or Ehrenfest model!26–32 and the surface-hopping
method.33–39Both methods have been applied successfully
a variety of situations; however, due to the approximatio
employed in these models, there are well-known shortco
ings in both approaches, e.g., classical-path methods do
obey microreversibility and the hopping processes of
surface-hopping methods destroy the coherence of the q
tum system.45

A more rigorous and dynamically consistent formulati
of the coupling of quantum and classical DoF can be
tained within the path-integral formalism. Employing
2 © 2000 American Institute of Physics
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10283J. Chem. Phys., Vol. 112, No. 23, 15 June 2000 Nonadiabatic quantum dynamics
stationary-phase evaluation of the path integral, Pechu
showed that the classical particles move in a nonlocal fo
field generated by the quantum particles, thus reflecting
nonlocal nature of the quantum system.46 Pechukas’ theory is
conceptionally illuminating and is ‘‘semiclassically exac
in the sense that it requires only the basic semiclassical V
Vleck–Gutzwiller approximation47 to the quantum propaga
tor; the calculation of nonlocal forces, however, is in pract
more cumbersome than the exact quantum calculation.48

A very different approach to the problem of nonadiaba
quantum dynamics was taken by McCurdy, Meyer, a
Miller49–52 some years ago. Employing various quantu
classical analogies, they replaced the electronic states
classical DoF, thereby yielding a classical Hamiltonian
terms of the nuclear coordinates and momenta, and coo
nates and momenta for the electronic DoF. Within this
satz, classical trajectories could thus be computed for the
vibronic system, thereby treating electronic and nuclear D
on an equal footing. Most of the early applications of the
models utilized the ‘‘quasiclassical’’ approximation53 for
treating initial and final conditions of the trajectories; in t
‘‘classical electron-analog’’ model of Meyer and Miller,51

for example, the equations of motion for the vibronic syst
are the same as in the classical-path~Ehrenfest! approach,
but the way the boundary conditions are applied makes
models quite different. Meyer and Miller also discussed
semiclassical version of their model~within the framework
of ‘‘classicalS-matrix’’ theory54! and showed that for simple
two-state curve crossing problems it was a considerable
provement over the quasiclassical version.

More recently, Stock and Thoss55,56 have used a
quantum-mechanical bosonization technique57 to map the
discrete~electronic! DoF onto continuous DoF~harmonic os-
cillators!. This formulation is quantum-mechanically exa
and has a well-defined semiclassical limit, since both e
tronic and nuclear DoF are described by continuous v
ables. Furthermore, the formalism allows us to make con
with the spin-coherent-state representation58 of the semiclas-
sical propagator. The classical limit of the mapping appro
yields the same Hamiltonian as the Meyer–Miller model,
the two formulations are equivalent at the semiclass
level. Other aspects of the mapping approach and its rela
to the Meyer–Miller model are discussed in Refs. 56, 59 a
60.

This new semiclassical approach has been applied
several small systems including nonadiabatic bound-state
namics of several spin-boson type models with up to th
vibrational modes,55,56 a series of scattering-type test pro
lems suggested by Tully,59 a model for laser driven popula
tion transfer between two adiabatic PES,61 and the photodis-
sociation dynamics of ozone62 and ICN.63 The results of
these numerical studies are quite promising. The main p
pose of the present paper is to study the performance of
semiclassical method for larger systems. To this end,
have chosen the nonadiabatic dynamics of the pyrazine m
ecule after photoexcitation to theS2 state as a test example

The nonadiabatic dynamics induced by the conical in
section of theS1(n,p* ) and theS2(p,p* ) PES of pyrazine
is one of the most extensively studied examples of vibro
Downloaded 19 May 2005 to 169.229.129.16. Redistribution subject to A
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coupling in a polyatomic molecule. During the last deca
there have been several theoretical investigations of this
tem. The methods used include reduced dimensiona
quantum basis-set calculations~including the three or four
most important vibrational modes!,64–70a path-integral treat-
ment modeling the remaining 20 vibrational modes as
weakly coupled bath,17,18 and various classica
methods.32,71–73Very recently, a quantum calculation in fu
dimensionality using the MCTDH method has be
performed.74–76Therefore, this system is well-suited as a te
of the semiclassical method.

The outline of the paper is as follows. In Sec. II w
introduce the model Hamiltonian to describe the nonad
batic dynamics, define the observables of interest, and br
review the theory of the semiclassical approach. Section
presents the results of numerical calculations for sev
pyrazine models of increasing dimensionality and compl
ity: a four-mode model including the four most strong
coupled normal modes, a system-bath model, which is
tained by coupling the four-mode model to an increas
number of bath modes, and, finally, a realistic 24-mo
model. Based on comparison with quantum-mechanical
sults, which have been obtained by Meyer, Cederbaum,
co-workers,74–76we discuss the performance of the semicla
sical approach for the different models. Section IV summ
rizes and concludes.

II. THEORY

A. Model Hamiltonian and observables of interest

Let us consider a general vibronic coupling problem.
is well known, a vibronic coupling problem can be describ
in the adiabatic or in the diabatic electronic representation1,4

Adopting a diabatic electronic basis$uf1&, . . . ,ufM&%, the
molecular Hamiltonian comprisingM coupled electronic
states andN vibrational DoF can be written in the form

H5T~p!1V0~x!1(
n,m

ufn&Vnm~x!^fmu, ~2.1!

where T(p) denotes the kinetic energy of the nuclei,Vnm

represents the elements of the diabatic potential matrix,
V0 is a state-independent potential term.

The semiclassical approach to be outlined in the n
section is independent of the specific form of the potentialV0

and the diabatic potential matrixVnm . In order to introduce
some notation and to facilitate the following discussio
however, it is convenient to specify the Hamiltonian in t
model form which is used later. In the applications cons
ered in this paper, the state-independent part of the Ha
tonian is given by the harmonic approximation for the pote
tial energy in the electronic ground state

T~p!1V0~x!5(
j 51

N
v j

2
~pj

21xj
2!, ~2.2!

where v j is the vibrational frequency andxj and pj are,
respectively, the dimensionless position and momentum
erators of thej th vibrational mode.~We use units with\51
throughout the paper.! As is common practice in vibronic
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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10284 J. Chem. Phys., Vol. 112, No. 23, 15 June 2000 Thoss, Miller, and Stock
coupling theory,1,4 the diabatic potential matrixVnm is ap-
proximated by a Taylor expansion around the equilibriu
geometry of the electronic ground state

Vnn5En1(
j

k j
(n)xj1(

i , j
k i , j

(n)xixj , ~2.3a!

Vnm5Vnm~0!1(
j

l j
(nm)xj1(

i , j
l i , j

(nm)xixj , nÞm.

~2.3b!

Here, En5Vnn(0) denotes the vertical excitation energy
stateufn&, thek j

(n) are the gradients of the excited-state p
tential energy function at the equilibrium geometry of t
ground state, and thek i , j

(n) account for the changes in vibra
tional frequencies and rotation of the normal coordinates
the excited states~the so-called Dushinsky effect77!. The ex-
pansion of the interstate-coupling matrix elements in E
~2.3b! is determined by the vibronic coupling constantsl j

(nm)

andl i , j
(nm) . The Taylor expansion~2.3! has been shown to b

a good approximation for observables which are based
short-time dynamics in the Franck–Condon zone such as
sorption or resonance Raman spectra~see, for example, Ref
4 and references therein!.

In this work we are interested in the nonadiabatic d
namics of the pyrazine molecule after photoexcitation to
S2 electronic state. In particular, we will present results
the absorption spectrum in this energy region which can
obtained from the Fourier transform of the autocorrelat
function

J~ t !5^C i ue2 iHtuC i&, ~2.4!

using the well-known relation

I ~v!}v ReE
0

`

dt ei (v1«0)tJ~ t !. ~2.5!

Here, the initial stateuC i& is ~within the Condon approxima
tion for the transition dipole moment and for lo
temperature78! given by a product of the vibrational groun
state of the molecule and the second excited electronic s

uC i&5uf2&uvi50&, ~2.6!

and«0 denotes the energy of the vibronic ground state of
molecule.

B. Semiclassical description

A semiclassical description is well established wh
both the Hamilton operator of the system and the quantit
be calculated have a well-defined classical analog. For
ample, there exist several semiclassical methods for calc
ing the vibrational autocorrelation function on a single e
cited electronic surface~which is related to the Franck–
Condon spectrum!.79–84 In particular, semiclassical method
based on the initial-value representation~IVR!85 ~which cir-
cumvent the cumbersome root-search problem in bound
value-based semiclassical methods! have been successfull
applied to a variety of systems~see, for example, the
reviews86–88 and references therein!. These methods canno
be applied directly to nonadiabatic dynamics, because
Downloaded 19 May 2005 to 169.229.129.16. Redistribution subject to A
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Hamilton operator for the vibronic coupling problem@Eq.
~2.1!# involves discrete DoF~discrete electronic states!
which do not possess an obvious classical counterpart.

Recently, Stock and Thoss55,56 and Sun and Miller59

have proposed a new approach which extends the applic
ity of well-established semiclassical methods to systems w
discrete DoF. The key idea in this approach is to repres
the discrete ~electronic! DoF by continuous harmonic
oscillator DoF which possess a well-defined classical ana
This transformation can be accomplished in different wa
Sun and Miller’s formulation is based on a requantization
the classical electron-analog model of Meyer and Miller51

Stock and Thoss have used a generalization of Schwing
theory of angular momentum57 to map a discreteM-level
system ontoM harmonic oscillators via the following rela
tions for the operators and the basis states:

ufn&^fmu→an
†am , ~2.7a!

ufn&→u01 , . . . ,1n , . . . ,0M&. ~2.7b!

Herean andam
† are the usual oscillator creation and annih

lation operators with bosonic commutation relatio
@an ,am

† #5dnm and u01 , . . . ,1n , . . . ,0M& denotes a
harmonic-oscillator eigenstate with a single quantum exc
tion in the moden. Introducing, furthermore, Cartesian ele
tronic variables

Xn5~an
†1an!/A2, ~2.8a!

Pn5 i ~an
†2an!/A2, ~2.8b!

the molecular Hamiltonian in the continuous representat
reads

H5h0~x,p!1
1

2 (
n,m

~XnXm1PnPm!Vnm~x!, ~2.9a!

h0~x,p!5T~p!1V0~x!2
1

2 (
n

Vnn~x!. ~2.9b!

As has been discussed in detail in Ref. 56, the Hamil
operator~2.9! is equivalent to the Hamiltonian~2.1! within
the physical subspace~which is the image of theM-level
Hilbert space under the mapping~2.7b!, i.e., the subspace o
the M-oscillator Hilbert space with a single quantum excit
tion!. In particular, we have the following identity for th
autocorrelation function:

J~ t !5^f i u^vi ue2 iHtuvi&uf i&

5^01 , . . . ,1i , . . . ,0Mu^vi ue2 iHt uvi&

3u01 , . . . ,1i , . . . ,0M&. ~2.10!

In contrast toH, the HamiltonianH has a well-defined
classical analog and therefore any of the well-establis
semiclassical approximations for the quantum propaga
e2 iHt can be used to obtain a semiclassical approxima
for the autocorrelation function. In this paper, we use
Herman–Kluk ~coherent-state! IVR of the semiclassical
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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propagator,80 which for a generaln-dimensional system ca
be written as

e2 iHt5E dq0 dp0

~2p!n
uqtpt&Cte

iSt^q0p0u, ~2.11!
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where (p0 ,q0) are initial momenta and coordinates for cla
sical trajectories,pt5pt(p0 ,q0) and qt5qt(p0 ,q0) are the
classically time-evolved phase space variables andSt is the
classical action integral along the trajectory. The p
exponential factorCt is given by
Ct~p0,q0!5AdetF1

2 S g1/2
]qt

]q0
g2 1/21g2 1/2

]pt

]p0
g1/22 ig1/2

]qt

]p0
g1/21 ig2 1/2

]pt

]q0
g2 1/2D G . ~2.12!
osed
al
e

el-

os-
d

ob-
c-
It involves a combination of the elements of the monodro
matrix

M t5S ]pt

]p0

]pt

]q0

]qt

]p0

]qt

]q0

D . ~2.13!

In the above expression,g denotes ann-dimensional diago-
nal matrix, with the elementg j being the width parameter fo
the coherent state of thej th dimension. The coordinate spac
representation of ann-dimensional coherent state is the pro
uct of n one-dimensional minimum uncertainty wave pack

^xupq&5)
j 51

n S g j

p D 1/4

e2 g j /2(xj 2qj )
21 ip j (xj 2qj ). ~2.14!

Within the applicability of the semiclassical approxim
tion, the propagator~2.11! is rather insensitive to the particu
lar value of the width parametersg j , but this parameter can
of course affect the numerical efficiency of the calculatio
In the numerical studies presented below, we have cho
the widthg j as the width of the harmonic ground state of t
j th vibrational mode. In the dimensionless units used in t
work, this choice corresponds tog j51 for all DoF. In the
remainder of the paper, all coherent states have this valu
the width parameter.

Inserting the Hermann–Kluk propagator~2.11! into Eq.
~2.10!, we obtain the semiclassical expression for theS2 au-
tocorrelation function of our model system

J~ t !5E dX0 dP0

~2p!M E dx0 dp0

~2p!N
^0uX1tP1t&^1uX2tP2t&

3^0uxtpt&Cte
iSt^x0p0u0&^X10P10u0&^X20P20u1&.

~2.15!

Here,u1& and u0& denote harmonic-oscillator eigenfunction
~resulting from the mapping of the electronic stateuf2&
→u0&u1&).

The calculation of the autocorrelation function via E
~2.15! is a challenging task because it involves a multidime
sional integral over an oscillating integrand. In addition, t
pre-exponential factorCt can become large for chaotic tra
jectories. Therefore, it is rather difficult to converge the
tegral for longer times~which for the present system mea
times larger then 20 fs! using simple Monte Carlo integratio
y

s

.
en

is

of

.
-

-

schemes. Several smoothing techniques have been prop
to overcome this well-known problem of semiclassic
propagators.83,89–93 In this work, we have adapted th
method of Walton and Manolopoulos83 to our system. This
method combines the Herman–Kluk propagator with the c
lular dynamics algorithm of Heller.81 It is based on the
Filinov94,95 or stationary-phase Monte Carlo method.96 The
basic idea of this technique is to integrate out the local
cillations analytically using a linearization of the integran
over a small phase-space cell. Applying this method, we
tain the following expression for the autocorrelation fun
tion:

J~ t !5E dX0 dP0

~2p!M E dx0 dp0

~2p!N
f t~X0 ,P0 ,x0 ,p0!^0uX1tP1t&

3^1uX2tP2t&^0uxtpt&Cte
iSt^x0p0u0&^X10P10u0&

3^X20P20u1&. ~2.16!

The only difference from Eq.~2.15! is the smoothing func-
tion f t , which is given by83

f t~X0 ,P0 ,x0 ,p0!5
aN1M

Adet~A!
exp$~1/4!bTA21b%. ~2.17!

Here, the vectorb is defined by

b5~bp,bq!T, ~2.18a!

bp5
1

2S ]Xt
T

]P0
1 i

]Pt
T

]P0
D ~Xt2 iPt!

1
1

2S ]xt
T

]p0
1 i

]pt
T

]p0
D ~xt2 ipt!

1
1

2
~P02 iX0!1

1

2
~p02 ix0!, ~2.18b!

bq5
1

2S ]Xt
T

]X0
1 i

]Pt
T

]X0
D ~Xt2 iPt!

1
1

2S ]xt
T

]x0
1 i

]pt
T

]x0 D ~xt2 ipt!

1
1

2
~X01 iP0!1

1

2
~x01 ip0!. ~2.18c!
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The positive definite matrixA involves the monodromy ma
trix M t @see Eq.~2.13!# and the smoothing parametera

A5 1
4M t

TM t1
1
41a. ~2.19!

The parametera determines the size of the phase-space
over which the integrand is smoothed.~In general,a can be
a matrix.83,95 Here, we use the same value ofa for coordi-
nates and momenta in all DoF.! For largera, this cell size
becomes smaller and in the limita→` the original
Herman–Kluk expression~2.15! is reobtained. For finite val-
ues ofa, the integrand with the smoothing functionf t is in
general less oscillatory than the original integrand in E
~2.15! and, therefore, easier to integrate by Monte Ca
methods.

III. APPLICATION

In this section, we shall apply the semiclassical meth
outlined above to different vibronic-coupling models for t
S1–S2 conical intersection in pyrazine. This system was ch
sen because it represents one of the most extensively stu
examples of vibronic coupling in a polyatomic molecule. O
the experimental side, manifestations of the strong vibro
coupling in this system have been found in absorption, fl
rescence, and resonance Raman spectra.97–103 On the theo-
retical side, the conical intersection between theS1 and the
S2 electronic state has been characterized in great detail
series ofab initio calculations of increasing accuracy an
completeness.4,66,67,69,76 Based on theseab initio calcula-
tions, the dynamics and spectroscopy of theS1 and theS2

state have been investigated in considerable detail.4,64,67,70,76

It was shown that the strong vibronic coupling triggers
ultrafastS1→S2 internal conversion process, which becom
manifest, for example, in the diffuseS2-absorption band. Ex-
hibiting complex electronic and vibrational dynamics, th
system provides a stringent test for an approximate desc
tion.

A. Four-mode pyrazine model

First, we consider a four-mode model of theS1–S2 coni-
cal intersection in pyrazine, which was developed by Do
cke and co-workers.69 This model has been used as a t
example for several approximate methods.17,18,71,32,72The
model Hamiltonian has the form of Eqs.~2.1! and ~2.3!,
where the Taylor expansion of the diabatic potential ma
is terminated after the first order

V5S E11 (
j PG

k j
(1)xj lx10a

lx10a E21 (
j PG

k j
(2)xj

D . ~3.1!

Besides the nontotally symmetric coupling moden10a

~which, for symmetry reasons, is the only mode that c
couple the two electronic states in the first order!, the three
most strongly coupled totally symmetric~Condon-active!
modes are taken into account in this model. The set of th
modes is denoted byG5$n1 ,n6a ,n9a%. The parameters o
this model Hamiltonian have been obtained by Domcke
co-workers by high-levelab initio calculations.69 It has been
Downloaded 19 May 2005 to 169.229.129.16. Redistribution subject to A
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shown that the essential features of the electronic spectra
the ultrafast radiationless decay can be understood from
model.

Let us first focus on the autocorrelation function of t
model system after photoexcitation to theS2 electronic state.
Figure 1 shows the modulus of the autocorrelation funct
up to 130 fs. The exact quantum results~full line! are com-
pared to the semiclassical results~dotted line!. As is well
known from previous studies, the autocorrelation functi
exhibits a fast initial decay, reflecting the initial displaceme
of the wave packet on theS2 surface. The suppression of th
ensuing recurrences~which is absent for the uncoupled sy
tem, i.e.,l5064! reflects the ultrafast electronic dephasing
theS2 electronic state of pyrazine. This dephasing proces
incomplete due to the limited density of states of the fo
mode model. It is seen that the semiclassical result rep
duces all essential features of the autocorrelation function
to 100 fs. Both the first two recurrences and the high f
quency modulations are well described. Upon closer insp
tion one recognizes that the fine structure of the autocorr
tion function is better reproduced than the overall damp
of the amplitude, e.g., the semiclassical result underestim
the damping of the first recurrence and has too small
amplitude for timest.80 fs. This deviation is presumabl
related to the nonunitarity of the semiclassic
approximation.104

The semiclassical result in Fig. 1 has been obtained
ing a smoothing parameter ofa55•104. The dependence o
the final result, as well as the numerical effort on the value
the parametera, is demonstrated in Fig. 2. Panel~a! shows
the modulus of the autocorrelation function for three diffe
ent values of the smoothing parameter (a55•104, 5•105,
5•106), and panel~b! displays the corresponding statistic
error of the Monte Carlo integration. In all three cases,
results are based on the propagation of 107 trajectories. In
general, a smaller value ofa results in a faster convergenc
of the Monte Carlo integration because the integrand is
oscillatory. On the other hand, the value ofa which is re-
quired to obtain the true semiclassical result increases w

FIG. 1. Modulus of the autocorrelation function for the four-mode mod
The full line is the quantum result and the dotted line is the semiclass
result.
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time, because the nonlinearity of the classical dynamics
velops phase-space structures on smaller and smaller s
and therefore, the size of the phase-space cell over which
linearization is valid shrinks.83,105Both trends are clearly vis
ible in Fig. 2: For very short times (t,20 fs!, the smoothing
has hardly any effect on the result, because the dynamic
approximately linear. Betweent520 fs and t580 fs, the
value ofa which is necessary to obtain the true semiclass
result increases froma55•104 to a55•106. The latter
value requires many more trajectories to converge the Mo
Carlo integral to the same statistical error@approximately an
order of magnitude more att580, cf. Fig. 2, panel~b!#. For
even longer times (t.80 fs! a value ofa.5•106 is neces-
sary to obtain the true semiclassical result, requiring a v
large number of trajectories. In particular, for the larger s
tems discussed below, it is not feasible to use that m
trajectories because the numerical effort per trajectory sc
with (N1M )3 ~due to the calculation of the pre-exponent
factorCt). The value ofa55•104, which will be used in the
remainder of the paper, represents a compromise betwee
numerical efficiency of the calculation and the aim to obt
the true semiclassical result at least for short times. The c
parison of the three different results in Fig. 2 also reveals
a smaller value of the smoothing parameter leads to a st
ger damping of the overall amplitude, whereas the fine str
ture of the autocorrelation function is nearly unaffecte
Therefore, the position of the peaks in the absorption sp
trum is expected to be rather insensitive to changes in

FIG. 2. Dependence of the semiclassical result on the smoothing param
a. Panel~a! shows the modulus of the autocorrelation function for smoo
ing parametersa55•104 ~full line!, a55•105 ~dotted line!, and a55
•106 ~dashed-dotted line!. Panel~b! displays the corresponding Monte Car
error.
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value of a, but the width of the peaks will increase wit
decreasinga.

TheS2 absorption spectrum is displayed in Fig. 3. Pan
~a! compares the semiclassical and the quantum result
panel~b! shows the experimental data from Ref. 106. Bo
theoretical results have been obtained by Fourier transfor
tion of the autocorrelation function. As has been done pre
ously, a phenomenological dephasing constantT2530 fs has
been included to reproduce the homogeneous width of
experimental spectrum@i.e., J(t) in Eq. ~2.5! has been re-
placed byJ(t)e2t/T2#. The absorption spectrum shows a d
fuseS2 band with irregularly spaced structures, which cann
be assigned in terms of harmonic modes in theS2 state.4,64

The weak tail in the energy region of theS1 state represents
the well-known phenomenon of vibronic-intensity borrow
ing. It is seen that the semiclassical and the exact quan
results are in very good agreement in both parts of the sp
trum.

It is interesting to compare this semiclassical result w
a calculation Stock and Miller performed some time ago
the same model using a classical approach~i.e., without
semiclassical phase information! based on the classica
electron-analog model.71 Although this classical method wa
able to reproduce the global features of the absorption s
trum, it was not capable of reproducing the finer structure
contrast, the present semiclassical method describes t
fine structures very well, demonstrating that the inclusion
phase information~and hence quantum interference! is im-
portant to describe the absorption spectrum in this sys
correctly.

B. 24-mode system-bath model

Within the four-mode model, the experimental abso
tion spectrum can only be obtained by including a rath

ter
-

FIG. 3. Absorption spectrum of pyrazine in the energy region of theS1–S2

conical intersection. Shown are~a! quantum-mechanical~full line! and
semiclassical~dotted line! results for the four-mode model~including a phe-
nomenological dephasing constant ofT2530 fs!, and ~b! the experimental
data~Ref. 106!.
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large phenomenological dephasing parameterT2530 fs. To
account for this dephasing microscopically, Kremplet al.
have extended the four-mode model by adding 20 wea
coupled tuning modes.17,18 The Hamiltonian for this system
bath model is given by

HSB5H1(
j 51

20
v j

2
~pj

21xj
2!1S (

j 51

20

k j
(1)xj 0

0 (
j 51

20

k j
(2)xj

D ,

~3.2!

whereH denotes the Hamiltonian of the four-mode mod
The frequencies of the bath modes are equidistant in
interval @0.04 eV, 0.4 eV#. The coupling constantsk j

(1)

52k j
(2) were chosen at random in such a way that the ov

all coupling to the bath modes is weak compared to the c
pling within the four-mode model~for the detailed param
eters, see Ref. 17!.

In pyrazine, 18 of the remaining 20 normal modes a
nontotally symmetric and, therefore, can only couple q
dratically to the electronic transition. Therefore, as Krem
et al. noted, this 24-mode system-bath model cannot rep
sent pyrazine in a strict sense. Nevertheless, it is a good
example for relaxation in a strongly vibronically couple
system which in turn is weakly coupled to a harmonic ba
In particular, this model is ideally suited to study the perfo
mance of the semiclassical method for larger systems. I
lows us to investigate the quality of the semiclassical
proximation and the scaling of the numerical effort when
number of bath modes is increased gradually. To this e
we have performed two separate semiclassical calculat
including 10 bath modes~the ones with the largest value o
the coupling parameterk j /v j ) and all 20 bath modes, re
spectively.

Let us first focus on the autocorrelation function. Figu
4 displays the modulus of the autocorrelation function
three different models:~a! without bath ~the four-mode
model from Sec. III A!, ~b! with 10 bath modes, and~c! with
all 20 bath modes. The semiclassical results are comp
with quantum results which have been obtained by Wo
et al. using the MCTDH method.74,75 The latter represent
~within the accuracy relevant for the comparison with t
semiclassical data! numerically exact results. It can be se
that the coupling to the bath leads to a strong suppressio
the recurrences in the autocorrelation function. Although t
damping becomes more pronounced when the numbe
bath modes is increased, the autocorrelation function ret
a structure even with 20 bath modes included. Meyer, C
erbaum, and co-workers have shown74,75 that this result is
related to a selective damping of the high-energy states in
system-bath model considered.

The comparison between the semiclassical and the q
tum results reveals a good overall agreement for the sys
bath models in the short-time limit (t,70 fs!. In particular,
the damping of the first recurrence when the number of b
modes is increased is well reproduced by the semiclass
method. This is in contrast to more classical methods, s
as the linearized semiclassical IVR/classical Wign
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method107 which gives, for example, for the first recurrenc
in the 24-mode model an amplitude that is 1 order of m
nitude too large.108 As Müller and Stock have shown
recently,60,73,109this failure to describe the correct relaxatio
behavior is related to an incorrect treatment of the zero-p
energy in the classical implementation. The results in Fig
demonstrate that the semiclassical method is capable of
scribing this effect correctly without requiring further zer
energy modifications. The rather large relative error at lon
times, in particular for the 24-mode model, indicates a pr
lem of the semiclassical calculation: As a result of the co
pling to the bath, the autocorrelation function has a rat
small amplitude~e.g.,uJ(t)u,0.0025 fort.20 fs in the 24-
mode model!. Such a small quantity is difficult to obtain with
Monte Carlo integration schemes, in particular when the
tegrand is oscillatory, as is the case here.

The absorption spectra for the three different models
shown in Fig. 5. In contrast to the absorption spectrum
the four-mode model in Fig. 3, no phenomenological deph
ing has been added~i.e., 1/T250). To reduce the effects o
the finite propagation time (tmax5150 fs! in the spectrum,
the autocorrelation function is brought to zero smoothly
tmax by multiplying it by cos(pt/2tmax).

74 It is seen that the

FIG. 4. Modulus of the autocorrelation function for the system-bath mo
Shown are quantum~Ref. 74! ~full line! and semiclassical~dotted line!
results for a different number of modes:~a! four modes~without bath!, ~b!
14 modes~10 bath modes!, and ~c! 24 modes~20 bath modes!. The error
bars~for clarity, shown only at two times! represent the usual error estima
of the Monte Carlo integration.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



t
in

e

be-
ber
the

emi-
rum
del
um-
ssi-

cal

-
er
80
he

u-

ion
ems
r
al-

ec-
ess
l
ol-
cor-
e-

ion

n a
ct
e
s
om-

tu

10289J. Chem. Phys., Vol. 112, No. 23, 15 June 2000 Nonadiabatic quantum dynamics
coupling to the bath leads to a pronounced broadening of
spectrum in theS2 band. In contrast, the vibrational peaks
the energy region of theS1 state~which are due to vibronic-
intensity borrowing, see above! are nearly unaffected by th

FIG. 5. Absorption spectra for the system-bath model. Shown are quan
~Ref. 74! ~full line! and semiclassical~dotted line! results for a different
number of modes:~a! four modes~without bath!, ~b! 14 modes~10 bath
modes!, and~c! 24 modes~20 bath modes!.
tr
e
is

in
us
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he

coupling to the bath. It can also be seen that the region
tween the two bands obtains some intensity when the num
of bath modes is increased. The comparison between
semiclassical and the quantum results shows that the s
classical method can describe both parts of the spect
rather well. The semiclassical result for the 24-mode mo
has more structure than the quantum result, which is pres
ably due to the rather high statistical error in the semicla
cal calculation.

To conclude this section, we comment on the numeri
effort of the calculation. The results in Fig. 4 panel~a! ~four-
mode model!, panel~b! ~14-mode model!, and panel~c! ~24-
mode model! have been obtained by propagating 5•106,
15•106, and 7•106 trajectories, respectively. On a COM
PAQ XP1000 workstation, the calculation for a fixed numb
of 106 trajectories takes approximately 15, 121, and 3
CPU hours, respectively, for the three different models. T
comparison with the numerical effort of the MCTDH calc
lation of Worthet al. ~see Ref. 74! shows that even though
the total CPU time required for the semiclassical calculat
is larger for all three models, the semiclassical method se
to have a slightly better scaling.110 The required compute
memory is of course much smaller in the semiclassical c
culation ~about 4 Mbyte for all three models!.

C. 24-mode pyrazine model

The system-bath model considered in the previous s
tion is able to describe the fast electronic dephasing proc
~which had to be included by hand for the four-mode mode!.
As noted above, it cannot describe the true pyrazine m
ecule, because the additional 20 modes do not have the
rect symmetry of the pyrazine molecule. This fact is r
flected, for example, by the difference in the absorpt
spectra in Fig. 3 panel~b! and Fig. 5 panel~c!. Recently,
Raabet al. have presented MCTDH calculations based o
model Hamiltonian which takes into account the corre
symmetry of all 24 normal modes of the pyrazin
molecule.76 In this model, the diabatic potential matrix i
expanded up to second order around the equilibrium ge
etry of the electronic ground state

m

V5S E11 (
j PG1

k j
(1)xj1 (

i , j PG2

k i , j
(1)xixj lx10a1 (

i , j PG4

l i , j
(12)xixj

lx10a1 (
i , j PG4

l i , j
(12)xixj E21 (

j PG1

k j
(2)xj1 (

i , j PG2

k i , j
(2)xixj

D . ~3.3!
the
ty

in
er
dy-
ra-

on
Following the notation of Raabet al., G1 is the set of normal
modes having Ag symmetry~within the D2h point group!. G2

denotes the set of all pairs of modes with identical symme
~e.g., B2g3B2g). The set G4 comprises all pairs of modes, th
product of which has B1g symmetry. The parameters of th
Hamiltonian were determined by Raabet al. usingab initio
calculations.76 Compared to the system-bath Hamiltonian
Sec. III C, this model is considerably more complex, beca
y

e

all 24 modes of pyrazine enter both the diagonal and
off-diagonal part of the Hamiltonian. This higher complexi
becomes manifest in an increased numerical effort both
the MCTDH76 and the semiclassical calculation. In the latt
case it results, for example, in a more chaotic classical
namics, which in turn complicates the Monte Carlo integ
tion.

Figure 6 displays the modulus of the autocorrelati
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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function for the realistic 24-mode model. The semiclassi
results are compared with the MCTDH results of Ra
et al.76 As for the 24-mode system-bath model in the pre
ous section, the MCTDH results represent~within the accu-
racy required for the comparison with the semiclassical d!
numerically exact results. The comparison with the fo
mode model~Fig. 1! shows that the inclusion of the remain
ing 20 modes leads to a damping of the recurrences of
autocorrelation function. It is noted that this damping is n
as strong as in the system-bath model@cf. Fig. 4, panel~c!#.
The semiclassical result is seen to reproduce the quan
result rather well up to 70 fs; in fact, the agreement is be
than in the case of the simpler system-bath model in S
III B.

Finally, Fig. 7 shows the absorption spectrum. As w
done by Raabet al., we have included a phenomenologic
broadening ofT25150 fs to model the experimental broa
ening due to finite resolution and rotational motion. It can

FIG. 6. Modulus of the autocorrelation function for the 24-mode pyraz
model. The full line is the quantum result~Ref. 76! and the dotted line is the
semiclassical result.

FIG. 7. Absorption spectrum for the 24-mode pyrazine model. The full l
is the quantum result~Ref. 76! and the dotted line is the semiclassical resu
In both spectra a phenomenological dephasing constant ofT25150 fs was
used.
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seen that the inclusion of all 24 normal modes of the py
zine molecule leads to a broadening of the spectrum whic
in good agreement with the experimental result@Fig. 2, panel
~b!#. In contrast to the system-bath model in Sec. III B, whe
the coupling to the bath results in a nearly structurelessS2

band, this structure is retained in the realistic 24-mo
model. The semiclassical result is seen to be in fairly go
agreement with the quantum result. As in the 24-mo
system-bath model, the semiclassical spectrum has s
spurious structure, which is presumably due to the rat
high statistical error.

IV. CONCLUSIONS

We have applied a recently proposed semiclassical
proach to the nonadiabatic dynamics of the pyrazine m
ecule after photoexcitation to theS2 electronic state. This
system was chosen to test the new semiclassical method
cause it is one of the most extensively studied example
vibronic coupling in polyatomic molecules. Furthermore, b
cause the vibronic coupling in this system is rather strong
is known to provide a stringent test for any approxima
method.

The main purpose of the paper was to study the per
mance of the semiclassical method for larger systems.
this end, we have studied several vibronic coupling mod
for the S1–S2 conical intersection in pyrazine: a four-mod
model including the four most strongly coupled modes
system-bath model, which was obtained by coupling
four-mode model to an increasing number of bath mod
and, finally, a realistic 24-mode model. In all cases we ha
compared the semiclassical results with quantum resu
which for the larger systems have been obtained by Me
Cederbaum, and co-workers74–76using the MCTDH method.
The comparison demonstrates that the semiclassical
proach is able to describe the ultrafast nonadiabatic dyn
ics in all of these models. In particular, we have found th
the absorption spectrum and the autocorrelation function
shorter times (t,80 fs! is well reproduced by the semiclas
sical method.

Although this result is quite encouraging, it should
mentioned that the required numerical effort is rather lar
We have found that, even though the required CPU ti
seems to have a slightly better scaling~with respect to the
number of nuclear DoF! in the semiclassical approach tha
in the quantum MCTDH method, it is still larger in the 24
mode models. There are two main reasons for the ra
large numerical effort in the semiclassical calculation:~i! Al-
though we have used an integral conditioning~smoothing!
technique, the oscillatory nature of the integrand still
quires a large number of trajectories to converge the Mo
Carlo integration.~ii ! Due to the calculation of the pre
exponential factor, the numerical effort per trajectory has
unfavorable (21N)3 scaling ~with N being the number of
nuclear DoF!. Both problems need to be addressed furthe
make the semiclassical approach practical for larger syste

In the present work, we have focused on the calculat
of the autocorrelation function and the absorption spectru
Another important quantity to characterize the dynamics
vibronically coupled systems is the population of the diaba

e
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~or adiabatic! electronic states. Although the semiclassic
approach outlined in this paper is in principle capable
describing this quantity~see, for example, Refs. 55, 56 an
59!, it becomes practically unfeasible in larger systems
cause one either has to store the semiclassical wave fun
in full dimensionality or to use a double phase space form
lation. In this respect, the forward–backward IVR metho
proposed recently87,111–114appear to be a promising altern
tive. Work in this direction is in progress.
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