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ABSTRACT

Iﬁ is shown how the Hamilton-Jacobi equation for a multi-
diﬁensional non—separable system can be efficieﬁtly solved
directly in gction-angle variables. This allows one to construct
the total (classical) Hamiltonian as a function pf the "good"
action-angle variables which are the complete set of constants
of the motion of the system; requiring the action vériables
"~ to be integers then.provides the semiclassical eigenvalueé.
Numerical results are presented for a two-dimensional potential
well, and one sees that the semiclassical eigenvalues are in good
agreement-with the exact quantum.mechanical values even for the

case of large non-separable coupling.
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I.  INTRODUCTION.

.Recent years have seen consiuerable progress ln the.development
of semlclassieal methods for’describing'the dynamics of.moleeular
systems. Most attention haa focused on molecular collision processes,l’2
both elastic and inelastic-reactive 3cattering of atoms and molecules,
but there has also beenlinterest in developing;semlclassical methods
for determining discrete eigenvalues (i,e., energy levels) of bound
moleculat Syatema. It is this'latter_topie with which ‘the present paper
is coneerned. |

The Bohr-Sommerfeld quantum condition,

X,
= ‘ : ) 1/2 B : ‘ |

(n + E)jr = [dx {Zm[E‘-V.(x)]/h b > | L (1.1)

. x< :
n = 0, 1,2, ..., which defines the eigenvalues E(n) implicitly,
is the semiclassical solution to the eigenvalue problem for one-
:dimensional potential vells V(x); it is a well-known result and
immensely useful in many areas of chemistry and molecular physics.
What one desires is the generalizatlon of this result to multi-.
dimensional, non-separable potential functlons.
Einsteln4 was the first to make 31gnificant progress in obtaining.

a semlclassical quantum condition for non-separable multidimensional
systems, and Born s5 book descrlbes the height to whlch the "0ld
Quantum.Theory' had evolved by 1924, just before the advent of quantum
mechanies.v More recently a number of workerst13 have made contribu-

tions to the problem. Keller,6 following Einstein's approach, has

focused attention on the Hamilton-Jacobi equation in cartesian



coordinates, the multivalued structure of its solutions, their
céustics,'turning surfaces, etc. The Qork of Maslov,7 PerciVal,lO ~
and Vorpsl3 has also been along this genera% linéu'vhhrcus'll
;écenglwpxg,is also an application of,Kéller's6 formalism, but
gé:h;s Showﬁ how inyariant‘manifqlds generated pyvquasiperiodic
trajectories can be used to cpnstruct the multivalued action
functions whicﬁ appeér in Keller's theory. vPéchukasg has:attempted
a §ery’differeﬁt approach to thg problem, namely mapping the non-
vsebarébievpo;ential onto a separable one via a generalized Miller-
Coqd‘ﬁrénSfogmétionf Gutzwiller's8 approach is also significantly _ |
different from the others;'it:is based on .a statidnary phase apprdxi— |
mation to-fhe trace of the semiclassical propagator. bﬁlle:lz has .j
recently ﬁodified and clarified some of the features of Gutzwiller's
result and in fact shown that it is an aggfoximate version of Keller's6
formalism. |

| The present paper follows the approach of Born:s_ Qné divides
the total Hamilﬁonian H into a'sepérable part,:Ho, plus a non-
separable:intefaction V. The goal is then to construct the canonical
transformation from the zefoth order action-angle variables which

correspond to H., to the set of "good" action-angle variables for

0’
the total Hamiltonian H; in terms of these "good" action-angle
variables H is a function only of the action variables,.and this
function, fbr integer values of the action variables, gives the
eigenvalues. However, whereés Born's approach is only able to

effect this transformation within the framework of perturbation:

: 5 . s . : . .
theory-—e.g., Born™ gives explicit expressions for the semiclassical



00 30438066 9 3

T
2 ¥
(AR

eigenvalues through second ordef iﬁ éhé;ﬁéx;Sé;éféﬁle péfturbation
V—?Sections IT and IV below Show.how.itfcanibefcarried out efficiently
to infinite order, i.e., exactly. .Section II first considers the

case of a harmonic reference potential, and Section III presents a
numerical example to demonsgrate how the theory can be.applied.

Section IV then shows how thé approach can be generalized to treat
systems with a general (anharmonic) teferénCe pbtential. The result-
rjingvprocedufé appears to be a powerful and accurate way of constructing
. semiclassical eigenvalues for non-separable multidimensional éystems.

Section V.concludes by discussing how the approach relates to some of

the other recent work discussed above.
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II. HARMONIC REFERENCE POTENTIAL.

The Hamiltonian describing the system is assumed to be of

the form
.. . 2 )
Hp,x) = 5= + Vo) +V) (2.1)
where (x,p) = (xi,pi), i=1l, ..., f are the cartesian coordinates

and momenta and f is the number of degrees of freedom. (It is no
restriction to take all degrees of freedom to have the same mass

U.) The reference potential Vo(x) is separable,

£

VO(X)' = 2 v, (x,) s | (2.2)
: ~ &1 v : L

and in this section it will be assumed that the individual one-

dimensional potentials vi(xi) are harmonic:

1 2 2
FHWT RS T (2.3)

vy () = i

The potential V(x) is non-separable, the feature which precludes
an exact analytic solution to the problem.

Following Born's5 formulation, one changes from cartesian
coordinates and momenta (p,x) to the action-angle variables
. For the
0

present case of a harmonic reference potential the cartesian

(n,q) which correspond to the reference potential V

variables (p,x) are given in terms of the action-angle variables

(n,q) by the following expressions:



~5-
2ni+l 1/2 : :
xi(ni’qi) = oy : cosq, : | (2.43a)
p.(n,,q.) = -[{(2n +1)pw ]1/2 sinq : . (2.4b)
A T R | i B i . i ’ ' :

i=1,2, ..., f. (Thé "+l"'is added to 2ni since one knows
thatihalf—integef quanﬁum ndmberé arise in the‘one—dimensional'
éase-—cf; Eq: (1.1);—because of.pﬁase‘contributions from tﬁe
ciassical turning poihts.) If'the individual one—dimenéional
potentials were not harmonié, one could stili express p. and X,
. in terms of n, and s but the expressions would be different
from Eq. (2.4).

In terms of the éctioh—angle variables (Q’ﬂ) ﬁhe Hamiltonian

“. of Eq. (2.1) becomes
H(g,n) = Hy(n) +V(qg,n) , : v (2.5)
and for the present harmonic case HO is given by

J 1 1 * ‘
Hy(m) = 2;; wi(ng#) = we k), 1 @6

where one should note that units are being used for which h = 1.
V(q,n) depends on n and q through Eq. (2.4a); i.e.,
V(g,n) = V(x(n,q)) . o (2.7)

If the non-separable interaction V were absent, i.e., V = 0, then

‘the Hamiltdﬁian would depend only on the action variables n,



2£im H(q,n) = Ho(n) o, : o (2.8)
N -

and Hamilton's equations
TR : o
€ H® =-5= S o (2.9)

would thus show the action variables n to be constants of the
motion. The eigenvalues of the system would then be obtained by
requiring that the action variables only take on integral values,

i,e.,
E() = H,() -, - (2.10)

with {ni}, i =1, 2, ..., f restricted to be integers; The presence

of the non-separable interaction V(S,BL however, shows via Eq. (2.9)
that the {ni} are not constants of the mo;ion for the total Hamiltonian
and thus not the "good" quéﬁtﬁm numbers of ﬁhg syétem.

What one needs to do, therefore, is to transform from the
"unpertufﬁed" action-angle variables (B’S) to a set of '"good" action-
angle ?ariables (g,g) such.that the.total Hamiitonian H:depends ohly
on the actiod Vagiableé g. If Ehis can be done, then it is cleaf that -
{Ni(t)}:will Be tﬁe constants of:the motion‘férithe total Hamiltoniaﬁ

and that the eigenvalues will be given by
E(N) = H(N)

with the ''good quantum numbers" {Ni} required to be integral.



To effect this (E’S) > (§,g) transformat‘ion,.Born5 introduces
a generating function of ;he Fz-type,lS i.e., éne which is a fqnction
of the "old coordinate" q and the ''new mdmenﬁum" N, F(q,N). The
éanonical'transformatién is then defined impiicitly by the two

differential equations

n(q,N) = M ~ | ' . 4 (2.11a)
N~~~ 09

Q(q,N) = M ' . : ' (2.11b)
N~ N ,

which express the other twé'variables; n énd-g, in terms of q and
§. The generator F is determined_b& subspitutihg Eq. (2.11la) into
the Hamiltonian, Eq. (2.5), andvrequiring that the result be a
function only of §:

i} 3F (q,N) 3F (g, 1) |
vE(g) = H, (___3_6_4_>+v(3, = ) , (2.12)

~ ~

where H(y) has been Qenoted by E(g). Eq. (2.12) is the Hamilton-
Jacobi equa;ion16 for the generating function F.', |

| To solve Eq. (2.12) for Evone_firét notes the solution that.
wouid result if V wefe set to zero; In that case one would want the
"new" actién angle variables (g,g) to be tﬁe same as the "o0ld" ones

' ca . . 17
(n,q), and the generator of such an identity transformation 1svl

£im F(q,N) = q- (2.13)

v-+0 -

¢ Z

One can easily verify that Eq. (2.11) .then gives N = n and Q = q.

-~ ~



To take explicit account of this separable limit, Eq. (2.13),

it is convenient to take F in the form » -
F(q,N) = q°N + G(q,N) . , S - o (2.14) ;

where the function G(q,N) is to be determined. Using Eq. (2.14),
the Hamiitoh—jaédbi eQuation, Eq. (2.12), gives the following
équation for G;v

- 36(g,N) 36(g, M) - .
E(N) = H0é+'—"5?1—) +V(S’If.+—~§q— , (2.15)
and for the present case of a harmonic HO’ this becomes
EQN) = w (i) + 028D
T e . 9q
4+ yfqn + 28@MY e (2.16)
ST aq : .

At_thiS—point Born5 invokes the boundary conditions which

produce quantization. The {Ni} are required to be integers, of

course, bﬁt in addition G(S;§) is required to Be a periodic function

of q- Born's justification for doing this ié hard to follow, but

it is easy to see why this should be true in light of quantum |

ﬁechahiés: The geherél semiclassical'trénsformation relations2 il

imply that the generator F(q,N) is related to the wavefunction in

' gq-space by

Ue(@) = <q|N> exP[%F(g,Ij)] s (2.17)



e

and with Eq. (2.14) (and since h = 1 in the present units),
this becomes
¥y () v exp(ig-N) exp[i. G(g,N)] . (2.18)

~

Single~valuedness of the wavefunction thus implies that the
{Ni} should be integers.and G(q,N) a periodic function of q.

G(q,N) can thué be expanded in a Fourier series -

G(q,N) = iZ'Bk S (2.19)
N s By | |

~

-wﬁere the constant factor i has. been included explicitly for

convenience, and wheréfthe prime on the summation'implieslﬁhat
the éonétant term E = (0, 0, 0, ..., 0) = g'is omitted. (Bk
is actually a function of N but this functionality will not~be

explicitly indicated.) Substituting this expansion into Eq.

(2.16), multiplying by e-lk.g, and integrating over the angles

q gives -
EN) 6. . = w Q) 6 - wkB
~7 7k,0 27 7k,0 ~ ~ "k
- Y '
+ m~t f dq e 9 y(q,N - k' etk °d B, 1) . (2.20)
o - R ~

k ~
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and for k = 0 Eq. (2.20) gives the energy eigéﬁvalue E(N) inr

terms of the Fourier coefficients Bk:

v 2T . ,
CEQ) = weawd) + o7 /d‘q V(q,N -E K" ek °d B
~ ~ ~ s s k
0 ~4

The procedure, then, is to solve Eq. (2.21) for the coefficients

Bk’ and then substitute them into Eq. (2.22) to obtain the energy

eigenvalue.
The final formulae are most conveniently expressed if one

introduces the coefficients Ak which are defined by

2 B

; X .
A, = (Zﬁ)—f /dq e—llf 1 V(q,N —Z K e1§ d Bk-) .
b . k- <

From Eq. (2.21) one sees that for k # 0, B

of Ak by

K is given in terms

~

Ak/(w,k)

(2.22)

(2.23)

(2.24)

In terms of the coefficients Ak’ Eqs. (2.21) ‘and (2.22) thus become

2m : '

.
: s i v ik -q
Ak = (217) f /dq e 11.5 S V(q,N - E' E.E'? ~ Akl)
~ : - - k ~ ~ ~
O'. . "v' :
. ‘ L
EQ) = w @D A, .

Eq. (2.25) is the final result, and one applies it in the

following way: The'action'variablés N occur in Eq. (2.25) only

(2.25a)

(2.25b)
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as fixed parameters, so they are initially set equal to which-
ever set of integers one desirés, corresponding to whichever

eigenvalue one wishes to compute. - Eq. (é.25a) must then be

solved for the Fourier coefficients Ak’ and successive substitution is

the most direct way of doing this; i.e., since Eq. (2.25a) is

of the form .

~

Ak = function [Ak] ,

one-defines the iteration scheme

A
K

~

= funcﬁion.[Ak(z)]‘

"2 =0, 1, ..., which is initiated by

© .,

o

After one iteration, for example, this gives

2
Ak(l) = (2m) f.-/dg -ikeq V(q,N) ;
~ 0

this result is then substituted into the RHS of Eq. (2.25a) to
; .

produce Ak(z), etc., until Ak(z » & + o takes on a constant

value. Since the éigenvalue E(N), given by Eq. (2.25b), involves

only the k = 0 component of Ak’ it is only necesSary to carry on

)
0

this iteration until A becomes constant. This, then, is the

~

procedure by which the eigenvalues E(N) are generated for any set

of integers N = (Nl, Ny oees Nf).

(2.26)

(2.27)

(2.28)

(2.29)
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It is interesting to hqte that the result of one iteration
is equivaient to first order perturbation theory. Eq. (2.29)
gives Ak(l), so that at this stage Eq. (2.25b) gives the energy
as '

2w :
1 -f f : o
EQN) = w(5) + (2m) f dq V(g,N) (2.30).
’ 0

which is identical to Born's® result through first order. ‘Since

the RHS of Eq. (2.25a) is a non-linear function of A

K’ however,

one can easily verify that the second iterate, Ak(z): and the
resulting value for E(§)'given by Eq. (2.25b),'i; ﬁot equivalent
to second order perturbation theory. |

Although the iteration procedure defiﬁed by Eqs..(2.26)—(2.28)
is the most cdnvenient way of solving Eq. (2.25a), it may not always

be convergent. The Appendixidescribes an alternate iteration procedure

that has superior convergence properties.
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III. NUMERICAL EXAMPLE.

This section applies the procedure developed in Section II

to a simple two-~dimensional example that has been used as a test

case by other workers.11

and‘ the non-separable potential is

V(f)- E V(x %, = Ax; (x

2 2
2 tnx)

where A and n are constants.

The reference potential is harmonic,

(3.1)

Using Eq. (2.4a) with f = 2, Eq. (2.25a) reads

. -i(k.q,+k,q,)
_ -2 191+%29,
Ak K = 2m) /dql /dqz e |

1’2

2w 2w

0 0

»

with V(xl;xz) given by Eq;.(3.l),-where

x,(41,9y) =

with

n(q;,9,) =

- q1/2
an(ql,qz) +1 cosq
i uwl | J 1
F : -.1/2
2n2(ql,q2) + 1 cosq,
™ ]
' i(kq; + k,q,)
i EE: Ky
 Sn wiky +wpky

V(xl(qlsqz)f xz(ql,qz)) .

(3.2a)

(3.2b)

(3.2¢)

(3.2d)
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2%2) | f

. ke o o !

ny(a;59y) = Ny = :E:: Tk, * wk Ak - (3.2e) o
. 171 272 i’>72

| kysky ' o -

v 1(qul + k

For a given set of quéntum numbers (Nl’NZ)’ Eq. (3.2) is iterated

until AO 0 becomes constant, and then the eigenvalue is given by
?

(3.3)

. l ‘ l
E(Nl’NZ) = wl(Nl +'§) + wz(N2 f 2) +.A0,O .

Eq. (3.2) may look formidable, but the iteration process is
actually a simple procedure operationally because of the availability
~of Fourier transform and inversion package subroutines. Thus, a

grid of 9, and q, values is introduced,

(2.) _ ' _ ‘
q U =2ml /L, 8 =1, ..o, Ly (3.4) §
2,) _ g
a, 2" =2y /L, L, 8y =1, e, L, (3.4b)
and the integrals over q, and 44 in Eq. (3.2a) become sums:
2 2 L. L, |
' ' —2 - ; —1 ! a (‘Q’l) | (9'2)
(2m) dq dq, £(q;,q,) > (L.,L,) ' fla;, " ay, )
1 12 1’72 172 &~ &~ 1 2 ,
(0 0 | 1 2
V ' (3.5)

for any function f(ql,qz). The specific iteration procedure is as
follows: Given the matrix of coefficients Ak k»‘at any Stage.of

: 1’72 - - i
the iteration, the functions nl(ql,qz) and nz(ql,qz) of Egqs. (3.24)

and (3.2e) are each evaluated at the complete matrix of grid points
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&) - &) _ :
(ql 1 > 4, 2 ) by a single call of the Fourier inversion subroutine.

From these functions the potential V is evaluated at the matrix of
@) @) | o
grid points (ql > 4, ), and a single call of the Fourier
transform subroutine then generates the matrix Ak K via Eq. (3.2a).
1’72
With this new matrix of coefficients Ak Jk.? che functions n (ql,qz)

1’72
and n, (ql,q%) are re-evaluated at the matrix of grid points

@)
(ql | ), etc.

For the numerical results presented below a grid size Ll = L2 = 8
was sufficiently large to yield eigenvalues to 4 decimal places, and
typically 10-15 iterations were necessary to achieve conVergence of
AO,O to this degree Of'accﬁracy. Use of the complex fast Fourier‘
transform (CFFT) subioutine of the Computer Library of the Lawrence
Berkeley'Laboratory made the calculations simple and efficient.

The first calculations were_made to compare with the results of
Eastes énd Marcuslla and Noid and Marcus.1lb This comparison is.given'
in Table I. To the extent that.this workll based on manifolds of
quasi—peribdic trajectories and the present work are numerically
accurate, one can easily conclude that they should givé the same
results for théveigenvalues.v This is because they are simﬁly'different
ways of constructing ;he same thing, thé classical Hamiltonian in |
terms of the two "good" action variables which are constants of the
motion. The results in Téble I'illustrate thié conclusion, the:small
differences in the semiclassical eigenvalues presumably being numerical
error.

The semiclassical eigenvalues in Table I are in quite good agreement

with the exact quantum mechanical values. The small A and n values
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used in réference 11, however, give only sméll shifts ofvthe

eigenvalues from theif unperturbed harmonic vélhes; so the'good . .
agreement might not be indicative. Thus another set of calcula-

tions was carried out as a‘function.of the hon—separable coupiing '
parameters. The quantum mechanical eigenvalues were obtained By . E
diagonalizing the matrix of the Hamiltonian in successively larger
harmonic oscillator basis sets.

= 0.7, w

For the case w = 1.3, and n = -\, Table II gives

1 2

the grouhd.and first two excited state semiclassical and quantum
mechanical eigenvalues for A = 0 > -0.2. These results . are also

displayed in Figure 1. Since this potential function has a

relative maximum (i.e., a saddle point) at X, = %'(wl/A)z, X, = 0,
. _ , '
of ‘
® 6
1 .
V = e— > (3-6)
max ‘5414 .

there qan be no eigenvélues above this value. The function Vmax(k)
given by Eq. (3.6) is also shown in Figure 1, and one sees that the
eigenvalﬁes do tend to break off at this point.

The agreement‘betweeﬁ3thé semiclassical and quantum mechanical
eigenvalues in Table II and.FigUre 1 is seen to be quite good. A -
more severe test of the semiclassical quantum COndition,vhoweyér, is

to focus attention on the level shift A,
AN N ) 2 E(N N = w (N, + 3y - w (v, + 5 EENEID
1’ 9 1’72 11 2 282 2 ’ :

the displacement of the eigenvalue from its unperturbed harmonic
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value.'.Figure 2 shows the percent error in-the‘semiclaséical

level shift as a function of the non-separable streﬁgth pafameter‘

A. The error is seen to be largest for the gfound state, as expected,
but even here it becomes siéeaple only as the eigenvalue approaches
the dissociation limit. The e;ror is seen to dfop‘substantially

for the first two excited stateé, and one would expect it to be even
less for higher states. In general, this level éf accuracy--a féw
percent, except for the ground state--is typiq;l of that given by

"the one—dimensional Bohr-Sommerfeld quantum condition ([Eq. (1.1)],

and one can hardly expect its multidimensional generalization to

do better.
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IV. GENERAL REFERENCE POTENTIAL.

The iteration procedure for finding the Fourier coefficients
Ak will be most efficient if the referenée Hamiltonian H0 is chosen
to make the potential V as small as possible. To do this it may
sometimes be advantageous to choose the one-dimensional potentials
Vi(xi) in Eq. (2.2) to be anharmonic; e.g., one might wish to take
them to be Morse potentials
-(x.-x.)/a,
2 .
v.(x,) =D e * ¥ T_1qj A (4.1)
ii i ,
In this case H_ (n) is not given by Eq. (2.6), but by a more
complicated function of the action variables {ni} . For f
Morse’oscillators, for example,
- 1, w2 1,2 '
HO(B) = ; [mi(ni +—2-) -_1 (ni +§)] o , (4.2)

4D,
i

where

2D, 1/2

. uai

In this section we consider a general function H (9) as the
reference Hamiltonian.v

vThe analysis in'Secfion II up to Eq. (2.14) is exactly.the
same for fhe more general case now under consi@eration, and in
Eq. (2.15) we'add and subtract’ the first two terms in a Tyalor's

series expansion of HO:
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E(N) = [Hy(N) + Q(IE)-i(%—gLM ]
+ g + 80Dy o+ 28O0,y (4.3)
%9 | g |
where
3H0(§)
(D.(Ij) = 3Ni ’ (4.4)

Since the action variables § only play_the role of fixed parameters

in Eq. (4.3), . the frequency vector 9(§) is a éonstant vector just as

in Section iI; thus if the first term in square brackets in Eq. (4.3)
is identified as a new "Ho", and the second term in square brackets

is identified as a new "V'", then Eq. (4.3) hés exactly the same form ‘
as Eq. (2.16) of Section II. With these identifications one can éppeal
directly to Eq. (2.25) and write down the answer for ﬁHis more general

situation: The Fourier coefficients Ak are thus determined by the

equation
2 . ' . ik
. . . _ ik +q ,
_ -f -ik+q _ ke~ 2
A = (@M J/ dg e "~ ~ [H(g,N 3; ok A"
~ 0 ki o~~~ ~



CU U 4306700

-19-
which is equivalent to

A=A [H N) + Aglék

27 '

' X ik +q

: -f -ikeq ~ 2
+ (2m) dg e X' mH(q, N - § & N A, (4.5)

0 ki~ s ~

and the energy eigenvalue is then given by

E(§) = Ho(g) + A0 . (4.6)
The final expressions take on a simpler form if one.makes the
replacement Ak Ak - ék OHO(N) in Eqs. (4.5) and (4.6), whereby
Eqs. (4 5) and (4.6) become
. 27 ' '
. v ikeq
= - ~ik+q _ ke~ 2
Ak =" (1 6k O) Ak + (2m)” / q e "~ ~ H(S’ N g NORE Yy (4.7a)
T - 0 : : ~ -7 ~
E(N) = (4.7b)

The meéping of Eq. (4.7) is the same as with Eq. (2.25) of
Section IIL For a given set of integers g one solves Eq. (4.7a)
for the Fourier coefficients, and the éigenvalue correspoﬁding
bto these quantum numbers is then.givén by Eq. (4.7b). As in
Section II, the most direé; way of solving Eq. (4;75) is by
successive éubstitution; i.e., Eq. (4.7a) is also in the form of
Eq. (2.26), so fhat the iteration scheme defined by Eq. (2;27) énd

(2.28) is applicable. After one iteration, for example, one has
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o _ . _ o .
A'k(l) = (2"‘)--1:' /dg e-iE.S H(S,Ij) . ' » (4.8)'.

- 0
so that the result for the energy at this stage is

: : 21 : -
E(N) = (211)_f /dg H(q,N) R o _(4.9)'
' 0 ' -

the analogue of Eq. (2.30).

As noted at the end of Section II, iterating Eq. (4.7a) by
successive substitution will nbt_always be a convergent process.
An iteration scheme with better convergence properties is

described in the Appendix.
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V. CONCLUDING REMARKS.

Eq. (2.25), or Eq. (4.7) for the.case of a general reference
Hamiltonian (or Eq. (A.11) in the Appeﬁdik),'provides an efficient
way of sblving the Hamilton-Jacobi equation directly in. action-
angle variables and obtaining ﬁhe Hamiltonian in terms of the "'good"
action variables N, and thus the semiclassical eigenvalues. Further-
more, ﬁhe numerical results presented in Section II show that the
semiclassical quantum condition for multidimensional systems can give
good agreement with quantumvmechanical.eigenvélues eQen when the
non-separability is quite‘large; To the exteﬁt that-Keller's6
formalism can be applied--and Marcus'7 use of quasi-periodic
trajectories is the only way now known for doing it--it and the
present'wqu give identical results for the semiclassical eigen-
values E(g); This_follqws because they are both ways, albeit quite
different, of constructing the energy in terms of»the "good" action
variables wﬁich aré constants of the motion.

One of the important'practical advantages of'Born's5 formulation,
which has been followed in this paper, over'Keller's6 is that by
dealing with the Hamilton-Jacobi equation in'éctidn—anglebvariables
[Eq. (2.15)] one does not have to worry aboﬁp tﬁe'cqmplicated'structure
of multivalued solutions, many-sheeted Riemann surfaces, caustics,
turning surfaces, etc. This is because the unperturbed acﬁionéangle
variables'(g;g) already have the topology of this structure built
into ;hem; i.e., ;he canonical tranéformation from (B’f) tO'(B,g)

eliminates all of these complications. This resembles in spirit
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Pechukasfgvidea-of using anrunderlying separable feference
potential ﬁo carry the comblicated-mUltivalued structure of
the action function. It appears, héwever; that solving the
Hamilton-Jacobi equation in action—angle variables may be
easier to accomplish than carrying out a generalized’
Miller-Gon'transformation.9

Finaliy, although we have discussed several ways of solving
the equations for the Fourier coefficients Ak (or Bk), the
very existence of such solutions has not bee; proyeg. It seems
intuitively clear that a solution will exist atileast for
potential functions and energy regimes that poésess invariant
manifolds of'quasi—periodig trajectories--the KAM regime.18
Whether_soiﬁﬁioﬁs exist under more genéral conditions is not
known. - In certain cases, typically forvhighly_excited states
with many dégrees of freedom, one actually expects that solutions
will fail to exist, for here the eigenvalue spectrﬁm is expected

to become‘irregulan}o’l9

unable to be characterized by'é complete

set of f "good" quantum numbers. Keller's formalism must also fail

in this case, too; e.g.,.Marcus'll approach is ﬁot possible because
manifoldsléf quasi-periodic trajectories do not exist in the case

of an irregﬁlar spectrum. Thus none of the existing approaches to
semiclassical quantiéatioﬁ’seem capable of dealing with‘an irregular
spectrum. For highly excited vibrational states of large molecules, however,
one is usually less concerned about specific eigenvalues than with

the density of quantum states as a function of energy. To the extent

that this is true, then, the lack of a semiclassical condition for

irregular spectra is not a serious shortcoming.
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APPENDIX: A MORE EFFICIENT ITERATION PROCEDURE.

Eqs. (2.25a) and (4.7a) for the Fourier coefficients Ak are

of the form
x = £(x) , - - " (A.D)

for the case of a single variable x, and the iteration procedure

described for solving them corresponds to
X041 = f(xz) , (A.2)

2=0,1, 2, ..., with x being some initial guess to begin the

0

. . . 20 ' o .
iteration. It is well known, however, that the iteration

defined by Eq. (A.2) converges to the root x, only if
£ x )l <1 . | (A.3)

One would like to have an iteration procedure that is more generally
convergent.

This is easily aégomplished by re-writing Eq. (A.;) as
F(x) 2 f(x) -x=0 R | o | (A:4).
and applying Newton's iteration procedure to‘F(x). vThis gives
- ' -1 - '
XKool = X F.(xg) F(XZ) > v (A.5)
2 =0, 1? 2,‘..., which is guaranteed to converge if

F 40 | . (4.6)
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for all X. In practice, too, this convergence criterion can often
be relaXed. | |

Eq. (A.5) thus hés much better convergenée propertiesvthau Eq.
(A.2); the price paid is that Eq. (A.5) requires evaluation df the
derivatiye of the function'whéreas Eq. (A.2) does not. If Eq. (A.1)

is generalized to N equations in N unknowns,
x = £(x) , . : (A.7)
then Eq. (A.2) is generalized in the obvious fashion,
) '
X4 = %) y _ (a.2)

Eq. (A.5) is generalized by the first factor in the second term

becoming a matrix:

a1 T X 7 B 1 I . 1.5

where F(x) = f(x) - x and where the matrix elements are defined by

. . oF . (x)
[égﬁzl]‘ . = *gi—:— . o (A.8)
)‘f B PN | xj - o

For the mul;idimensional'case Eq. (A.S') is thus further complicated
by requiring a matrix inversion. | |

We néw’give thé explicit expressions for the multidimensional .
Newton iteration procedure applied to the problem of present
interest. Since the harmonic referénce potential of Section II'is

a special case of the more general situation treated in Section IV,
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we considér only the latter case. The analog of Eq. (2.20)

for the general case is

2w : .

. - —loe . -. l. ] ] -
E(N)dk 0= (2m) fy/rﬁq e IE g H(q, N - 2; k'elk d Bk') . (A.9)
. 0 -~

For k # 0 this is a set of equations for the Fourier coefficients

Bk’
4 .
=@t faq & u(q, N Z et e, (a:l0a)
h K - ~
0 ~
and for k = 0 it gives thé»eigenvalue in terms of the .coefficients
Bk:
: 27 ' ‘
~f k
E(N) = (2m) dq H(q, 2", < iz (A.10b)
~ 2 b " k7
0 ~

. . : R 1
Applying the multidimensional Newton iteration [Eq. (A.5 )] to
Eq. (A.10a) gives the following iteration procedure for the

coefficients B :

K’
(2+1) _ 1
B ‘f +Z o )E‘.S e (A.11a)
where the matrix elements + and vector W, involve B (2)
, Mk K it K

and are defined by
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o 2m
. ' ~-f -i(k-k )e°q |+ JH(q,n) B
. = m d ~ o~ 2 k . AN .
Mo =@ ) q e ln=n(q) (A.11b)
~ s 5 ~ o~
. 2 *
_ -f ' ~ikeq
Wk = (2m) /dg, e "~ =~ H(c}.’r}.)ln=n(q) . . (A.1lc)
with
n(q) = N -z kefkdy B | (A.11d)
-~ ~ ~ ~ k
k ~ .
Once the coefficients Bk are determined, the eigenvalue is the
k = 0 component of the vector W
E(N) = w0 . (A.1le)

Eq. (A.11) is the desired résult; Although it is more difficult
to apply than the.iteratioﬁ procedures described in Sections II and
IV--because it requires derivatives of the Hamiltonian and a matrix
inversion4éit has better convergence properfies. ‘If the simpler
‘algorithms converge, then it is probably more convenient to use them
(even if they are more slowiy convefgent tﬁan Eq. (A.ll)). If convérgence
is a problem, however, Eq. (A.11) is preferable. |

Finally, it is interesting to note that Eé. (A.11) involves the
reference. Hamiltonian HO only implicitly, through the definition of
- the "unperturbed" action—éngle variables‘(g,g). Making a specific

choice for the unperturbed'aétioh—angle variables is the semiclassical
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equivalent of choosing a specific basis set when carrying out

a quantum mechanical calculation of the eigenvélues.
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TABLE I. Semiclassical Eigenvaluesa

wi v w§ A n N1 N2 Ref. 1lla Ref. 11b Present Exact Quantum
0 0.29375 2.12581 -.1116 .08414 O O .9920 .9922 . .9920 0.9916
1 0 1.5164 1.5164 1.5164 1.5159
2 0 2.0313 - 2.0313  2.0313 2.0308
0 1 2.4196 2.4198 2.4194 2.4188
0.36 1.96 -.1 .0.1 0 0 0.9942 . .9942 . 0.9941 0.9939
1 0 1.5813  1.5812 1.5812 1.5809
2 0 2.1615 2.1616 2.1615 2.1612
0.49 1.1.69  -.1.-0.1 0 0 " 0.9955 0.9954 0.9955 ©0.9955
1 0 1.6870 1.6870 1.6870 1.6870
0o 1 2.2780 12,2785 2.2782 2.2781
2 0 2.3750 2.3751 2.3750 2.3750
101 2.9584 - 2.9588 2.9584 2.9583
0o 2 : 3.5480 - 3.5480 3.5479
0.81 1.21  -.08 0.1 0 o0 0.9978 10.9978 - 0.9978 0.9980
1 0 - 1.8941 1.8944 1.8941 1.8944
0 1 2.0897  2.0889 . 2.0890 12.0890

2 0 2.7895 . 2.7900 © 2.7896 2.7899

These eigenvalues refer to the potential described in Section III.
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.14
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TABLE II. Semiclassical Eigenvalues:

(Nl'= 0, N, =

Semiclassical Quantum

1. 1.

.9987
.9975
.9955
.9927
.9889
.9836
.9764

.9667

0

.9988

9975

.9955

.9926

.9884

.9826
.9743

.9621
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1.7
1.6970

1.6933

1.6870

-1.6770

1.6617

- 1.6382

- 1.6010

@1

= 0)

Semiclassical Quantum

1.7
1.6970

1.6933

- 1.6870

1.6769

1.6612

1.6370

1.5980

= 0.7 and w

2 =v}.3-

(N, =0, N

2

1

Semiclassical Quantum

2.3

2.2932

2.2870

2.2782
2.2661

2.2496

2.2268

.2932
.2870
.2781
.2658
.2490

.2257
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FIGURE CAPTIONS

Comparison of the exact quantum mechanical (solid

line) and semiclassical (broken line) eigenvalues

és a function-df non—sépérable,coupling; The lowest

three eigenvalﬁes——(Nl,Nz) = (0,0), (1,0), and (0,1)--
are shown for the system descfibedvin Section III, with
®1.='0'7’ w, = 1.3, and n = -A. .(For the top curve the

solid and dashed lines are indistinguishable.) The

‘dotted lines show the maximum in the potential energy

surface as a function of A, as given by Eq. (3.6).

Percent error in the semiclassical level shift, as a
function of the non-separable coupling. The results

are those in Table II and Figure 1, and the quantity

Vﬁlotted is 100X|( - A_)/A , where A is defined in
_ | M~ “sc’/Tqm .

 Eq;-(3f7) and QM = quantum mechanical, SC = semiclassical.
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