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ABSTRACT 

.. , 
'1 

It is shown how the Hamilton-Jacobi equation for a multi-

dimensional non-separable system can be efficiently solved 

directly in action-angle variables. This allows one to construct 

the total (classical) Hamiltonian as a function of the "good" 

action-angle variables which are the complete set of constants 

of the motion of the system; requiring the action variables 

to be integers then provides the semiclassical eigenvalues. 

Numerical results are presented for a two-dimensional potential 

well, and one sees that the semiclassical eigenvalues are in good 

agreement with the exact quantum mechanical values even for the 

case of large non-separable coupling. 
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I. INTRODUCTION. 

.i • ' 

Recent years have seen considerable, progress in the development 

of semiclassical methods for describing the dynamics of molecular 

systems. 
1 2 

Most attention has focused on molecular collision processes, ' 

both elastic and inelastic-reactive scattering of atoms and molecules, 

but there has also been interest in developing semiclassical methods 

for determining discrete eigenvalues (i.e., energy levels) of bound 

molecular systems. It is this latter topic with which the pres,ent paper 

is concerned. 

The Bohr-Sommerfeld quantum condition, 3 

(n + -!>1T 
1/2 

2 {2m [E~v (x)] /h } 

n = 0, 1, 2, ••• ,which defines the eigenvalues E(n) implicitly; 

is the semiclassical solution to the eigenvalue problem for one-

dimensional potential wells V(x); it is a well-known result and 

(1.1) 

immensely useful in many areas of chemistry and molecular physics. 

What one desires is the generalization of this result to multi-. 

dimensional, non-separable potential functions. 

Einstein4 was the first to make significant progress in obtaining 

a semiclassical quantum condition for non-separable multidimensional 

systems, and Born's5 book describes the height to which the "Old 

Quantum Theory" had evolved by 1924, just before the advent of quantum 

mechanics. 6-13 More recently a number of workers have made contribu-

tions to the problem. 
. 6 

Keller, following Einstein's approach, has 

focused attention on the Hamilton-Jacobi equation in cartesian 



~2-

coordinates, the multivalued structure of its solutions, their 

caustics, turning surfaces, etc. The work of Maslov, 7 Perciva1,
10 

13 11 and Voros has also been along this general line. t-iarcus' 

recent work is also an application of Keller•s6 formalism, but 

he has shown how invariant manifQlds generated by quasiperiodic 

trajectories can be used to construct the multivalued action 

functions which appear in Keller's theory. 
9 Pechukas has attempted 

a very different approach to the problem, namely mapping the non-

separable potential onto a separable one via a generalized Miller

S 
Good transformation. Gutzwiller's approach is also significantly 

different from the others; it. is based on .a station<1ry phase approxi

mation to the trace of the semiclassical propagator. t-liller
12 

has 

recently modified and clarified some of the features of Gutzwiller's 

result and in fact shown that it is an approximate version of Keller's
6 

formalism. 

5 The present paper follows the approach of Born: One divides 

the total Hamiltonian H into a separable part, H
0

, plus a non

separable interaction V. The goal is then to construct the canonical 

transformation from the zeroth order action-angle variables which 

correspond to H
0

, to the set of "good" action-angle variables for 

the total Hamiltonian H; in terms of these "good" action-angle 

variables H is a function only of the action variables, and this 

function, for integer values of the action variables, gives the 

eigenvalues. However, whereas Born's approach is only able to 

effect this transformation within the framework of perturbation 

5 theory--e.g., Born gives explicit expressions for the semiclassical 
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. ' ~ . , ;: ' . 

eigenvalues through second order in the· ~ori:.:s~~arab.le perturbation 

V--Sections II and IV below show how it·can:be 'Carried out efficiently 

to infinite order, i.e., exactly. Section II first considers the 

case of a harmonic reference potential, and Section III presents a 

numerical example to demonstrate how the theory can be applied. 

Section IV then shows how the approach can be generalized to treat 

systems .with a general (anharmonic) reference potential. The result-

ing procedure appears to be a powerful and accurate way of constructing 

semiclassical eigenvalues for non-separable multidimensional systems. 

Section V concludes by discussing how the approach relates to some of 

the other recent work discussed above. 
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II. HAR~DNIC REFERENCE POTENTIAL. 

The Hamiltonian describing the system is assumed to be of 

the form 

H(p,x) - - = 
2 

1L + 
2ll 

where (~,~) = (xi,pi), i=l, ••• , fare the cartesian coordinates 

and momenta and f is the number of degrees of freedom. (It is no 

restriction to take all degrees of freedom to have the same mass 

lJ.) The reference potential v0 (~) is separable, 

= v. (x.) 
.1 1 

and in this section it will be assumed that the individual one-

dimensional potentials v.(x.) are harmonic: 
~ 1 

v. (x.) 
1 1 

1 2 2 
= -2 lJ W, X 

_1 i 

The potential V(x) is non-separable, the feature which precludes 

an exact analytic solution to the problem. 

Following Born's5 formulation, one changes from cartesian 

d . -- 'd . ( ) h . 1 . bl 14 
coor 1nates an momenta p,x to t e act1on-ang e var1a es 

(~,g) which correspond to the reference potential v
0

• For the 

present case of a harmonic reference potential the cartesian 

variables (p,x) are given in terms of the action-angle variables - -
(n,q) by the following expressions: 

(2.1) 

(2.2) 

(2.3) 
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[

2ni+l] 1/2 

)JW. 
1 

9 

1/2 
-[(2n.+l)).lw.] sinq. 

1 1 . 1 

i = 1, 2, ...• f. (The "+1" is added to 2n. since one knows 
1 

that half-integer quantum numbers arise in the one-dimensional 

case--cf. Eq~ (1.1)--because of phase contributions from the 

classical turning points.) If the individual one-dimensional 

potentials were not harmonic, one could still express p. and x. 
1 1 

in terms of n. and q., but the expressions would be different 
'' •. 1 1 

from Eq. (2,4). 

In terms of the action-angle variables (n,q) the Hamiltonian 

of Eq.· (2.1) becomes 

H(q,n) = - -
and for the present harmonic case H

0 
is given by 

f 
= k 

1 
W. (n.~2 ) = 

1 1 

wh~re one should note that units are being used for which h = 1. 

V(q,n) depends on nand q through Eq. (2.4a); i.e., 

V(~,~) = V(x(n,q)) 

If the non-separable interaction V were absent, i.e., V = 0, then 

the Hamiltonian would depend only on the action variables n, 

(2.4a) 

(2.4b) 

(2.5) 

(2.6) 

(2. 7) 



£im H(_g,~) 
v~o 

and Hamilton's equations 

d.· aH 
dt n

1
. (t) = - -"'oq. 

1 
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would thus show the action variables n to be constants of the 

motion. The eigenvalues of the system would then be obtained by 

requiring that the action variables only take on integral values, 

i.e.' 

(2.8) 

(2.9) 

(2.10) 

with {ni}, i = 1, 2; ••• , f restricted to be integers. The presence 

of the non-separable interaction V(_g,~), however, shows via Eq. (2.9) 

that the {n.} are not constants of the motion for the total Hamiltonian 
1 --

and thus not the "good" quantum numbers of the system. 

What one needs to do, therefore, is to transform from the 

"unperturbed" action-angle variables (n,q) to a set of "good" action-

angle variables (N,Q) such that the total Hamiltonian H depends only - -
on the action variables N. If this can be done, then it is clear that 

{N.(t)} will be the constants of the motion for the total Hamiltonian 
1 

and that the eigenvalues will be given by 

E (N) H(N) 

with the "good quantum numbers" {N.} required to be integral. 
1 
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To effect this (n,q) ~ (N,Q) transformation, Born5 introduces - - - -
' f ' f h F lS ' h' h . f a generat1ng unct1on o t e 2-type, 1. e., one w 1c 1s a uric tion 

of the "old coordinate" q and the "new momentum" N, F(q,N). The 

canonical transformation is then defined implicitly by the two 

differential equations 

n(q,N) = (2 .lla) 

Q(q,N) = (2.llb) - - -

which express the other two variables, n and Q, in terms of q and 

N. The generator F is determined by substituting Eq. (2.lla) into 

the Hamiltonian, Eq. (2.5), and requiring that the result be a 

function only of N: 

E(N) (2.12) 

where H(N) has been denoted by E(N). Eq. (2.12) is the Hamilton-

J b . · 16 f h ' f ' F aco 1 equatl.on or t e generat1.ng unct1.on . 

To solve Eq. (2.12) for F one first note~ the solution that 

would result if V were set to zero. In that case one would want the 

"new" action angle variables (N, Q) to be the same as the "old'' ones 

(n,q), and the generator.of such an identity transformation is17 

~im F(q,N) = q•N 
V-+0 

One can easily verify that Eq. (2.11) then gives N = n and Q q. 

(2.13) 
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To take explicit account of this separable limit, Eq. (2.13), 

it is convenient to take F in the form 

F(q,N) q •N + G(q,N) 

where the function G(q,N) is to be determined. Using Eq. (2.14), 

the Hamilton-Jacobi equation, Eq. (2.121 gives the following 

equation for G; 

E(N) = H ~N + ()G(g,~p) + Vlq,N + 
0 ~ dq \~ --

()G(g,~)). 
aq 

and for the present case of a harmonic H
0

, this becomes 

E(N) 
1 + w· aces.~> ~· <~+z>. aq 

+ v(~·l! + dG(~,~)) aq 

At this point Born5 invokes the boundary conditions which 

produce quantization. The {N.} are required to be integers, of 
l. 

(2.14) 

(2 .15) 

(2.16) 

course, but in addition G(q,N) is required to be a periodic function 

of g. Born's justification for doing this is hard to follow, but 

it is easy to see why this should be true in light of quantum 

mechanics: The general semiclassical tr~nsformation relations
2 

imply that the generator F(q,N) is related to the wavefunction in - -
g-space by 

(2.17) 



0 0 u 6 9 6 

-9-

and with Eq. (2.14) (and since h = 1 in the present units), 

this becomes 

Single-valuedness of the wavefunction thus implies that the 

{Ni} should be integers and G(q,N) a p~riodic function of q. 

G(g,~) can thus be expanded in a Fourier series 

G(q,N) = 

· where the constant factor i has been included explicitly for 

convenience, and where the prime· on the summation implies that 

the constant term k = (0, 0, 0, ... , 0) = 0 is omitted. 

is actually a function of N but this functionality will not be 

explicitly indicated.) Substituting this expansion into Eq. 

-ik•q 
(2.16), multiplying bye - -, and integrat~ng over the angles 

q gives 

-f I -ik·q ~ , + (2u) 
0 

dq e - - V(g,~ - ~· k 

(2.18) 

(2.19) 

. (2.20) 

For k f 0 Eq. (2.20) is a set of equations for the Fourier coefficients 

= 
-ik•q 

e - -
' ' ik •q 

k e- - Bk'),(2.21) 
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and for k = 0 Eq. (2.20) gives the energy eigenvalue E(N) in• 

terms of the Fourier coefficients Bk: 

27T 

, E(N) = -f f (2n) dg 
0 

V(q,N -~ 
k 

. ' ' l.k • q 
k e - - Bk,) . ( 2. 2 2) 

The procedure, then, is to solve Eq. (2.21) for the coefficients 

Bk, and then substitute them into Eq. (2.22) to obtain the energy 

eigenvalue. 

The.final formulae are most conveniently expressed if one 

introduces the coefficients ~ which are defined by 

2n 

(2n)-f /ds 
0 

k ~ "k' -i • q . . ' 1. • q 
e -- V(q,N- ~ e- - Bk,) 

k 
(2.23) 

From Eq. (2.21) one sees that for k :/ 0, Bk is given in terms 

of~ by 

(2.24) 

In terms of the coefficients ~' Eqs. (2.21) and (2.22) thus become 

2n ' 
(2n)-f 

/ds 
-ik•q -~ 

' ik •.q 

I\ V(q,N k e -
'\I) (2.25a) e ·- - --, 

' w·k 
k 

0 ;.. 

E(N) = (2.25b) 

Eq. (2.25) is the final result, and one applies it in the 

following way: The action variables N occur in Eq. (2.25) only 
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as fixed parameters, so they are initially set equal to which-

ever set of integers one desires, corresponding to whichever 

eigenvalue one wishes to compute. Eq. (2.25a) must then be 

solved for the Fourier coefficients ~' and successive substitution is 

the most direct way of doing this; i.e., since Eq. (2.25a) is 

of the form 

function [~) 

one·< defines the iteration: scheme 

A~~+l) = function [~ (~)] 
k 

· 1 = 0, 1, ..• ,which is initiated by 

~ (0) = 0 

After one iteration, for example, this gives 

~ (1) e;..i~·~ V(q,N) 
·- -

this result is then substituted into the RHS of Eq. (2.25a) to 

d A. (2) ' pro uce _K. '1 A.(~) 0 k etc., unt1 K , N + oo, ta es on a constant 

value. Since the eigenvalue E(N), given by Eq. (2.25b), involves 

only the k = ~ component of ~· it is only necessary to carry on 
(~) ~ . 

this iterat.ion until A
0 

becomes constant. This, then, is the 

procedure by which the eigenvalues E(N) are generated for any set 

(2.26) 

(2.27) 

(2.28) 

(2. 29) 
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It is interesting to note that the result of one iteration 

is equivalent to first order perturbation theory. Eq. (2.29) 

gives ~ (l), so that at this stage Eq. (2.25b) gives the energy 

as 

E(N) 

2TI 

~·(~~) + (2TI)-f ~ dq V(q,N) 

0 

which is identical to Born's5 result through first order. Since 

the RHS of Eq. (2.25a) is a non-linear function of Ak, however, 

(2)-
one can easily verify that the second iterate, ~ , and the 

resulting value forE(~) given by Eq. (2.25b), is not equivalent 

to second order perturbation theory. 

(2.30) 

Although the iteration procedure defined by Eqs. (2.26)-(2.28) 

is the most convenient way of solving Eq. (2.25a), it may not always 

be convergent. The Appendix describes an alternate iteration procedure 

that has superior convergence properties. 
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III. NUMERICAL EXAHPLE. 

This section applies the procedure developed in Section II 

to a simple two-dimensional example that has been used as a test 
. 11 

case by other workers. The reference potential is harmonic, 

and the non-separable potentiai is 

where A and n are constants. 

Using Eq. (2.4a) with f = 2, Eq. (2.25a) reads 

27T 

= (27T)-2 /dql 

0 

with V(x
1

,x
2

) given by Eq •. (3.1), where 

with 

= 

N -
1 

+ 1 

J 
1/2 

(3 .1) 

(3. Za) 

(3. 2b) 

(3. 2c) 

(3. 2d) 
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For a given set of quantum numbers (N
1

,N2), Eq. (3.2) is iterated 

until AO,O becomes constant, and then the eigenvalue is given by 

Eq. (3.2) may look formidable, but the iteration process is 

(3.2e) 

(3. 3) 

actually a simple procedure operationally because of the availability 

of Fourier transform and inversion package subroutines. Thus, a 

grid of q
1 

and q2 values is introduced, 

1, •.. , 11 (3.4) 

'. (3.4b) 

and the integrals over q
1 

and q2 in Eq. (3.2a) become sums: · 

(27T) -2 
i! L~ 
£ =1 £"2;1 1 2 . 

(3. 5) 

for any function f(q
1

,q2). The specific iteration procedure is as 

follows: Given the matrix of coefficients ~ .· at 
l'k2 

any stage of 

the iteration, the functions n
1 

(q
1

,q
2

) and n2(ql'q2) of Eqs. (3.2d) 

and (3. 2e) are each evaluated at the complete matrix of grid points 
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<·\) u,2) 
(q

1 
, q

2 
) by a single call of the Fourier inversion subroutine. 

From these functions the potential V is evaluated at the matrix of 
(Q.l) (Q.2) 

grid points (q
1 

, q2 ), and a single call 6f the Fourier 

transform subroutine then generates the matrix~ k via Eq. (3.2a). 
1, 2 

With this new matrix of coefficients ~ k , 
. 1' 2 

the functions n
1

(q
1

,q
2

) 

and n 2 Cq
1

,q
2

) are re-evaluated at the matrix 
(Q.l) (Q.2) 

(q
1 

, q
2 

), etc. 

of grid points 

For the numerical results presented below a grid size L = L = 8 
1 2 

was sufficiently large to yield eigenvalues to 4 decimal places, and 

typically 10-15 iterations were necessary to achieve convergence of 

AO,O to this degree of accuracy. Use of the complex fast Fourier 

transform (CFFT) subroutine of the Computer Library of the Lawrence 

Berkeley Laboratory made the calculations simple and efficient. 

The first calculations were made to compare with the results of 

· lla . llb 
Eastes and t-farcus and No1.d and Marcus. This comparison is given 

. T b.l I T h h h . kll b d . f ld f 1.n a e . o t e extent t at t 1.s wor ase on man1. o s o 

quasi-periodic trajectories and the present work are numerically 

accurate, one can easily conclude that they should give the same 

results for the eigenvalues. This is because they are simply different 

ways of constructing the same thing, the classical Hamiltonian in 

terms of the two "good" action variables which are constants of the 

motion. The results in Table I illustrate this conclusion, the small 

differences in the semiclassical eigenvalues presumably being numerical 

error. 

The semiclassical eigenvalues in Table I are in quite good agreement 

with the exact quantum mechanical values. The small A and n values 
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used in reference 11, however, give only small shifts of the 

eigenvalues from their unperturbed harmonic values, so the good 

agreement might not be indicative. Thus another set of calcula-

tions was carried dut as a function of the non-se~arable coupling 

parameters. The quantum mechanical eigenvalues were obtained by 

diagonalizing the matrix of the Hamiltonian in successively larger 

harmonic.oscillator basis sets. 

For the case w1 = 0.7, w2 = 1.3, and n = -~, Table II gives 

the ground and first two excited state semiclassical and quantum 

mechanical eigenvalues for ~ = 0 + -0.2. These results are also 

displayed in Figure 1. Since this potential function has a 

relative maximum (i.e., a saddle point) at x
1 

= t (w1 /~) 2 ; x2 = 0, 

of 

v max 

there can he no eigenvalues above this value. 

(3. 6) 

The function V (~) ·max 

given by Eq. (3.6) is also shown in Figure 1, and one sees that the 

eigenvalues do tend to break off at this point. 

The agreement between the semiclassical and quantum mechanical 

eigenvalues in Table II and Figure 1 is seen to be quite good. A 

more severe test of the semiclassical quantum condition, however, is 

to focus attention on the level shift 6, 

(3.7) 

the displacement of the eigenvalue from its unperturbed harmonic 
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value. Figure 2 shows the percent error in the semiclassical 

level shift is a function of the non~separable strength parameter 

~. The error is seen to be largest for the ground state, as expected, 

but even here it becomes sizeable only as the eigenvalue approaches 

the dissociation limit. The error is seen to drop substantially 

for the first two excited states, and one would expect it to be even 

less for higher states. In general, this level of accuracy--a few 

percent, ~xcept for the ground state-~is typical of that given by 

the one-dimensional Bohr-Sommerfeld quantum condition [Eq. (1.1)], 

and one can hardly expect its multidimensional generalization to 

do better. 
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IV. GENERAL REFERENCE POTENTIAL. 

0 ' 

The iteration procedure for finding the Fourier coefficients 

~ will be most efficient if the reference Hamiltonian H0 is chosen 

to make the potential V as small as possible. To do this it may 

sometimes be advantageous to choose the one-dimensional potentials 

v.(x.) in Eq. (2.2) to be anharmonic; e.g., one might wish to take 
1. 1. 

them to be Morse potentials 

v. (x.) 
1 1 

-(x.-x
0
)/a. 2 

= D. [e 
1 1 

- 1] 
l. 

In this case n0 (~) is not given by Eq. (2.6), but by a more 

complicated function of the action variables {n.} • For f 
1 

Morse oscillators, for example, 

no<~> 

where 

1 
[w. (n. + -

2
) 

l.. 1. 

2D. 1/2 
(-1.) 

wi 2 
~a. 

l.. 

2 w. 
l. 

4D. 
1. 

1 2 
(ni + 2) ] 

In this section we consider a general function H0 (~) as the 

reference Hamiltonian. 

The analysis in Section II up to Eq. (2.14) is exactly the 

same for the more general case now under consideration, and in 

Eq. (2.15) we add and subtract the first two terms in a Tyalor's 

series expansion of H
0

: 

(4.1) 

( 4. 2) 
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E(N) [HO(~) + w(N)•()G(g,~) - .. - aq 

+ [V(9,~ + ()G(q,N))+ H (N + ()G(q,N)) - HO(.~) 
aq 0 - aq 

(4.3) 

-

w(N)•()G(g,ij) 
- - aq 

where 

w. (N) = 
~ - (4.4) 

i = 1, 2, .•. , f. 

Since the action variables N only play the role of fixed parameters 

in Eq. (4.3), .the frequency vector w(N) is a constant vector just as - -
in Section II; thus if the first term in square brackets in Eq. (4.3) 

is identified as a new "H0", and the second term in square brackets 

is identified as a new "V", then Eq. (4.3) has exactly the same form 

as Eq. (2.16) of Section II. With these identifications one can appeal 

directly to Eq. (2.25) and write down the answer for this more general 

situation: The Fourier coefficients ~ are thus determined by the 

equation 
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which is equivalent to 

-ik•q 
e - - H(q, N - L 

k' 

. ' 
k ' ik •q 

e - ---- ' w(N)•k 

and the energy eigenvalue is then given by 

'\') 

The final expressions take on a simpler form if one makes the 

replacement'\~'\- ok,OHO(~) in Eqs. (4.5) and (4.6), whereby 

Eqs. (4.5) and (4.6) become 

2n 

'\ = (1- ok,O) '\ + (2n)-f /dc.J 

0 

E(N) = AO 

-ik•q 
e - - H(q, N 

The meaning of Eq. (4.7) is the same as with Eq. (2.25) of 

Section II. For a given set of integers None solves Eq. (4.7a) 

for the Fourier coefficients, and the eigenvalue corresponding 

to these quantum numbers is then given by Eq. (4.7b). As in 

Section II, the most direct way of solving Eq. (4.7a) is by 

successive substitution; i.e., Eq. (4.7a) is also in the form of 

(4.5) 

(4.6) 

( 4. 7b) 

Eq. (2.26), so that the iteration scheme defined by Eq. (2.27) and 

(2.28) is applicable. After one iteration, for example, one has 
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2n 

~ (l) = (2n)-f Jd~ e-i~·~ H(q,N) 

0 

so that the result for the energy at this stage is 

27f 

E(N) = (2n)-f 1 d~ H(q,N) 

0 

the analogue of Eq. (2. 30). 

As noted at the end of Section II, iterating Eq. (4.7a) by 

successive substitution will not always be a convergent process. 

An iteration scheme with better convergence properties is 

described in the Appendix. 

(4.8) 

(4.9) 

-. 
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V. CONCLUDING REMARKS. 

Eq. (2.25), or Eq. (4.7) for the case of a general reference 

Hamiltonian (or Eq. (A.ll) in the Appendix), provides an efficient 

way of solving the Hamilton-Jacobi equation directly in action-

angle variables and obtaining the Hamiltonian in terms of the "good" 

action variables N, and thus the semiclassical eigenvalues. Further-

more, the numerical results presented in Section II show that the 

semiclassical quantum condition for multidimensional systems can give 

good agreement with quantum mechanical eigenvalues even when the 

non-separability is quite large. 
6 

To the extent that Keller's 

formalism can be applied--and Marcus'
7 

use of quasi-periodic 

trajectories is the only way nowknown for doing it--it and the 

present work give identical results for the semiclassical eigen-

values E(N). Thi~ follows because they are both ways, albeit quite 

different, of constructing the energy in terms of the "good" action 

variables which are constants of the motion. 

One of the important practical advantages of Born's 5 formulation, 

which has been followed in this paper, over Keller's 6 is that by 

dealing with the Hamilton-Jacobi equation in action-angle variables 

[Eq. (2.15)] one does not have to worry about the complicated structure 

of multivalued solutions, many-sheeted Riemann surfaces, caustics, 

turning surfaces, etc. This is because the unperturbed action-angle 

variables (~,g) already have the topology of this structure built 

into them; i.e., the canonical transformation from (p,x) to (n,q) 

eliminates all of these complications. This resembles in spirit 
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Pechukas• 9 idea of using an underlying separable reference 

potential to carry the complicated multivalued structure of 

the action function. It appears, however, that solving the 

Hamilton-Jacobi equation in action-angle variables may be 

easier to accomplish than carrying out a generalized 
9 

Miller-Good transformation. 

Finally, although we have discussed several ways of solving 

the equations for the Fourier coefficients J\_ (or Bk)' the 

very existence of such solutions has not been proved. It seems 

intuitively clear that a solution will exist at least for 

potential functions and energy regimes that posses~ invariant 

. f ld f . . d' . . ' h KAM · lS man~ o s o quas~-per~o ~c traJector~es--t e reg1me. 

Whether solutions exist under more general conditions is not 

known. In certain cases, typically for highly excited states 

with marty degrees of freedom, one actually expects that solutions 

will fail to exist, for here the eigenvalue spectrum is expected 

. 10 19 to become ~rregula~ ' unable to be characterized by a complete 

set of f "good" quantum numbers. Keller's formalism must also fail 

11 in this case, too; e.g., Marcus' approach is not possible because 

manifolds of quasi-periodic trajectories do not exist in the case 

of an irregular spectrum. Thus none of the existing approaches to 

semiclassical quantization seem capable of dealing with an irregular 

spectrUJ!l. For highly excited vibrational states of large molecules. however, 

one is usually less concerned about specific eigenvalues than with 

the density of quantum states as a function of energy. To the extent 

that this is true, then, the lack of a semiclassical condition for 

irregular spectra is not a serious shortcoming. 

' . ' 
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APPENDIX: A HJRE EFFICIENT ITERATION PROCEDURE. 

Eqs. (2.25a) and (4.7a) for the Fourier coefficients Ak are 

of the form 

x = f(x) 

for the case of a single variable x, and the iteration procedure 

described for solving them corresponds to 

X = f(x 0 ) 
£+1 ¥.. 

£ = 0, 1, 2, ••• ,with x
0 

being some initial guess to begin the 

20 iteration. It is well known, however, that the iteration 

defined by Eq. (A.2) converges to the root x
00 

only if 

(A.l) 

(A. 2) 

(A • .1) 

One would like to have an iteration procedure that is more generally 

convergent. 

This is easily accomplished by re-writing Eq. (A.l) as 

F(x} - f(x) - x = 0 (A.4) 

and applying Newton's iteration procedure to F(x). This gives 

(A.S) 

£ = 0, 1, 2, ••• , which is guaranteed to converge if 

' · F (x) I 0 (A. 6) 
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for all x. In practice, too, this convergence criterion can often 

be relaxed. 

Eq. (A.S) thus has much better convergence properties than Eq. 

(A.2); the price paid is that Eq. (A.S) requires evaluation of the 

derivative of the function whereas Eq. (A.2) does not. If Eq. (A.l) 

is generalized to N equations in N unknowns, 

x = f(x) (A. 7) 

then Eq. (A.2) is generalized in the obvious fashion, 

I 

(A.2 ) 

Eq. (A.S) is generalized by the first factor in the second term 

becoming a matrix: 

I 

~£+1 (A .5 ) 

where F(x) :: f(x) - x and where the matrix elements are defined by 

()F. (x) 
l. -

ax. 
J 

(A. 8) 

I 

For the multidimensional case Eq. (A.S ) is thus further complicated 

by requiring a matrix inversion. 

We now give the explicit expressions for the multidimensional 

Newton iteration procedtire applied to the problem of present 

interest. Since the harmonic reference potential of Section II is 

a special case of the more general situation treated in Section IV, 
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we .consider only the latter case. The analog of Eq. (2.20) 

for the general case is 

-ik•q 
e - - H(q, N 

For k ~ 0 this is a set of equations for the Fourier coefficients 

-f 0 - (2n) 
I 

-ik•q ~ ' ik •q 
e - - H(q, N - LJ k e- Bk•) 

k' -

(A. 9) 

(A .lOa) 

and for k - 0 it gives the eigenvalue in terms of the coefficients 

2n 

E(N) = (2n)-f ~~ 
0 

' 
~ ' ik •q 

H{q, N- k e- - Bk•) 
k -

I 

Applying the multidimensional Newton iteration [Eq. (A.5 )] to 

Eq. (A.lOa) gives the following iteration procedure for the 

coefficients Bk: 

w ' k 

where the matrix elements \,k' and vector Wk involve Bk (£) 

- -
and are defined by 

(A. lOb) 

(A.lla) 

•: 
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I 

:t-t = (21T)-f 
k,k' 

e-i(k-k )•q k'·aH(q,ull · 
- - - - an n=n(q) 

n(q) 

21r 

(21T)-f f -ik•q ( )i d~ e - - H ~·~ n=n(q) 
0 

= N -~ 
k 

ik•q B (t) 
k e - - k 

Once the coefficients Bk are determined, the eigenvalue is the 

k 0 component of the vector wk: 

(A.llb) 

(A.llc) 

(A.lld) 

E(N) = w
0 

(A.lle) 

Eq. (A.ll) is the desired result. Although it is more difficult 

to apply than the iteration procedures described in Sections II and 

IV--because it requires derivatives of the Hamiltonian and a matrix 

inversion--it has better convergence properties. If the simpler 

algorithms converge, then it is probably more convenient to use them 

(even if they are more slowly convergent than Eq. (A.ll)). If convergence 

is a problem, however, Eq. (A.ll) is preferable. 

Finally, it is interesting to note _that Eq. (A.ll) involves the 

reference Hamiltonian H0 only implicitly, through the definition of 

the "unperturbed" action-angle variables (n,q). Making a specific 

choice for the unperturbed action-angle variables is the semiclassical 
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equivalent of choosing a specific basis set when carrying out 

a quantum mechanical calculation of the eigenvalues. 
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TABLE I. Semiclassical Eigenvaluesa 

2 2 
Nl N2 Ref. lla Ref. llb wl w2 n Present Exact Quantum 

0.29375 2.12581 -.1116 .08414 0 0 .9920 .9922 .9920 0.9916 

1 0 1.5164 1.5164 1.5164 1. 5159 

2 0 2.0313 2.0313 2.0313 2.0308 

0 1 2.4196 2.4198 2.4194 2 .1~188 

0.36 1.96 -.1 0.1 0 0 0.9942 .9942 0.9941 0.9939 

1 0 1. 5813 1. 5812 ' 1.5812 1.5809 
\. 

2 0 2.1615 2.1616 2.1615 2.1612 

0.49 ~.: '-. 1.69 -.1 ' 0.1 0 0 0.9955 0.9954 0.9955 0.9955 

' ' 1 0 1.6870 1. 6870 1.6870 1. 6870 

0 1 2.2780 2.2785 2.2782 2.2781 

2 0 2.3750 2.3751 2.3750 2.3750 

1 1 2.9584 2.9588 2.9584 2.9583 

0 2 3.5480 3. 5480' 3.5479 

0.81 1.21 -.08 0.1 0 0 0.9978 0.9978 0.9978 0.9980 

1 0 1.8941 1.8944 1~8941 1. 8944 

0 1 2.0897 2.0889 2.0890 2.0890 

2 0 2.7895 2.7900 2.7896 2.7899 

a These eigenvalues refer to the potential described in Section III. 



TABLE II. 

A (N1 = 0, N2 

Semiclassical 

0 1. 

-.06 .9987 

-.08. .9975 

-.10 .9955 

-.12 .9927 

-.14 .9889 

-.16 .9836 

-.18 .9764 

-.20 .9667 
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Semiclassical Eigenvalues: w1 = 0.7 and w2 = 1.3 

= 0) (Nl = 1, N2 = 0) (N
1 

= 0, N2 

Quantum Semiclassical Quantum Semiclassical 

1. 1.7 1.7 2.3 

.9988 1.6970 1.6970 2.2932 

.9975 1.6933 1.6933 2.2870 

.9955 1.6870 1.6870 2.2782 

.9926 1.6770 1.6769 2.2661 

.9884 1.6617 1.6612 2.2496 

.9826 1.6382 1.6370 2.2268 

.9743 1.6010 1.5980 

.9621 

= 1) 

Quantum 

2.3 

2.2932 

2.2870 

2.2781" 

2.2658 

2.2490 

2.2257 

• I 
I 
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FIGURE CAPTIONS 

Comparison of the exact quantum mechanical (solid 

line) and semiclassical (broken line) eigenvalues 

as a function· of non-separable coupling. The lowest 

three eigenvalues--(N
1

,N2) = (0,0), (1,0), and (0,1)-

are shown for the system described in Section III. with 

w
1 

= 0.7, w2 = 1.3, and n =-A. (For the top curve the 

solid and dashed lines are indistinguishable.) The 

dotted lines show the maximum in the potential energy 

surface as a function of A, as given by Eq. (3.6). 

Percent error in the semiclassical level shift, as a 

function of the non-separable coupling. The re~ults 

are those in Table II and Figure 1, and the quantity 

plotted is lOOXI(~H - ~SC) I ~QMI, where ts is defined in 

Eq. (3.7) and QH = quantum mechanical, SC = semiclassical. 
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