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Semiclassical initial value representation for rotational degrees of freedom:
The tunneling dynamics of HCl dimer

Xiong Sun and William H. Miller
Department of Chemistry, University of California, Berkeley, California and Chemical Sciences Division,
Lawrence Berkeley Laboratory, Berkeley, California 94720

~Received 23 December 1997; accepted 24 February 1998!

The semiclassical initial value representation~SC-IVR! is emerging as a practical way of
generalizing classical trajectory simulation methods to include~approximately! the effects of
quantum mechanics~i.e., interference and tunneling!. This paper describes the application of the
SC-IVR approach to determine the low lying vibrational states of the HCl dimer on a realistic
potential energy surface. Overall agreement of the semiclassical energy levels with accurate
quantum values is very good, including a good description of the tunneling splitting in the ground
state. Issues regarding the applications of the SC-IVR methodology to the angular variables related
to rotational degrees of freedom are explicitly discussed. ©1998 American Institute of Physics.
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I. INTRODUCTION

Semiclassical~SC! methods have a long history i
chemical physics,1–8 the attraction being that they provide
way, in principle, of augmenting classical trajectory simu
tion methods with an approximate inclusion of quantum m
chanical effects. Many applications of SC theory in the ea
1970’s showed that, in effect,all quantum mechanica
effects—interference~or coherence! effects, tunneling~in-
cluding ‘‘dynamic tunneling’’!, symmetry-based selectio
rules, scattering resonances~i.e., ‘‘weak quantization’’ of
metastable states!, and energy quantization of bound molec
lar systems—are contained in the SC description at le
qualitatively, and that often the description is sufficiently a
curate to be quite useful. A great deal was learned in
early work about the nature of quantum effects in molecu
dynamics, but unfortunately the way that classical mecha
must be used in semiclassical theory makes it consider
more difficult to apply than ordinary classical mechani
Thus the complexity~i.e., size! of the molecular system fo
which these semiclassical calculations could be carried
was considerably less than that for which ordinary class
trajectory simulations are practical.

Recently, however, there has been a revival of interes
using semiclassical methods for molecular dynamics sim
tions, based primarily on theinitial value representation
~IVR!.9–17The IVR converts the multivaluedboundary value
problem of the conventional semiclassical approach int
single-valuedinitial value problem which is much easier t
implement computationally; it also has an approximate ‘‘u
formizing’’ character that makes it typically more accura
than the original ‘‘primitive’’ semiclassical approximation
Though the IVR idea also originated in the early 1970
recent work has introduced a variety of new IVR’s that a
more useful than the original version. The IVR version of S
theory has all the hallmarks noted above, i.e., inclusion
interference and tunneling effects, and a number of rec
applications have illustrated its accuracy and usefulness f
8870021-9606/98/108(21)/8870/8/$15.00
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variety of dynamical phenomena. Particularly interesting h
been the generalization of the SC-IVR methodology to
cludeelectronically nonadiabaticprocesses,18,19 i.e., dynam-
ics involving transitions between different Born–Oppe
heimer potential energy surfaces. By providing a unifi
treatment of the electronic and nuclear degrees of freed
one avoids inconsistencies that arise in mixed quantu
classical approaches.

This paper describes the application of current SC-IV
methodology to the low lying eigenvalues of a van der Wa
complex, namely the HCl dimer, thus further widening t
class of dynamical problems for which the approach h
been demonstrated. This is a truly benchmark van der W
system, having been thoroughly studied experimentally
far-infrared spectroscopic techniques and a highly accu
potential energy surface developed to fit these data.20 This is
quite a nontrivial test for semiclassical theory because
strong hydrogen bonding in the system leads to strong an
monic coupling between the rotational and vibrational d
grees of freedom. The dissociation energy is only ab
690 cm21, and there are two equivalent minima separated
a barrier of about 70 cm21. The low lying eigenvalues are
thus characterized by tunneling splittings~;16 cm21 for the
lowest doublet! and other nonclassical effects. The goal
the present work is thus to see how well the SC-IVR a
proach is able to describe these phenomena.

Section II first briefly summarizes the SC-IVR approa
and the Filinov, or stationary Monte Carlo smoothing me
ods used to implement it. The Appendix describes some s
cial features of semiclassical mechanics that arise when tr
ing angular coordinates for rotational degrees of freedo
and especially how the SC-IVR simplifies these matte
Specifics of the HCl dimer, i.e., the Hamiltonian, are d
cussed in Sec. III, and the results in Sec. IV. Section
concludes with some thoughts as to where one is in the
IVR program.
0 © 1998 American Institute of Physics
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II. THE SEMICLASSICAL INITIAL VALUE
REPRESENTATION

The basic idea of the SC-IVR is very simple. Consid
for example, the transition amplitude from state 1 to stat
~i.e., a generic matrix element of the time evolution ope
tor!,

S2,1[^C2ue2 iĤ t/\uC1&

5E dq2E dq1C~q2!* ^q2ue2 iĤ t/\uq1&C1~q1!.

~2.1!

Replacing the coordinate matrix representation of the pro
gator with the standard semiclassical~Van Vleck! approxi-
mation yields

S2,15E dq2E dq1C2~q2!* C1~q1!

3 (
roots

F ~2p i\!FU]q2

]p1
UG2

1
2

eiSt~q2 ,q1!/\2 inp/2, ~2.2!

where

St~q2 ,q1!5E
0

t

dt@p~t!•q̇~t!2H~p~t!,q~t!!#, ~2.3!

is the classical action for the trajectory that goes fromq1 to
q2 in time t. To apply Eq.~2.2! as written, one needs to solv
a nonlinear boundary value problem; i.e., ifqt(p1 ,q1) is the
coordinate at timet that evolves from the initial (t50) con-
ditions (p1 ,q1), then for a givenqt , one must find values o
p1 that satisfy

qt~p1 ,q1!5q2 . ~2.4!

In general, there will be multiple roots to this equation~since
qt need not be a monotonic function ofp1!, and the summa-
tion in Eq.~2.2! is over all such roots. The Jacobian factor
Eq. ~2.2!,

U]q2

]p1
U5U]qt~p1 ,q1!

]p1
U, ~2.5!

is evaluated at the roots of Eq.~2.4!, andn is the number of
zeros experienced by the determinantu]qt /]p1u in the time
interval (0,t).

The idea of the initial value representation is to chan
the integral over the final coordinates in Eq.~2.2! to one over
the initial momenta, giving

S2,15E dp1E dq1C2~qt!* C1~q1!

3F u]qt /]p1u
~2p i\!F G1/2

eiSt~p1 ,q1!/\2 ipn/2, ~2.6!

whereSt(p1 ,q1)5S(qt(p1 ,q1),q1). Equation~2.6!, though
formally identical to Eq.~2.2!, has several advantages ov
it, the most important is that the classical trajectories nee
to evaluate the integral are specified by theirinitial condi-
tions (p1 ,q1) and not by the double-endedboundarycondi-
tions (q2 ,q1). This also means that the summation in E
Downloaded 19 May 2005 to 169.229.129.16. Redistribution subject to A
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~2.2! is no longer present because initial conditions det
mine a unique classical trajectory. Stated more precisely,
a givenq1 ,

E dq2(
roots
→E dp1U ]qt

]p1
U. ~2.7!

Another benefit of the IVR is that the Jacobian from t
change of integration variables in Eq.~2.7! combines with
the denominator in Eq.~2.2!, so that the square root of th
Jacobian now appears in the numerator of Eq.~2.6!. Since
this factor can go through zero, having it in the numera
removes singularities in the integrand and thus facilitates
merical integration. Additionally, this Jacobian factor caus
the integrand to be zero whenn changes discontinuously, s
that the integrand is continuous at these points.

An IVR, however, is not unique. Equation~2.6! is ob-
tained by beginning with the propagator in a coordinate r
resentation, but another result is obtained if one begins w
a momentum representation. Herman and Kluk11 made a
very useful contribution in showing how to combine the
two possibilities by using a coherent state representa
~motivated by the ‘‘frozen Gaussian’’ approximation o
Heller21!; the Herman–Kluk~HK! IVR is

^C2ue2 iĤ t/\uC1&5E dp1dq1

~2p\!F Ct~p1 ,q1!

3eiSt~p1 ,q1!/\^C2upt ,qt&

3^p1 ,q1uC1&, ~2.8!

where ^p,quC& is the coherent state representation of t
wave functionuC&,

^p,quC&5E dxS g

p D F/4

e2g/2~x2q!22 i /\p•~x2q!C~x!,

~2.9!

and

Ct~p1 ,q1!5U 1
2S ]qt

]q1
1

]pt

]p1
2 ig\

]qt

]p1
1

i

g\

]pt

]q1
D U 1

2

.

~2.10!

It is not hard to show that in the limit ofg→`, Eq. ~2.8!
reduces to the coordinate space IVR of Eq.~2.6!, while the
limit g→0 gives the momentum space IVR. Kay has mad
rather extensive study of this by treating a variety of the
IVR’s,10 concluding that the HK version often seems to
most accurate overall. This has also been our experience
is thus used in the present application.

The computational task in a SC-IVR calculation is the
fore a phase space average over the initial conditions of c
sical trajectories, the chief difficulty of which is caused b
the fact that the integrand is oscillatory. Furthermore,
preexponential factor in the integrand—the factorCt(p,q) in
Eq. ~2.8!—tends to increase roughly algebraically witht if
the trajectory is regular and exponentially if it is chaotic,
the amplitude of the oscillation grows with time. Applica
tions to date have dealt with this problem by using ‘‘filte
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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ing’’ or stationary phase Monte Carlo methods22,23 to damp
the oscillations of the integrand. Consider, for example
generic oscillatory integral of the form

I 5E dxg~x!ei f ~x!. ~2.11!

The Filinov22 smoothing approach replaces this by

I 5E dxU12
i

c

]2f

]x]xU
21/2

g~x!

3expF i f ~x!2
1

2c

] f

]x
•S 12

i

c

]2f

]x]xD
21

•

] f

]xG . ~2.12!

This smoothing procedure can be applied to any of the IV
discussed here, and there is also some flexibility with
choice of the functionsf andg. After some investigation, we
conclude that the Filinov transformation applied to the H
IVR, as suggested by Walton and Manolopoulos,14a is the
most effective one so far. All the SC-IVR calculations r
ported in this paper are performed with this approach.

To determine the eigenvalues of a bound molecular s
tem, which is the application of interest in this paper,
consider the spectral density with respect to some refere
wave functionuC&,

J~E!5^Cud~E2Ĥ !uC&, ~2.13!

which of course has delta function peaks at the the eigen
ues$Ek% of the Hamiltonian,

J~E!5(
k

u^CuCk&u2d~E2Ek!, ~2.14!

where uCk& are the corresponding eigenfunctions. The m
crocanonical density operatord(E2Ĥ) can be expressed i
terms of the propagator in the usual way,

d~E2Ĥ !52
1

p
Im Ĝ~E!, ~2.15!

Ĝ~E!5
1

i\ E
0

`

eiEt/\e2 iĤ t/\, ~2.16!

so that the spectrum is given in terms of the propagator

J~E!5Re
1

p\ E
0

`

eiEt/\^Cue2 iĤ t/\uC&. ~2.17!

The semiclassical approximation corresponds to using
IVR of choice for the diagonal matrix element of the prop
gator in Eq.~2.17!. In practice, one also typically includes
convergence factor to cut off the time integral in Eq.~2.17!,
e.g., a Gaussian, to obtain

J~E!5Re
1

p\ E
0

`

eiEt/\2~1/2!DE2t2/\2
^Cue2 iĤ t/\uC&,

~2.18!

for which the corresponding quantum expression that
places Eq.~2.14! is

J~E!5(
k

u^CuCk&u2
e2~

1
2!~E2Ek!2/DE2

A2pDE
. ~2.19!
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In practice, one choosesDE as large as possible—so as
make the time integral in Eq.~2.17! converge in as short a
time as possible—but not so large that the Gaussian pea
Eq. ~2.19! overlap too much for the individual eigenvalues
be resolved. Lastly, it is worth noting that in one dimensio
the semiclassical quantization condition derived from E
~2.17! ~with a stationary phase evaluation of the time in
gral! is identical to the Wentzel–Kramers–Brillouin~WKB!
quantization. Thus, this method of finding the eigenvalue
be viewed as a multidimensional generalization of the WK
analysis.

III. THE HCl DIMER HAMILTONIAN

In terms of the standard Jacobi coordinates shown in F
1—r1 and r2 for the two diatomic monomers, andR the
center of mass coordinate between the two—and their c
jugate momenta, the classical Hamiltonian for the diatom
diatom system is

H5
PR

2

2m
1

l 2

2mR2 1
pr 1

2

2m1
1

j 1
2

2m1r 1
2 1

pr 2

2

2m2
1

j 2
2

2m2r 2
2 1V,

~3.1!

where jn5rn3pn , for n51 and 2, andl5R3P. m1 , m2 ,
and m are the appropriate reduced masses~and here, of
course,m15m25m!. Using the Van Vleck body-fixed axis

FIG. 1. The two equilibrium configurations of the HCl dimer. The values
the coordinates areR53.746 Å, f5180, u159°, u2589.8°. The HCl
monomer bond lengths are fixed.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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procedure,24 we chooseR as the body-fixed axis, and th
angular momentum of this axis,l, is eliminated by the use o
total angular momentum conservation,

l5J2~ j11 j2!, ~3.2!

whereJ is the total angular momentum. In the present ap
cation, we consider only zero total angular momentumJ
50, and also take the two monomer HCl’s to be rigid roto
thus setting the two radial momentapr 1

5pr 2
50. The Hamil-

tonian thus becomes

H5
PR

2m
1

u j11 j2u2

2mR2 1B~ j 1
21 j 2

2!1V, ~3.3!

whereB5(2mr2)21 is ~with \51! the monomer HCl rota-
tion constant (B510.44 cm21). The rotational angular mo
menta of the two monomers,j1 and j2 , are given by the
standard expressions25 in terms of the polar and azimutha
angles (u1 ,f1) and (u2 ,f2) that orientr1 and r2 with re-
spect to the body-fixed axisR, and their conjugate momenta
as

jn5S 2pun
sin fn2cosfn cot unpfn

pun
cosfn2sin fn cot unpfn

pfn

D , ~3.4!

for n51 and 2. In Eq.~3.3!, one thus has

j n
25pun

2 1
pfn

2

sin2 un
, ~3.5!

j1• j25pu1
pu2

cos~f12f2!

1pf1
pf2

@cot u1 cot u2 cos~f12f2!11#

1pu1
pf2

cot u2 sin~f12f2!

1pu2
pf1

cot u1 sin~f22f1!. ~3.6!

Finally, since the Hamiltonian~including the potentialV!
depends only on the difference of the two azimuthal ang
f12f2 , and not their sum, one makes a canonical trans
mation to the sum and difference variables,

f5f12f2 , F5 1
2~f11f2!,

~3.7!

pf5 1
2~pf1

2pf2
!, pF5pf1

1pf2
.

The Hamiltonian, as noted before, is independent ofF, so
that pF is conserved~and equal to 0 forJ50!. Putting all
this together, the final form for theJ50 Hamiltonian in-
volves four degrees of freedom, (R,u1 ,u2 ,f) and their con-
jugate momenta, and is given explicitly by
Downloaded 19 May 2005 to 169.229.129.16. Redistribution subject to A
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H~PR ,R,pu1
,u1 ,pu2

,u2 ,pf ,f!

5
PR

2

2m
1S B1

1

2mR2D S pu1

2 1
pf

2

sin2 u1
1pu2

2 1
pf

2

sin2 u2
D

3
1

mR2 @pu1
pu2

cosf2pf
2 ~cot u1 cot u2 cosf11!

2pf sin f~pu1
cot u21pu2

cot u1!#

1V~R,u1 ,u2 ,f!. ~3.8!

The potential energy surfaceV has been determined b
Elrod et al.20 in the form of the following expansion,

V~R,u1 ,u2 ,f!5 (
l 1l 2l

Al 1l 2l~R!gl 1l 2l~u1 ,u2 ,f!, ~3.9!

the parameters for which are determined by fitting quant
mechanical calculations to the experimental spectra. Figu
shows a contour plot of the potential surface as a function
(u1 ,u2) for planar geometry (f5180°) and a fixed value o
R. This clearly displays theu1↔u2 exchange symmetry an
the two equivalent minima indicated in Fig. 1. As noted
the Introduction, the barrier separating the two minim
(;70 cm21) is sufficiently low that tunneling between them
gives rise to a splitting of about 16 cm21 between the lowes
two energy levels. Even and odd states with respect to
u1↔u2 exchange are designated byA and B, respectively.
The potential is also symmetric in the out-of-plane coor
natef, so that the states are also even or odd with respec
f→2p2f. This symmetry is designated1 or 2. The
states thus have four possible symmetries in this syst
A1,A2,B1,B2.

IV. RESULTS AND DISCUSSION

The reference wave function in Eq.~2.17! is, to some
extent, arbitrary, the primary requirement being that it h
significant overlap with the states whose energy levels on
wishing to extract from the calculation. One may in fact wi
to use several different reference wave functions. Beca
the Herman–Kluk IVR expression@Eq. ~2.8!# involves co-
herent states, it is natural to chooseC also of this form.
Thus, we have used a direct product of such functions,

FIG. 2. Contours of potential energy surface of the HCl dimer in theu1 and
u2 plane from2690 to2550 cm21. The other coordinates are held at the
equilibrium values.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



-
t
w

ns
-

try
ym
in
x

he

a
ym

nc

d
ta

ri
th
tra
g

was
g’’
r-
er-

try
um

nd
. The
ese

ng

nc-

8874 J. Chem. Phys., Vol. 108, No. 21, 1 June 1998 X. Sun and W. H. Miller
C~R,u1 ,u2 ,f!5c1~R!c2~u1!c3~u2!c4~f!, ~4.1!

where each factor is related to a coherent state,

c1~R!5S g1

p D 1/4

R22e2~g1/2!~R2R0!21 iPR0~R2R0!/\, ~4.2!

c2~u1!5S g2

p D 1/4

~sin u1!21e2~g2/2!~u12u10!21 iPu10~u12u10!/\,

~4.3!

c3~u2!5S g3

p D 1/4

~sin u2!21e2~g3/2!~u22u20!21 iPu20~u22u20!/\,

~4.4!

c4~f!5S g4

p D 1/4

e2~g4/2!~f2f0!21 iPf0~f2f0!/\, ~4.5!

whereR22 and (sinun)
21 will cancel with the Jacobian fac

tors when calculating the overlap^q,puC&, and the coheren
state widths$g i% are chosen large enough so that the follo
ing approximation,

^q,puC&5E
0

`

dRE
0

p

du1E
0

p

du2E
0

2p

df R2

3sin u1 sin u2C~R,u1 ,u2 ,f!

3^q,puR,u1 ,u2 ,f&

'E
2`

`

dRE
2`

`

du1E
2`

`

du2E
2`

`

df R2

3sin u1 sin u2C~R,u1 ,u2 ,f!

3^q,puR,u1 ,u2 ,f&, ~4.6!

is valid. Actually, we use a linear combination of functio
of the type in Eq.~4.1! in order to take advantage of sym
metry: to determine the energy levels for a given symme
one chooses the reference wave function to be of this s
metry so that only states with this symmetry will appear
the spectral density@as most easily seen in the quantum e
pression, Eq.~2.14!#. In the present case, for example, t
reference wave function of Eq.~4.1! is modified as follows,

Cs,s8~R,u1 ,u2 ,f!5c1~R!@c2~u1!c3~u2!

1sc2~u2!c3~u1!#

3@c4~f!1s8c4~2p2f!#, ~4.7!

where ss8511, 12, 21, and 22 correspond to the
A1, A2, B1, andB2 states, respectively. The semiclassic
calculation can thus be carried out separately for each s
metry.

Figure 3 shows a typical semiclassical correlation fu

tion ^Cue2 iĤ t/\uC& for A1 symmetry. It is obtained with
;3000 bounded classical trajectories whose initial con
tions are chosen by Monte Carlo from the coherent s
overlap with the reference wave function,u^q,puC&u. ~Trajec-
tories which dissociated are discarded since their Fou
transform cannot contribute to delta function peaks in
energy spectrum.! Figures 4 and 5 show the energy spec
obtained from the SC-IVR correlation functions, indicatin
Downloaded 19 May 2005 to 169.229.129.16. Redistribution subject to A
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the peaks corresponding to the energy levels. No attempt
made at using more sophisticated ‘‘signal processin
algorithms26 to extract the energy levels from the time co
relation function, though this would perhaps make the ov
all procedure more efficient.

The lowest few SC-IVR energy levels of each symme
are listed in Table I, along with the corresponding quant
mechanical~QM! values calculated by Elrodet al.20 The SC-
IVR and QM energy levels are listed relative to the grou
state of each, and one sees quite good agreement overall
average error in the semiclassical energy levels for th
states is 1.65 cm21, with the maximum being about 4 cm21.
It is particularly interesting to see that the tunneling splitti
of the ground state—the difference of the lowestA1 andB1

FIG. 3. The real and imaginary parts of the semiclassical correlation fu

tion, ^Cue2 iĤ t/\uC&, whereC is of A1 symmetry. This is obtained with
about 3000 bound trajectories.

FIG. 4. Representative spectra forA1 ~upper panel! andA2 ~lower panel!
symmetries.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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8875J. Chem. Phys., Vol. 108, No. 21, 1 June 1998 X. Sun and W. H. Miller
energy levels—is described reasonably well, 18 cm21 com-
pared to the correct value of 15.7 cm21. We consider this
level of success for the SC-IVR model to be excellent a
further evidence that it is capable of describing a wide ra
of dynamical phenomena to a useful accuracy, even at
most detailed level where quantum effects are very sign
cant.

The result obtained for the SC-IVR ground sta
(2395.5 cm21), however, is 16.3 cm21 above the quantum
ground state (2411.8 cm21). Therefore, on an absolute en
ergy scale, all SC-IVR energy levels are about this mu
larger than the corresponding QM values. From the disc
sion at the end of the Appendix, it is not surprising that t

FIG. 5. Representative spectra forB1 ~upper panel! andB2 ~lower panel!
symmetries.

TABLE I. Comparison of semiclassical and quantum mechanical ene
levels ~in cm21! for (HCl)2 , for J50 and various molecular symmetries.

QM SC-IVR

A1 0.0a 0.0a

53.3 55.5
72.1 76.6

111.2 111.4
147.8 147.8

A2 160.6 162.6
212.0 212.7

B1 15.7 18.0
79.6 80.9

104.0 106.7
167.5 166.4
188.0 190.8

B2 185.1 186.7
240.3 240.0

aQM and SC-IVR energy levels are shown relative to the ground stat
each. The SC-IVR ground state is 16.3 cm21 above the QM ground state.
Downloaded 19 May 2005 to 169.229.129.16. Redistribution subject to A
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SC energies are shifted by an approximately constant v
relative to the QM ones, but it is not easy to reconcile t
value of the shift (16.3 cm21) we observe. If the two HCl
rigid diatomics were free rotors, then the discussion in
Appendix shows that the SC energy levels would be1

2B
above the QM values~1

4B for each rotor!, and since the ro-
tation constant of HCl isB510.44 cm21, this suggests a
shift of about 5.2 cm21. ~We in fact carried out the SC-IVR
calculation for the uncoupled case and did indeed obtain
ergy levels shifted by this amount.! Why one obtains a sig-
nificantly larger shift than this for the fully coupled case
not clear to us, but it is nevertheless reassuring that the
IVR energy levels are good approximations to the QM v
ues forsomeconstant~and modest! shift.

V. CONCLUDING REMARKS

In summary, we have presented an application of
semiclassical~SC! initial value representation~IVR! to a
highly nontrivial multidimensional system, involving dy
namics on a very anharmonic potential energy surface w
multiple wells. We obtain the ground and excited state vib
tional energy levels of each symmetry to a good level
accuracy with a relatively modest number of classical traj
tories. Perhaps the most important dynamical quantity,
tunneling splitting of the ground state, is obtained to go
accuracy. These results help to further make the case tha
SC-IVR model provides a unified dynamical approach
molecular dynamics simulations that includes essentially
quantum effects to a very good approximation.

For the SC-IVR approach to be apractical TOE
~‘‘theory of everything’’! for chemical physics, however, on
must be able to carry out the calculation for more comp
~i.e., larger! molecular systems. It is possible, of course,
carry out classical trajectory calculations for systems w
hundreds~or more! of atoms and molecules, and the goal
to be able to implement the SC-IVR methodology for su
systems. As noted, the trajectories can be calculated, but
the phase space average over the initial conditions of an
cillatory integrand@cf. Eq. ~2.8!# that is the computationa
bottleneck. The various filtering methods noted in Sec.
have made it possible to do the various calculations repo
to date, but one needs to make additional progress in orde
break out of the small molecule dynamics arena. There
several new avenues that have been suggested for de
with this but their usefulness is yet to be demonstrated. T
potential payoff is so great that this problem warrants c
siderable research effort.
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APPENDIX: SPECIAL CONSIDERATIONS OF THE SC-
IVR FOR ANGULAR COORDINATES

Here we note some specific features of the SC-I
when treating angular variables for rotational degrees of fr
dom. Consider first a one dimensional rotor whose orien
tion in a plane is characterized by anglef, with the Hamil-
tonian

Ĥ52
\2

2I

d2

df2 1V~f!, ~A1!

whereI is the moment of inertia. A typical matrix element o
the propagator thus has the form

S2,1[^C2ue2 iĤ t/\uC1&

5E
0

2p

df1E
0

2p

df2C2~f2!* ^f2ue2 iĤ t/\uf1&C1~f1!,

~A2!

with the wave functions normalized on the interval~0,2p! in
the usual way,

E
0

2p

dfuC~f!u251. ~A3!

If Kt(f2 ,f1) is the standard semiclassical amplitude for t
f1→f2 transition in timet, i.e.,

Kt~f2 ,f1!5( F2p i\U ]f t

]pf1
UG21/2

eiSt~f2 ,f1!/\, ~A4!

then the new feature that arises here is that the net ampli
for the transition must take account of the fact that all fin
anglesf212pn ~n5any integer! correspond to the sam
physical orientation as anglef2 , so that the amplitude in the
integrand of Eq.~A2! must be a sum over all these symmet
cally equivalent final angles,

^f2ue2 iĤ t/\uf1&5 (
n52`

`

Kt~f212pn,f1!. ~A5!

Equation~A2! thus reads

S2,15 (
n52`

` E
0

2p

df1E
0

2p

df2C2~f2!* Kt~f212pn,f1!

3C1~f1!, ~A6!

and if one changes the integration variable fromf2 to f28
5f12pn, it becomes

S2,15 (
n52`

` E
0

2p

df1E
2pn

2p~n11!

df28

3C2~f28!* Kt~f28 ,f1!C1~f1!, ~A7!

where it has been assumed that the wave functionC2 is
periodic, i.e.,C2(f2822pn)5C2(f28). But,

(
n52`

` E
2pn

2p~n11!

df285E
2`

`

df28 , ~A8!

so that Eq.~A7! becomes
Downloaded 19 May 2005 to 169.229.129.16. Redistribution subject to A
e-
-
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S2,15E
0

2p

df1E
2`

`

df2C2~f2!* Kt~f2 ,f1!C1~f1!,

~A9!

where the prime has now been dropped from the integra
variablef28 . The integral over the entire interval (2`,`) of
the final anglef2 , together with the periodicity of the fina
wave functionC2(f2), thus properly takes account of th
sum over all symmetrically equivalent final angles in E
~A5!. One now applies the standard IVR transformation
Eq. ~A9!, i.e.,

E
2`

`

df25E
2`

`

dpf1U ]f t

]pf1
U, ~A10!

to give the final result

^C2ue2 iĤ t/\uC1&

5E
0

2p

df1E
2`

`

dpf1
C2~f t!* FU ]f t

]pf1
UY 2p i\G1/2

3eiSt~f1 ,pf1
!/\C1~f1!, ~A11!

which is of the standard IVR form. With the wave functio
normalized in the standard way, the integral over the ini
angle is thus over the primary interval~0,2p! and that of the
conjugate initial momentum is over all values (2`,`).

To illustrate the importance of including all symmetr
cally equivalent final angles, consider thefree plane rotor,
i.e., V(f)50 in Eq.~A1!. The SC propagator of Eq.~A4! is
then of the standard free particle form

Kt~f2 ,f1!5A I

2p i\t
eiI ~f22f1!2/2\t, ~A12!

which give the following microcanonical density matrix,

^f2ud~E2Ĥ !uf1&[
Re

p\ E
0

`

dteiEt/\Kt~f2 ,f1!

5
I

p\2k
cos@k~f22f1!#, ~A13!

where k5A2IE/\. Including the sum over all equivalen
final angles, however, changes this to

^f2ud~E2Ĥ !uf1&

5
I

p\2k (
n52`

`

cos@k~f22f1!12pnk#,

5
I

p\2k
cos@k~f22f1!# (

n52`

`

cos~2pnk!, ~A14!

and the Poisson sum formula,27

(
n52`

`

cos~2pnk!5 (
l 52`

`

d~ l 2k!, ~A15!

requiresk to be aninteger. This is therefore what quantize
the energyE5\2k2/2I and gives delta function peaks a
these values in the matrix element ofd(E2Ĥ).
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Finally, there is another feature in the semiclassical
scription of rotational motion that should be noted. Consi
a free linear rotor in 3D space, for which the classical Ham
tonian is

H5
1

2I S pu
21

pf
2

sin2 u D . ~A16!

Quantization of thef motion, as discussed above, requir
pf5m\, m an integer. Theu motion thus takes place in th
centrifugal potential wellV(u),

V~u!5B
m2

sin2 u
, ~A17!

where B5\2/2I is the rotational constant. The standa
WKB ~Bohr–Sommerfeld! quantization of this bound mo
tion,

~n1 1
2!p5E duA2I ~E2V~u!!/\, ~A18!

gives the following energy levels,

En,m5B~n1 1
21umu!2,

~A19!
n50,1,2,...,

or in terms of the usual quantum numberl 5n1umu,

El5B~ l 1 1
2!

25Bl~ l 11!1 1
4B. ~A20!

The semiclassical energy levels are thus too large by a
stant value. In any applications to rotational problems, the
fore, one may expect that energy levelspacingsgiven by the
semiclassical theory will be more accurate than their abso
value.
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