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Semiclassical initial value representation for rotational degrees of freedom:
The tunneling dynamics of HCI dimer
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The semiclassical initial value representatiBC-IVR) is emerging as a practical way of
generalizing classical trajectory simulation methods to incl¢agproximately the effects of
guantum mechanic§.e., interference and tunnelingThis paper describes the application of the
SC-IVR approach to determine the low lying vibrational states of the HCI dimer on a realistic
potential energy surface. Overall agreement of the semiclassical energy levels with accurate
quantum values is very good, including a good description of the tunneling splitting in the ground
state. Issues regarding the applications of the SC-IVR methodology to the angular variables related
to rotational degrees of freedom are explicitly discussed.198 American Institute of Physics.
[S0021-960698)01121-0

I. INTRODUCTION variety of dynamical phenomena. Particularly interesting has
been the generalization of the SC-IVR methodology to in-

Semiclassical(SC) methods have a long history in cludeelectronically nonadiabatiprocesse$®'°i.e., dynam-
chemical physic$;® the attraction being that they provide a jcg involving transitions between different Born—Oppen-
way, in principle, of augmenting classical trajectory simula-paimer potential energy surfaces. By providing a unified

tion methods with an approxlmgte inclusion of qu.antum ME%reatment of the electronic and nuclear degrees of freedom,
chanical effects. Many applications of SC theory in the early

: : one avoids inconsistencies that arise in mixed quantum-
1970’'s showed that, in effectall quantum mechanical q

effects—interferencdor coherencg effects, tunneling(in- classical approaches.
cluding “dynamic tunneling’), symmetry-based selection This paper describes the application of current SC-IVR

rules, scattering resonancése., “weak quantization” of methodology to the low Iying.eigenvalues ofavap der Waals
metastable statesand energy quantization of bound molecu- COMPlex, namely the HCI dimer, thus further widening the
lar systems—are contained in the SC description at leag@ss of dynamical problems for which the approach has
qualitatively, and that often the description is sufficiently ac-Peen demonstrated. This is a truly benchmark van der Waals
curate to be quite useful. A great deal was learned in thiSystem, having been thoroughly studied experimentally by
early work about the nature of quantum effects in moleculaffar-infrared spectroscopic techniques and a highly accurate
dynamics, but unfortunately the way that classical mechanicpotential energy surface developed to fit these thtanis is
must be used in semiclassical theory makes it considerablguite a nontrivial test for semiclassical theory because the
more difficult to apply than ordinary classical mechanics.strong hydrogen bonding in the system leads to strong anhar-
Thus the complexity(i.e., siz¢ of the molecular system for monic coupling between the rotational and vibrational de-
which these semiclassical calculations could be carried Ol.grees of freedom. The dissociation energy is On|y about
was consid_erably less than thqt for which ordinary classicaggg cnit, and there are two equivalent minima separated by
trajectory simulations are practical. _ _ _a barrier of about 70 cit. The low lying eigenvalues are
Recently, however, there has been a revival of interest iBhus characterized by tunneling splittings 16 cmi™* for the
using semiclassical methods for molecular dynamics SimUIafowest doublet and other nonclassical effects. The goal of
tions, g?ia7sed primarily on thénitial yalue representation the present work is thus to see how well the SC-IVR ap-
(IVR).>~*'The IVR converts the multivaluddoundary value . .
problem of the conventional semiclassical approach into groach IS able.to de;crlbe these phenomena.
single-valuednitial value problem which is much easier to SeCt'o_r_' Il first bneﬂy summarizes the SC-IVR gpproach
implement computationally; it also has an approximate “uni-and the F|I|n.ov, or statpnary Monte Cgrlo smgothmg meth-
ods used to implement it. The Appendix describes some spe-

formizing” character that makes it typically more accurate ' ) ) X -
than the original “primitive” semiclassical approximations. cial features of semiclassical mechanics that arise when treat-

Though the IVR idea also originated in the early 1970’s,ing angular coordinates for rotational degrees of freedom,
recent work has introduced a variety of new IVR’s that areand especially how the SC-IVR simplifies these matters.
more useful than the original version. The IVR version of SCSpecifics of the HCI dimer, i.e., the Hamiltonian, are dis-

theory has all the hallmarks noted above, i.e., inclusion ofussed in Sec. lll, and the results in Sec. IV. Section V

interference and tunneling effects, and a number of recermtoncludes with some thoughts as to where one is in the SC-
applications have illustrated its accuracy and usefulness for B/R program.
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Il. THE SEMICLASSICAL INITIAL VALUE (2.2) is no longer present because initial conditions deter-
REPRESENTATION mine a unigue classical trajectory. Stated more precisely, for
a givenqq,

dg, >, —>f dp;

roots

The basic idea of the SC-IVR is very simple. Consider,

for example, the transition amplitude from state 1 to state 2 f aq

0.l 2.7

(i.e., a generic matrix element of the time evolution opera-
tor),

Another benefit of the IVR is that the Jacobian from the
change of integration variables in E.7) combines with
B . i the denominator in Eq2.2), so that the square root of the
—j d%f da; V(a.)*(a,le A1) Wa(ay). Jacobian now appears in the numerator of E46). Since
2.1 this factor can go through zero, having it in the numerator
' removes singularities in the integrand and thus facilitates nu-
Replacing the coordinate matrix representation of the propamerical integration. Additionally, this Jacobian factor causes
gator with the standard semiclassi¢slan Vleck approxi-  the integrand to be zero whenchanges discontinuously, so

Sp1=(W e Uy )

mation yields that the integrand is continuous at these points.
An IVR, however, is not unique. Equatiqi2.6) is ob-
52,1:f dqu dg; V(0. * ¥4(ay) tained by beginning with the propagator in a coordinate rep-

resentation, but another result is obtained if one begins with
o0, -1 a momentum representation. Herman and Klukade a
_} e'Siaz.an/h—ivalz (3 9y very useful contribution in showing how to combine these
Ip1 two possibilities by using a coherent state representation
where (motivated by the “frozen Gaussian” approximation of
Heller’Y); the Herman—KIukHK) IVR is

X >, [(zmﬁ)F

roots

t
(0.0 = [ dep()- ) - H(p(.A)), (23 dpday

<\P2|eith/h|\Pl>:J> (27Tﬁ)': Ct(plvql)
is the classical action for the trajectory that goes frgyto

g, intimet. To apply Eq.(2.2) as written, one needs to solve X eist<pl'ql)/ﬁ<\1f2| P, )
a nonlinear boundary value problem; i.e.qgi{p;,q4) is the
coordinate at time that evolves from the initialt=0) con- X(p1,a1| V1), (2.8

ditions (p;,d;), then for a givery,, one must find values of

. wher ¥ is th heren representation of th
o, that satisfy ere(p,q|V¥) is the coherent state representation of the

wave function|¥),

0t(P1.01) =0a- (2.4 i
In general, there will be multiple roots to this equatisince (p,q|‘lf)=f dx %) g~ V2P ihp- (A (x)
g: need not be a monotonic function pf), and the summa- 2.9
tion in Eq.(2.2) is over all such roots. The Jacobian factor in ’
Eq. (2.2, and
4P ‘5Qt(p1,Q1) 1
Fri it vt 25 oo 0 a0 api||?
ZANET Culpr.ay)=|H 5ot + o7 oo+ e )|
is evaluated at the roots of E€.4), andv is the number of ! ! ! ! (2.10
zeros experienced by the determingéd, /dp,| in the time
interval (0f). It is not hard to show that in the limit oj—«, Eq. (2.8

The idea of the initial value representation is to changgeduces to the coordinate space IVR of E2,6), while the
the integral over the final coordinates in E8.2) to one over limit y—0 gives the momentum space IVR. Kay has made a

the initial momenta, giving rather extensive study of this by treating a variety of these
IVR’s,'® concluding that the HK version often seems to be
S, 1:f dle da, ¥,(q)* ¥1(qy) _most accurat_e overall. This has _also_ been our experience and
’ is thus used in the present application.

|l 9q,/apa|1Y2 . _ The computational task in a SC-I\(R_ _calculati_o_n is there-
X[W} e'SiPr.ap/i=imviz (2.6)  fore a phase space average over the initial conditions of clas-
sical trajectories, the chief difficulty of which is caused by
where Si(p1,91) = S(a:(p1,91),9:). Equation(2.6), though the fact that the integrand is oscillatory. Furthermore, the
formally identical to Eq.(2.2), has several advantages over preexponential factor in the integrand—the fad@pfp,q) in
it, the most important is that the classical trajectories needellg. (2.8—tends to increase roughly algebraically witlif
to evaluate the integral are specified by theitial condi- the trajectory is regular and exponentially if it is chaotic, so
tions (p;,9;) and not by the double-enddmbundarycondi-  the amplitude of the oscillation grows with time. Applica-
tions (g,,91). This also means that the summation in Eg.tions to date have dealt with this problem by using “filter-
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ing” or stationary phase Monte Carlo methét& to damp
the oscillations of the integrand. Consider, for example, a
generic oscillatory integral of the form

Cl

sz dxg(x)e'f™. (2.12 7 ‘ K
9,

The Filinov*? smoothing approach replaces this by

I=fdx

Xexr{if(x)—

This smoothing procedure can be applied to any of the IVR'’s
discussed here, and there is also some flexibility with the
choice of the function$ andg. After some investigation, we
conclude that the Filinov transformation applied to the HK
IVR, as suggested by Walton and Manolopouitfsis the H
most effective one so far. All the SC-IVR calculations re-
ported in this paper are performed with this approach.
To determine the eigenvalues of a bound molecular sys-
tem, which is the application of interest in this paper, we 1 0,
consider the spectral density with respect to some reference R
wave function|¥), “ o

JE)=(¥|5(E—H)|¥), (213 r

which of course has delta function peaks at the the eigenval-
ues{E,} of the Hamiltonian, H

-1/2 2

9(x)

2

1 of
2c ox

[ azf)l of
. (212

S cooxax] ox

. 2 _ FIG. 1. The two equilibrium configurations of the HCI dimer. The values of
‘](E)_zk: (W [Wi)|*8(E~Ey), (2.14 the coordinates ar®®=3.746 A, ¢=180, 6,=9°, #,=89.8°. The HCI
monomer bond lengths are fixed.
where |W¥,) are the corresponding eigenfunctions. The mi-

crocanonical density operatéE—H) can be expressed in ) )
terms of the propagator in the usual way, In practice, one chooseSE as large as possible—so as to

make the time integral in Eq2.17) converge in as short a
time as possible—but not so large that the Gaussian peaks in
Eqg. (2.19 overlap too much for the individual eigenvalues to
. be resolved. Lastly, it is worth noting that in one dimension,
é(E)=.if QiEt g iRt/A (2.1 the semiclassical quantization condition derived from Eq.
it (2.17 (with a stationary phase evaluation of the time inte-
gral) is identical to the Wentzel-Kramers—Brillou{iivKB)
guantization. Thus, this method of finding the eigenvalue can
be viewed as a multidimensional generalization of the WKB
analysis.

5(E—F|):—%|m G(E), (2.15

so that the spectrum is given in terms of the propagator by
1 I -
J(E)=Re—- f eEVi(|e  HYA ), (2.17
wh 0

The semiclassical approximation corresponds to using anI THE HCl DIMER HAMILTONIAN
IVR of choice for the diagonal matrix element of the propa- "

gator in Eq.(2.17). In practice, one also typically includes a In terms of the standard Jacobi coordinates shown in Fig.
convergence factor to cut off the time integral in E§.17), 1—r, andr, for the two diatomic monomers, and the
e.g., a Gaussian, to obtain center of mass coordinate between the two—and their con-
1 (= pas . ju_gate momenta, the classical Hamiltonian for the diatom—
\](E):Reﬁ fo elEt/ﬁ*(l/Z)AE t/h <\I}|e*IHt/ﬁ|r\I’>, diatom System is
(2.18 P2 12 P 2 pL 2
- - - =5+ 7+ 2 21V,
for which the corresponding quantum expression that re- 2u  2puR% T 2mp 2mgr]  2my  2mor;
places Eq(2.14) is (3.1

wherej,=r,Xp,, forn=1 and 2, and=RXP. m;, m,,
(2.19 and p are the appropriate reduced massaesd here, of
course,m;=m,=m). Using the Van Vleck body-fixed axis

~(3)(E-Ep?AE2

= 2- 00000
J(E) Ek |<1P|\Pk>| \/ZAE :
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proceduré* we chooseR as the body-fixed axis, and the
angular momentum of this axik,is eliminated by the use of
total angular momentum conservation,

1=J3=(j1+]2), (3.2
wherelJ is the total angular momentum. In the present appli-
cation, we consider only zero total angular momentum,
=0, and also take the two monomer HCI's to be rigid rotors,
thus setting the two radial momertga = p,,= 0. The Hamil-
tonian thus becomes

_ Pr list+ial? o .2
AT +B(j2+j3)+V, 3.3

whereB=(2mr?) ! is (with #=1) the monomer HCI rota-
tion constant B=10.44 cm1). The rotational angular mo-
menta of the two monomer$; andj,, are given by the
standard expressioftsin terms of the polar and azimuthal
angles @,,¢,) and (6,,¢,) that orientr; andr, with re-
spect to the body-fixed axR, and their conjugate momenta,
as

~Ps, sin ¢,—cos ¢,, cot 6Py,
Py, COS ¢,—sin ¢, cot 6Py,
Py

In=

(3.9

n

forn=1 and 2. In Eq(3.3), one thus has

P5.
sir? 6,

J (3.5

2_ .2
n— p0n+

j1:12=Pg,Ps, COL 1~ b2)
+Pg Py LCOt 61 Ot 6 COLpy— p) +1]
+Pg,Py, COL O, SIN(h1— )

+Pg,Pg, COt O SIN(Po— ¢by). (3.6

Finally, since the Hamiltoniariincluding the potentialV)

X. Sun and W. H. Miller
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FIG. 2. Contours of potential energy surface of the HCI dimer inthand
6, plane from— 690 to —550 cni'l. The other coordinates are held at their
equilibrium values.

H(PRrR!pﬂl!al!pﬂz!HZ!pd)vd))

(5

1
<R [Pg,Ps, COS = p5(cot 6; cot B, cos ¢+ 1)

2 2
Py

sir’ 6,

p2
R,
2pn

B+

2uR?

L 2
—— +p3 +
sir? 6, Po,

—Ppy sin <¢>(p9l cot 6+ py, cot 01)]
+V(R!011021¢)' (38)

The potential energy surfadé has been determined by
Elrod et al?® in the form of the following expansion,

V(R,01,02,8)= 20 A1 (RIGL1(61,02,6), (3.9

the parameters for which are determined by fitting quantum
mechanical calculations to the experimental spectra. Figure 2
shows a contour plot of the potential surface as a function of
(604,0,) for planar geometry $=180°) and a fixed value of

R. This clearly displays thé,« 6, exchange symmetry and
the two equivalent minima indicated in Fig. 1. As noted in
the Introduction, the barrier separating the two minima
(~70 cm'Y) is sufficiently low that tunneling between them
gives rise to a splitting of about 16 crhbetween the lowest
two energy levels. Even and odd states with respect to this
6, 6, exchange are designated Byand B, respectively.
The potential is also symmetric in the out-of-plane coordi-

depends only on the difference of the two azimuthal angle§ate¢, so that the states are also even or odd with respect to

¢1— ¢», and not their sum, one makes a canonical transfor
mation to the sum and difference variables,

d=d1— ¢y, P=3(P1+ b2),

3.7

Ps= %(p¢1_ Pe,) Po=Pg,+ Py,

The Hamiltonian, as noted before, is independentbofso
that pg is conservedand equal to 0 fod=0). Putting all
this together, the final form for th8=0 Hamiltonian in-
volves four degrees of freedonR(#,, 6-,¢) and their con-
jugate momenta, and is given explicitly by

$—27—¢. This symmetry is designated or —. The
states thus have four possible symmetries in this system,
At A", B*,B".

IV. RESULTS AND DISCUSSION

The reference wave function in EQ.17) is, to some
extent, arbitrary, the primary requirement being that it has
significant overlap with the states whose energy levels one is
wishing to extract from the calculation. One may in fact wish
to use several different reference wave functions. Because
the Herman—Kluk IVR expressiofEqg. (2.8)] involves co-
herent states, it is natural to choode also of this form.
Thus, we have used a direct product of such functions,
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W(R,01,02,0)=th1(R)a(01) h3(62) Y P), 4.1
where each factor is related to a coherent state,

$1(R)=

vy | V4 ,
?) R~ 2e~ (71/2/(R—Ro)*+iPgo(R—Ro)/h (4.2

V4
Ul 0y) = (ﬁ) (sin 0;)~ Le~ (721281 0192 +1P 4,001 0101

o
4.3

1/4
3(02)= (E> (sin 8,) ~Le~(13/2(02= 020 +iPy 062 020/
o

4.9

1/4
e~ (V412($= d0)? +iP yo( b= o)l (4.

¢4<¢)=(§

whereR™2 and (sing,) ! will cancel with the Jacobian fac-
tors when calculating the overlgp,p|¥), and the coherent

Re C(0)

Im C(t)
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t (psec)

25

FIG. 3. The real and imaginary parts of the semiclassical correlation func-

tion, (¥|e M%), whereW is of AT symmetry. This is obtained with
about 3000 bound trajectories.

state widths y;} are chosen large enough so that the follow-e heaks corresponding to the energy levels. No attempt was

ing approximation,

% T T 27
@piw)= [ “ar[ a0, ["an, [ Tag R
0 0 0 0

X sin 91 sin 92W(R,01,02,¢)

made at using more sophisticated ‘“signal processing”
algorithms® to extract the energy levels from the time cor-
relation function, though this would perhaps make the over-
all procedure more efficient.
The lowest few SC-IVR energy levels of each symmetry

are listed in Table |, along with the corresponding quantum

X<q!p|R!611021¢>

~f de delf‘dﬁzf dé R?

X sin 6, sin 6,V (R, 0,,6,,0)

mechanicalQM) values calculated by Elroet al?° The SC-

IVR and QM energy levels are listed relative to the ground
state of each, and one sees quite good agreement overall. The
average error in the semiclassical energy levels for these
states is 1.65 cit, with the maximum being about 4 crh

It is particularly interesting to see that the tunneling splitting
X(a,p|R, 01,02, ¢), (4.6)  of the ground state—the difference of the lowast andB™*

is valid. Actually, we use a linear combination of functions
of the type in Eq.(4.2) in order to take advantage of sym-
metry: to determine the energy levels for a given symmetry,
one chooses the reference wave function to be of this sym-
metry so that only states with this symmetry will appear in
the spectral densitjas most easily seen in the quantum ex-
pression, Eq(2.14]. In the present case, for example, the
reference wave function of E@4.1) is modified as follows,

\IIO',O"(R7 01 ’ 021¢) = ‘/’1(R)[¢2( 01) lﬂg( 92)
T oo 6;)h3(601)]
X[pa( @)+ 0" Pu(2m— )], (4.7

where oo’'=++, +—, —+, and —— correspond to the
A*, A", B*, andB" states, respectively. The semiclassical
calculation can thus be carried out separately for each sym-
metry.

Figure 3 shows a typical semiclassical correlation func-

tion (W]e "MVA|¥) for A* symmetry. It is obtained with
~3000 bounded classical trajectories whose initial condi-
tions are chosen by Monte Carlo from the coherent state
overlap with the reference wave functideg,p|¥)|. (Trajec-
tories which dissociated are discarded since their Fourier
transform cannot contribute to delta function peaks in the

I1E®

J(®)

/

=700.0

L
-600.0

-500.0

-400.0 1—300.0
E(em)

-200.0

-100.0

0.0

energy spectrum.Figures 4 and 5 show the energy spectragig, 4. Representative spectra #F (upper pandlandA~ (lower panel

obtained from the SC-IVR correlation functions, indicating symmetries.
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SC energies are shifted by an approximately constant value
relative to the QM ones, but it is not easy to reconcile the
value of the shift (16.3 cm') we observe. If the two HCI
rigid diatomics were free rotors, then the discussion in the
Appendix shows that the SC energy levels would &
above the QM values;B for each rotoy, and since the ro-
tation constant of HCl iSB=10.44 cm?, this suggests a
shift of about 5.2 cm'. (We in fact carried out the SC-IVR
calculation for the uncoupled case and did indeed obtain en-
ergy levels shifted by this amouptVhy one obtains a sig-
nificantly larger shift than this for the fully coupled case is
not clear to us, but it is nevertheless reassuring that the SC-
IVR energy levels are good approximations to the QM val-
ues forsomeconstant(and modestshift.

J®

V. CONCLUDING REMARKS

| | In summary, we have presented an application of the
semiclassical(SO initial value representatiorilVR) to a

highly nontrivial multidimensional system, involving dy-
namics on a very anharmonic potential energy surface with

J(E)

=760.0 -600.0 -500.0 -400.0 -300.0 =200.0 -100.0 0.0

E (em™) multiple wells. We obtain the ground and excited state vibra-
FIG. 5. Representative spectra 8Bf (upper panglandB~ (lower panel tional e”ergy levels ,Of each symmetry to a gooq level. of
symmetries. accuracy with a relatively modest number of classical trajec-

tories. Perhaps the most important dynamical quantity, the

tunneling splitting of the ground state, is obtained to good
energy levels—is described reasonably well, 18 tmom-  accuracy. These results help to further make the case that the
pared to the correct value of 15.7 ¢t We consider this SC-IVR model provides a unified dynamical approach for
level of success for the SC-IVR model to be excellent andnolecular dynamics simulations that includes essentially all
further evidence that it is capable of describing a wide rangguantum effects to a very good approximation.
of dynamical phenomena to a useful accuracy, even at the For the SC-IVR approach to be practical TOE
most detailed level where quantum effects are very signifi{“theory of everything”) for chemical physics, however, one
cant. must be able to carry out the calculation for more complex

The result obtained for the SC-IVR ground state(i.e., largef molecular systems. It is possible, of course, to

(—395.5cmY), however, is 16.3 cm' above the quantum carry out classical trajectory calculations for systems with
ground state £ 411.8 cm'Y). Therefore, on an absolute en- hundredsior more of atoms and molecules, and the goal is
ergy scale, all SC-IVR energy levels are about this mucHo be able to implement the SC-IVR methodology for such
larger than the corresponding QM values. From the discussystems. As noted, the trajectories can be calculated, but it is
sion at the end of the Appendix, it is not surprising that thethe phase space average over the initial conditions of an os-
cillatory integrand[cf. Eq. (2.8)] that is the computational
bottleneck. The various filtering methods noted in Sec. Il
Phave made it possible to do the various calculations reported
to date, but one needs to make additional progress in order to
oM SC-IVR break out of the small molecule dynamics arena. There are
several new avenues that have been suggested for dealing

TABLE |. Comparison of semiclassical and quantum mechanical energ
levels (in cm™Y) for (HCI),, for J=0 and various molecular symmetries.

T
A sgga 5%?53 with this but their usefulness is yet to be demonstrated. The
72.1 76.6 potential payoff is so great that this problem warrants con-
111.2 111.4 siderable research effort.
147.8 147.8
A~ 160.6 162.6
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APPENDIX: SPECIAL CONSIDERATIONS OF THE SC- 2 %
IVR FOR ANGULAR COORDINATES So1= fo dd)J dgoWo(d2)* Ki( bz, d1) V().
Here we note some specific features of the SC-IVR (A9)

when treating angular variables for rotational degrees of freeyhere the prime has now been dropped from the integration
dom. Consider first a one dimensional rotor whose orientagariaple) . The integral over the entire intervat-(e,) of

tion in a plane is characterized by anghewith the Hamil-  the final angleg,, together with the periodicity of the final
tonian wave functionW,(¢,), thus properly takes account of the

. 52 g2 sum over all symmetrically equivalent final angles in Eq.

H=———-—=+V(¢), (A1) (A5). One now applies the standard IVR transformation to

21 do i
Eqg. (A9), i.e.,
wherel is the moment of inertia. A typical matrix element of
the propagator thus has the form - depp= - I
2= dpy, ek (A10)
— 00 — 00 ¢1

32,15<‘I'2|e_m“ﬁ|‘1’1>
to give the final result

2 2 ~
= d j dé. W * g iHUA P , v
o d)l 0 ¢2 2( ¢2) <¢2| |¢l> l(¢l) (‘If2|e |Ht/f|qfl>
(AZ) om . &(]5 - 1/2
. . . . . = f de, f dpy, Vo($0*||5—| / 2mih
with the wave functions normalized on the inter¢@j2mx) in 0 —o 8p¢1

the usual way, X eS(P1Pg )y (), (A11)

2
J do| ¥ (¢)|?>=1. (A3) which is of the standard IVR form. With the wave function

0 normalized in the standard way, the integral over the initial
If K(¢b,,¢1) is the standard semiclassical amplitude for theangle is thus over the primary intervd,2m) and that of the
¢é1— ¢, transition in timet, i.e., conjugate initial momentum is over all values ¢,»).

—12 To illustrate the importance of including all symmetri-
Iy eiSid2.0/h (A4 cally equivalent final angles, consider tfree plane rotor,
Py ’ i.e.,,V(#)=0 in Eq.(Al). The SC propagator of E¢A4) is
gen of the standard free particle form

2mih

Kt(¢2a¢1):2

1
then the new feature that arises here is that the net amplitué
for the transition must take account of the fact that all final I , 5

angles¢,+27n (n=any integey correspond to the same Kilba 1) =\ 577 ell (2= d)72nt, (A12)
physical orientation as angtg,, so that the amplitude in the

integrand of Eq(A2) must be a sum over all these symmetri- which give the following microcanonical density matrix,
cally equivalent final angles,

- Re (=
(bol SE=H)| )= fo dte= " K (b2, b1)

(gale™™ " pr)= 3 Ki(¢o+2mn, ). (A5)
. |
Equation(A2) thus reads = 77 Cogk(a—¢a)], (A13)
- 2m 27 where k= +/2IE/A. Including the sum over all equivalent
Szvlzn;w 0 dd’ljo db2¥2(h2)"Kil b2+ 270, 1) final angles, however, changes this to
XWq(¢hy), (A6) (@2l (E—H)|¢1)
and if one changes the integration variable frgm to ¢, I -
= ¢+ 2, it becomes :mn;w cogk(pp— 1) +2mnk],
i 27 2m(n+1) | %
= d do,
1= 2, g ¢1Lm b2 =77k C0dk(d—¢1)] X cog2mnk),  (A14)
XWalh2)* K¢z, h1) Walbe), (A7) and the Poisson sum formua,
where it has been assumed that the wave funcionis o o
periodic, i.e.,Wy(by—2mn) =W5(4;). But, > cog2mnk)= > 81—k, (A15)
=—o |=—
* 2m(n+1) % "
2 de,= J d¢;, (A8) requiresk to be aninteger This is therefore what quantizes
n=o J2mn o the energyE=%%k%/2l and gives delta function peaks at
so that Eq(A7) becomes these values in the matrix element &fE —H).
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