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ABSTRACT

Marcus–Levich–Jortner (MLJ) theory is one of the most commonly used methods for including nuclear quantum effects in the calculation
of electron-transfer rates and for interpreting experimental data. It divides the molecular problem into a subsystem treated quantum-
mechanically by Fermi’s golden rule and a solvent bath treated by classical Marcus theory. As an extension of this idea, we here present
a “reduced” semiclassical instanton theory, which is a multiscale method for simulating quantum tunneling of the subsystem in molecular
detail in the presence of a harmonic bath. We demonstrate that instanton theory is typically significantly more accurate than the cumulant
expansion or the semiclassical Franck–Condon sum, which can give orders-of-magnitude errors and, in general, do not obey detailed balance.
As opposed to MLJ theory, which is based on wavefunctions, instanton theory is based on path integrals and thus does not require solutions
of the Schrödinger equation nor even global knowledge of the ground- and excited-state potentials within the subsystem. It can thus be
efficiently applied to complex, anharmonic multidimensional subsystems without making further approximations. In addition to predicting
accurate rates, instanton theory gives a high level of insight into the reaction mechanism by locating the dominant tunneling pathway as well
as providing similar information to MLJ theory on the bath activation energy and the vibrational excitation energies of the subsystem states
involved in the reaction.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0013521., s

I. INTRODUCTION

The theoretical study of electron transfer is of essential impor-
tance and relevance not only because these reactions are a key step in
many chemical and biological processes but also because the meth-
ods developed to deal with them can be applied in many other sce-
narios ranging far beyond their original scope. This follows from
the fact that electron-transfer reactions are just one example of
the more general set of curve-crossing problems. Hence, contribu-
tions to the understanding of electron-transfer reactions have been
made with various motivations, including electrochemistry, molecu-
lar spectroscopy, polaron transport, and more general atom-transfer
reactions, which led to different ways of tackling the problem from
classical dielectric continuum theory to a full quantum molecular
picture.1,2

Inspired by earlier work,3 Marcus based his theory of elec-
tron transfer, for which he later won the Nobel prize in 1992,4

first in terms of a dielectric solvent continuum5 and later on
a classical statistical mechanical description of the solvent.6 To
this day, Marcus theory is probably the most commonly applied
approach for the description of electron-transfer reactions and ini-
tiated tremendous development involving electron and hole trans-
fer between atoms, molecules, or even proteins in the condensed
phase as well as at interfaces.7,8 Hence, his findings had and still
have an enormous impact on a multitude of scientific disciplines
comprising solution chemistry, solid-state physics, and biological
processes.9

One of the essential insights from Marcus’ classical theory was
the prediction of the so-called “inverted regime,”6 the existence of
which was later confirmed by experiment10 where the rate decreases
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as the thermodynamic driving force grows larger than the reorgani-
zation energy. Soon, however, it was realized by theory and experi-
ment that the neglect of nuclear quantum effects in Marcus theory
can lead to dramatic errors of several orders of magnitude in the rate,
especially in the inverted regime.11–13

Based on the connection to spectroscopy and solid-state nonra-
diative processes, Levich and co-workers put the theory onto a rig-
orous quantum-mechanical (QM) basis and introduced a quantum
statistical mechanical description of outer-sphere electron trans-
fer.14 This was done by employing Fermi’s golden rule15 formula
for the quantum transition rate, which is obtained as the nonadi-
abatic (weak-coupling) limit from perturbation theory.16,17 How-
ever, because outer-sphere electron-transfer is typically dominated
by the low-frequency solvent modes, the resulting quantum effects
are rather small.

Several years later, crucial advancements weremade, in particu-
lar by Jortner and co-workers, by explicitly taking the reorganization
of the inner sphere into account.1,2,18–22 As opposed to the solvent,
the inner sphere often exhibits intra- and inter-molecular rearrange-
ments associated with high-frequency vibrational modes, which are
therefore subject to substantial quantum effects. Hence, they treated
the inner sphere quantum-mechanically using Fermi’s golden rule
while keeping the classical approximation for the solvent bath. The
resulting Marcus–Levich–Jortner (MLJ) theory constituted a con-
siderable progress for the whole field, as it was the first rigorously
derivedmethod able to describe nuclear quantum effects in electron-
transfer reactions that was valid throughout virtually the whole tem-
perature range.23 Thus, the method poses a vital step toward the
goal of establishing a unified description of electron transfer in the
various fields mentioned above across diverse time and temperature
scales.8,24,25

MLJ theory is broadly applied to the prediction and expla-
nation of charge-carrier mobilities26 often with the objective to
give a guideline for the synthetic study and reasonable design of
high-performance semiconductors that can be applied in organic
photovoltaics.27–30 The application to large systems can be facili-
tated by using the theory in conjunction with density-functional
theory.31 Furthermore, it can be applied in the study of molecu-
lar junctions,32 photonics,33 polaritons,34 and polarons,35 as well as
for the description of spin transitions and phosphorescence.36–40

Besides these technological disciplines, it is also frequently applied
for the understanding of complex chemistry,41 electron trans-
fer in supermolecules42 and biochemistry,43–45 charge transfer in
DNA,46–48 and photosynthesis.49,50 As tunneling is especially preva-
lent in the Marcus inverted regime,51 MLJ theory is of partic-
ular interest in the study of molecular electron-transfer reac-
tions, which are strongly exothermic52–55 or which are initiated by
photoexcitation.56,57

The MLJ description of quantum tunneling, which will be
extensively discussed in Sec. III, is understood by shifting the Mar-
cus parabolas (free energy along the bath coordinates) by the quan-
tized energy levels of the inner sphere. The rate therefore consists of
contributions from multiple vibrational channels weighted accord-
ing to a thermal distribution.58 This interpretation appears quite
different from the standard picture of tunneling in which a par-
ticle penetrates a potential-energy barrier with an energy smaller
than the barrier height. The main disadvantage of this approach
is that it requires wavefunction solutions of the time-independent

Schrödinger equation in order to compute the energy levels and
Franck–Condon overlaps, which severely limits its usefulness for
the description of realistic, anharmonic, and multidimensional
systems.

A number of alternative methods that can be used for the
study of electron-transfer reactions and other golden-rule pro-
cesses59–75 are based on Feynman’s path-integral description of
quantum mechanics76,77 rather than on wave mechanics. From this
set, semiclassical golden-rule instanton theory78,79 in particular bears
multiple appealing features. Without any prior knowledge about
the analytic shape of the potential, it locates the “instanton” in the
full-dimensional configuration space of the system, which can be
thought of as the optimal tunneling pathway,80–83 and therefore pro-
vides direct insight into the reaction mechanism. Furthermore, the
method was recently extended toward theMarcus inverted regime,84

which otherwise typically poses a problem for imaginary-time path-
integral approaches,85 although some extrapolation techniques have
been used successfully to avoid this problem in other methods.67 By
employing a ring-polymer discretization to the paths,86 the instan-
ton method is able to simulate tunneling in multidimensional,
anharmonic systems in a computationally efficient way and is ide-
ally suited for calculations in conjunction with high-level electronic
structure methods just as in the standard adiabatic formulation of
the theory.81,87–94 Golden-rule instanton theory constitutes a semi-
classical path-integral formulation of Fermi’s golden rule and hence
has the potential to be applied in a multitude of different fields, just
as the golden rule itself.

One of the great strengths of instanton theory is its full-
dimensional formulation of tunneling such that it does not rely
on an a priori choice of the reaction coordinate. However, for
many relevant reactions, especially in the condensed phase, even
if one does not know the exact tunneling path, one already has
a good idea of which part of the system under investigation has
to be considered explicitly and which part can be accounted for
on a coarser level. It is this same separation into an inner and
outer sphere that was the cornerstone of MLJ theory. Therefore,
in this paper, the formalism for a “reduced” semiclassical golden-
rule instanton theory will be laid out, which describes tunneling
within the modes of the inner sphere under the implicit influence
of either a classical or quantum harmonic bath. The presence of
the bath affects the equations of motion of the inner sphere and
renders the resulting reduced instanton an energy non-conserving
path due to energy exchange between inner and outer sphere. This
is analogous to the reduced density matrix formalism employed in
the study of open quantum systems. The resulting instanton pic-
ture preserves the convenient interpretation of quantum tunneling
as a particle traveling in the classically forbidden region below the
barrier.

Although the formalisms seem at first glance rather different,
we will draw a connection between the MLJ and instanton theo-
ries by deriving them both from a common expression. In doing
so, it will be shown clearly that the instanton approximation is
fundamentally different from other approximations such as the
broadly applied cumulant expansion method95 and the semiclassical
Franck–Condon (SFC) sum.11,96 Numerical results demonstrate that
instanton theory is very accurate over a range of systems including
anharmonic modes where these alternative approximations break
down.
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Some rate theories have the advantage that they are based on
expressions that are simple enough that one can easily see their
dependence on certain parameters and thus gain insight into the
behavior of different systems.2,97 Wewill argue that instanton theory
allows for a well-balanced combination of easily attainable insights,
as well as providing a realistic molecular simulation. Even when
applied to complex anharmonic multidimensional potentials, the
method uniquely identifies an optimal tunneling pathway, which
provides a simple one-dimensional picture of the reaction, high-
lighting which modes are involved in the tunneling. In addition to
this, the instanton can be analyzed to obtain information on the
energies of the initial and final states of the system before and after
the electron-transfer event, thus providing similar insights to MLJ
theory as we will show.

II. GOLDEN-RULE RATE

The total Hamiltonian that describes electron transfer between
a reactant |0⟩ and product |1⟩ electronic state is defined by98

Ĥ ≙ Ĥ0∣0⟩⟨0∣ + (Ĥ1 − ε)∣1⟩⟨1∣ + Δ(∣0⟩⟨1∣ + ∣1⟩⟨0∣), (1)

where the electronic interaction between the states is given by the
nonadiabatic coupling Δ. Throughout this work, the electronic cou-
pling is taken to be constant, but the generalization to position-
dependent couplings is fairly straight forward.78,99 Furthermore, the
coupling is assumed to be very weak such that the rates occur in the
golden-rule limit, i.e., Δ→ 0, which is typically the case in electron-
transfer reactions.98 A driving force, ε, has been included explicitly
in the total Hamiltonian, which could describe an internal energy
bias or the effect of an external field. It is kept separate here for
clarity, but it could of course be simply absorbed into the definition
of Ĥ1.

We are interested in studying problems that can be subdivided
into an inner sphere, whose molecular structural characteristics will
be explicitly taken into account, and an outer sphere, which typ-
ically includes the solvent degrees of freedom and will be treated
as an effective harmonic environment characterized by its spectral
density. In the language of open quantum systems, these are called
subsystem and bath and are here taken to be uncoupled to each
other,100 although there is, of course, still some coupling through the
nonadiabatic terms in Eq. (1). Hence, the full nuclear Hamiltonian
for electronic state |n⟩ can be written as

Ĥn ≙ Ĥ
s
n + Ĥ

b
n , (2)

where

Ĥ
s
n ≙

d

∑
k=1

p̂2k
2m

+ V
s
n(q̂), (3a)

Ĥ
b
n ≙

D

∑
j=1

P̂2
j

2M
+ V

b
n(Q̂). (3b)

The subsystem Hamiltonians, Ĥs
n, only depend on the coordinates

q = (q1, . . ., qd) and their conjugate momenta p = (p1, . . ., pd), while
the bath Hamiltonians, Ĥb

n , are solely a function of the coordinates
Q = (Q1, . . ., QD) and momenta P = (P1, . . ., PD). Without loss of
generality, these degrees of freedom have been mass-weighted such

that all subsystem modes are associated with the same mass, m, and
likewise all bath modes with massM.

The harmonic approximation for the bath will be employed,1

V
b
0/1(Q) ≙ D

∑
j=1

1
2MΩ2

j (Qj ± ζj)2, (4)

where the plus sign corresponds to the reactant state and minus
sign to the product state. The bath Hamiltonians thus combine in
Eq. (1) to describe a spin-boson model,101 defined by the associated
frequencies {Ωj} and displacements {ζ j}, which can be selected such
that they represent an appropriate spectral density. This spin-boson
model is complemented by the subsystem modes whose potential-
energy surfaces will be kept general for the derivations in this work
such that they can, in principle, provide a realistic description of an
anharmonic molecule.

The full system is prepared as a thermal equilibrium ensemble
in the reactant state with inverse temperature β = 1/kBT and parti-

tion function Z0 ≙ Tr[e−βĤ0]. The quantum-mechanical rate expres-
sion for a reaction from the reactant to the product electronic state
in the golden-rule regime can be derived from a perturbation expan-
sion to lowest order in the nonadiabatic coupling Δ between the two
electronic states of an integral over the flux correlation function98,102

to give

k(ε)Z0 ≙
Δ
2

h̵2 ∫
∞

−∞

Tr[e−(βh̵−τ−it)Ĥ0/h̵ e−(τ+it)(Ĥ1−ε)/h̵]dt. (5)

The flux-correlation function is an analytic function of time, and
hence, the rate is independent of the imaginary-time parameter τ,103

although it has been included explicitly as it will play a pivotal role
in the semiclassical approximations taken later on.

Due to separability of the subsystem and bath, a quantum
trace can be taken independently over the respective contributions.
The reactant partition function thus factorizes according to Z0 ≙

Zs
0Z

b
0 into a subsystem part, Zs

0 ≙ Trs[e−βĤs
0], and a bath part, Zb

0

≙ Trb[e−βĤb
0 ]. The correlation function likewise splits into a product

of subsystem and bath parts.
The rate can thus be rewritten using the convolution theorem

of Fourier transforms,20

k(ε) ≙ Δ
2

2πh̵3 ∫ I
s(v)Ib(ε − v)dv, (6)

where the subsystem and bath line shape functions are

I
s(v) ≙ (Zs

0)−1 ∫ ∞

−∞

Trs[e−(βh̵−τ−it)Ĥs
0/h̵e−(τ+it)(Ĥ

s
1−v)/h̵]dt,

(7a)

I
b(ε − v) ≙ (Zb

0)−1 ∫ ∞

−∞

Trb[e−(βh̵−τ−it)Ĥb
0/h̵e−(τ+it)(Ĥ

b
1−ε+v)/h̵]dt.

(7b)

The equivalence to Eq. (5) can easily be checked by substituting
Eqs. (7) into Eq. (6) after renaming the integration variable t in the

two cases to ts or tb and using ∫ ei(t
s
−tb)v/h̵ dv ≙ 2πh̵ δ(ts − tb).
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The line shape function of the subsystem expanded simultane-
ously in the position and eigenstate bases can be written as

I
s(v) ≙ (Zs

0)−1∭ ∞

−∞
∑
μ
∑
ν

e−(βh̵−τ−it)E
μ
0/h̵

× e−(τ+it)(E
ν
1−v)/h̵ ⟨q′∣ψμ0⟩⟨ψμ0 ∣q′′⟩⟨q′′∣ψν1⟩

× ⟨ψν1 ∣q′⟩dq′dq′′dt, (8)

where E
μ
0 and Eν1 are the internal energy levels and ψ

μ
0 and ψν1

are the corresponding wavefunctions of reactants and products,
respectively.

Because of the global harmonic approximation of the bath, the
well-known result for the spin-boson model1,101 can be used to cast
Eq. (7b) into

I
b(ε − v) ≙ ∫ e−Φ(τ+it)/h̵−(τ+it)(v−ε)/h̵ dt, (9)

where the effective action of the bath is defined by

Φ(τ) ≙ D

∑
j=1

2MΩjζ
2
j [1 − coshΩjτ

tanh 1
2βh̵Ωj

+ sinhΩjτ]. (10)

Note that this is an analytic function of its argument and can there-
fore also be used to describe real-time dynamics in Eq. (9). The coor-
dinate dependence of the bath has been completely integrated out,
which is the reason why the effective action [Eq. (10)] only depends
on time. Assuming that the spectral density of the bath is known, the
time-integral of Eq. (9) can be carried out (either by quadrature or
by steepest descent) in order to account for quantum effects within
the solvent.60,104

In cases where the bath represents a polar solvent environment,
which typically comprises long-wavelength polarization modes, it is
often justified to approximate the effective action [Eq. (10)] by its
classical, low-frequency limit, where |Ωjτ| ≪ 1 and βh̵Ωj ≪ 1.1 In
this case, the classical bath action is

Φcl(τ) ≙ Λb(τ − τ2

βh̵
), (11)

where the bath reorganization energy is given by

Λ
b
≙

D

∑
j=1

2MΩ2
j ζ

2
j . (12)

In these formulas, τ/βh̵ plays the role of a “symmetry factor” as
described in Ref. 2.

In order to include a quantum harmonic bath with Eq. (10),
knowledge of the bath spectral density is required to define {Ωj} and
{ζ j}. On the other hand, a classical harmonic bath [Eq. (11)] can be
simpler to employ as it is fully characterized by its reorganization
energy Λb and thus requires much less information.

The approach that we will follow in this paper is to evaluate the
subsystem and bath line shape functions using different representa-
tions and approximations to derive multiple methods for computing
electron-transfer rates in the golden-rule regime.

For instance, if the relaxation of the inner sphere is assumed
to play no role in the reaction under consideration, there is no
subsystem contribution to the Hamiltonians in Eq. (2). The sub-
system line shape function Eq. (7a) therefore reduces to Is(v)
= ∫ e+(τ+it)v/h̵ dt = 2πh̵ δ(v). Employing the classical approxima-
tion for the action [Eq. (11)] in the bath line shape function Eq. (9),
plugging the line shape functions into Eq. (6), and performing
the final time-integral analytically leads to the famous Marcus rate
equation,13

k
b
MT(ε) ≙ Δ

2

h̵

√
πβ

Λb
e−β(Λ

b
−ε)2/4Λb

. (13)

It describes electron-transfer reactions that do not involve signifi-
cant rearrangements within the inner sphere (subsystem) and are
therefore determined only by the conformational changes in the
outer sphere (bath). As is well known, Marcus theory thus gives
the correct classical limit of the rate in the case of a spin-boson
model.1,14,105

In an alternative and more powerful derivation of Marcus the-
ory, the trace could have been evaluated over the bath degrees of
freedom in Eq. (7b) directly by a classical phase-space integral.85,106

In fact, we could treat the subsystem in the same way to obtain
kMT(ε), a theory equivalent to Eq. (13) but written in terms of the
total reorganization energy, Λ = Λ

s + Λ
b. This treatment allows for

anharmonic potential-energy surfaces but reduces to give the same
rate formula as long as the free-energy surfaces themselves are har-
monic. In this case, one should treat the driving force ε as a free
energy as it can also include entropic effects.107

In many cases, however, the inner sphere undergoes significant
conformational changes as well and therefore cannot be ignored.
Moreover, the molecules in the reaction center commonly exhibit
high-frequency modes, which necessitate the explicit consideration
of quantum effects (such as the existence of zero-point energy and
possibility of tunneling) within an anharmonic environment. We
can derive various methods to compute the subsystem contribution
simply by carrying out the sums and integrals of Eq. (8) in differ-
ent orders. Although all these approaches give identical results in
their exact form, they provide different starting points for taking
approximations.

III. MARCUS–LEVICH–JORTNER THEORY

The subdivision of the full nuclear Hamiltonians of each elec-
tronic state into independent subsystem and bath parts [Eq. (2)]
is the foundation on which MLJ theory is grounded.18,19 In this
approach, one then treats the subsystem quantum mechanically and
the bath classically.

A. Formalism

Here, we rederive MLJ theory on the basis of the formalism laid
out in Sec. II. Starting from Eq. (8), we first take the integrals over
positions and time and set τ to be zero. Consequentially, one arrives
at Fermi’s golden-rule (FGR) formula108 for the line shape function
of the subsystem,19,20

I
s
FGR(v) ≙ (Zs

0)−1∑
μ

e−βE
μ
0∑

ν

∣θμν∣2 δ(Eν1 − Eμ0 − v), (14)
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where θμν ≙ ∫ψ
μ
0(q)∗ψν1(q)dq are the Franck–Condon factors and

the subsystem contribution to the reactant partition function in the

energy eigenbasis is Zs
0 ≙ ∑μ e

−βE
μ
0 .

Combining this wavefunction representation of the subsystem
part with the bath line shape function [Eq. (9)] using the classical
effective action [Eq. (11)] and performing the final convolution inte-
gral in Eq. (6) leads directly to the Marcus–Levich–Jortner electron-
transfer rate theory in a system of two crossing potentials of arbitrary
shape in a classical harmonic bath,20

kMLJ(ε) ≙∑
μ
∑
ν

kμν(ε), (15)

with

kμν(ε) ≙ Δ
2

h̵

√
πβ

Λb

e−βE
μ
0

Zs
0

∣θμν∣2 e−β(Λb
−ε+Eν1−E

μ
0)

2/4Λb

, (16)

which is the most general version of MLJ theory used in this work.
The total rate in Eq. (15) comprises contributions from all reactant
and product vibrational channels.

This “static” formulation of electron transfer (i.e., time has been
integrated out) results in a rate expression that requires knowledge
of all internal states of the subsystem Hamiltonians, Ĥs

n. For com-
plex anharmonic molecules, this is not possible to compute without
further approximations. Thus, the most commonly employed form
of the Marcus–Levich–Jortner theory takes the extra approxima-
tion that the subsystem potentials for the reactant and product are
displaced one-dimensional harmonic oscillators with identical fre-
quencies, ω. Motivated by the fact that in many problems of physical
interest, the subsystem comprises very high-frequency modes, it is
often appropriate to assume that the thermal energy is low compared
with the energy spacing in these modes. Hence, only transitions
from the ground vibrational reactant state with quantum number
μ = 0 have to be considered. The general expression for the one-
dimensional overlap integral of two displaced harmonic oscillator
wavefunctions can therefore be further simplified because only the
terms22

∣θ0ν∣2 ≙ Aν e−A

ν!
, (17)

with A = Λ
s/h̵ω, have to be taken into account. This results in the

well-known rate formula for a single quantum harmonic mode in
the low-temperature limit21

kMLJ(ε) ≙ ∞∑
ν=0

kν(ε), h̵ω≫ kBT, (18)

where the rate into the product-state ν is

kν(ε) ≙ Δ
2

h̵

√
πβ

Λb

Aν e−A

ν!
e−β(Λ

b
−ε+νh̵ω)2/4Λb

. (19)

This low-temperature rate therefore consists of contributions from
multiple, parallel product vibrational channels with effective driving
forces of εν = ε − νh̵ω.

As can be seen from the exponential “activation” part of
Eq. (19), the major contributions to the rate will typically involve

the product vibrational states whose effective driving force εν is
approximately equal to the bath reorganization energy. In cases
where ε < Λ

b, this is not possible, and so, the ν = 0 product state
is expected to dominate. Thus, the dominant product vibrational
state will depend on the thermodynamic driving force, and transi-
tions to highly excited vibrational states are of particular importance
for very exothermic reactions and hence especially in the inverted
regime.

B. Model example

The simple model that we will use to illustrate MLJ theory is
formed of two-dimensional displaced harmonic oscillators with one
mode treated quantum mechanically and the other classically. The
subsystem potentials are defined by

V
s
0/1(q) ≙ 1

2mω
2(q ± ξ)2, (20)

where the reactant state is associated with the plus sign and the
product state with the minus sign, and because d = 1, we drop
the mode index. Given the frequency and reorganization energy,
the displacements are defined by ξ ≙

√
Λs/2mω2. The bath poten-

tials are defined according to a D = 1 version of Eq. (4) with
ζ ≙
√
Λb/2MΩ2. In particular, we will apply the theory to two dif-

ferent models defined by the parameters in Table I, one of which is
in the normal and the other in the inverted regime.

The parameters are chosen so as to illustrate two common sce-
narios. Because the inner sphere typically comprises high-frequency
vibrational modes, the low-temperature limit of the MLJ rate
[Eq. (18)] can often be applied to a good approximation.1,20 Hence,
activated vibrational reaction channels only have to be considered
for the product. This case is exemplified by the inverted-regime
model. The situation is illustrated in Fig. 1(a), which shows the
product potential shifted by the vibrational energy gap νh̵ω. In
Fig. 1(c), the reaction rate is broken down into contributions from
the individual product channels, which are clearly centered around
the dominant vibrational state ν = 15 and rapidly fall off on either
side.

Sometimes, however, a system also requires the consideration
of activated vibrational states of the reactant, which necessitates the
use of the general expression Eq. (15). As illustrated in Fig. 1(d), this
is the case for the normal-regime model, where excited vibrational

TABLE I. Definition of the parameters used in the two harmonic models studied in this
work. The rate is independent of the masses m and M, which therefore do not have to
be defined. As is common practice, the value of the frequencies are defined by their
related wavenumber.

Inverted-regime model Normal-regime model

T (K) 300 300
Λ
s (kcal mol−1) 25 50

Λ
b (kcal mol−1) 25 50

ε (kcal mol−1) 75 25
ω (cm−1) 1000 500
Ω (cm−1) 50 50
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FIG. 1. Plots to analyze the MLJ rate
for the two harmonic models defined in
Table I. [(a) and (b)] Plot ofVb

0 andVb
1−ε

(black lines) as functions of the bath
mode. The colored lines are copies of the
product potential shifted by the excita-
tion energies of the quantized subsystem
mode, and in (b) only, shifted copies of
the reactant potential. In each case, only
every fifth state is shown. [(c) and (d)]
State-resolved contributions to the MLJ
rate relative to the corresponding Marcus
theory rate for the full two-dimensional
model. For the inverted-regime model,
the reactant is almost always found in its
vibrational ground state, and therefore,
μ = 0.

states of both the reactant and product make significant contribu-
tions to the rate. Thus, in Fig. 1(b), not only the product but also the
reactant potential is shifted by the vibrational energies. The required
Franck–Condon overlap integrals for a subsystem of two displaced
harmonic oscillators can be computed with well-known analytic for-
mulas.95 Figure 1(d) shows that the dominant contribution to the
rate comes from the reaction channel from μ = 3 to ν = 11.

Perhaps even more important than the ability of MLJ theory
to predict rates is that it provides this simple picture of the quan-
tum nuclear effect on an electron-transfer reaction. By viewing the
reaction along the bath coordinates and shifting the potential-energy
surfaces by the excitation energies of the subsystem, one obtains
vibrational-state resolved contributions to the rate, which are cen-
tered around a dominant vibrational channel. This is a popular
way of understanding reactions and has, for instance, been used
to explain why rates in the inverted regime commonly flatten off
instead of decreasing rapidly with driving force as predicted by clas-
sical Marcus theory [Eq. (13)].10,12 In the inverted regime, it can
easily be seen from Eq. (18) and Figs. 1(a) and 1(c) that the dominant
contribution to the rate originates from the vibrational channel that
approximately shifts the bath product potential to the activationless
regime, where εν ≈ Λ

b,109 and thus predicts a rate approximately
independent of the driving force.110

This analysis of the inverted-regime model is based on the sim-
plification that the rate is fully determined by the exponential “acti-
vation” part. In reality, however, rates in the inverted regime are
also affected by the Franck–Condon factors such that they do not
actually become constant with the driving force. We find that the
bath activation energy for the dominant vibrational transition in the
inverted-regime model is 0.51 kcal mol−1, which is almost activa-
tionless, but still not negligible relative to the thermal energy. In

the normal-regime model, where excited reactant states also play an
essential role as illustrated in Figs. 1(b) and 1(d), the full rate expres-
sion Eq. (15) is no longer dominated by an activationless channel at
all. We find a significant activation energy for the dominant vibra-
tional channel of 6.64 kcal mol−1, which illustrates the compromise
between minimization of the activation energy and maximization of
the Franck–Condon overlaps that has to be made. This considerably
complicates the interpretation of the MLJ rate formula even when
the harmonic oscillator approximation is employed.

For more realistic systems described by multidimensional
anharmonic potential-energy surfaces, the Franck–Condon factors
are practically impossible to obtain and the subsystem is thus com-
monly approximated by simple models for which these are known
analytically. This introduces unknown errors into the predicted rate,
and it is to avoid this problem that we now turn to instanton theory.

IV. REDUCED INSTANTON THEORY

Inspired by the Marcus–Levich–Jortner approach, we will
derive a reduced instanton theory, where only the inner sphere is
treated explicitly in molecular detail, while the outer solvent shells
are accounted for with the harmonic bath approximation.

A. Formalism

In order to derive the semiclassical golden-rule instanton rate
expression, we start from the time-dependent correlation function
formulation of the reaction rate in Eq. (5). The trace can be split up
into a subsystem and bath contribution, where the latter can, due
to its harmonic nature, again be replaced with the well-known solu-
tion for the spin-boson model in terms of the effective bath action
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Φ(τ). In contrast to the MLJ approach, the trace in the subsystem
coordinates will be expanded in the position basis, which leads the
following expression for the rate:

k(ε)Zs
0 ≙

Δ
2

h̵2 ∭
∞

−∞

K0(q′,q′′,βh̵ − τ − it)K1(q′′,q′, τ + it)
× e−Φ(τ+it)/h̵+(τ+it)ε/h̵ dq′ dq′′ dt. (21)

Again in analogy to the dynamics of open quantum systems,
e−Φ(τ+it )/ h̵ plays the role of an influence function.77,101

We will carry out the time integral by the method of steepest
descent around the point t = 0, which corresponds to a short-time
approximation for the correlation function similar to transition-
state theory (TST). We thus only require knowledge of the matrix
elements of the imaginary-time quantum propagators,

Kn(qi,qf, τn) ≙ ⟨qf∣e−τnĤs
n/h̵∣qi⟩, (22)

which describe the dynamics of the subsystem variables evolving
according to the Hamiltonians Ĥs

n from the initial positions qi to the
respective final position qf in imaginary time τn. The imaginary-time
propagators are equivalent to quantum Boltzmann distributions,
and it is this connection that allows instanton theory to approximate
the thermal rate in a statistical way using imaginary-time dynamics.

If the imaginary-time propagators and spatial integrals were
evaluated by path-integral Monte Carlo calculations and the remain-
ing time integral taken by steepest descent, one would obtain a ver-
sion of Wolynes theory where the bath is treated implicitly by the
influence function.59,68 This, however, is not the purpose of this work
as we wish to derive a semiclassical instanton formulation of the
rate.

Instead, we replace the quantum propagators by the corre-
sponding Van Vleck propagators111 generalized for imaginary-time
arguments,87,112

Kn(qi,qf, τn) ∼
√

Cn(2πh̵)d e−Sn/h̵, (23)

thus introducing a semiclassical approximation. The resulting
expression is evaluated by locating the classical trajectory, qn(u),
traveling in imaginary time u, which makes the Euclidean action of
the subsystem, Sn, stationary. The action for a path traveling from its
initial position qn(0) = qi to its final position qn(τn) = qf in imaginary
time τn is defined as

Sn ≡ Sn(qi,qf, τn) ≙ ∫ τn

0
[ 12m∥q̇n(u)∥2 + V

s
n(qn(u))]du, (24)

where q̇n(u) ≙ dqn
du is the imaginary-time velocity. The prefactor of

the semiclassical propagator is given by the determinant

Cn ≙ ∣− ∂
2Sn

∂qi∂qf
∣. (25)

By multiplying the two propagators in Eq. (21) together, we
obtain the total action

S(q′,q′′, τ) ≙ S0(q′,q′′,βh̵ − τ) + S1(q′′,q′, τ) (26)

as the sum of contributions from two trajectories, one of which trav-
els on the reactant potential and the other on the product potential.
These trajectories join each other to form a continuous periodic
pathway, called the instanton. The imaginary times τn associated
with the two paths are given by τ0 = βh̵ − τ and τ1 = τ.

Combining this result with the effective action of the bath
according to Eq. (21), the total effective action becomes

S
r(q′,q′′, τ) ≙ S(q′,q′′, τ) +Φ(τ) − ετ, (27)

where one could employ either the effective quantum bath action
[Eq. (10)] or its classical limit [Eq. (11)]. The only effect of the bath
is to thus alter the total action by adding an extra τ-dependence
alongside the driving force term. However, as we will show, the
simple addition of the bath action can lead to significant changes
for the instanton path and for our interpretation of the reaction
mechanism.

In order to obtain the semiclassical instanton expression for the
rate, the integrals over q′ and q′′ as well as the time-integral will be
carried out by the steepest descent. Therefore, it is necessary first to
study the path corresponding to the stationary point of the effective
action for which ∂S

r

∂q′
≙

∂S
r

∂q′′
≙

∂S
r

∂τ ≙ 0. This path is our definition
of the reduced instanton, and by analyzing the consequences of van-
ishing derivatives, we can understand its properties in the general
case.

As in the standard golden-rule instanton formulation,78 the
instanton pathway consists of two trajectories q0(u) and q1(u), which
join smoothly into each other at the stationary or hopping point
in the subsystem coordinate space q′ = q′′ = q‡. Because the q-
derivatives are not altered by the influence of the bath, the momen-
tum, given by p′ ≙ −∂S0

∂q′
≙

∂S1
∂q′

(equivalent for double primes), is thus
still conserved across the hopping point. In this sense, the instanton
therefore remains a periodic orbit of imaginary time βh̵ as in the
standard theory.78

However, a major difference occurs due to the bath’s influence
on the derivative with respect to τ. The subsystem energies of the
two trajectories are given by

E
s
n ≙

∂Sn

∂τn
. (28)

Therefore, in the case without the presence of a bath, the condition at
the stationary point is given by ∂S

∂τ − ε ≙ 0, where
∂S
∂τ ≙ E

s
1−E

s
0 ≡ ΔE

s.
Considering ε as a contribution to the product energy as was done in
Ref. 78, this relationship implies that the reaction conserves energy,
i.e., Es

0 ≙ E
s
1 − ε. The hopping point must therefore be located on the

crossing seam where V0(q) = V1(q) −ε.
This no longer holds true once bath modes are added, which

changes the condition at the stationary point to

∂S
r

∂τ
≙
∂S

∂τ
+
∂Φ

∂τ
− ε ≙ 0. (29)

The presence of the bath will thus affect the stationary value of τ
and hence the entire instanton path and the value of its action.113

In particular, the energies of the two trajectories no longer match
Es
0 ≠ Es

1 − ε in general. Hence, the presence of the bath renders
the reduced instanton an energy non-conserving orbit within the
subsystem. However, the energy change in the subsystem is exactly
compensated by an energy change of opposite sign in the bath given
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by ΔEb
≙

∂Φ

∂τ such that ΔEs + ΔEb
−ε = 0. This is in agreement with

what one would expect from an open quantum system in which only
the total combined energy of subsystem and bath is conserved but
not the individual components. In this theory, one does not have
direct access to the energies of the bath, which would be needed to
fully justify this interpretation for ∂Φ

∂τ . However, we will show that
this definition is correct in Sec. V B.

One consequence of the energy jump caused by the presence of
the bath is that the hopping point, q‡, is not located on the cross-
ing seam between the two subsystem potentials. In fact, because the
momenta of the two trajectories are equal at the hopping point,
the energy jump within the subsystem must correspond exactly
to the potential-energy difference, ΔEs = ΔVs(q‡), where ΔVs(q)
≙ Vs

1(q) −Vs
0(q).

In Fig. 2, we illustrate the reduced instanton pathway for the
anharmonic model discussed in Sec. IV B, as well as the energies of
the two trajectories as defined by Eq. (28).

Note that the reactant or product energy is conserved along its
respective trajectory and is thus identical to the potential at the turn-
ing point, which can be easily seen in the figure as the point with the
lowest potential along the path. The concept of a turning point in
this context can be understood by the fact that dynamics in imagi-
nary time are equivalent to real-time dynamics on the upside-down
potential.112 At the turning point, the paths therefore bounce against
the potential that they are traveling on.

In order to fully interpret the instanton pathway from the fig-
ure, one must bear in mind that the orbit folds back on itself, as
we now describe in more detail. If we first follow the pathway in
Fig. 2 along the trajectory q0(u) starting at the (purple) hopping
point onVs

0 andwith a certain amount ofmomentum pointing to the

FIG. 2. Potential curves Vs
0(q) (blue solid lines) and Vs

1(q) − ε (orange solid

lines) of the subsystem as defined in Eq. (32) with ε = Λ/4 = 31.7 kcal mol−1. The
two trajectories of the reduced instanton are shown at discrete time steps by blue
(reactant) and red (product) dots, and their energies, Es

0 and Es
1 − ε, are depicted

by the blue and red dashed lines. These energies are separated by the energy
gap ΔEs

−ε, which is equal to the potential-energy gap at the hopping point (q‡,
purple dot). The inset shows the instanton for a model with the same subsystem
but without the presence of a bath enlarged from the area framed by the gray
dotted box. Here, ΔEs

− ε = 0, and therefore, energy conservation is satisfied and
the hopping point (purple dot) is located where the potentials cross.

left, we find that the path descends toward the reactant state mini-
mum, where it bounces against the potential and returns to where
it started but with momentum now pointing to the right. So far,
this is equivalent to the instanton pathway in the standard formu-
lation of the theory.78 Once the hopping point is reached, however,
a sudden jump in potential energy occurs, which accompanies the
transition into the product state. This is in stark contrast to the stan-
dard formulation where both trajectories tunnel at the same energy,
as shown in the inset of Fig. 2 for a case without a bath. After the state
transition, we travel along the trajectory q1(u), which after reaching
the turning point on Vs

1 also returns to the hopping point. A transi-
tion back to the initial hopping point on Vs

0 completes the periodic
cycle.

After the instanton pathway has been located, the integrals in
Eq. (21), where the propagators have been replacedwith Eq. (23), can
be carried out by steepest-descent integration around the stationary
point. Thus, we arrive at the reduced instanton expression for the
golden-rule rate,

krSCI(ε)Zs
0 ≙
√
2πh̵

Δ
2

h̵2

√
C0C1

C
(−d2Sr

dτ2
)−

1
2

e−S
r/h̵, (30)

where all quantities are evaluated at the stationary point of
S
r(q′,q′′, τ) except the reactant partition function Zs

0, which is
treated by an equivalent steepest-descent approximation around the
minimum of the reactant.87 The additional prefactor from the steep-
est descent integration in the subsystem positions evaluates to the
determinant

C ≙

RRRRRRRRRRRRR
∂

2S
∂q′∂q′

∂
2S

∂q′∂q′′

∂
2S

∂q′′∂q′
∂

2S
∂q′′∂q′′

RRRRRRRRRRRRR, (31)

where we have used the fact that derivatives of Sr with respect to the
end points are equal to derivatives of S. The bath therefore has no

direct effect on C but does explicitly appear in d2Sr

dτ2 ≙
d2S
dτ2 + d2Φ

dτ2 as
well, having an important effect on the instanton path itself as previ-
ously discussed. Apart from these changes, the formula resembles
the semiclassical golden-rule instanton rate expression derived in
previous work78 and gives identical results without needing to treat
the harmonic bath explicitly.

Just as for previous golden-rule instanton calculations,79,84 a
ring-polymer discretization scheme of the instanton pathway is
employed in order to describe nonadiabatic reactions for multidi-
mensional, anharmonic systems. By adopting the ring-polymer for-
malism, locating the instanton path, which is defined as a stationary
point of the action in Eq. (27) in the coordinate and τ variables
together, reduces to a standard saddle-point search problem, which
can be solved numerically with well-established optimization algo-
rithms. Algorithms for computing the necessary derivatives of the
action as well as detailed information about the optimization scheme
can be found in Ref. 86.

In our recent extension of the theory,84 we have shown that
ring-polymer instanton theory can equivalently be utilized to com-
pute electron-transfer rates in the Marcus inverted regime, where
tunneling effects commonly play a particularly important role. The
major difference in this regime is that one of the two paths travels
in negative imaginary time, which allows an analogy to the physics
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of antiparticles.114 In the computational realization, this difference
manifests itself merely in a slight change of the optimization algo-
rithm. Hence, whereas in the normal regime, the instanton is a
single-index saddle point of the ring-polymer action in the com-
bined space of ring-polymer coordinates and imaginary time, in
the inverted regime, the instanton path corresponds to a higher-
index saddle point of the ring-polymer action. The index of a saddle
point here defines the number of negative eigenvalues in the second-
derivative matrix of the ring-polymer Hessian at this point. How-
ever, since we exactly know the index of the desired saddle-point, the
instanton can be optimized with the same routines by using stan-
dard eigenvector-following schemes. We thus take uphill steps in
the direction of eigenvectors corresponding to negative eigenvalues
and standard down-hill steps in the direction of eigenvectors asso-
ciated with positive eigenvalues. This methodology can be directly
transferred to the reduced instanton picture without any additional
complications and hence allows us to apply it to the normal and
inverted regimes alike.

The advantage of the reduced instanton approach is that the
optimization is confined to the inner sphere and τ-coordinates only,
whereas the only direct influence of the bath on the optimization
procedure manifests itself in an external field in the imaginary-time
variable. This reduces the computational costs of the simulation
and enables it to be applied within a multiscale modeling approach,
where certain parts of a system are treated at higher levels of accuracy
than others.

B. Model example

We will employ the newly formulated reduced instanton
method along with MLJ theory to compute reaction rates of an
anharmonic subsystem of two bound Morse oscillators in a mul-
tidimensional harmonic bath. The subsystem is defined by the
potentials (depicted in Fig. 2)

V
s
n(q) ≙ De

n(1 − e−αn(q−ξn))2, (32)

where α0 = 1.5 Å−1 and α1 = 1.4 Å−1 determine the length scales,
ξ0 = 1.0 Å and ξ1 = 1.5 Å are the equilibrium positions, and De

0
= 115 kcal mol−1 and De

1 = 80 kcal mol−1 are the dissociation
energies of reactants and products. The (product) reorganization

energy of this subsystem is therefore Λ
s
≙ V1(q(0)min) − V1(q(1)min)

= 82.2 kcal mol−1, where q
(n)
min is the minimum of Vn(q). The

reduced mass is chosen to be m = 1.10 u. The well frequencies
of the two Morse oscillators obtained by harmonic analysis are
ωn ≙ αn

√
2De

n/m, which results in frequencies of ω0 = 2358 cm−1

and ω1 = 1835 cm−1 for the reactant and product well, respectively.
The Schrödinger equation for the Morse oscillator can be solved
analytically to give the bound-state energies

E
μ
0 ≙ h̵ω0(μ + 1

2) − h̵ω0χ0(μ + 1
2)2 (33)

and likewise for Eν1, where the dimensionless anharmonicity param-
eters of the Morse oscillators are defined by χn ≙ α2nh̵/2mωn and, in
this case, have values of 0.015 and 0.016 for the reactant and product
potential, respectively.

The bath is defined by the discretized spectral density

J(Ω) ≙ π
2

D

∑
j=1

c2j

MΩj
δ(Ω −Ωj), (34)

and the D = 100 bath modes were chosen according to Ref. 115 as

Ωj ≙
j2

D2
Ωmax, j ∈ ∥1,D∥. (35)

The effectivemass of the bathmodesM does not have to be specified,
as the rate is independent of this choice. The frequency spectrum is
bounded from above by the maximum frequency Ωmax = 3000 cm−1

and thus has the density116

ρ(Ω) ≙ D

2
√
ΩΩmax

. (36)

The couplings were chosen to emulate a Debye spectral density
defined by

JDe(Ω) ≙ ηΩcΩ
Ω2 + Ω2

c
, (37)

with characteristic frequency Ωc = 500 cm−1 and η = 25 kcal mol−1.
Hence, the coupling constants cj are determined by the formula

c
2
j ≙MΩj

2
π

JDe(Ωj)
ρ(Ωj) , j ∈ ∥1,D∥, (38)

which are related to the shifts ζ j in Eq. (4) by cj ≙ MΩ2
j ζj. The reor-

ganization energy of the bath is then obtained by Eq. (12), which in
our case results in Λ

b = 44.8 kcal mol−1. The total reorganization
energy of the subsystem and bath combined is therefore given by
Λ = Λ

s + Λ
b = 127.0 kcal mol−1. The temperature for the rate

calculations was chosen to be 300 K.
Similar models were studied with MLJ theory in Ref. 117. In

order to make use of analytical formulas for the Franck–Condon
factors, however, in that work, the reactant’s subsystem mode was
assumed to be in the low-temperature limit. Although it only makes
a minor difference, here, we include as many reactant states as nec-
essary to converge the rate and perform the Franck–Condon over-
lap integrals numerically. Where necessary, we take the continuum
states of the Morse oscillator into account by extending the MLJ for-
mula given in Eq. (15) in the same way as explained for the exact
quantum rate [Eq. (A1)] in Appendix A.

The reaction rates for this model system computed with various
methods as a function of the driving force ε are presented in Fig. 3.
The exact (Fermi’s golden rule) and MLJ rate calculations are based
on the knowledge of the analytic expressions for the energy levels
and wavefunctions of the Morse oscillator (see Appendix A). Thus,
the only approximation made byMLJ theory is to treat the bath clas-
sically. It can be seen from Fig. 3 that instanton theory, which does
not require knowledge of the eigenstates nor even global knowledge
of the potential along the subsystem mode, is virtually identical to
the exact result when employing a quantum bath with the effective
action from Eq. (10). This excellent agreement was expected from
the results and analysis seen in previous instanton studies of electron
transfer.70,79,84 When using a classical bath with the action given by
Eq. (11), it is slightly less accurate, although then very similar to MLJ
theory as they both suffer from the assumption of a classical bath.
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FIG. 3. Rates calculated by various methods for an anharmonic mode in con-
junction with a harmonic bath are shown for different values of the driving force
ε, including the reduced semiclassical instanton [rSCI, Eq. (30)] with either a
quantum or classical bath, classical golden-rule transition-state theory [Classi-
cal, Eq. (A2)], the second-order cumulant expansion [Eq. (B6)], the semiclassi-
cal Franck–Condon sum [SFC, Eq. (C3)], Marcus–Levich–Jortner theory [MLJ,
Eq. (15)], and exact quantum mechanics [Eq. (A1)]. In each case, the results are
given relative to the classical rate at ε = 0.

The classical golden-rule transition-state theory rate, out-
lined in Appendix A, constitutes the classical limit of the quan-
tum rate and would reduce to Marcus theory in the case of a
subsystem consisting of displaced harmonic oscillators. The devi-
ation of the classical rate from the exact, MLJ, and instanton
rates underlines the importance of nuclear quantum effects, which
causes the classical rate to differ from the exact results by more
than seven orders of magnitude in some cases. The differences
are most extreme for the largest driving forces in the inverted
regime.

For ε > Λ, the instanton analysis predicts a negative value of
τ, which is a clear indication that the inverted regime has been
reached, and it requires a subtly different ring-polymer optimization
scheme.84 Despite this, it is noteworthy that the observed turnover
in the rate (i.e., the point at which the rates start to decrease with
growing driving force) actually occurs at a slightly smaller driving
force. This is predicted correctly by all methods tested apart from
classical golden-rule TST. In instanton theory, this effect is caused
by the prefactor in Eq. (30) as the effective reduced action in the
exponential has its minimum at ε = Λ.

The fact that in the inverted regime, the MLJ, instanton, and
exact quantum rates almost coincide reveals that practically, all the
quantum effects in this regime originate from the subsystem and
not from the bath. Although the quantum subsystem still plays a
dominant role in the normal regime, it is clear that there is also a
small quantum effect from the bath, which explains the source of the
error of MLJ and likewise of rSCI theory when employing a classical
bath.

In Sec. V, we will further elaborate on the relationship between
rSCI and MLJ theory that is apparent from the results in this
section.

C. Comparison with alternative approximations

In this subsection, we will compare the instanton approach
with two other approximate methods for including quantum effects
into electron-transfer rates, namely, the cumulant expansion and the
semiclassical Franck–Condon sum. As well as discussing the accu-
racy of these various methods, we will also focus on the computa-
tional effort required for their calculation.

In Fig. 3, we present the rates obtained with the second-
order cumulant expansion118–120 described in Appendix B. To enable
a direct comparison with MLJ theory, we employed a classical
bath in its calculation, although like with rSCI, it would also
be possible to use the effective action of a quantum bath. This
method is not only commonly used for the study of electron-
transfer reactions in anharmonic systems121–128 but also for the
simulation of optical spectroscopy,129 vibrational line shapes,95 and
the description of energy-transfer processes.130 In practice, often
further approximations are invoked to obtain analytical expres-
sions for the rate131 before the method can be applied to complex
problems.

The advantage of the cumulant expansion over an exact (FGR)
or MLJ calculation is that it does not require knowledge about the
excited state’s vibrational eigenstates but only about its potential-
energy surface. However, although the method is exact for displaced
harmonic potentials,95 the results in Fig. 3 clearly demonstrate that,
as opposed to instanton theory, the rates obtained by the second-
order cumulant expansion can differ significantly from the exact
rates for the Morse oscillator model, with the worst case being at
zero driving force in the normal regime.132

Moreover, the rate expression of the cumulant expansion does
not satisfy the detailed balance relation for thermal rates,107,133

k0→1 Z
s
0 ≙ e

+βε
k1→0 Z

s
1, (39)

in anharmonic subsystems or even in a subsystem of two displaced
harmonic oscillators of different frequencies. Here, k0→1 and k1→0

are the rate constants of the forward and backward reactions. Note
that this relation would normally be written with total partition
functions, but here, we have already used the fact that in our case,
Zb
0 ≙ Zb

1 . Detailed balance is, however, obeyed by Fermi’s golden
rule, MLJ theory, all forms of instanton theory, and even classical
golden-rule TST.

Another method that does not obey detailed balance for anhar-
monic subsystems is the “semiclassical Franck–Condon sum” (SFC).
In fact, except in the classical limit, the rates computed within this
approximation do not even fulfill detailed balance for a subsystem of
two displaced harmonic oscillators of the same frequency if the driv-
ing force is different from zero. Originally themethodwas developed
to describe spectral line shapes of solids134,135 and later was used
to describe electron-transfer in biological systems.43,136 The deriva-
tion of the method for models with a harmonic bath as considered
in this paper is outlined in Appendix C. In this case, we treat the
bath itself within the SFC approximation as this can be done with
a closed-form expression. Like the cumulant expansion, it requires
knowledge of the vibrational eigenstates of the reactant but not of
the product. In accordance with the findings of Siders and Mar-
cus,11,96 it is accurate near the activationless regime, works fairly well
in the inverted regime, and gives significant errors of more than four
orders of magnitude in the normal regime.
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Ultimately, the major intrinsic problem of the MLJ method is
that it relies on the knowledge of the wavefunctions of the reactant
and product states and is therefore practically impossible to apply
to complex multidimensional problems. The cumulant expansion
and SFC methods only go part of the way to improving this situa-
tion as they require wavefunctions only for the reactant state. How-
ever, numerical integration over the coordinates would still require
both potentials to be evaluated over a large grid. Typically, there-
fore, at least the reactant potential is approximated by using a low-
dimensional harmonic oscillator, which introduces an unknown
additional error into the predicted rate.

In contrast, instanton optimizations only require information
along the tunneling pathway, which is located close to the hopping
point and thus minimizes the computational effort. This advantage
of instanton theory over the wavefunction-based methods increases
in significance with growing dimensionality of the subsystem. The
reason for this is that the instanton pathway always remains one-
dimensional, whereas the number of points needed to evaluate the
potential-energy surfaces on a grid grows exponentially with the
subsystem size. It can thus be applied, in principle, to complex
systems without making extra approximations.

It is therefore worth noting that although our instanton
approach and the SFC method and a number of other theories are
labeled “semiclassical,” they clearly employ quite different approx-
imations. Not only is semiclassical instanton theory superior in
accuracy but also is applicable to more complex multidimensional
anharmonic problems.

V. INSTANTON FORMULATION OF MLJ THEORY

Although MLJ and reduced instanton theory both can be
derived from Eq. (5), the resulting methods and rate formulas
[Eqs. (15) and (30)] look rather distinct from each other and thus
lead to quite different interpretations of the reaction. Marcus–
Levich–Jortner theory relies on the wavefunction picture of quan-
tum mechanics and computes the rate as a sum over reactant and
product states, which will be dominated by one particular reaction
channel, as shown in Fig. 1(d). Instanton theory, on the other hand,
is based on the path-integral formalism of quantum mechanics and
is dominated by a path that describes the mechanism during the
electron-transfer event.

Another fundamental difference between MLJ theory and the
rSCI approach presented in Sec. IV is that, in rSCI, the focus is
shifted from the bath modes to the subsystem. The standard MLJ
picture as shown in Fig. 1 interprets the reaction in terms of the
activation energy in the bath and includes the effect of the sub-
system through the shift that it gives to the bath potentials. The
computation of the reduced instanton approach, however, is car-
ried out directly in the subsystem modes under the influence of the
bath. This reflects more appropriately the computational effort put
into the calculation of subsystem and bath, as typically, the sub-
system will be treated in much more detail or on a higher level of
theory.

Both interpretations can be useful, but it is not immediately
obvious that they can be reconciled, although the common founda-
tion in Eq. (5) suggests that both methods must be related. This idea
is reinforced by the fact that the rates obtained for the double Morse

oscillator model, shown in Fig. 3, are practically identical when both
methods treat the bath classically. In the following, we will show that
a different derivation of the semiclassical instanton approximation
leads to an equivalent formulation but which can be used to give the
same insights as MLJ theory.

A. Formalism

The objective of this section is to derive an instanton formu-
lation of MLJ theory. The bath is thus assumed to be classical, and
for simplicity, both subsystem and bath are kept one-dimensional
here. The formulas do, however, generalize straightforwardly to the
multidimensional case.

In order to show the relation with MLJ theory more closely, the
convolution formula [Eq. (6)] will again serve as the starting point.
The expression for the line shape function of the bath in Eq. (7b)
will be evaluated by a classical phase-space integral, which is one-
dimensional in both the position and momentum coordinate. After
carrying out the integrals in momentum and time, this results in the
one-dimensional classical configuration-space integral

I
b
cl(ε − v) ≙ 2πh̵(Zb

0)−1
√

M

2πβh̵2 ∫ e−βV
b
0 δ(ΔVb

− ε + v)dQ, (40)

where the Hamiltonians of the bath [Eq. (3b)] have been replaced
by their classical analogues and the independence with respect to τ
appears naturally. In addition, we define the potential-energy differ-
ence in the bath ΔVb(Q) ≙ Vb

1 (Q) − Vb
0 (Q), although we suppress

the Q-dependence to avoid clutter. For the harmonic bath poten-
tial, ΔVb = −2MΩ2ζQ = −ΛbQ/ζ. TheQ-integral could, of course, be
easily carried out immediately to give the Marcus theory line shape.
However, in order to obtain a picture of the reaction from the point
of view of the bath, we leave it for later.

Using this classical result for the bath line shape function
in Eq. (6) and performing the convolution integral leads to the
approximate rate formula,

k(ε) ≈ (Zb
0)−1Δ2

h̵2

√
M

2πβh̵2 ∫ Ĩ(ε − ΔVb)dQ, (41)

where we define the subsystem line shape function weighted by the
bath thermal distribution,

Ĩ(ε − ΔVb) ≙ Is(ε − ΔVb) e−βVb
0 . (42)

Note that the effect of the convolution manifests itself in a change
of the argument of the subsystem line shape function Is, which now
implicitly depends on the bath coordinate Q via ΔVb.

Viewing the expression for the reaction rate with an implicit
dependence on the bath coordinates is also the idea that enables
the illustration of the MLJ rate by shifted potentials along the bath
modes, as shown in Fig. 1. In fact, if Eq. (14) is used for the sub-
system line shape function and the remaining Q-integral over the
delta-function in Eq. (40) is taken, the standard MLJ rate formula
[Eq. (15)] is recovered.

Here, we seek to treat the subsystem part with semiclassical
instanton theory. Note that both the MLJ and instanton versions
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of the subsystem line shape function emerge from Eq. (8). The dif-
ference is induced by the order in which the sums and integrals in
Eq. (8) are taken. Whereas in MLJ theory, the configuration-space
integrals are taken before the sums over states are carried out, in
instanton theory, these steps are taken in reversed order leading to
a path-integral instead of a wavefunction formulation of the reac-
tion rate. Only in the path-integral formulation is it possible to take
the steepest-descent integration, which leads to semiclassical instan-
ton theory. The instanton subsystem line shape function is thus
given by137

I
s
SCI(ε − ΔVb) ≙ √2πh̵

Zs
0

√
C0C1

C
(−d2S

dτ2
)−

1
2

e−S(τ)/h̵−(ΔV
b
−ε)τ/h̵,

(43)

where again all quantities are evaluated at the stationary point of
the exponent [S(τ)/h̵ + (ΔVb

− ε)τ/h̵] in the subsystem coordinates
q′, q′′, and imaginary time τ simultaneously. Using this approxima-
tion in Eqs. (42) and (41) defines the instanton formulation of MLJ
theory.

Here, we show that this approach gives the same result as
the reduced instanton theory derived in Sec. IV A. By employ-
ing Eq. (42) for the subsystem line shape function in Eq. (41), the
effective action in the exponent becomes

S(Q, τ) ≙ S(τ) + (ΔVb
− ε)τ + βh̵Vb

0 . (44)

Due to the harmonic nature of the bath, the stationary point in the
bath coordinates can be solved analytically. This defines the hopping
point at which the electron transfer dominantly takes place. Within
the classical limit, it is given by

Q
‡
≙ ζ( 2τ

βh̵
− 1). (45)

Evaluating Eq. (44) at this point therefore leads to S(Q‡, τ) ≙ Sr(τ).
Hence, the exponent becomes identical to that of reduced instan-
ton theory (with a classical bath), and hence, the value of τ at the
stationary point is the same too.

The rate expression for this instanton version of MLJ the-
ory is obtained by performing the remaining Q-integral by steepest
descent and using the classical partition function Zb

0 ≙ (βh̵Ω)−1 to
give

kSCI(ε) ≙ Δ
2

h̵2

√
βh̵MΩ2 ĨSCI(ε − ΔVb)( d2S

dQ2
)−

1
2

, (46)

where all quantities are evaluated at the stationary point Q = Q‡

including the system line shape function, which implicitly depends
on Q through ΔVb.

In order to verify the equivalence of this rate expression with
Eq. (30), we make use of the rules of consecutive steepest-descent
integrations,78,138

d2S
dQ2

≙
∂
2
S

∂Q2
−

∂
2
S

∂Q∂τ
(∂2

S

∂τ2
)−1 ∂

2
S

∂τ∂Q
. (47)

Because the spatial subsystem and bath coordinates are indepen-
dent, the partial derivatives involvingQ can be easily evaluated. After
rearranging, this results in

∂
2S

∂τ2
d2S
dQ2

≙ βh̵MΩ2 ∂
2
S
r

∂τ2
, (48)

where ∂
2
S
r

∂τ2 ≙
∂

2S
∂τ2 − 2Λ/βh̵.

Using these expressions in Eq. (46) shows that this approach is
therefore identical to rSCI [Eq. (30)], which is not surprising as all
we have done is carry out the same steepest-descent integrations but
in a different order.

Following this procedure for the displaced harmonic-oscillator
models defined in Table I, we obtain the instantons depicted in
Fig. 4. Panels (a) and (b) show Ĩ(ε − ΔVb) computed with the semi-
classical instanton approximation as a function of Q for the inverted
and normal-regime models. As expected, the function is centered
around Q‡ and is well approximated by a Gaussian. From instanton
theory, we have therefore obtained a reduced picture of the reaction,
but this time, the focus is along the solvent coordinate and hence can
provide a similar interpretation to that fromMLJ theory.

B. Analysis and mechanistic insights

In addition to the formal connection between SCI andMLJ dis-
cussed in Sec. V A, we will show that, along with the insight into the
tunneling pathway, it is possible to use instanton theory to extract
very similar information about the reaction as is offered by MLJ the-
ory, such as the bath activation energy and the excitation energies
of the dominant reactant and product vibrational states involved
in the electron-transfer process. We thus suggest that instanton
theory may be used instead of MLJ theory for understanding
and interpreting electron-transfer reactions in complex anharmonic
systems.

In Table II, we present numerical values of the reaction rates
for the two models in the normal and inverted regimes defined
in Table I computed with different methods as well as a number
of values obtained from the instanton calculation which we will
describe later. A comparison of the accuracy of the approaches has
already been carried out in Sec. IV B, and thus, here, we simply note
a couple of points that are special to this case. In order to define a
quantum-mechanical rate for this low-dimensional model system,
it is necessary to neglect recurrences by integrating the correlation
function only over its first peak. Note that no modifications are
required to obtain the MLJ rate because of its assumption of a classi-
cal bath, which thus has a continuum of states necessary to observe
exponential decay and hence a meaningful rate constant. The fact
that for the inverted-regime model, the rSCI rate is even slightly
closer to the quantum rate than the MLJ rate can be attributed
to a fortuitous error cancellation, as MLJ theory is, in principle,
the more accurate method in this case. Because both models con-
sist of displaced symmetric harmonic oscillators, the second-order
cumulant expansion is exact in these cases and therefore not shown.
In contrast, the rate obtained with the SFC method, while show-
ing decent agreement with the quantum-mechanical rate for the
inverted-regime model, exhibits an error of almost one order of
magnitude for the normal-regime model. This is in agreement with
the findings in Refs. 11 and 96.
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FIG. 4. Insights from instanton theory into the reaction mechanism for the inverted and normal-regime model. [(a) and (b)] Eq. (42) as a function of Q. [(c) and (d)] Plot of
the potential-energy curves (including the driving force, ε) along the bath mode. The location of the hopping point along the classical mode Q‡ and the potential-energy
differences at this point ΔVb(Q‡) −ε are indicated. [(e) and (f)] Plot of the potential-energy curves along the subsystem mode together with the optimized ring-polymer
instanton corresponding to Q = Q‡, which was used to compute the subsystem contribution to the rate. The instanton energies in the subsystem [Eq. (28)] (dashed lines) and
the corresponding energy difference ΔEs are indicated. The energy difference can be measured equivalently as ΔVs(q‡) at the hopping point (q‡, purple dot).

Just as in the reduced instanton formalism derived in Sec. IV,
the instantons computed in the subsystem coordinate space, shown
in the bottom panels of Fig. 4, consist of paths qn(u) whose energies
are not equal but differ by the amount ΔEs. We will show that this
energy jump is a good approximation to the difference in energies
between the dominant reactant and product vibrational states in the
MLJ sum, i.e., Eν1 −E

μ
0 . As explained in Ref. 84, in the normal regime,

the trajectories travel in opposite directions away from the hopping
point q‡, but in the same direction when in the inverted regime. This
occurs because τ < 0 in the inverted regime such that the product
trajectory travels in negative imaginary time and thus in the opposite
direction from its momentum.

The energy jump in the bath is indicated in Figs. 4(c) and
4(d) and can be defined from the potential-energy difference at the
hopping point [Eq. (45)],

ΔE
b
≙ ΔV

b(Q‡) ≙ Λb(1 − 2 τ

βh̵
), (49)

which is seen to be equal to ∂Φcl
∂τ and just justifies identifying this

term as the energy jump in the bath in Sec. IV A. At the station-
ary point, we have ΔEs + ΔEb

− ε = 0, which confirms that the total
energy is conserved.

As well as predicting the energy jump, we can also predict the
reactant and product vibrational states, which dominate the MLJ
sum. In instanton theory, the energies [Eq. (28)] of the two tra-
jectories qn(u) making up the reduced instanton indicate the ener-
gies with the largest contributions to the thermal rate. In this har-
monic system, we can relate the energies directly to the vibrational
quantum numbers as the energy levels are known. This would, of
course, not be possible in a complex system, although knowledge
of the energy in the subsystem before and after the reaction, which
provides similar insight, would still be available.

As one can read from the table, for the inverted-regime model,
the instanton energies correspond to a transition from the reac-
tant ground vibrational state μ ≈ 0 to the product state ν ≈ 15.
The dominant vibrational channel in the normal-regime model is

J. Chem. Phys. 152, 244117 (2020); doi: 10.1063/5.0013521 152, 244117-13

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

TABLE II. Computed quantities for the harmonic models defined in Table I. The
reduced instanton rates with classical bath and the corresponding values τ at the
stationary point of the reduced action Sr were obtained from ring-polymer instanton
optimizations with 256 beads equally distributed between both electronic states. The
contributions to the total effective action from subsystem Sn and bath Φcl are also
given. The quantum-mechanical (QM) rate is obtained from numerical integration of
the flux correlation function of the full system over its first peak only and neglecting
recurrences. As described in Appendix C, the SFC approximation is used for both the
subsystem and bath in order to compute the corresponding rates. For both models,
the MLJ rate includes contributions from excited reactant states. All rates, including
the Marcus rate for the full system kMT(ε), are given relative to the Marcus rate for the
bath of the respective model only kb

MT
(ε).

Inverted-regime Normal-regime
model model

Es
0/h̵ω 0.02 3.08

Es
1/h̵ω 15.46 10.91
τ/βh̵ −0.12 0.36
S0/h̵ 2.538 6.787
S1/h̵ −9.171 10.700
Φcl/h̵ −5.501 19.367
Vb
0 (Q‡) (kcal mol−1) 0.34 6.55

kQM(ε)/kbMT(ε) 5.159 ⋅ 1016 5.484 ⋅ 10−8

kMLJ(ε)/kbMT(ε) 5.144 ⋅ 1016 5.366 ⋅ 10−8

krSCI(ε)/kbMT(ε) 5.152 ⋅ 1016 5.360 ⋅ 10−8

kSFC(ε)/kbMT(ε) 4.221 ⋅ 1016 49.856 ⋅ 10−8

kMT(ε)/kbMT(ε) 0.615 ⋅ 1016 0.762 ⋅ 10−8

predicted to involve an excited reactant vibrational state μ ≈ 3
and the product state ν ≈ 11. A comparison of these values with
Figs. 1(c) and 1(d) reveals that, for both models, the instanton
energy picks out the same dominant vibrational channel as MLJ
theory. Note that, because of the TST-like approximation involved
in the steepest-descent integration over time [Eq. (21)], instan-
ton theory cannot resolve vibrational states, as it does not actually
quantize the reactant and product wells but instead relies solely on
imaginary-time trajectories that exist only in the classically forbid-
den regions. It does not therefore give integer values for the dom-
inant states. This is however not a serious concern as there is no
particular relevance of the individual state with the largest contribu-
tion because typically, MLJ theory predicts that a cluster of states are
involved, and thus, any prediction within the cluster is practically as
good.139

Furthermore, for a subsystem in conjunction with a classical
harmonic bath, the activation energy of the bath modes can be easily
recovered using Eq. (45) to give

V
b
0 (Q‡) ≙ Λb( τ

βh̵
)2, (50)

which should be evaluated at the stationary value of τ. The values for
the bath activation energy obtained from rSCI theory are also given
in Table II and are in good agreement (i.e., with an error less than
the thermal energy) with the results obtained fromMLJ theory given
in Sec. III B.

In the inverted-regime model, as can be seen in Fig. 4(c), the
bath activation energy is thus substantially lower than it would be if
there were no subsystem, for which it would correspond to the point
where the potentials cross. The presence of the subsystem therefore
leads to a significant speed-up of the reaction, which explains why
the rate for the full system in Table II is many orders of magni-
tude larger than the corresponding reaction taking place in the bath
only. However, the rate is dependent not only on the bath activa-
tion energy but also on the action of the subsystem instanton, as can
be seen from Eq. (44). As previously discussed, the stationary value
of the bath configuration, Q‡, is associated with an energy jump
ΔVb(Q‡) − ε that must be compensated by ΔEs = ΔVs(q‡) with an
equal magnitude but opposite sign in the subsystem in order to sat-
isfy energy conservation. Panels (c) and (e) of Fig. 4 illustrate that
minimizing the bath activation energy causes the tunneling path-
way in the subsystem to lengthen, which increases the system action.
The elongation of the path can be understood from Fig. 4(e), which
shows that, in order to reach a point where the potential-energy dif-
ference between the subsystem potentials exactly compensates the
energy jump in the bath, the system has to travel “uphill” to the
left. Hence, in general, a compromise has to be made between min-
imizing the bath activation energy and the subsystem action. Only
in one particular case is the magnitude of the energy jump at the
reactant minimum in the bath (including the driving force) identi-
cal to the potential-energy difference at the reactant minimum in the
subsystem such that an activationless reaction becomes possible. In
this special case, the energy jump in the bath is Λb

− ε and that in

the system is ΔVs(q(0)min), where Vs
0(q(0)min) ≙ Vs

1(q(1)min) leads to the
requirement ε = Λ. The rates in the inverted regime are much faster
than those in the fully classical treatment because the reaction within
the subsystem can proceed via quantum tunneling, as depicted in
Figs. 4(e) and 4(f), instead of relying on thermal activation. Alto-
gether, this implies that, although the turnover curve in the inverted
regime is not as steep as it would be according to the classical theory,
it does not become independent of ε.

On the other hand, in the normal regime, the bath activation
energy in Fig. 4(d) is seen to be higher than it would be with-
out the presence of the subsystem. This causes the rate for the full
system to decrease relative to the electron-transfer reaction in the
bath only. The tunneling effect increases the rate relative to a clas-
sical calculation although typically not as dramatically as in the
inverted regime. This can also be understood from an analysis of
the instanton tunneling trajectories as was explained in Ref. 84.

Thus, we were able to show how practically all insights from
MLJ theory including, first and foremost, the energies of the dom-
inantly contributing reactant and product states can equally be
obtained from reduced instanton theory. Semiclassical instanton
theory further allows one to attain this understanding of the reaction
even in complex, anharmonic systems. This information is comple-
mented by locating the optimal tunneling pathway in the subsystem,
which can be interpreted as the reactionmechanism in configuration
space.

VI. CONCLUSIONS

We have developed an instanton formulation of MLJ the-
ory, which focuses on the subsystem while including a classical or
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quantum harmonic bath implicitly. This provides a practical method
to complement the simulation of electron-transfer reactions of mul-
tidimensional anharmonic subsystems by the effect of a solvent envi-
ronment. Thus, the method is ideally suited to study problems that
necessitate multiscale modeling.

Electron-transfer rates have been calculated and compared to
results from several other methods for an asymmetric anharmonic
model and the results demonstrate that reduced semiclassical instan-
ton theory is in excellent agreement with either the exact rate or the
MLJ rate depending on whether the bath is assumed to be classi-
cal or not. Thus, we argue that semiclassical instanton theory can
be reliably employed in many situations that have previously been
simulated by MLJ theory. We note, however, that due to the approx-
imations of instanton theory, it is not able to resolve vibrational
states and thus capture vibrational progressions, which may become
important when the spectrum of the subsystem is only weakly broad-
ened by the bath. This is typically not a problem for electron-transfer
reactions.

In addition toMLJ theory, we also have compared our approach
to the second-order cumulant expansion, a popular method com-
monly used to describe electron-transfer and optical transition rates,
and to the semiclassical Franck–Condon sum. The results obtained
with both these approximations exhibit severe errors, especially
in the normal regime, and in fact, unlike instanton theory, nei-
ther the cumulant expansion nor the SFC approximation satisfies
the detailed balance relation [Eq. (39)]. This underlines the fact
that, although both the SCI and SFC methods have been termed
“semiclassical,” the approximations are quite unrelated.

We also compared and contrasted the insight that MLJ and
instanton theories can offer into the mechanism of electron-transfer
reactions. The traditional MLJ picture is shown along the bath
coordinates in which the subsystem has an effect by shifting the
reactant and product potential by their respective internal energy
levels. Although undoubtedly simple and intuitive in one dimen-
sion, this picture quickly becomes convoluted when a multidimen-
sional anharmonic subsystem has to be considered. There is also
little insight given into the tunneling dynamics of the subsystem
itself.

Instanton theory, on the other hand, automatically locates a
unique reaction coordinate that describes the optimal tunneling
pathway of the subsystem modes. In analogy to the dynamics of
open quantum systems, the addition of a bath changes the instanton
pathway in the subsystem such that, due to energy exchange between
the subsystem and bath, the reduced instanton exhibits an additional
jump in energy at the hopping point. Although the energy in the sub-
system is therefore not conserved by the electron-transfer reaction,
the excess energy is absorbed by the bath such that the total energy is
conserved as, of course, it should be. This picture of tunneling under
the barrier along a reaction coordinate reflects the typical situation
of practical simulations, where the focus is on the subsystem under
the influence of a surrounding solvent bath.

Despite these fundamental differences, we also have discussed
how instanton theory is connected to MLJ theory by deriving them
both from a common expression. This shows that in principle, sim-
ilar insights can be extracted from either method. In particular, we
show that instanton theory predicts excitation energies of the reac-
tant and product, which are in agreement with the initial and final
vibrational states that dominate the MLJ rate.

Instanton theory overcomes the main disadvantage of MLJ the-
ory, which is that it requires knowledge of the energy levels and
wavefunctions of the subsystem. Because of this, applications of
MLJ theory are often limited to a harmonic-oscillator approxima-
tion, which introduces an uncontrolled error when simulating an
anharmonic system. Hence, although rSCI (with a classical bath) is
technically an approximation to MLJ theory, in many anharmonic
cases, it will lead to more accurate results due to its ability to account
for anharmonicity along the tunneling pathway. In conjunction
with a ring-polymer discretization, instanton theory can be applied
directly to multidimensional anharmonic problems. The applica-
tion of this theory to electron-transfer reactions, spin transitions,
and energy-transfer processes of molecular systems in combination
with high-level ab initio electronic structure methods, as has been
used in previous instanton studies,92–94 will be integral part of future
work.
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APPENDIX A: QUANTUM AND CLASSICAL RATE
FORMULAS FOR AN ANHARMONIC SUBSYSTEM
MODE IN CONJUNCTION WITH A HARMONIC BATH

In order to put the instanton and MLJ results shown in Fig. 3
into context, we also present the exact quantum-mechanical rate
for this system and its classical limit. This enables us not only to
directly check the quality of the results obtained with the approxi-
mate methods but also by comparison with the classical rate allows
an estimation of the relevance of nuclear quantum effects. In this sec-
tion, we harness the formal framework laid out in Sec. II to derive
the required rate formulas making use of the fact that we can ana-
lytically integrate out the coordinate-dependence of the harmonic
bath.

If the wavefunctions of the subsystem are known, as is the case
for the two crossing Morse oscillators used in Sec. IV B, the trace
over the subsystem degrees of freedom in Eq. (7a) can be eval-
uated exactly in the wavefunction representation. Thus, the exact
quantum-mechanical rate can be computed by the formula

k(ε)Zs
0 ≙

Δ
2

h̵2 ∫
∞

−∞

dt∑∫
μ

e−βE
μ
0∑∫
ν

∣θμν∣2
× e−(τ+it)(E

ν
1−E

μ
0−ε)/h̵−Φ(τ+it)/h̵, (A1)

where sums are taken over the bound states of the Morse poten-
tial and integrals are carried out over the energies of the energy-
normalized continuum states. Expressions for the wavefunctions can
be found in Refs. 140 and 141. Numerical integration was used to
obtain the Franck–Condon overlaps and to perform the integral over
time. In order to make the latter converge easily, the imaginary-time
variable τ was chosen appropriately (i.e., using the value obtained
from the instanton optimization), although the converged result is
independent of this choice.

The classical limit of this rate can be obtained in a similar way
except that the trace in Eq. (7a) is evaluated by a classical phase-space
integral106 and the classical limit of the effective bath action is used

J. Chem. Phys. 152, 244117 (2020); doi: 10.1063/5.0013521 152, 244117-15

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

[Eq. (11)]. For a one-dimensional subsystem, this gives the classical
golden-rule transition-state theory rate,

kcl(ε)Zs
0 ≙

Δ
2

h̵3

√
m

2Λb ∫ e−βV
s
0(q)e−β(Λ

b
−ε+ΔVs(q))2/4Λb

dq, (A2)

where the reactant partition function is computed by a classical
phase-space integral. The remaining integral in the subsystem mode
can either be taken numerically, as was done to generate the results
in Fig. 3, or by steepest descent, which would be an excellent
approximation in this case.

The quantum-mechanical rate [Eq. (A1)] and the MLJ rate
[Eq. (15)] correctly reduce to the classical rate expression in Eq. (A2)
in the high-temperature or low-frequency limit, while instanton
theory [Eq. (30)] reduces to the steepest-descent version of it.

In the special case that the subsystem consists of displaced
harmonic oscillators, Eq. (A2) reduces to Marcus theory, kMT(ε),
defined equivalently to Eq. (13) but with the total reorganization
energy,Λ, equal to the sum of the subsystem and bath reorganization
energies.

APPENDIX B: CUMULANT EXPANSION

Another approximate way of computing correlation functions
and therefore also to calculate electron-transfer reaction rates is the
so-called “cumulant expansion,”118–120 which in our formulation will
be applied to the line shape function of the subsystem Eq. (7a).

In its conventional formulation, τ is set to zero, and we rewrite
Eq. (7a) as

I
s(v) ≙∫ ∞

−∞

eivt/h̵ R(t)dt, (B1)

where the correlation function is

R(t) ≙ (Zs
0)−1Trs[e−(βh̵−it)Ĥs

0/h̵ e−itĤ
s
1/h̵]. (B2)

The time-dependent terms inside the trace can equally be rewrit-

ten as a time-ordered exponential according to e+itĤ
s
0/h̵ e−itĤ

s
1/h̵

≙ T̂e−i ∫
t
0 ΔV̂

s
I (t
′)dt′/h̵, where T̂ is the time-ordering operator,

and we make use of the interaction picture to give ΔV̂s
I (t)

≙ e+iĤ
s
0t/h̵ ΔV̂s e−iĤ

s
0t/h̵, where ΔV̂s

≙ Ĥs
1 − Ĥs

0 ≙ Vs
1(q̂) − Vs

0(q̂).95
This exact expression can then be expanded in a time-ordered power
series with respect to ΔV̂s

I .
Motivated by the analytic solution for the correlation function

of a system of displaced harmonic oscillators [Eq. (9)], one makes
the ansatz R(t) ≙ exp∥−Γ(t)∥, where the exponent is defined as a
sum of cumulants,

Γ(t) ≙ ∞∑
j=1

Γj(t), (B3)

where Γj(t) is of jth order in ΔV̂s
I . Comparing the two expansions,

the first two terms in Eq. (B3) are given by95

Γ1(t) ≙ i
h̵
(Zs

0)−1 ∫ t

0
dt1Trs[e−βĤs

0ΔV̂
s
I (t1)], (B4a)

Γ2(t) ≙ 1
2Γ

2
1(t) + 1

h̵2
(Zs

0)−1
× ∫

t

0
dt1 ∫

t1

0
dt2Trs[e−βĤs

0ΔV̂
s
I (t1)ΔV̂s

I (t2)], (B4b)

whereas higher cumulants are neglected in the expansion. The
expressions in Eq. (B4) can be evaluated by expanding the traces
in the energy-eigenstate basis of Ĥs

0. Performing the time-integrals
analytically results in the following equations:

Γ1(t) ≙ it
h̵
(Zs

0)−1∑
μ

e−βE
μ
0ΔV

s
μμ, (B5a)

Γ2(t) ≙ 1
2Γ

2
1(t) + (Zs

0)−1∑
μ
∑
μ′

e−βE
μ
0 ∣ΔVs

μμ′ ∣2

×
1 + i(Eμ0 − Eμ′0 )t/h̵ − ei(Eμ0−Eμ′0 )t/h̵(Eμ0 − Eμ′0 )2 , (B5b)

where ΔVs
μμ′ ≙ ∫

∞
−∞ ψ

μ
0(q)∗ΔVs(q)ψμ′0 (q)dq, and these inte-

grals over the one-dimensional subsystem coordinate are evaluated
numerically. The terms in the sum of Eq. (B5b) with μ = μ′ can be
evaluated by L’Hôpital’s rule. For the case of displaced harmonic
oscillators, this expansion of the correlation function up to second
order gives the exact result, as all higher order terms vanish.95 In
the general, anharmonic case, however, the quality of the approxi-
mation is unclear. One could of course extend the method to higher
orders, but the series is unlikely to converge quickly to the correct
result.

The computational advantage of the cumulant expansion over
the golden-rule formula is that only the eigenstates of the reactant
electronic state need be known. It is thus perhaps most useful when
computing absorption spectra from a ground electronic state to an
excited state, for which the ground state is well approximated by a
harmonic oscillator, but not the excited state. However, significant
knowledge of the product potential-energy surface is still required in
the region where the wavefunction overlaps in Eq. (B5) are sizable,
which can be expensive to compute.

This result for the subsystem’s line shape function can be eas-
ily combined with the line shape function of the harmonic bath
from Eq. (9) by performing the convolution integral in v and inte-
grating over the resulting delta function. The rate expression based
on the second-order cumulant expansion for the subsystem part is
therefore given by

kCE(ε) ≙ Δ
2

h̵2 ∫
∞

−∞

eiεt/h̵ e−Γ1(t)−Γ2(t)−Φ(it)/h̵ dt, (B6)

where either a quantum or classical bath can be employed by using
the respective expressions for the actions in Eqs. (10) and (11) and
the final time-integral is carried out numerically.

Note that this cumulant expansion leads to a completely differ-
ent approximation from that of Wolynes theory59 even though the
latter can also be thought of as a type of cumulant expansion. In con-
trast to the approach described here, Wolynes theory carries out the
time integral by the method of steepest descent and computes the
short-time limit of the correlation function by path-integral sam-
pling. For the systems studied in this work, Wolynes theory would
give similar results to those of instanton theory (identical in the
case of a harmonic system), although for certain more complex sys-
tems, it has been shown to break down even when instanton theory
remains accurate.70,85 Unlike the cumulant expansion and instan-
ton theory,84 it is also not directly applicable to the inverted regime,
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although an extrapolation method that extends it in this way has
been suggested.67

APPENDIX C: SEMICLASSICAL FRANCK–CONDON SUM

The “semiclassical Franck–Condon sum” is an alternative way
of approximating the electron-transfer rate and can be obtained
from Eq. (5) by neglecting the commutator between Ĥ0 and Ĥ1 in
both the subsystem and bath, setting τ to zero and evaluating the
trace in the reactant’s eigenfunction basis.96,106,107 For the line shape
function of the one-dimensional subsystem, this results in

I
s
SFC(v) ≙ 2πh̵

Zs
0
∑
μ

e−βE
μ
0 ∫ ψ

μ
0(q)∗ δ(ΔVs(q) − v)ψμ0(q)dq, (C1)

where by virtue of neglecting the commutators, we were able

to make the classical approximation ∫ eiĤ
s
0t/h̵ e−i(Ĥ

s
1−v)t/h̵ dt

≈ 2πh̵ δ(Ĥs
1 − Ĥ

s
0 − v). Because the kinetic part vanishes in the dif-

ference of the Hamiltonians, the final expression can be written in
terms of ΔVs(q) ≡ Vs

1(q) −Vs
0(q).

The same strategy is used to deal with the bath. However, as
described in the appendix of Ref. 96, because the bath is harmonic,
the sums and integrals can be performed analytically to give

I
b
SFC(ε − v) ≙

¿ÁÁÀπβh̵2

χΛb
e−β(Λ

b
−ε+v)2/4χΛb

, (C2)

which has the same form as that of Marcus theory except for the
correction factor, χ ≙ ∑D

j=1 Λ
b
j γj coth γj/Λb, which is defined in terms

of the reorganization energy associated with a single bath mode Λb
j

≙ 2MΩ2
j ζ

2
j and γj = βh̵Ωj/2.

Following the formalism laid out in Sec. II and performing the
convolution integral in v first, this leads to the rate equation

kSFC(ε)Zs
0 ≙

Δ
2

h̵

¿ÁÁÀ πβ

χΛb ∑
μ

e−βE
μ
0 ∫ ψ

μ
0(q)∗

× e−β(Λ
b
−ε+ΔVs(q))2/4χΛb

ψ
μ
0(q)dq, (C3)

where the integrals over the anharmonic subsystemmode have to be
carried out numerically.

In the special case in which all modes are displaced harmonic
oscillators, all degrees of freedom can be assigned to the bath. Then,

the rate formula is directly given by kSFC(ε) ≙ Δ
2

h̵2
IbSFC(ε). It is easy

to see that this is in error because it predicts results symmetric
around ε = Λ, whereas the true result is known to be significantly
skewed unless in the classical limit.11,20,51 One way to understand
the causes of this error has been explained in terms of WKB theory
in Ref. 142.
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