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* THE SEMICLASSICAL NATURE OF ATOMIC AND MOLECULAR COLLISIONS 

William H. Miller* 

Inorganic Materials Research Division of 
the Lawrence Radiation Laboratory, 
and-the Department of Chemistry, 

University of California Berkeley 
Berkeley, California 

ABSTRACT 

The dynamical features of atomic and molecular collisions (including 

quantum effects) can be accurately described by classical mechanics pro-

vided one retains the quantum mechanical principle of superposition. This 

means that one uses the solution of the classical equations of motion 

(i.e., numerically computed classical trajectories) to construct the class-

ical limit of the transition amplitude for the process of interest, and 

then combines these amplitudes according to the laws of quantum mechanics--

i.e., one adds probability amplitudes corresponding to indistinguishable 

processes rather than the probabilities themselves. In this way inter-

ference features absent in a purely classical approach are included; 

tunneling can be taken into account by analytic continuation of this inter-

ference structure into classically forbidden regions. Quantization of 

bound degrees of freedom, the only quantum effect other than interference 

and tunneling, is achieved via the well-established semiclassical pro-

cedure: the classical action associated with each of these internal 

degrees of freedom is required to be an integer (or perhaps a half-integer). 

Application of these ideas to some simple collision systems indicate this 

to be an accurate description of molecular collision dynamics. 
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Chemistry of the gas phase is essentially a study of what happens 

when atoms and molecules collide with one another. If the gas is not 

too dense, then one only needs to consider the collision of an individual 

atom or molecule with another individual atom or molecule. From a detailed 

understanding of this relatively simple binary encounter one can in prin-

ciple (and to some extent in practice) deduce the macroscopic kinetic 

properties of the gas--such as rate constants for chemical reaction, re-

laxation times for decay of molecular excitation (electronic, vibrational, 

or rotational); and transport coefficients. 1 

From another point of view, the accurate measurement of atomic and 

molecular scattering properties under single collision conditions can 

lead to rather direct, quantitative information about the intermolecular 

forces between the collision partners. For the simplest collision system, 

the elastic scattering of two atoms, this "inversion problem" (the con-

struction of that unique intermolecular potential which produces a given 

) 
2-4 . 5 

set of scattering data has been solved, ·and Buck and Pauly have re-

cently carried out the procedure in constructing the Na-Hg interatomic 

potential directly from molecular beam scattering data. For a more 

complicated collision system the inversion problem has not yet been 

rigorously solved, but it is nevertheless possible to obtain some quan-

titative information about the intermolecular potential. 

Study of the dynamics of elemental atomic and molecular collisions, 
I 

therefore, has two-pronged implications: one can use the collision re-

sults, obtained experimentally or theoretically, to deduce (via the machin-

ery of Statistical Mechanics) macroscopic observables, or one can start 

with experimentally obtained scattering data and work backwards to con-

struct the intermolecular potential giving rise to the observed scattering. 

Figure 1 illustrates the relation between these various stages of chemical 
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theory from the "elementary particles" of chemistry to macroscopic obser

vables; theory of, and experiments pertained to atomic and molecular 

collisions thus stand midway in our understanding of gas-phase chemistry. 

There is another sense, too, in which molecular dynamics is an inter

mediate case. Although quantum mechanics governs the dynamics of all 

particles, from electrons to baseballs, it obviously makes sense to use 

classical mechanics to treat the dynamics of macroscopic bodies, at no 

loss of meaningful accuracy. Electrons, on the other hand, at energies 

of chemical interest (less than a few eV, say) are highly quantum-like, 

and serious error would result by use of classical mechanics to describe 

their dynamics. Atoms and molecules obviously fall somewhere between these 

extremes, but the question of innnense importance is, to what extent are the 

dynamics of these collisions adequately described by classical mechanics, 

and in precisely what manner, if at all, does quantum mechanics manifest 

itself. 

The answer to this question depends a great deal on "which direction" 

in Figure 1 one wishes to go--i.e., the purpose for which the collision 

theory is to be used. Since one expects at least the gross dynamical 

features of the collision to be adequately described by classical mechanics, 

the averagings over internal states, relative velocity, etc., necessary in 

deriving macroscopic observables will likely obliterate any quantum effects 

in these. quantities. It requires more refined, higher resolution scat

tering data, however, to extract much quantitative information about the 

intermolecular potential; correspondingly greater detail is thus required 

in the theoretical treatment of the collision, so that it is much more 

likely that "quantum effects" will come into play when one attempts to 

go in this direction (from stage 3 to stage 2 in Figure 1). It may 
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even turn out that the observed quantum e~~ects themselves will be a 

rather direct handle on certain quantitative ~eatures o~ the intermolecular 

potential; this is indeed the case ~or elastic atom-atom scattering.
6 

Although quantum e~~ects in the case o~ elastic atom-atom scattering 

can be quite striking and pronounced, an important ~act is that they can 

all be accounted ~or (even quantitatively) by the appropriate use o~ class-

ical mechanics. In ~act, it is the principal contention o~ this Account 

that essentially all quantum dynamical e~~ects in atomic and molecular 

collisions can be adequately treated by the appropriate use o~ classical 

mechanics. The remainder o~ the article will outline just what is this 

"appropriate use" o~ classical mechanics and discuss the way in which 

various quantum e~~ects are contained in the semiclassical theory. In 

short, one employs the classical limit o~ quantum mechanics rather than 

using classical mechanics directly. 7 

The Classical Limit o~ Quantum Mechanics. 

To clari~ the di~~erence between the classical limit o~ quantum 

mechanics and classical mechanics itsel~, consider some process involving 

a transition ~om an initial state 1 to same ~inal state 2. The observed 

quantity, classically or quantum mechanically, is the transition probability 

To compute P
1 2 

quantum mechanically one must solve the Schroedinger 

' 
Equation and obtain ~irst a transition amplitude (or S-matrix element) 

s
1 2

, the square modulus o~ which gives the transition probability 

' 

(1) 

Proceeding classically, on the other hand, one uses the classical equa-

tions o~ motion to obtain a transition probability directly, never making 
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reference to a transition wmplitude. The classical limit of quantum 

mechanics means use of the classical equations of motion to generate the 

classical approximation to sl,2 from which the transition probability is 

then obtained by the quantum mechanical prescription, Equation (1). 

The difference between these two ways of using classical mechanics 

becomes apparent if one supposes that there are two (or more) classical 

paths, or trajectories, which give rise to the 1 -+ 2 transition. The 

completely classical approximation gives· 

p CL . 
1,2 =PI + PII ' (2) 

where pi andpii are the probabilities (obtained by solving the classical 

equations of motion) associated with trajectories I and II, respectively. 

The classical approximation to sl 2 is 

' 
S CL _ 1/2 i~I + 1/2 i~II 

1 2 - p I e P II e ' 
' 

(3) 

where :PI and pii are the same quantities as in Equation (2), and <PI and 

<l>II are the classical actions associated with the two classical paths. 

Forming the square modulus of Equation (3) gives the semiclassical ex-

pression 

sc - . . 2(p . )1/2 ( ) 
Pl,2 -PI +PII + r:Jti cos <l>..I-~II 

= P CL + interference; 
1,2 

(4) 

it is the interference terms that the purely classical approach misses 

and which is the quantum effect. 

The only extent to which quantum mechanics is retained, therefore, 

·Jn throurdt Lhu qwtntum princlple of superposition--that one adds 
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probability amplitudes for indistinguishable processes and squares,rather 

than vice-versa. A concise statement of' the overall approach is that one 

employs classical dynamics, but quantum mechanical superposition. From 

another point of' view, one may say that a quantum mechanical formulation 

of' the collision problem is employed but with all dynamical parameters 

appearing in the quantum mechanical expressions evaluated by the appro-

priate use of classical mechanics. 

The above discussion has indicated how interference features appear 

when one constructs the classical limit of' the S-matrix (or, for short, 

the classical S-matrix) and then uses it quantum mechanically. The only 

other type of quantum dynamical effect ( apart from quantization of 

bound degrees of freedom) is tunneling. It will be seen below how this 

is also contained in this semiclassical approach. Tunneling is actually 

a different type of "interference"·; rather than there being oscillatory 

structure due to the interference, however, there is a damping effect. 

We now outline the approach by which the classical limit of quantum 

mechanics is actually carried out. 

The Feynman Propagator. 

8 
R. P. Feynman has developed a formulation of quantum mechanics that 

is particularly well-suited to a semielassical analysis. The approach 

focuses on the quantum mechanical time evolution operator (also known as 

the propagator), 

where H is the (time-independent) Hamiltonian governing the system. The 

propagator determines the time evolution of the system in that the wave-

" 
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function at any time t
2 

is related to that at an earlier time t
1 

by 

(6) 

Another way of interpreting the propagator is that its matrix elements in 

any representation are the transition amplitudes between the basis states; 

for example, in the coordinate representation, 

is the probability amplitude that the particle is at position r 2 at time 

t
2 

if it was at position r
1 

at time t
1

; the square modulus of this matrix 

element is the probability of this "event". 

The basic tenent of F.eynman is quantum mechanics is that the propagator 

can be expressed as: 

< r
2

!exp[-iH(t
2
-t

1
)/nJ!rJ? .,:Lexp(i<l>[ r(t)]/tl} (8) 

all paths 

where the "sum over all paths" is actually a special kind of integral (a 

path integral) over all fUnctions r(t), restricted only in that r(t
1

) = r 

and r(t
2

) = r
2

; the symbol~ in Equation (8) means that there is an over

all normalization which is unspecified. The fUnction ~ in Equation (8) 

is the classical action associated with the fUnction r(t). 

1 

This formulation of quanti.lm mechanics (which is completely equivalent 

to the conventional Schroedinger approach) has actually not proved usefUl 

in many cases for quantum mechanical calculations, for it is only possible 

to evaluate path integrals in a few special cases. Equation (8) is ex-

tremely useful, however, in obtaining the classical limit of the propagator; 

in this limit the contribution to the path integral from all functions r(t) 

cancel one another, except .for that particular function (or there may be 
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more than one suc)l function) which is a solution of the classical equations 

of motion. In the classical limit, therefore, Equation (8) becomes 

< r 2 lex:p[-iH(t2-t
1

)/t!.]r?,..., L~x:p[H(r 2 ,r 1 )/tl.J, (9) 

all classical 
paths 

where the sum is now an ordinary finite sum over the classical paths for 

which r(t
2

) = r
2 

and r(t
1

) = r
1

• 

To see that there can be more than just one term in Equation (9), consider 

the nature of classical mechanics. If the position. r
1 

and momentum p
1 

are 

specified at time t
1

, then r(t) and p(t) are determined for all later times; 

in particular r 2 : r(t
2

) is uniquely determined, so that one may write 

r 2 (r
1

,p
1
), meaning that r 2 is indeed a singled:..valued function of r

1 
and 

p
1

• In Equation (9), however, r
1 

and r
2 

are the independent variables 

which specify the classical trajectory, and it is not necessarily true 

that r
1 

and r
2 

determine a unique trajectory (as do r
1 

and p
1

); in other 

words, with r
1 

fixed, there may be more than one value of p
1 

(and there

fore several classical paths) which lead to the same value of r
2

• 

The Classical S-Matrix. 

With. the classical limit of the propagator established, it is a short 

step to the S~matrix itself. If H is the total Hamiltonian governing the 

collision system and H is the Hamiltonian for the non-interacting col-
o . 

lision partners, then 

0 

' 
(10) 

i.e., S is the propagator with the unperturbed time dependence (that due to 

H ) subtracted out in the correct manner.9 S is not a function of time, 
0 

.. 
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for the scattering boundary conditions imply the limit (t
2
-t

1
) ~ oo in 

Equation (10); it is to insure the existence of this infinite time limit 

that the unperturbed time dependence must be subtracted out in the def-

inition of S. 

The physical S-matrix, the transition amplitude from some initial 

state of H to a final state of H , is the matrix of the above S-operator 
0 0 

in the following particular representation. One transforms from the ordin-

ary coordinates and momenta to that particular set of generalized coordin-

ates and momenta known as action-angle variablesr
0 

the momenta (the action variables) 

are the constants of the motion of H and are the precise classical equivalent 
0 

of the quantum mechanical quantum numbers; the conjugage coordinates are 

phase angles. The desired S-matrix is the matrix of S in the momentum 

representation of these variables. If (p,q) denote the set of action-

angle variables, then 

' 
(ll) 

since the states IP> are eigenstates of H
0

• From Equations (10) and (11), 

therefore, the S-matrix is related to the propagator by 

< I
·SI > = iE(t2-tl)/--n. < I -iH(t2-tl)/tll > 

P2 Pl. e P2 e pl ' (12) 

or with the classical approximation to the propagator one finds the 

classical S-matrix to be given by 

= L (2~)pl r12 .u(p2,pl) 
classical paths for which the action is p

1 
before 

(13) 

where the sum is over all 

collision and p0 a,ft.er colHsion; the r;hase $ in Equation (1~) is 

:;;; - J 
d 

dt q(t) dt p(t) 

-oo 
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with q(t) and p(t) being determined by the classical equations of motions: 

.9!1 = ~gJ 
dt --ey-

S?. = - Q!!(p,q) 
dt ~ 

The appropriate classical-limit normalization has also been supplied 

in Equation (13); to see its physical meaning, consider the square modulas 

of a single term in Equation (l3): 

This is the probability of the p
1 
~ p

2 
transition associated with a par

ticular trajectory; i.e., the relation is 

the probability that p has a final value in the internal (p
2

, p
2 

+ dp
2

) 

is equal to the probability that q had an initial value in the interval 

(q
1
,q

1 
+ dq

1
). Since the initial value of q is random, this later probabil

ity is just dq
1 

divided by 21r (the width of the total q
1 

interval). Thus 

the classical probability, the square root of which is the magnitude of 

each term in Equation (13), is simply the Jacobian relating the final 

momentum to the initial coordinate.
11 

The expressions above have all been written as though there were just 

one degree of freedom and one pair of coordinates and momenta. This has 

been done only for simplicity of presentation, however, and the approach 

.. 

y 
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is applicable to systems of any number of degrees of freedom; the formulae 

are generalized in a fairly straight-forward manner. 

Example: Vibrational Excitation. 

The general ideas presented above become much clearer by discussion 

of a simple example.7b The system consists of a diatomic molecule with a 

vibrational degree of freedom and an atom, constrained so that all three 

atoms lie on a line. 

Initially the atom is moving toward the diatom with some definite 

velocity and with the diatom in some definite vibrational state with 

quantum number n
1

• After colliding, the atom departs leaving the diatom 

in some final vibrational state n
2

; the dynamical observable is the 

probability matrix P , giving the probability that the final vibrational 
~,nl 

quantum number is n
2 

provided the initial one is n
1

• The probability is 

given in terms of an S-matrix element in the usual manner: 

(14) 

and we wish to construct the classical approximation to S according 
n2,nl 

to the general prescription of the preceeding section. 

This system possesses two degrees of freedom: translation, character-

ized by ordinary coordinate R and momentum P; and vibration, characterized 

by the action n and phase angle q; for an isolated oscillator only integer 

values of the action are allowed, and in this way quantitation is achieved • 

(This is the standard semiclassical quantum condition.
12

) 

Even for this fairly simple system, however, it is not possible to 

solve the quantum mechanical or classical equations of motion in closed 

form; one is forced to solve then numerically. To evaluate the general 
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expression for the classical S-matrix (Equation (13)] one must find the 

classical trajectories for which n has the value n
1 

before collision and 

the value n2 after collision; this is done in the following manner. The 

initial coordinate and momentum q
1 

and n
1 

are specified13 and the class

ical equations of motion integrated numerically; this determines some 

definite final value for n
2

, and we write n
2

(q
1
,n

1
) with the meaning that 

n
2 

is a function of q
1 

and n
1 

(the functional value of which is determined 

by integrating the classical equations of motion with these initial con

ditions). The desired initial value n
1 

can therefore be chosen directly, 

but one does not know what value to chcose for q
1 

so that n
2 

( q
1

, n
1

) takes 

on the specified integer value n
2

; this value of q
1 

must therefore be 

determined iteratively. 

Figure 2 shows the function n
2

(q
1
,n

1
) as a function of q

1
, with n

1 
= 1. 

The dotted line at n
2 

= 2 indicates the graphical solution of the equation 

. 
' 

i.e., it is clear that there are.~ values of q
1 

for which n
2

(q
1
,n

1
) takes 

on the value 2, or that there are two classical trajectories for which n 

is 1 before collision and 2 after collision. There are two terms, there-

fore, in the classical S-matrix, 

( 15) 

where 

.. 
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with q1 = qi for Pr and qii for Prr· The situation is just like that 

discussed earlier; the completely classical approximation for P is 
. n2,nl 

the sum of the probabilities associated with the two trajectories, 

CL 
= Pr + Prr (16) 

where the semiclassical approach provides the interference term
14 

(17) 

Figure 3 shows typical results of this approach for the case that 

the mass of the atoms and potential parameters are chosen to correspond 

to a H
2 

+ He collision; for light atoms such as these t~e quantum effects 

should be prominent and thus provide a severe test for the semiclassical 

theory. The solid line connects points which are essentially the exact 

quantum mechanics values
15 of the transition probab.ility; on the ~cale 

of this drawing these values are essentially indistinguishable from the 

semiclassical results.
16 

The dashed line connects points of the completely 

classical approximation inwhich the interference term is omitted. 

It is clear in these results just how important are the interference 

effects; a judgement of classical mechanics based on the purely classical 

approximation, omitting the interference term, would indicate it to be 

completely unreliable as to the magnitude of individual transition prob-

abilities; one might conclude that the dynamics of these collisions were 

highly quantum-like. The fact is, though, that classical mechanics 

describes the dynamics extremely accurately, and the quantum effects all 



Page 14 

arise through the quantum principle of superposition. 

Figure 3 also illustrates the fact that the completely classical 
.. 

approach is correct on the average• If one were to look at the net 

transition probability resulting from·a sum over several final vibrational • 

states, or an average over several initial ones, then it is clear that the 

completely classical approximation would be more satisfactory. As discussed 

earlier, this is the expected nature of things. If one is interested pri-

marily in deriving macroscopic kinetic properties, this situation is viewed 

as fortunate--ene can disregard quantum interference effects. If one is 

interested in gaining precise information about the intermolecular poten-

tial, however, this is discouraging'; for it means that macroscopic kinetic 

measurements will be of little use for this purpose, experiments detecting 

the results of single-:collisionprocesse.s being required. 

Classically Forbidden Transitions (Tunneling). 

In Figure 2 one sees another feature that can arise in this semi-

classical theory. Suppose one is interested in the l ~ 5 transition;-

since there is no value of q
1 

for wpich n
2

(q
1

) = 5, there is no classical 

trajectory for which n
1 

= l and n
2 

= 5--the transition probability is 

therefore zero. Such a transition is referred to as classically forbidden. 

Although there are no ~ values of q
1 

for which n
2

(q
1

) = 5, one can 

. 17 ( ) easily show that there are complex values. For example, if n
2 

q
1 

in 

Figure 3 is expanded in a Taylor series about its maximum, 

then one can solve 

(18) 

' 
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to obtain 

i.e., there are two complex roots, complex conjugates of one another. In 

general one can show that the exact complex roots of Equation (18) are 

complex conjugates of one another. 

Furthermore, the phase difference between these two roots is pure 

imaginary; consequently one can show that the oscillatory expression of 

Equation (17) becomes 

(19) 

i.e., the complex exponential functions are replaced by real exponential 

functions. The factor p in Equation (19) is a Jacobian, as earlier, and 

the negative exponential factor expresses the fact that the transition is 

classically forbidden, i.e., that it takes place by tunneling (the expon

ential damping is characteristic of tunnelin~ 8 ) 

Tunneling transitions, therefore, have smaller probability than non-

tunneling, or classically allowed ones. If one is again interested in a 

~ transition probability involving a number of transitions, some of 

which are classically allowed and others of which are classically forbid-

den, the classically forbidden transitions will make a negligable contri-

bution in comparison to the allowed ones. Tunneling, therefore, will be 

a significant effect only if all of the transitions are classically 

forbidden, or if one explicitly selects individual quantum states initially 

and detects individual quantum states finally. 

In Figure 3 the transitions 0 ~ 0, 0 ~ 4, 1 ~ 5, 2 ~ 6 are all 



Page 16 

classically :forbidden; the semiclassical theory accounts :for these, 

however, as accurately as it does the classically allowed transitions. 

Although the above discussion has been specifically related to the linear 

atom-diatom model problem, the :features are general and expected to be 

typical o:f any system. 

One other interesting advantage o:f this semiclassical approach to 

tunneling is that one sees exactly what role tunneling plays in the 

process o:f interest. I:f one per:forms a strictly quantum mechanical 

calculation :for the transition probability, there is actually no way to 

tell what tunneling is; quantum mechanics does not distinguish between 

classically :forbidden and classically allowed processes. To assess the 

importance 6:f tunneling, there:fore, it is necessary to have a well-de-

:fined procedure that actually distinguishes tunneling processes. Since 

the semiclassical theory does this, it could provide a useful way to 

study precisely, :for example, the part tunneling plays in the dynamics 

o:f chemical reactions. 

Resonances. 

It is not our intention to discuss here in detail the phenomenon o:f 

resonances, or quasi-bound states
19 

in molecular collisions, but to 

indicate brie:fly how this quantum e:f:fect appears in the present semi-

classical :framework. 

One generally re:fers to two types o:f resonances, distinguished on 

physical grounds by the nature o:f interaction giving rise to the short

lived collision complex; it has been pointed out
1
9 that in quantum 

mechanics there is actually not a precise distinction between these two 

types. In the semiclassical theory, however, the two types o:f resonances 

are definitely di:f:ferent, and this again points to a usefulness o:f the semi-

classical approach in studying a dynamical system. 

• 

• 

• 
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Potential, or single particle resonances come about by tunneling of 

the translational degree of freedom; they are therefore classically 

forbidden processes. This is the only type of resonance that can occur 

in purely elastic scattering. 

Internal excitation, or Feshbach-type resonances, on the other hand, 

are classically allowed processes in the semiclassical theory. They can 

arise, however, only when at least one of the collision partners has 

internal degrees of freedom, and may be thought of in the following man

ner. Considering the linear atom-diatom example discussed above, suppose 

the long-range atom-diatom interaction is attractive; upon colliding, the 

diatom may be excited to a vibrational state which would be energetically 

forbidden if the colliding atom were not present and, by viture of the 

attractive interaction, lowering the energy so that this vibrational state 

is temporarily accessible. When the atom and diatom begin to separate, 

however, energy conservation prevents the atom from escaping; it stops 

and returns toward the diatom. These multiple collisions can take place 

any number of times, until the diatom is finally de-excited to a state 

for which the relative translational energy makes it possible for the 

atom and diatom to separate. This type of resonance, or collision complex 

has been examined to some detail in classical trajectory studies.
20 

Summary. 

There are essentially only two types of quantum dynamical effects: 

interference and tunneling. It has been shown how both of these can be 

described completely within the framework of classical mechanics, yro

vided one uses classical mechanics to construct the classical limit of the 

quantum mechanical transition amplitude, or S-matrix element, and then 
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manipulates it quantum mechanically. The quantum effects arise solely 

as a consequence of the quantum principle of superposition--that one adds 

the probability amplitudes corresponding to indistinguishable processes 

rather than the probabilities themselves. 

Although quantum effects are accounted for qualitatively by this 

semiclassical theory, there remains the question of the quantitative . 
I"'<\. 

accuracy of this approach. Preliminary studies with some simple examples 

(the linear atom-diatom) indicate classical mechanics to be quite accurate 

when used in this manner, but more thorough studies, particularly with 

more realistic dynamical systems, are required before definitive con-

elusions can be made about the typical accuracy one expects. Even in 

cases for which the semiclassical treatment may not be accurate enough 

quantitatively, it may still be valuable in illucidating dynamical features 

obscurred in a completely quantum mechanical calculation--such as the 

degree to which tunneling participates in the transition under study. 

Quantum effects (i.e., interference and tunneling) in macroscopic 

rate properties should ordinarily be negligible, a possibly common ex-

ception being the case that all transitions under observation are class-

ically forbidden; all contributions to the observed rate are then via 

classically forbidden (tunneling) processes. Quantum effects are expected 

to be important, however, if one's goal is to deduce precise quantitative 

information about the intermolecular potential from single-collision 

scattering data--the reason being that data sufficiently accurate for 

this purpose will almost certainly detect these effects; in fact, they 

may be quite prominent in s.uch high resolution data (individually selected 

and detected quantum states). As such they may prove to be a powerful tool 

for "inverting" scattering measurements to obtain the intermolecular potential. 
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FIGURE CAPTIONS 

1· An outline of the stages necessary to determine macroscopic chemical 

properties beginning only with electrons, nuclei,Coulomb's law, and 
, 

the physical constants. The double arrow between stages 2 and 3 

indicate the possibility of going in either direction: one can 

solve the collision problem to predict the scattering features 

expected for the system on the basis of a given intermolecular paten-

tial; or one may begin with experimental measurements at stage 3 

and attempt to solve the "inverse scatteringproblem"--that is, 

to construct the intermolecular potential from the observed 

scattering data. 

2. An example of the trajectory function n
2

(q
1
,n

1
) as discussed in the 

text; this example has n
1 

= 1 and corresponds to a linear H
2 

+ He 

collision (see reference 7b for more details). This function is the 

final value of the classical action variable n (the classical counter-

part to the quantum mechanical quantum number) as a function of the 

initial value of the action, n
1

, and the initial value of the phase 

of the oscillator, q
1

; i.e., one specifies n
1 

and q
1

, integrates the 

classical equations of motion, and n
2 

is thus determined. The 

dotted line at .n
2 

= 2 indicates the graphical solution for the two 

values of q
1 

which satisfy the equation n
2

(q
1
,n

1
) = n

2
, here with 

n
2 

= 2, n
1 

= 1. 

3· Transition probabilities for linear H
2 

+ He collisions (see reference 

7b for more details) with initial vibrational quantum number n
1 

= 0 

(top), 1, and 2 (bottom). The dotted lines connect results of the 

completely classical approximation [Equation (10)], and the solid 

~~ 

) 
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lines connect the exact quantum mechanical results of reference 15; 

on the scale of this drawing there is essentially no difference 

between the exact quantum results and the uniform semiclassical 

results of references 7b and 7c. 
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Theoretical Structure of Gas Phase Chemistry 

1. Electrons, nuclei, f1, e, c, me 

i (Electronic Schrodinger Equation) 
') 

2. Intermolecular potentials 

! (Collision Theory) 

3. Dynamics of individual, binary collisions: cross s~ctions 

t (Statistical Mechanics) 

4. Macroscopic rate phenomena: reaction rate coefficients, 

relaxation times, transport coefficients 

Figure l 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 

Neither the United States, nor the Commission, nor any person acting on 

behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 

respect to the accuracy, completeness, or usefulness of the informa

tion contained in this report, or that the use of any information, 

apparatus, method, or process disclosed in this report may not in

fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 

resulting from the use of any information, apparatus, method, or 

process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 

includes any employee or contractor of the Commission, or employee of 

such contractor, to the extent that such employee or contractor of the 

Commission, or employee of such contractor prepares, disseminates, or pro

vides access to, any information pursuant to his employment or contract 

with the Commission, or his employment with such contractor. 
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