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Semiclassical quantization condition for magnetic
energy levels of electrons in metals with
band-contact lines
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We refine the well-known quantization condition for magnetic energy levels of a semiclassical
electron. The refined condition results in the energy shift of the levels when in k space the closed
electron orbit links to the band-contact line (i.e., surrounds it). This effect is closely analogous to that
of Aharonov-Bohm provided the band-contact line plays the role of the infinitely thin «solenoid» with
the fixed «magnetic flux». The predicted shift must manifest itself in oscillation phenomena.
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It is common knowledge that the degeneracy of
electron energy bands in a metal can occur along
symmetry axes of its Brillouin zone. In addition, as
was shown by Herring [1], there are lines of an
accidental contact between the bands in crystals.
The term <accidental» means that the degeneracy of
electron states is not caused by their symmetry.
Such band-contact lines is likely to exist in many
metals. This statement is easily understood when
one takes into account Herring’s result obtained for
the case of a crystal with a center of inversion: if
there is a point of contact between two energy
bands in an axis of symmetry of the Brillouin zone,
and the interband matrix element of the velocity
operator is nonzero at this point, then a band-con-
tact line has to pass through the point. Most metals
have a center of inversion (and only such ones are
considered below). Moreover, it is known (see,
e.g., Ref. 2) that bands in many metals intersect at
points on axes of symmetry. As for the matrix
element of the velocity operator, the necessary in-
formation on it follows from the irreducible repre-
sentations of the intersecting bands. The simple
analysis of literature data shows that the lines of
the accidental contact must exist, for example,
in Be, Mg, Zn, Cd, Al and other metals (see
Fig. 1,a,b). Strictly speaking, any degeneracy of
bands along a line of the Brillouin zone (excluding
spin degeneracy) is lifted by the spin-orbit interac-
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tion. However, if this interaction is weak, the bands
still approach each other, and the energy gap be-
tween them is small near that line in which the
contact of the bands would take place if we ignored
the interaction. Moreover, the inclusion of the weak
spin-orbit coupling leaves the magnetic energy lev-
els practically unchanged [3]. For this reason, to
elucidate the heart of the matter, we completely
neglect the spin-orbit interaction and spin of an
electron in the subsequent discussion.

Semiclassical magnetic energy levels of electrons
provide the basis for the analysis of many physical
phenomena in metals [4,5]. These levels were stud-
ied in a number of papers [6—17]. It was established
that a semiclassical electron orbit in the space of
wave vectors, k, is the intersection of the constant-
energy surface, €=const, with the plane, k, =
= const, where z is the direction of the magnetic
field H. In the case of closed orbits the quantization
condition for magnetic energy levels looks like

S(e, k,) = 2mle| H/Tic)(n +) , (1

where S is the cross-sectional area of the orbit in k
space; n is a large integer (m > 0); y is a constant
(0<y<1), and e is the electron charge. In what
follows we shall consider only those orbits for
which probabilities of intraband and interband
magnetic breakdowns are negligible. In other
words, the orbit under study does not come close to
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Fig. 1. The schematic sketch of Fermi surfaces for several me-
tals with band-contact lines: the third-band electron <«lens» of
Zn and Cd (a); the second-band hole «coronet»> (<«monster») of
Be and Mg (b); the self-intersecting Fermi surface of graphite
(¢). The band-contact lines are shown as the dash-dot lines.
The semiclassical orbits 3 and 4 link to the band-contact lines
while the orbits 1 and 2 do not.

any other trajectory with the same &, , and its shape
differs noticeably from an intersecting one. In this
case, according to Ref. 8 (see also Ref. 18), y
always has the value

y=1/2. (2)

It is this value that is commonly used in describing

oscillation phenomena in metals [5] (e.g., the de

Haas—van Alphen effect, the Shubnikov—de Haas

effect etc.). If a magnetic breakdown occurs, Yy

essentially depends on € and k, [10,11,15] but, as

noted above, we shall not consider this situation.
In this paper we show that the equality

can be valid if the closed electron orbit in k space
associated with a certain energy band gy(k) sur-
rounds the line of degeneracy of this band with
some other one. The above result depends neither on
the form of gy(k) in the neighborhood of the orbit
nor on the shape and the size of this electron
trajectory, and is topological in nature. It is due to
the fact that the electron orbit links [19] (see
Fig. 1) to the band-contact line which is the line of
singularities for the Bloch wave functions. If the
linking is absent, Eq. (2) holds. For the above-
stated effect to be the case the band-contact line
must satisfy the only condition: in its immediate
vicinity the energies of the intersecting bands sepa-
rate linearly in k as k moves away from the line.
This condition is met for any accidental contact
between the bands and in the case of degeneracy of
the bands along a 3-fold symmetry axis of a crystal.
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Equation (3) is obtainable from the results of
Blount [20,21] and Roth [14,22]. In k space the
effective one-band Hamiltonian of an electron in a
magnetic field can be represented by a power series
in H [21,22]. Two terms of this series suffice to
calculate y and thus we can use the following
Hamiltonian:

~

H = g(k) + (e/)HM(K) ,

which must be considered as a symmetrized opera-
tor, that is, the components of k always appear
symmetrically in it. Here k =k - (e/fc)A(i0)),
A(r) is the vector potential for H and the quantity
M (k) is associated with the diagonal matrix ele-
ment of the orbital angular momentum of the elec-
tron in the band under study (this band is desig-
nated by subscript 0). More precisely, M, is the
periodic part of z-component of the above-men-
tioned element divided by the electron mass. The
quantity M, falls into the intraband and interband
constituents:

Im ((v,)g(2,)g)
g,(k) —gy(k)

(4)

b

Myk) =[v<Ql +1 S
1#0

where (v),; is the interband matrix element of the
velocity operator at the point k, v = (1,/7%) O,g,(k),
and Q is the periodic part of the coordinate ope-
rator:

(k) = iIdruEO(r) Ote(F) -

Here the integration is carried out over a unit cell,
and u,(r) denotes the periodic factor in the Bloch
wave function of the band [:

W, (r) = exp (ikr) uy (r) .

In the case of interest (the spin-orbit interaction is
neglected for a crystal with inversion symmetry)
M (k) can be made to vanish at any point k of the
Brillouin zone. This well-known statement results
from the following considerations. Electron states
are invariant under the transformation: U = KI,
where K and I are the operators of complex conju-
gation and inversion, respectively. Hence, one can
take the phases of Bloch factors in such a way as to
fulfil the relation

for any [. Under this condition the matrix elements
vy(k) are real and Q(k) =0 [20]. Thus, Eq. (4)
yields M (k) =0. To consider M, in the general
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situation when u;; have arbitrary phases and do not
satisfy condition (5) let us take the transformation

Uy — Uiy =ty exp (i9,(k)) , (6)

where ¢,(k) are some regular functions of k, and
uy; before the transformation obey Eq.(5) in a
vicinity of the point concerned. Then

Vor = Vor= Vo €xp (i(0; — 9y)) (7)
Q—»Q':Q—Dk(bo (8

and we find from Eq.(4) that the interband part of
M, is still equal to zero while its intraband compo-
nent becomes nonvanishing and depends on the
phase ¢ .

According to Roth [14], y is determined by the
formula

11 g Mk
y—j——z—nf o) dk , 9
a

where I is the closed semiclassical orbit in k space;
dk is the length of an infinitesimal element of I:
v is the absolute value of the projection of v on the
plane of the orbit. Taking into account that the
interband part of M is zero, Eq.(9) can be rear-
ranged as follows:

1 1
y_jz_ﬁdek’
r

where dk = dk[i,xv] /o and i, is the unit vector
parallel to H (dk is aligned with the tangent to I
and |dk| = dx). It is evident from Eqs.(8) and (10)
that, in contrast to M, , the measurable quantity y
is invariant under transformation (6).

It is generally believed that Q (and Mo) can be
made to vanish everywhere over the Brillouin zone,
and thus y=1,2. This does be true in the absence
of the degeneracy. However, if a line of the contact
between the band under study and some other one
exists, and the energies of the bands separate line-
arly in k in the vicinity of the line, then, according
to Blount [23], Q can be made to vanish locally
(i.e., in the neighborhood of any point that does not
lie in the band-contact line) but this is impossible
to attain along the whole length of a closed path P
surrounding the line [24]. Moreover, one has

(10)

dek:in, (11)

P
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where the sign in the right-hand side of the equa-
tion is determined by a direction of the integration.
We emphasize that the integral in Eq.(11) does not
depend on the shape and the size of the contour P.
This is not surprising, since the equation

0,%Qk) = 0 (12)

holds everywhere out of the band-contact line [25].
Finally, one more comment needs to be made. In
general, the term 2Ty must be added to the right-
hand side of Eq.(11) [23] where ¢ is some integer.
However it can be shown [3] that ¢ = 0 when the
spin-orbit interaction is taken into account. (Be-
sides, nonzero ¢ would modify 7 and not affect y.)

Now we are able to find y for any mutual ar-
rangement of the semiclassical electron orbit ' and
the band-contact line. If T links to this line (see,
e.g., orbits 3 and 4 in Fig.1) formula (3) follows
from Egs. (10),(11) (note that the values y =1 and
y=0 are equivalent). If the linking is absent, a
surface with boundary I necessarily exists which
does not intersect the band-contact line [19] (for
the surface in the case of orbit 1 (or 2) we can take
a part of the constant-energy one shown in Fig. 1).
Transforming Eq.(10) into the integral over this
surface and taking into account Eq.(12), we arrive
at formula (2). Interestingly, Eq.(2) is also ob-
tained when I links to an even number of band-con-
tact lines (such a situation takes place, e.g., for any
central cross-section of the second-band Fermi sur-
face of Al).

In the cases of Egs.(2) and (3) the appropriate
sets of the magnetic energy levels are shifted rela-
tive each other. The origin of this shift is easy to
understand. As discussed above, the quantity M,
can be made to vanish for any nondegenerate elec-
tron state with a fixed wave vector k. In essence,
this is the so-called quenching of orbital angular
momenta [26] (but only their periodic parts are
quenched in the case of nonlocalized states consi-
dered here). Then Eq.(10) must be interpreted as the
lack of the quenching for the semiclassical electron
moving round the band-contact line. This gives rise
to the additional magnetic moment of the electron:
(lelz/2m"t), where m"is its cyclotron mass:

o M OSO_ T £ dk

It is the interaction of this moment with H that
leads to the above-mentioned shift of the magnetic
energylevels.

The obtained result is closely analogous to the
Aharonov-Bohm effect [27]. As pointed out by

Fizika Nizkikh Temperatur, 1999, v. 25, Ne 2



Semiclassical quantization condition for magnetic energy levels

Blount [20], the quantity Q is similar to a vector
potential for a magnetic field [see Egs. (6), (8)].
Taking Eqgs. (11), (12) into account, we can treat a
band-contact line as an infinitely thin «solenoid»
which carries the fixed flux of the «field» [0, *xQ].
With this in mind the above-mentioned analogy
becomes apparent. Although the semiclassical elec-
tron moving round the band-contact line does not
reach the region in which the «field» is nonzero, it
experiences the «vector potentials> Q that cannot be
made to vanish along the whole length of the orbit.
The semiclassical electron state with energy deter-
mined by Eq. (1) is the standing wave. If the
electron orbit surrounds the band-contact line (i.e.,
the «solenoid»), the interference picture correspon-
ding to this wave is shifted as compared to the case
when the line is absent. This shift manifests itself as
the change in .

The above results can be also understood with
the concept of Berry’s phase [28]. If the Hamil-
tonian of a quantum system depends on parameters
and the parameters undergo adiabatic changes so
that they eventually return to their original values,
then the wave function of the system can acquire,
according to Berry, some constant phase in addition
to the familiar dynamical one. This additional phase
is completely determined by a closed trajectory P of
the system in the parameter space and does not
depend on details of the temporal evolution. In
addition, it was obtained [28] that the phase is
equal to 1Tt when the trajectory P surrounds a point
of degeneracy of the Hamiltonian. More recently,
Zak [29] has argued that Berry’s results are appli-
cable to an electron moving in a crystal, with k
space playing the role of the parameter space, and
the above-mentioned phase is described by the in-
tegral given in the left-hand side of Eq. (11). Then
Eq. (3) may be interpreted as a manifestation of
Berry’s phase. In this connection we emphasize that
measurements of y in crystals with band-contact
lines offer a way of detecting this phase in physics
of metals [30].

The value y can be experimentally determined
through the investigation of oscillation effects in
metals [5]. Since the measurement of y is easiest to
make for semiclassical orbits corresponding to small
extremal cross sections of a Fermi surface, we point
out that such orbits exist, e.g., in beryllium, mag-
nesium, graphite, and in these metals they link to
the band-contact lines (see Fig. 1). In Be and Mg
the accidental contact between the second and third
bands occurs in the basal plane of the crystals. If
H lies, e.g., in this plane too, Eq. (3) must be valid
for the orbits on the «necks» of the second-band
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hole «coronets (or «monsters). Tt should be noted
that in Zn and Cd which are akin, in many respects,
to Be and Mg the same band-contact line is located
in the third-band electron «lens» and does not link
to the semiclassical orbits (therefore, in this case
y=1,2). In graphite the degeneracy of two bands
takes place along the vertical edge HKH of the
Brillouin zone (i.e., along the 3-fold symmetry
axis). Thus, Eq. (3) is expected to be true for the
extremal orbit surrounding the point K (see orbit 4
in Fig. 1).

In summary, we have shown that in quantization
condition (1) y is equal to zero when the appropri-
ate semiclassical orbit of an electron links to the
band-contact line. This value differs essentially
from the conventional one y=1,/2. Thus, measure-
ments of y can provide a possibility of detecting
band-contact lines in metals (beryllium, magnesium
and graphite appear to have considerable promise
on this point).
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