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Abstract

Molecular polaritons have become an emerging platform for remotely controlling

molecular properties through strong light-matter interactions. Herein, a semiclassical

approach is developed for describing molecular polaritons by self-consistently propa-

gating the real-time dynamics of classical cavity modes and a quantum molecular sub-

system described by the nuclear-electronic orbital (NEO) method, where electrons and

specified nuclei are treated quantum mechanically on the same level. This semiclassical

real-time NEO approach provides a unified description of electronic and vibrational

strong couplings and describes the impact of the cavity on coupled nuclear-electronic

dynamics while including nuclear quantum effects. For a single o-hydroxybenzaldehyde

molecule under electronic strong coupling, this approach shows that the cavity sup-

pression of excited state intramolecular proton transfer is influenced not only by the

polaritonic potential energy surface but also by the timescale of the chemical reaction.

This work provides the foundation for exploring collective strong coupling in nuclear-

electronic quantum dynamical systems within optical cavities.
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1. Introduction

Molecular polaritons, hybrid light-matter states stemming from strong light-matter interac-

tions,1–6 have attracted extensive experimental and theoretical attention due to the poten-

tial for modifying molecular properties. Examples of applications include controlling energy

transfer,7–9 promoting electronic conductivity,10 and modifying photochemical11 and ther-

mal12–14 chemical reaction rates. Molecular polaritons can form in different experimental

setups, ranging from optical cavities,15 in which a large ensemble of molecules is coupled to

a confined photon mode, to plasmonic nanocavities,16 in which a small number of molecules,

possibly a single molecule,17 is coupled to a plasmonic mode. Depending on the frequency

domain of the optical or plasmonic cavity mode, molecular polaritons can be mainly catego-

rized as exciton-polaritons15,18 or the recently discovered vibrational polaritons,19,20 where

a molecular electronic or vibrational transition, respectively, is strongly coupled to a cavity

mode.

In these electronic strong coupling (ESC) and vibrational strong coupling (VSC) domains,

the intriguing experimental findings have been sparking intensive theoretical developments

to enable the description of molecular polaritons.21–34 Conventional quantum-optical theories

of polaritons35–37 usually approximate the molecular electronic or vibrational transitions as

two-level systems and the cavity mode as a harmonic oscillator. Thus, these approaches may

fail to capture some important cavity effects of experimental interest, such as chemical bond

formation and dissociation. During the past decade, theories of molecular polaritons have

been expanded to include the molecular details21–30,34 and the cavity mode structure be-

yond a single harmonic oscillator.31–33 For example, under ESC, quantum-electrodynamical

density functional theory (QEDFT)21,22,38 extends time-dependent density functional theory

(TDDFT),39 an efficient electronic structure method for calculating electronic excited states,

to describe a polaritonic potential energy surface. Under VSC, the recently developed classi-

cal cavity molecular dynamics (CavMD)26,40 approach treats the infrared cavity mode as an

additional "nuclear" coordinate, and a fully classical simulation of the coupled cavity-nuclear
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system has been shown to qualitatively capture nonequilibrium dynamics under collective

VSC arising from an ensemble of molecules coupled to the infrared cavity. Other meth-

ods such as the exaction factorization41 and multiconfigurational time-dependent Hartree

method (MCTDH)27 also provide an accurate description of quantum effects under ESC or

VSC. In addition to a fully quantum or classical treatment of the coupled cavity-molecular

system, a variety of semiclassical treatments of the light-matter system42–48 have also been

shown to have the potential to accurately predict many light-involved processes from weak

coupling to ESC.

Here, we report a novel semiclassical approach for describing molecular polaritons in

which the quantum dynamics of the coupled nuclear-electronic system are self-consistently

coupled to classical cavity modes. This approach is based on the recently developed real-

time nuclear-electronic orbital TDDFT (RT-NEO-TDDFT)49 approach, where both elec-

tronic and nuclear densities are propagated in real time. In contrast to full multicomponent

TDDFT formalisms,50–52 typically only specified protons are treated quantum mechanically

on the same level as all electrons. Including both electron-electron exchange-correlation and

electron-proton correlation effects,53–56 the linear-response57 and real-time49 NEO-TDDFT

approaches have been shown to produce reliable electronic and proton vibrational excited

states.58,59 These NEO approaches also include vibrational anharmonicity and nuclear quan-

tum effects such as zero-point energies and proton delocalization. Moreover, the RT-NEO-

TDDFT approach49 has also been shown to directly capture the nonequilibrium coupled

nuclear-electronic quantum dynamics of processes such as excited state proton transfer. The

semiclassical RT-NEO-TDDFT approach combines the classical motion of cavity modes with

the RT-NEO-TDDFT dynamics of the molecular system and propagates the coupled dy-

namics self-consistently. We will show that this semiclassical approach not only captures

the hallmark of ESC and VSC, namely the real-time Rabi oscillations and frequency-domain

Rabi splittings, in a unified manner, but also provides a straightforward means for evaluat-

ing the cavity effect on coupled nuclear-electronic dynamics while including nuclear quantum
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effects.

The main advantages of the semiclassical RT-NEO-TDDFT approach are the straight-

forward implementation, the capability to describe both the ESC and VSC domains si-

multaneously, and the potential scalability to collective strong coupling due to the use of

classical cavity modes. Under ESC, although a semiclassical treatment of the coupled cavity-

electronic system may not be as accurate as full quantum treatments such as QEDFT,21,22

other work such as the semiclassical initial value representation (SC-IVR) method60,61 has

shown that treating electronic degrees of freedom as classical harmonic oscillators is valid for

many scenarios. Due to the harmonic nature of cavity modes, which can be viewed as stand-

ing electromagnetic waves, a classical treatment is expected to be a good approximation.

Moreover, even when the cavity modes are treated classically, some quantum effects of the

cavity modes can be recovered by introducing multiple trajectories in conjunction with the

semiclassical algorithm.43,62,63 Additionally, in the limit of high excitations of cavity modes,

a classical treatment becomes exact, whereas a quantum treatment usually requires greater

computational cost to describe highly excited states. Under VSC, compared with a fully

classical treatment such as CavMD,26 the inclusion of quantum protons is expected to be

more reliable for probing ultrafast vibrational polariton spectroscopy. In the remainder of

the paper, we introduce the fundamental theoretical concepts and central equations underly-

ing our semiclassical approach and present illustrative examples. These applications include

both a single HCN molecule under ESC or VSC and the nonequilibrium dynamics of excited

state intramolecular proton transfer.
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2. Theory

2.1. QED Hamiltonian under long-wave approximation

We start from a quantum-electrodynamical (QED) Hamiltonian for light-matter interac-

tions:22,64,65

ĤQED = ĤM + ĤF. (1a)

Here, ĤM denotes the conventional Hamiltonian for a molecular system composed of nuclei

and electrons. This Hamiltonian is the sum of the kinetic and potential energies:

ĤM =
∑
i

p̂2
i

2mi

+ V̂Coul ({r̂i}) , (1b)

where mi, p̂i, and r̂i denote the mass, momentum operator, and position operator, respec-

tively, for the i-th particle (i.e., nucleus or electron), and V̂Coul ({r̂i}) denotes the Coulombic

interaction operator among all nuclei and electrons.

Under the long-wave approximation, the field-related Hamiltonian ĤF is expressed as

ĤF =
∑
k,λ

1

2
p̂2k,λ +

1

2
ω2
k,λ

(
q̂k,λ +

1

ωk,λ
√

Ωε0
µ̂S · ξλ

)2

. (1c)

The cavity photon mode is characterized by the wave vector k = |k| and the polarization

direction ξλ, which represents a unit vector satisfying k · ξλ = 0 (i.e., if the k direction

is z, then λ is x or y). This photon mode is linearly coupled to µ̂S, the total (electronic

plus nuclear) dipole moment of the molecular system. Here p̂k,λ, q̂k,λ, and ωk,λ denote the

momentum operator, position operator, and frequency, respectively, of the cavity photon. Ω

denotes the effective volume of the cavity, and ε0 denotes the vacuum permittivity.
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2.2. Semiclassical approximation

We are interested in the semiclassical limit, where the cavity photons are treated classically.

In this limit, the full QED Hamiltonian in Eq. (1) can be rewritten as

Ĥ = Ĥsc +
∑
k,λ

1

2
p2k,λ +

1

2
ω2
k,λq

2
k,λ, (2a)

where the semiclassical light-matter Hamiltonian is

Ĥsc = ĤM +
∑
k,λ

εk,λqk,λµ̂λ. (2b)

Here, the light-matter coupling strength εk,λ is defined as

εk,λ =
ωk,λ√
Ωε0

(2c)

and µ̂λ ≡ µ̂S · ξλ denotes the total (electronic plus nuclear) molecular dipole operator pro-

jected onto the direction of ξλ.

Within this semiclassical treatment, the self-dipole term (i.e., the term proportional to

µ̂2
S) in Eq. (1c) has been disregarded on the basis of the previous finding that neglecting

this term is valid from weak to strong coupling,31,66 although it can fail under ultrastrong

coupling.66,67 There is no unique semiclassical treatment for the self-dipole term,68 and iden-

tifying the optimal semiclassical form of this term in the ultrastrong coupling limit is beyond

the scope of this manuscript.

Given the semiclassical Hamiltonian defined in Eq. (2), we propagate the electrons and

specified nuclei, typically protons, quantum mechanically and propagate the cavity photons

classically. In particular, we propagate the dynamics of both electrons and quantum nuclei

with the time-dependent Schrödinger equation:

i~
∂

∂t
Ψ(xe,xn; t) = Ĥsc(x

e,xn; t)Ψ(xe,xn; t), (3)
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where xe (or xn) denotes the collective spatial and spin coordinates of the electrons (or

quantum protons), and the remaining heavy nuclei are assumed fixed. This approximation

is valid when the timescale of interest is smaller than the timescale of heavy nuclear motions,

which is usually larger than tens of fs. On the other hand, we evolve the cavity photons

according to the classical equations of motion:

q̇k,λ = pk,λ, (4a)

ṗk,λ = −ω2
k,λqk,λ − εk,λµλ − γcpk,λ. (4b)

Here, γc denotes the cavity loss rate, which is introduced here to represent the imperfectness

of the cavity mirrors. In our simulations, we set the initial photon conditions as qk,λ(t =

0) = pk,λ(t = 0) = 0 and define µλ(t) = 〈µ̂λ(t)〉 − 〈µ̂λ(t = 0)〉, where 〈· · · 〉 denotes the

molecular expectation value, thereby setting the molecular dipole moment to zero at t = 0

and neglecting the effect of the permanent dipole moment on the cavity photons. This

treatment is necessary to ensure that the cavity photons will not be excited at t > 0 without

any external perturbation, i.e., a system starting in the ground state will always remain in

the ground state in the absence of external perturbation; see Sec. Simulation Details for

additional explanations.

2.3. Semiclassical RT-NEO approach

Within the framework of the real-time NEO approach,49 the nuclear-electronic wavefunction

has the following form:

Ψ(xe,xn; t) = Ψ(xe; t)Ψ(xn; t), (5)
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and the time-dependent Schrödinger equation can be propagated separately for the electronic

and nuclear components. Here, we choose to propagate the von Neumann equations

i~
∂

∂t
Pe(t) =

[
Fe(t) +

∑
k,λ

εk,λqk,λ(t)µ̂
e
λ, P

e(t)

]
(6a)

i~
∂

∂t
Pn(t) =

[
Fn(t) +

∑
k,λ

εk,λqk,λ(t)µ̂
n
λ, P

n(t)

]
(6b)

in the orthogonal atomic orbital basis. The density matrices are defined as Pe = CeCe†

and Pn = CnCn†, where Ce(t) (or Cn(t)) denotes the coefficient vector of the electronic

(or nuclear) wavefunction in the orthogonal atomic orbital basis. µ̂eλ = −|e|∑i r̂
e
iλ and

µ̂nλ = |e|∑j Zj r̂
n
jλ denote the electronic and nuclear components of the molecular dipole

moment, where e, r̂eiλ, Zj, and r̂njλ denote the electronic charge, the λ = x, y, or z component

of the electronic position operator, the nuclear charge, and the λ component of the nuclear

position operator, respectively. Fe(t) (or Fn(t)) denotes the Kohn–Sham matrix for the

electrons (or nuclei) in the orthogonal atomic orbital basis:

Fe(t) = He
core + Jee(Pe(t)) + Ve

xc(P
e(t))− Jen(Pn(t))−Ven

c (Pe(t),Pn(t)) + Ve
ext(t) (7a)

Fn(t) = Hn
core + Jnn(Pn(t)) + Vn

xc(P
n(t))− Jne(Pe(t))−Vne

c (Pn(t),Pe(t)) + Vn
ext(t) (7b)

Here, He(n)
core denotes the core Hamiltonian that includes the kinetic energy and the Coulomb

interaction of the electrons or quantum nuclei with the classical nuclei; Jee(nn) denotes the

Coulomb interactions for the electrons or quantum nuclei; V
e(n)
xc denotes the exchange-

correlation potential for the electrons or quantum nuclei; Jne(en) denotes the Coulomb inter-

action between the electrons and quantum nuclei; Vne(en)
c denotes the correlation potential

between the electrons and quantum nuclei; V
e(n)
ext (t) denotes the time-dependent external

potential such as the light–matter coupling with the external pulse. Note that the classical

nuclei are treated as fixed classical point charges and do not contribute to the change in the

molecular dipole moment relative to t = 0.
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Eqs. (4) and (6) form the working equations of the semiclassical RT-NEO approach of

QED. We will use two molecular examples to illustrate the advantages and capabilities of

this approach. For a single HCN molecule with all electrons and the proton treated quantum

mechanically, we show that our semiclassical RT-NEO-TDDFT calculation captures the real-

time Rabi oscillations as well as the frequency-domain Rabi splitting under both ESC and

VSC. For the o-hydroxybenzaldehyde (oHBA) molecule under ESC, with all electrons and

the transferring proton treated quantum mechanically, our approach reveals the impact of

the cavity on excited-state proton transfer dynamics. In the next section, we will provide

additional simulation details.

3. Simulation Details

The semiclassical RT-NEO-TDDFT approach has been implemented in a developer version

of Q-Chem.69 This approach entails propagation of Eqs. (4) and (6). We propagate the

quantum molecular subsystem with a modified-midpoint unitary transform time-propagation

scheme algorithm.70,71 An additional predictor-corrector procedure72 is used to control the

growth of numerical error during time propagation. The velocity Verlet algorithm is used

to propagate the classical cavity mode. The classical nuclei of the molecule are fixed at

the specified geometry. The outside cavity parameters are similar to those used in Ref.49

The input files and plotting scripts are available at Github (https://github.com/TaoELi/

semiclassical-rt-neo).

The initial conditions for propagating Eqs. (4) and (6) are chosen to be the SCF ground

state for the electronic and nuclear density matrices, Pe,n(t = 0), and qk,λ(t = 0) = pk,λ(t =

0) = 0 for the classical cavity mode. In Eq. (4), the evaluation of µλ requires additional

explanation. As mentioned above, we define µλ(t) = 〈µ̂λ(t)〉−〈µ̂λ(t = 0)〉, thereby neglecting

the effect of the permanent dipole moment on the cavity photons and ensuring that the

cavity photons will not be excited at t > 0 without any external perturbation. If we use an

9
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alternative strategy, in which µλ(t) = 〈µ̂λ(t)〉 (i.e., we consider the effect of the permanent

dipole moment) and also set qk,λ(t = 0) in a manner that satisfies ṗk,λ(t = 0) = 0 in Eq. (4),

we can also ensure that the ground state will remain unchanged at t > 0 in the absence of

an external perturbation. This alternative strategy, which may contain an initial condition

of qk,λ(t = 0) 6= 0 when the molecular permanent dipole is nonzero, can be understood

physically in terms of a polarized photon field66,73 but is practically equivalent to our default

treatment.

For the DFT calculations, we use the B3LYP functional74–76 for electron-electron exchange-

correlation and the epc17-2 functional54,55 for electron-proton correlation. When calculating

the SCF ground state, a tight convergence criterion is needed to reduce the computational

error in the real-time simulation (see SI for the input files). A time step of ∆t = 0.04 a.u. is

used for the real-time simulation.

For the HCN simulations, we use the cc-pVDZ electronic basis set77 and an even-tempered

8s8p8d protonic basis set54 with exponents ranging from 2
√

2 to 32. Outside the cavity, at

t = 0, we apply a delta pulse to both the electronic and protonic Fock matrices, which can

be expressed as F′e,n + E · µ′e,n. Here, E = (E0, E0, E0) with E0 = 0.01 a.u., and F
′e,n and

µ
′e,n denote the electronic or protonic Fock matrix and dipole moment vector matrix (in

three dimensions) evaluated in the nonorthogonal atomic orbital basis, which are labeled

with a prime superscript to distinguish from Eq. (6), where the matrices are expressed in

the orthogonal atomic orbital basis. Inside the cavity, we apply a delta pulse to the cavity

mode (instead of the molecule) at t = 0: qc = qc(t = 0) + ∆qc, where ∆qc = 0.001 a.u. under

ESC and ∆qc = 0.3 a.u. under VSC to increase the signal of the protonic dipole moment

and reduce the relative numerical error.

We then calculate the power spectrum of the real-time dipole signal by a Fourier trans-

formation. Note that since we have only propagated a short range of time (50 fs), a direct

Fourier transformation does not provide sufficient resolution in the frequency domain. In

order to obtain enough resolution, following Refs.70,78 , we take the Padé approximation of
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the Fourier transform and calculate the power spectrum as follows:

Pe(ω) =
∑
i=x,y,z

|F [µei (t)e
−γt]|. (8)

Because the dipole signal calculated from real-time time-dependent electronic structure the-

ory does not contain any damping, a small damping term e−γt is used (with γ = 10−5 a.u.)

to give an artificial linewidth of 1.7× 10−3 eV = 13.8 cm−1 to all of the peaks in the spectra.

For the oHBA simulations, the cc-pVDZ electronic basis set is used in conjunction with

a small 1s1p protonic basis set with an exponent of 4 to provide a qualitative description of

the proton transfer reaction. The proton position is evaluated by Tr
(
r
′nP

′n
)
, where r

′n and

P
′n denote the protonic position matrix and density matrix evaluated in the nonorthogonal

atomic orbital basis. At t = 0, we model the S0→S1 transition by enforcing a HOMO to

LUMO transition in the electronic density matrix. In order to simulate proton transfer,

we have added three additional proton basis function centers; see SI for the corresponding

coordinates.

4. Results

4.1. Electronic strong coupling

Our first example is a single HCN molecule oriented along the z axis. Starting from the

nuclear-electronic self-consistent field (SCF) ground state, this molecule is perturbed by a

weak delta pulse at t = 0. Fig. 1a shows the real-time dynamics of the electronic dipole

moment in the z direction, µez(t) ≡ 〈µ̂ez(t)〉−〈µ̂ez(t = 0)〉, outside the cavity for 50 fs. Fig. 1b

shows the corresponding electronic power spectrum Pe(ω) of the HCN molecule (solid blue

line). In order to check the validity of the real-time simulation, we also plot the electronic

transitions calculated from linear-response NEO-TDDFT method (dashed black line). The

relative heights of the linear-response peaks represent the corresponding oscillator strengths,
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where the maximum value is normalized to unity. The excellent agreement between the

real-time and linear-response peaks (with a difference smaller than 10−3 eV) confirms the

numerical stability of our real-time simulation.
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Figure 1: (a) Real-time NEO-TDDFT dynamics of the z-component of the HCN electronic
dipole moment, µez(t), in free space when the molecule is perturbed by a delta pulse. (b)
Corresponding power spectrum, Pe(ω), of the real-time dipole signal in (a) (blue line) as well
as the linear-response NEO-TDDFT excited electronic state transitions (dashed black line).
The real-time and linear-response spectra are virtually indistinguishable. (c) Semiclassical
RT-NEO-TDDFT dynamics of µez(t) when the HCN molecule is resonantly coupled to a z-
polarized cavity mode with frequency ωc = 13.334 eV, coupling strength ε = 4 × 10−3 a.u.,
and no loss, and the cavity mode is perturbed by a delta pulse at t = 0. (d) Corresponding
power spectrum, Pe(ω), of the real-time dipole signal in (c). The geometry and orientation of
the HCN molecule are also depicted in (d). The vertical dashed blue line denotes the cavity
mode frequency, which is at resonance with an electronic transition in (b). Note that Rabi
oscillations are observed in real time (c), and an UP and LP pair is formed in the frequency
domain (d). All peaks in these spectra have an artificial linewidth of 1.7× 10−3 eV because
a small damping term e−γt with γ = 10−5 a.u. is used to process the real-time signals.

Next we simulate the real-time dynamics inside the cavity with a z-polarized lossless

cavity mode at resonance with the strongest electronic peak in Fig. 1b (ωc = 13.334 eV) and

the coupling strength set to ε = 4× 10−3 a.u. The choice of a z-polarized cavity mode is to

align with the largest transition dipole component among the three dimensions, where the

geometry and orientation of the HCN molecule are depicted in Fig. 1d. Fig. 1c shows the
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dynamics of µez(t) when the cavity mode (not the molecule) is perturbed by a weak delta pulse

at t = 0. In this case, real-time Rabi oscillations are observed due to the coherent energy

exchange between the cavity mode and the molecular electronic transition. In the frequency

domain, as shown in Fig. 1d, the original electronic peak at 13.334 eV (vertical dashed blue

line) is split into two peaks, known as the lower polariton (LP) and the upper polariton

(UP). These two polaritons are separated by a Rabi splitting of ΩR = 0.384 eV. The other

electronic peaks in Fig. 1b are not significantly excited in Fig. 1d because the cavity mode

frequency is far from these off-resonant electronic peaks, and therefore the excited cavity

mode transfers only a small amount of energy to these electronic transitions. Figure S1 in

the SI illustrates how the polaritonic spectrum depends on the cavity loss and light-matter

coupling strength.

4.2. Vibrational strong coupling

In addition to the ESC domain, one important advantage of the semiclassical RT-NEO ap-

proach is the capability of treating the VSC domain. Again, we use the HCN molecule

oriented along the x axis as an example. Outside the cavity, Figs. 2a,b show the dynam-

ics of the x-component of the nuclear dipole moment, µnx(t) in the time domain and the

corresponding power spectrum in the frequency domain. In Fig. 2b, the linear-response

NEO-TDDFT peaks (dashed black line) are shown to be in very good agreement with the

real-time NEO-TDDFT peaks. Specifically, the peak difference is 1 cm−1 for the HCN bend-

ing modes (left) and 12 cm−1 for the HCN stretching mode (right) with nearly identical

relative oscillator strengths between the two peaks.

Next an x-polarized lossless cavity mode is resonantly coupled to the HCN bending mode

with cavity frequency ωc = 2803 cm−1 and coupling strength ε = 4× 10−4 a.u. For the HCN

geometry oriented along the z-direction, which is shown in Fig. 2d, the doubly degenerate

bending mode oscillates in the xy plane. Fig. 2c shows the dynamics of µnx(t) for 50 fs after

a weak perturbation of the cavity mode (not the molecule) at t = 0. As the proton evolves
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Figure 2: (a) Real-time NEO-TDDFT dynamics of the x-component of the HCN nuclear
dipole moment, µnx(t), in free space when the molecule is perturbed by a delta pulse. (b)
Corresponding power spectrum, Pn(ω), of the dipole signal in (a) (blue line) as well as
the linear-response NEO-TDDFT excited vibrational state transitions (dashed black line).
The real-time and linear-response spectra are virtually indistinguishable. (c) Semiclassical
RT-NEO-TDDFT dynamics of µnx(t) when the HCN molecule is resonantly coupled to an
x-polarized cavity mode with frequency ωc = 2803 cm−1, coupling strength ε = 4×10−4 a.u.,
and no loss, and the cavity mode is perturbed by a delta pulse at t = 0. (d) Corresponding
power spectrum, Pn(ω), of the real-time dipole signal in (c). The vertical dashed blue
line denotes the cavity mode frequency, which is at resonance with the lowest vibrational
transition in (b). All peaks in these spectra have an artificial linewidth of 1.7 × 10−3 eV
(13.8 cm−1) because a small damping term e−γt with γ = 10−5 a.u. is used to process the
real-time signals.
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much more slowly than the electrons, within 50 fs the molecule has not finished a period of

Rabi oscillation, in contrast to the ESC case. In the frequency domain, however, as shown

in Fig. 2d, the observation of a pair of polaritons with a Rabi splitting of ΩR = 55 cm−1

implies VSC.
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Figure 3: Power spectrum, Pn(ω), of the HCN nuclear dipole moment when the HCN bending
modes are resonantly coupled to the x-polarized cavity with frequency ωc = 2803 cm−1
(vertical dashed blue lines). (a) No cavity loss and the light-matter coupling strength ranges
from ε = 1× 10−4 a.u. (black line) to 6× 10−4 a.u. (orange line). (b) The cavity loss ranges
from γc = 22 cm−1 (cyan line) to 689 cm−1 (purple line) with the light-matter coupling
strength set to ε = 4 × 10−4 a.u. Increasing the cavity loss transforms the system from
strong coupling (with a peak splitting) to weak coupling (with no peak splitting). All other
simulation details are the same as for Fig. 2d. The molecular peaks have an artificial
linewidth of 13.8 cm−1 because of the small damping term used during signal processing. In
part (b), the linewidths only partially arise from the signal processing and mostly originate
from the coupling to the lossy cavity.

In Fig. 3, we analyze the dependence of the polaritonic spectrum on the coupling strength

and cavity loss for the VSC case. With all other parameters the same as in Fig. 2d, Fig.

3a shows the polariton spectrum when the coupling strength between the lossless cavity and

the molecule is tuned from ε = 1 × 10−4 a.u. (black line) to 6 × 10−4 a.u. (orange line).

As the coupling strength is increased, the Rabi splitting increases asymmetrically. Such

asymmetric behavior, where the LP shifts more than the UP, is not observed for HCN under

ESC (see SI Fig. S1), most likely because the excitation is significantly higher. However,

this asymmetry is also observed under ESC for the proton transfer system discussed below,

which is also a relatively low-frequency excitation, as well as in a previous QED electronic
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structure calculation.79 The origin of our asymmetry, in which the LP shifts more than the

UP, is currently unclear. In our treatment, the self-dipole term in the QED Hamiltonian has

been neglected. Although Ref.79 concludes that similar asymmetry arises from the inclusion

of the self-dipole term in the QED Hamiltonian, Ref.26 suggests that including the self-dipole

term would cause an opposite asymmetry, where the UP shifts more than the LP. The latter

asymmetry agrees with the standard Hopfield model,80 in which the A2 term is included in

the QED Hamiltonian. Thus, this issue warrants further investigation.

When the coupling strength is fixed as ε = 4 × 10−4 a.u., Fig. 3b shows the polariton

spectrum when the cavity loss rate increases from γc = 22 cm−1 (cyan line) to 689 cm−1

(purple line). When the cavity loss increases, the polariton linewidths increase until the

Rabi splitting (ΩR = 55 cm−1) disappears, illustrating a transition from strong coupling to

weak coupling when the cavity loss increases. In Fig. 3a, the linewidths arise from the signal

processing, whereas in Fig. 3b, the linewidths arise partially from the signal processing but

mainly from the coupling to the lossy cavity.

4.3. Proton transfer dynamics under electronic strong coupling

Beyond simulating real-time Rabi oscillations and the frequency-domain Rabi splitting, our

semiclassical RT-NEO-TDDFT approach also provides a straightforward means to probe

nonequilibrium coupled nuclear-electronic dynamics under ESC or VSC conditions in a cav-

ity. As an example, we consider the ESC effect on excited state intramolecular proton

transfer (ESIPT)81,82 for a single oHBA molecule inside the cavity. Unless otherwise speci-

fied, all of these calculations are performed for the restricted excited state geometry, which

was obtained by optimizing the geometry in the electronically excited state with the distance

between the proton and the donor oxygen constrained to its ground state value,82 as depicted

in the inset of Fig. 4a.

Outside the cavity, photoexcitation induces the proton to transfer from the donor oxygen

atom (OD) to the acceptor oxygen atom (OA). To characterize this proton transfer reaction,
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Figure 4: Excited state intramolecular proton transfer dynamics for an oHBA molecule under
ESC. (a) Polaritonic potential energy surfaces as a function of proton displacement (∆R)
for the oHBA molecule shown in the inset. The S0 and S1 states (black lines) are calculated
by conventional LR-TDDFT. The minimum on S1 corresponding to the proton bonded to
OA is ∆R = 0.45 Å. A pair of polaritonic states form (UP and LP, red lines) when the S1
state is near resonance with the S0 state dressed with a singly excited cavity photon (brown
line); see Eq. (9) for the effective Hamiltonian. (b) The corresponding power spectrum of
the electronic dipole moment outside the cavity (blue line) or inside a lossless cavity (red
line) when a y-polarized cavity mode is at resonance with the S0→S1 transition (blue peak at
3.295 eV) with ε = 4× 10−3 a.u. (c) The corresponding excited-state intramolecular proton
transfer dynamics outside (blue lines) or inside (red lines) the cavity. Solid (or dashed) lines
denote the distance between the expectation value of the proton position and the donor (or
acceptor) oxygen atom. (d,e) and (f,g) Two sets of spectra and proton transfer dynamics
outside or inside the cavity when the distance between the oxygen atoms is increased. In
Figs. (c), (e), and (g), the distance between the OD and OA atoms is 2.51 Å, 2.57 Å, and
2.64 Å, respectively. When the proton transfer timescale (indicated by the crossing point
of the red and blue lines) is smaller than the Rabi oscillation timescale (∼ 11 fs), negligible
cavity suppression of proton transfer is observed, as shown in (c), whereas increasing the
proton transfer timescale while retaining a similar Rabi splitting leads to much greater cavity
suppression of proton transfer, as shown in (d) and (e).
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Fig. 4a shows the LR-TDDFT potential energy surface for the S0 and S1 states (black lines)

when the proton is displaced by ∆R from its initial position along the vector connecting this

initial position and OA. Intramolecular proton transfer is only facile on the S1 excited-state

surface because for the S1 surface, the energy at ∆R = 0 is greater than the energies over

the range 0 < ∆R < 0.45 Å. Note that this figure depicts only a slice of the molecular

multidimensional potential energy surface along ∆R and may not represent the reaction

path followed by the proton.

Next we consider the case when the S0→S1 electronic transition at ∆R = 0 is resonantly

coupled to a cavity mode. In the singly excited manifold, at each proton displacement ∆R,

the bare S1 state is coupled to the S0 state dressed by an excited cavity mode (brown line).

Quantitatively, we can express the effective light-matter Hamiltonian in the singly excited

manifold as  ES1(∆R) −µS0→S1(∆R) · E

−µS0→S1(∆R) · E ES0(∆R) + Eph

 . (9)

Here, ES1(∆R) and ES0(∆R) denote the bare S1 and S0 state energies outside the cavity,

µS0→S1(∆R) denotes the transition dipole moment vector between these two states, and E

denotes the effective electric field vector inside the cavity. Setting E = (0, 0.3 a.u., 0), we

diagonalize the Hamiltonian in Eq. (9) at different values of ∆R and obtain the eigenstates,

which correspond to the LP and UP states (red lines). Similar to a previous theoretical

study83 of the ESC effect on photoisomerization, these calculations suggest that the proton

transfer dynamics will be suppressed on both the LP and the UP potential energy surfaces

compared to the original S1 channel.

Analogous to the procedure applied to HCN above, we used the RT-NEO-TDDFT

method to compute the power spectra when all electrons and the transferring proton are

treated quantum mechanically. Fig. 4b shows the spectra outside the cavity (blue line) and

inside a lossless cavity (red line) when the y-polarized cavity mode is resonantly coupled to

the S0→S1 electronic transition (blue peak at 3.295 eV) with ε = 4 × 10−3 a.u. Inside the
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cavity, a pair of polaritons forms with the Rabi splitting ΩR = 0.361 eV (red line). Note that

when computing the spectra, a very weak pulse is used to excite the system, and therefore

the molecule remains predominantly in the ground vibronic state and proton transfer does

not occur.

To simulate photoinduced ESIPT in this molecule, we model the S0→S1 electronic tran-

sition by exciting the electronic density matrix from the highest occupied molecular orbital

(HOMO) to the lowest unoccupied molecular orbital (LUMO) at t = 0. Inside the cavity,

such an initial condition corresponds to an approximately equal excitation of the LP and UP,

which could be realized experimentally by sending a wide-band pulse to excite the molecular

system. The proton transfer process is monitored by plotting the distance between the pro-

ton and OD and the distance between the proton and OA, where the proton moves away from

the donor and toward the acceptor, as shown in 4c. These distances are computed with the

expectation value of the proton position. The proton transfer time is defined as the time at

which these two distances are the same. Outside the cavity (blue lines), the proton transfers

at ∼ 4.2 fs and starts returning to OD at t ≈ 8 fs, similar to previous RT-NEO-TDDFT

studies of this molecule in free space.49

Inside the cavity (red lines), the proton dynamics is only slightly suppressed. As the Rabi

splitting here is similar to the splitting between the polaritonic potential energy surfaces

(∆R = 0 in Fig. 4a), such a negligible cavity effect appears to conflict with previous

theoretical predictions.83 We hypothesized that this negligible effect was due to the faster

timescale of proton transfer (∼ 4 fs) compared to the Rabi oscillation timescale (11.5 fs based

on ΩR = 0.361 eV). In this case, proton transfer itself effectively serves as a strong lossy

channel that breaks down strong coupling. In other words, the energy transfer dynamics

between the proton and the cavity mode, which is characterized by the Rabi splitting, is

slower than the proton transfer dynamics, preventing the cavity from significantly influencing

the proton transfer dynamics. According to this hypothesis, if the proton transfer dynamics

is slowed down while the Rabi splitting remains the same, we expect to observe a stronger
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cavity suppression of proton transfer.

To test this hypothesis, we increase the distance between the OD and OA atoms for the

fixed geometry used in these simulations. As shown in Figs. 4d,e, outside the cavity (blue

lines), the proton transfer time increases to 7 fs and starts returning at 10 fs. When the

lossless y-polarized cavity is again resonantly coupled to the S0→S1 transition (blue peak

at 3.611 eV) with ε = 4 × 10−3 a.u., the Rabi splitting (ΩR = 0.348 eV, corresponding

to 11.9 fs) is similar to that in Fig. 4b, but the proton transfer dynamics (red lines) is

greatly suppressed compared with that outside the cavity (blue lines). Comparing Fig. 4e to

Fig. 4c, we observe a much stronger cavity suppression of proton transfer when the proton

transfer timescale is extended while the Rabi splitting remains similar, thus confirming our

above hypothesis. For Fig. 4e, the corresponding electronic density (the green isosurface)

and protonic density (the blue isosurface) at time t = 0 fs and 9.7 fs are plotted in the

table of contents (TOC) figure. When the distance between the OD and OA atoms is further

increased, as shown in Figs. 4f,g, proton transfer does not occur either inside or outside the

cavity.

For the nuclear geometries used to generate the data in Fig. 4c or 4e, we have also

observed that the cavity suppression effect becomes more substantial when the light-matter

coupling strength ε is increased (see SI Fig. S2). This finding is consistent with our above

hypothesis because increasing ε can lead to a smaller Rabi oscillation timescale due to a

larger Rabi splitting. In this case, the proton transfer timescale becomes more similar to

the Rabi oscillation timescale, which, according to our hypothesis, implies a larger cavity

suppression effect for proton transfer. Our hypothesis is also consistent with the observation

that adding a cavity lifetime of 10 fs, which is slower than the proton transfer lifetime, does

not alter the proton transfer dynamics (see SI Fig. S3).

A more realistic photoinduced ESIPT can be simulated by using an external Gaussian

pulse to excite the molecular subsystem (not the cavity mode), in contrast to Fig. 4, where

the proton transfer is triggered via a HOMO to LUMO transition at t = 0. Analogous
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Figure 5: Excited state intramolecular proton transfer dynamics for an oHBA molecule
under an external pulse excitation. Part (a) is identical to Fig. 4a. For (b)-(g), the oHBA
geometry is fixed to the same geometry as that used in Figs. 4(d,e), and therefore the spectra
in (b), (d), and (f) are identical. In contrast to Fig. 4, where proton transfer is triggered
by a HOMO to LUMO transition at time t = 0, here proton transfer is induced by an
external pulse excitation of the molecule (both inside and outside the cavity) with the form
Eext(t) = E0 exp(−t2/σ2) cos(ωt)ey. In these simulations, σ = 9.7 fs, ω = 3.611 eV outside
the cavity (corresponding to the S0 → S1 transition frequency), and ω = 3.355 eV inside the
cavity (corresponding to the LP frequency). Moreover, E0 = 2× 10−2 a.u. for (c), 4× 10−2

a.u. for (e), and 8× 10−2 a.u. for (g). All other parameters are the same as in Fig. 4. The
lineshapes of the external pulse in the frequency domain are plotted as yellow shaded curves
together with the spectra in the upper panel. Inside the cavity, the pulse mainly excites the
LP, and the cavity suppresses the proton transfer dynamics.
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to Fig. 4, Fig. 5 shows the proton transfer dynamics for oHBA under a Gaussian pulse

excitation with the form Eext(t) = E0 exp(−t2/σ2) cos(ωt)ey. The pulse width is set as

σ = 9.7 fs. Outside the cavity, the pulse frequency is chosen to peak at the S0 → S1

transition frequency (ω = 3.611 eV), whereas inside the cavity, the pulse frequency is chosen

to peak at the LP frequency (ω = 3.355 eV). The yellow shaded curves in the upper panel

depict the corresponding pulse lineshapes in the frequency domain. For Figs. 5(b)-(g), the

geometry of the oHBA molecule is fixed to the same geometry used in Figs. 4(d,e) and the

amplitude of the pulse is increased from E0 = 2 × 10−2 a.u. (Fig. 5b,c) to 4 × 10−2 a.u.

(Fig. 5d,e) to 8× 10−2 a.u. (Fig. 5f,g). For all three pulse amplitudes, we observed a cavity

suppression of proton transfer, in agreement with Fig. 4.

Our assumption that the pulse excites only the molecular subsystem (not the cavity mode)

ensures similar initial conditions for the outside versus inside cavity situations, allowing

a clean comparison between the inside versus outside cavity results. In reality, however,

because plasmonic cavities usually have a much larger effective transition dipole moment

than the confined molecule, the external pulse should interact more strongly with the cavity

mode. Such a cavity enhancement of the external field amplitude should promote proton

transfer, whereas the formation of polaritons, as we have observed in Fig. 4, is more likely

to suppress proton transfer. These two effects clearly work against each other. Hence, in

order to better simulate photoinduced proton transfer inside a plasmonic cavity, one should

also take into account the cavity enhancement of the external field. Although our code

can be easily extended to include this enhancement (i.e., by assigning a very large effective

transition dipole moment to the cavity mode), we do not report such a simulation here as it

is beyond the scope of this work.

22



5. Conclusion

In this manuscript, we have introduced the semiclassical RT-NEO-TDDFT approach for

studying the real-time dynamics of molecular polaritons. By treating electrons and specified

nuclei quantum mechanically with RT-NEO-TDDFT and propagating the coupled dynamics

between the quantum molecular subsystem and the classical cavity mode(s) self-consistently,

this approach not only provides a unified description of ESC and VSC, but also can be used

to probe the cavity effect on the coupled nuclear-electronic dynamics. Our application of

this approach to excited state intramolecular proton transfer under single-molecule strong

coupling is generally consistent with the previous work83 showing that ESC can lead to sup-

pression of photochemical reactions. However, our work reveals a new consideration for the

investigation of cavity effects on chemical reactions: under single-molecule strong coupling

for only the reactant, the cavity does not play a significant role when the chemical reaction

timescale is faster than the Rabi oscillation timescale. In this case, the chemical reaction

itself provides a strong lossy channel that may destroy strong coupling. As these timescales

cannot be directly observed from the polaritonic potential energy surfaces, this work also

highlights the importance of propagating real-time dynamics instead of considering only

energetics. Furthermore, this semiclassical approach provides the foundation for exploring

collective strong coupling in chemical systems within optical cavities.

Supporting information

Q-Chem input files and molecular geometries for the reported results; figure of the polariton

spectrum for a single HCN molecule under ESC when the light-matter coupling strength

or the cavity loss rate is tuned; figures of the proton transfer dynamics with a large Rabi

splitting or with a cavity loss lifetime of 10 fs. The input files and plotting scripts are also

available at Github (https://github.com/TaoELi/semiclassical-rt-neo).
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1. Q-Chem input file for HCN under VSC

HCN.in for Fig. 2c

$molecule

0 1

C 0.0 0.0 -0.5026771429

N 0.0 0.0 0.6555628571

H 0.0 0.0 -1.5728771429

$end

$rem

sym_ignore = 1

input_bohr = false

method = b3lyp

neo = true

neo_epc = epc172

basis = cc-pvdz

SCF_ALGORITHM = GDM

thresh = 14

s2thresh = 12

SCF_CONVERGENCE = 11

NEO_N_SCF_CONVERGENCE = 11

MAX_SCF_CYCLES = 500

NEO_PURECART = 1111

NEO_E_CONV = 12

MEM_TOTAL = 7000

NEO_VPP = 0

NEO_BASIS_LIN_DEP_THRESH = 8

$end

$neo_basis

H 3

S2



S 1 1.000000

2.828400 1.0

S 1 1.000000

4.0 1.0

S 1 1.000000

5.6569 1.0

S 1 1.000000

8.0 1.0

S 1 1.000000

11.3137 1.0

S 1 1.000000

16.0 1.0

S 1 1.000000

22.6274 1.0

S 1 1.000000

32.0 1.0

P 1 1.000000

2.828400 1.0

P 1 1.000000

4.0 1.0

P 1 1.000000

5.6569 1.0

P 1 1.000000

8.0 1.0

P 1 1.000000

11.3137 1.0

P 1 1.000000

16.0 1.0

P 1 1.000000

22.6274 1.0

P 1 1.000000

32.0 1.0

D 1 1.000000
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2.828400 1.0

D 1 1.000000

4.0 1.0

D 1 1.000000

5.6569 1.0

D 1 1.000000

8.0 1.0

D 1 1.000000

11.3137 1.0

D 1 1.000000

16.0 1.0

D 1 1.000000

22.6274 1.0

D 1 1.000000

32.0 1.0

$end

$neo_tdks

dt 0.04

maxiter 51677

field_type delta

field_amp 0.3

in_cavity true 0.3475 0 4e-4 1e8

rt_thresh 4

$end

The above input file can generate the data in Fig. 2c. The $neo_tdks section controls the

RT-NEO-TDDFT dynamics. While all of the other input parameters are self-explanatory,

"in_cavity true 0.3475 0 4e-4 1e8" indicates coupling the molecule to a single-mode cavity

with a frequency of 0.3475 a.u., polarization direction of x (0 to x, 1 to y, and 2 to z),

coupling strength ε = 4× 10−4 a.u., and lifetime 1/γc = 108 a.u. Here, such a long lifetime
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approximately means no cavity loss. "rt_thresh 4" indicates that the threshold of the

predictor-corrector algorithm (the eps parameter in Algorithm 1 of Ref.S1) is 10−4.

2. Q-Chem input file for oHBA under ESC

oHBA.in for Fig. 4c

$molecule

0 1

C -1.310008 1.258755 0.000000

C 0.019289 0.780580 0.000000

C 0.322586 -0.621636 0.000000

C -0.761283 -1.465586 0.000000

C -2.125342 -0.985468 0.000000

C -2.398971 0.362640 0.000000

O 1.008708 1.658363 0.000000

C 1.725826 -1.062678 0.000000

O 2.682115 -0.219090 0.000000

H -3.414260 0.733314 0.000000

H -0.596742 -2.537818 0.000000

H -2.926679 -1.713458 0.000000

H -1.459388 2.331114 0.000000

H 1.924136 -2.138192 0.000000

H 1.844187 1.135044 0.000000

Gh 1.981048 0.913868 0.000000

Gh 2.117910 0.692694 0.000000

Gh 2.366459 0.659685 0.000000

$end

$rem

sym_ignore = 1

input_bohr = false
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method = b3lyp

SCF_ALGORITHM = diis

MAX_SCF_CYCLES=200

basis = mixed

PURECART 1

SCF_CONVERGENCE = 8

mem_total = 7000

neo = true

NEO_E_CONV = 9

NEO_EPC = epc172

NEO_VPP = 0

$end

$basis

C 1

cc-pvdz

C 2

cc-pvdz

C 3

cc-pvdz

C 4

cc-pvdz

C 5

cc-pvdz

C 6

cc-pvdz

O 7

cc-pvdz

C 8

cc-pvdz

O 9

cc-pvdz

H 10
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cc-pvdz

H 11

cc-pvdz

H 12

cc-pvdz

H 13

cc-pvdz

H 14

cc-pvdz

H 15

cc-pvdz

H 16

cc-pvdz

H 17

cc-pvdz

H 18

cc-pvdz

$end

$neo_basis

H 15

S 1 1.000000

4.0 1.0

P 1 1.000000

4.0 1.0

H 16

S 1 1.000000

4.0 1.0

P 1 1.000000

4.0 1.0

H 17

S 1 1.000000

4.0 1.0
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P 1 1.000000

4.0 1.0

H 18

S 1 1.000000

4.0 1.0

P 1 1.000000

4.0 1.0

$end

$neo_tdks

electronic_HOMO2LUMO true

dt 0.04

maxiter 20000

field_type delta

field_amp 0e-2

in_cavity true 3.295 1 4e-3 1e8

rt_thresh 3

$end

The above input file can generate the data in Fig. 4c. In the $neo_tdks section, "elec-

tronic_HOMO2LUMO true" enforces a HOMO to LUMO transition in the electronic density

matrix at t = 0 (but by default this control is turned off).

The geometry of the oHBA molecule in Fig. 4e is

oHBA.xyz for Fig. 4e

C -1.301629 1.264863 0.000000

C 0.025677 0.802315 0.000000

C 0.308350 -0.595173 0.000000

C -0.771161 -1.469584 0.000000

C -2.105932 -1.005452 0.000000
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C -2.364799 0.358631 0.000000

O 1.014139 1.694260 0.000000

C 1.693213 -1.060458 0.000000

O 2.668602 -0.278478 0.000000

H -3.383290 0.724581 0.000000

H -0.580558 -2.537265 0.000000

H -2.918862 -1.719777 0.000000

H -1.469874 2.334074 0.000000

H 1.853545 -2.147310 0.000000

H 1.860084 1.188551 0.000000

The additional three protonic basis function centers are the same as those in the above oHBA

Q-Chem input file.

The geometry of the oHBA molecule in Fig. 4g is

oHBA.xyz for Fig. 4g

C -1.293251 1.270970 0.000000

C 0.032066 0.824049 0.000000

C 0.294115 -0.568710 0.000000

C -0.781038 -1.473582 0.000000

C -2.086523 -1.025436 0.000000

C -2.330627 0.354621 0.000000

O 1.019570 1.730158 0.000000

C 1.660600 -1.058238 0.000000

O 2.655089 -0.337865 0.000000

H -3.352319 0.715847 0.000000

H -0.564373 -2.536711 0.000000

H -2.911046 -1.726097 0.000000

H -1.480360 2.337034 0.000000

H 1.782954 -2.156428 0.000000

H 1.875980 1.242058 0.000000
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The additional three protonic basis function centers are the same as those in the above

oHBA Q-Chem input file.

For Fig. 5, in order to simulate proton transfer under an external Gaussian pulse excita-

tion, we need to slighly change the $neo_tdks$ input parameters:

$neo_tdks$ input parameters for Fig. 5

$neo_tdks

electronic_HOMO2LUMO false

dt 0.04

maxiter 20000

field_type gaussian 0.0 400.0 3.355

field_amp 8e-2

field_direction 1

in_cavity true 3.611 1 4e-3 1e8

in_cavity_excite_molecule true

rt_thresh 3

$end

Here, "field_type gaussian 0.0 400.0 3.355", "field_amp 8e-2", and "field_direction 1"

collectively define an external Gaussian pulse with the following form: Eext(t) = E0 exp[−(t−

t0)
2/σ2] cos(ωt)ey, where the field amplitude is E0 = 8 × 10−2 a.u., t0 = 0 a.u., σ = 400.0

a.u., and frequency ω = 3.355 eV. Without the parameter "field_direction 1", the field will

interact with the molecule in three dimensions. "in_cavity_excite_molecule true" ensures

that the external pulse interacts only with the molecule (not the cavity mode). By default,

the external field interacts with only the cavity mode.
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3. Additional simulation data

3.1. Polaritonic spectra under ESC
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Figure S1: Power spectrum, Pe(ω), of the HCN electronic dipole moment when the HCN
molecule is resonantly coupled to the z-polarized cavity with frequency ωc = 13.334 eV
(vertical dashed blue lines). (a) The cavity loss is γc = 1.71 eV and the light-matter coupling
strength ranges from ε = 1 × 10−3 a.u. (black line) to 6 × 10−3 a.u. (orange line). Note
that a gradual increase of Rabi splitting is observed when the coupling strength is amplified.
(b) The cavity loss ranges from γc = 0.17 eV (cyan line) to 3.42 eV (purple line) with the
light-matter coupling strength set to ε = 4× 10−3 a.u. Increasing the cavity loss transforms
the system from strong coupling (with a peak splitting) to weak coupling (with no peak
splitting). All other simulation details are the same as for Fig. 1d. Since the intrinsic
molecular linewidth is 1.7× 10−3 eV due to the small damping term e−γt used for processing
the real-time signals, all of the linewidths in this figure arise mainly from the coupling to
the lossy cavity.

Fig. S1a demonstrates the electronic power spectrum inside a lossy cavity when the

coupling strength is tuned from 1× 10−3 a.u. (black line) to 6× 10−3 a.u. (orange line) and

all of the other simulation details are the same as in Fig. 1d. When the coupling strength is

small (ε ≤ 2× 10−3 a.u.), since the cavity loss is large, the molecule is weakly coupled to the

cavity mode and no peak splitting is observed. When the coupling strength increases, the

Rabi splitting overcomes the cavity loss, and two polaritons are observed. Fig. S1b shows

the effect of cavity loss on the molecular lineshape when the coupling strength is fixed as

ε = 4 × 10−3 a.u. When the cavity loss increases from γc = 0.17 eV to 3.42 eV (cyan to

purple), the peak splitting disappears.
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3.2. Proton transfer under large light-matter coupling
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Figure S2: Another version of Fig. 4 in the main text. The only difference is that, from (b)
to (g), the green lines represent the results corresponding to a large light-matter coupling
ε = 6 × 10−3 a.u., where all other parameters are the same as the inside cavity results in
Fig. 4 obtained with ε = 4 × 10−3 a.u. (red lines). Note that increasing the Rabi splitting
can further suppress the proton transfer dynamics.
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3.3. Proton transfer dynamics under a large cavity loss
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Figure S3: Another version of Fig. 4 in the main text. The only difference is that, from (b)
to (g), the green lines represent the results corresponding to a large cavity loss τc = 1/γc = 10
fs, where all other parameters are the same as the inside cavity results in Fig. 4 obtained
with a lossless cavity (red lines). Note that adding a cavity loss broadens the polariton
linewidths, but the proton transfer dynamics is not altered.
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