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Semiclassical Theory for Collisions Involving Complexes 
(Compound State Resonances) and for Bound State Systems t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

BY R. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. MARCUS 

Department of Chemistry, University of Illinois, Urbana, Illinois 61 801 

Received 23rd January, 1973 

Semiclassical theory for bound states is discussed and a method is described for calculating the 
eigenvalues for systems not permitting separation of variables. Trajectory data are supplemented by 
interpolation to connect open ends of quasi-periodic trajectories. The method is also applied to 
quasi-bound states. 

Previously, semiclassical S-matrix theory has focused on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA" direct " reactions. Processes involv- 
ing complexes (compound state resonances) are treated in the present paper and an expression is 
derived for the S-matrix. Use is made of the above analysis of quasi-bound states and of trajectories 
connecting those states with open channels. The result deduced for the S-matrix has the expected 
factorization property, and expressions are given for computing the quantities involved. Some 
extensions and applications will be described in later papers. An implication for classical trajectory 
calculations of complexes is noted. 

1. INTRODUCTION 

A semiclassical S-matrix theory for " direct " inelastic and reactive collisions has 
been developed in recent papers.l* (Ref. (3) contains related studies.) On the 
other hand, many collisions and other processes involve short- or long-lived vibra- 
tionally-excited intermediates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4* : unimolecular reactions, molecular beam reac- 
tions involving complexes,6 other bimolecular reactions (e.g., possible at a thre~hold),~ 
and intramolecular energy transfer in general. 

In the present paper we consider the dynamics of coupling between open channels 
and quasi-bound states (" compound state resonances zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"9) ,  and formulate a semi- 
classical S-matrix theory for such collisions. The theory of direct collisions is first 
summarized in Section 2. A method utilizing classical mechanical trajectory data is 
proposed in Section 3 for calculation of eigenvalues of bound states. It is non- 
perturbative and is directed toward systems for which one cannot separate variables. 
It is adapted in Section 4 to quasi-bound states. 

The principal result for quasi-bound states is given by eqn (4.9), (4.12), (4.16) and 
(4.17). A method for calculating the quantities is described. One-dimensional 
(" shape ") resonances, such as those occurring in orbiting, have earlier been treated 
semiclassically. o-l 

2. SEMICLASSICAL THEORY OF DIRECT COLLISIONS 

The semiclassical wave function $+(q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnE) is a function of the coordinates, denoted 
For direct inelastic 

(2.1) 
-f This research was supported by a grant from the National Science Foundation at the University 

collectively by q, the quantum numbers n, and the total energy E. 
collisions, this wave function at large separation distances R is 

$+(q, nE) = (qlnE+} = [A' exp{iF2'} + A  exp{i(F2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-3n}] exp{iZnn/2}, 

of Illinois. 
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where the term with superscript i describes the incoming particles, and the second term 
is for the outgoing ones.* The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA’s and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF’s are functions of q, n and E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; - n/2 is the 
usual phase loss for a reflection ; Znn/2 is present by convention, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn is the orbital 
quantum number contributing to n. Units of A = 1 are used. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

F2 in (2.1) is a classical mechanical generating function l 3  and serves to make zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 
canonical transformation of variables from q, p to momenta in nE and to conjugate 
coordinates). Illuminating discussions of the relation between classical canonical 
transformations (e.g., embodied in Fz(q, nE)) and quantum mechanical unitary 
transformations (e.g., embodied in (qlnE+) have been given. 14-1 

8’; for a partial wave, when the q’s consist of a radial coordinate R and angle 
coordinates w, is given by (2.2). [The value when the q’s are conventional coordinates 
appears later in (4.5).] 

Fi(wR, nE) = -knR+2nnw, (2.2) 

The w’s are canonically conjugate to 2nn and are frequently employed for the internal 
motions.‘. 2* 17-19 Their properties are very convenient and have been summarized 
in Part 1V.l nw is an abbreviation for I=njwj, the summation being over the various 
internal degrees of freedom (including orbital, if any). 

F2(wR, nE) is the phase integral calculated from the classical trajectory passing 
through the cited q [the point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(w, R)], beginning at the given n and E and hence at some 
initial point (wo, R,) : 

R W 

R O  wo 
F,(wR, nE)  = -k,Ro+2nnwo+ 1 pRdR+2n1  i i d w ,  (2.3) 

where Z is the instantaneous n along the path. 

vation 1 s  20-22 or by normalization to a 
6(n - n’)[2n6(E- E’)] it is the determinant t 

The amplitude A in semiclassical solutions can be evaluated either by flux conser- 
I5-l6 When normalized to 

A = ]PF2/dadql* (2-4) 

= on-+, A = v-+jawo/awl+, (2.5) 

where the a’s are E and (since h = 1) 2nn. One finds from (2.2)-(2.4) that 

where u, and li denote the magnitude of the initial and final radial velocity for the 
trajectory specified by the final point (wR) and the initial momenta present in nE. 

The semiclassical S-matrix S m n  can be defined via the expression for t+h+ at large R : 

v;*(exp (2nim w})[8,, exp { -i(k,R --+Zmn)] - $+( wR, nE) = 
m 

S,, exp {i(kmR-3Zmn))]. (2.6) 

Comparison of (2.1) and (2.6) yields (Part 11, ref. (1)) 

.1 
S,,, = 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA18 wo/a wl*(exp iA) dw (to be stationary phased), 

0 

using the fact that only the stationary phase points contribute (whence ZJ = Un,).’ 
given by 

A is 

(2.8) A = F2( wR, nE) - Fi(wR, mE) ++(1, + 1, + 1)~. 

* The wave function given by eqn (2.1)-(2.6) is for a volume element dq. If the volume element 
is gt dg, e.g., R2 dR dw,’ then (2.1) and (2.6) are multiplied by g-$, e.g., R-I. 

t This is equivalent in (2.5) to the normalization used in ref. (l), where each A was normalized to 
unit radial flux at a given R. 

P
u
b
li

sh
ed

 o
n
 0

1
 J

an
u
ar

y
 1

9
7
3
. 
D

o
w

n
lo

ad
ed

 o
n
 1

6
/0

3
/2

0
1
5
 2

2
:3

6
:4

3
. 

View Article Online

http://dx.doi.org/10.1039/DC9735500034


36 RESONANCES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA N D  B O U N D  STATES 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstationary phase evaluation of (2.7) yields 

evaluated at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm. 
The summation is over stationary phase points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwt,  i.e., over the one or several traject- 
ories leading from the initial momenta in nE to the final momenta in mE. (The 
Riemann sheet discussion in Section 3 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 provides an understanding of the fact 
that several trajectories lead from nE to mE, namely one per sheet.) F4 is a gener- 
atorI3 far a canonical transformation from nE to mE, and was denoted by At,  apart 
from the z-terms, in ref. (1). 

F,(mE, nE)  = - w d i  = - J q dp. (2.10) 

A uniform approximation of (2.7) can be made. It usually involves Airy 
functions and has wider validity than the stationary phase value, (2.9). 9 

The amplitude A in (2.5) becomes infinite on certain surfaces ((‘caustics ”). 
This infinity in A is detected by the intersection there of neighbouring trajectories. 
(E.g., see later, “ surfaces ’’ AB, BC, CD and DA in fig. 1) : the resulting vanishing 
of the “cross-sectional area” between the trajectories causes the amplitude A to 
become infinite to “ conserve probability flux.” In such cases one can still usually 
use (2.7) to obtain a stationary phase or uniform approximation for Sm,, since the 
stationary phase points are themselves usually nonsingular. 

To have a useful integral expression for S,, one can change the coordinate repre- 
sentation to one which is sometimes singularity-free, by a canonical transformation 
(Part III of ref. (1)) from wR to Wz, where the i7 are constant and z is a time variable. 
This representation leads to the same result as (2.7), but with dw amd dw replaced by 
a@ and dK, and with A having an added term 2n(ii-m)@. The uniform and station- 
ary phase values of the new expression agree exactly with those of (2.7)-(2.9), but the 
new integral is now sometimes also of particular use when asymptotic evaluation 
methods become poor. The form of this integral expression had been predicted by 
intuitive arguments. 

3. SEMICLASSICAL TREATMENT OF EIGENVALUE PROBLEMS 

To obtain the phase F2(q, n) of the wave function for a bound state at a point q, 
one may integrate along a trajectory, as in (2.3). Except in the case of degeneracy, 
accidental or intrinsic, this trajectory does not close on itself, i.e., is not periodic. 

Moser 23 and Arnold 23 have proved an important theorem for celestial mechanics 
and thereby for the present nonlinear mechanics. Under certain conditions for 
systems not permitting (or permitting) separation of variables, the motion is quasi- 
periodic (multiply-periodic) rather than ergodic. That is, the p’s amd q’s can be re- 

presented as functions of time by Fourier series, e.g., Z aml,. .mN exp(i Z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2nm,vit), 

where the m’s denote the integers from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-co to co and where the coefficients a decrease 
exponentially with (Irn,l+ . . . +lmN[).23 The contrast between ergodic and quasi- 
periodic is seen in fig. 1 : the former would occupy the whole space within the line of 
constant energy, while the other would be more confined spatially. In a nondegenerate 
system, N is the number of degrees of freedom. The vi are the frequencies of the true 
angle variables wf for this problem, i.e., those canonically conjugate to the actions, 

N 

m l . .  .mN i =  1 
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2nnI, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe classical counterparts of the quantum numbers. Hamilton’s equations of 
motion yield 

(3.1) d(21tnl)/dt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -aH(n)/awi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, dw,/dt = ~ H ( ~ I ) / ~ ( ~ z T Z ~ )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv,(n). 
Quasi-periodicity implies that there is a canonical transformation from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(q, p) to 

(w, 2nn) and hence a generating function F,(q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn) * for this transformation. In turn, 
F,(q, n) defines a congruence of trajectories, directed along VF,. Later, F2 will be the 
phase in a semiclassical wave function, each “ surface ” of constant phase serving as a 
wave front and the trajectories serving as rays along the normal to the front. 

FIG. 1 .-“ Box-like ” orbit formed by a simple trajectory in a bound or quasi-bound state. (The 
actual figure was made for two uncoupled oscillators, using conventional coordinates.) Caustics are 
AB, BC, CD, DA. The elliptical curve is a constant energy curve, with energy equal to the total 

energy. 

In the nondegenerate situation depicted in fig. 1 a single trajectory, for the case of 
two degrees of freedom, generates four congruences of rays, corresponding to the four 
possible algebraic signs of the two components of the momentum p, as seen in fig. 1 
and as emphasized in fig. 2 and (in Appendix) fig. 4. The corresponding VF, (= p) 

FIG. 2.-Congruences of rays present in fig. 1, each corresponding to a branch (Riemann sheet) of the 
function p(q). 

then has four branches (Riemann sheets).20 [When there are N coordinates instead 
of 2 there are 2N branches.] The rays in fig. 1 do not cross when they are on the same 
sheet, except at the boundaries, i.e., at the caustics AB, BC, CD, DA. 

* The symbol F2(q, n) is shorthand notation for F2(q, 2 4 .  An analogous remark applies to F2 
in Section 2. 
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The semiclassical wave function is a linear combination of the solutions, A(q) 

exp(iF2(q, n) ] ,  one per sheet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; F2 is Jp dq. In the several-dimensional wave diffrac- 

tion literature, the formula for connecting such asymptotic expansion terms is found 
by assuming a local separation of variables near the caustic and solving the local 
problem exactly.24 The local solution usually involves the Airy function and its 
derivative. When this procedure is applied to the present problem in the vicinity of 
caustics AB and AD, near point A, one obtains (3.2) for the case of two vibrations. 
(It is easily generalized to N-coordinates, and then has 2N terms.) Each sheet of F2 
is described by a Roman numeral : 

(3.3) 

(3.4) 
a denotes 2nn1 and 2nn2 ; Cis a normalization constant. The pre-exponential factors, 
which are absolute values of the determinants, are equal in the region near A. One 
sees from (3.4) that congruence II(1V) is related to I(II1) by time-reversal. 

If one similarly obtains a local solution in the vicinity of D, and uses it to obtain 
the connection formula.relating the ( A  exp iF2)'s, the resulting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt,b is similar to (3.2), 
but with A replaced by D and with a different arrangement of the n/2's, namely 0, 0, 
-7r/2, n /2  for branches I to IV. Since @ is single-valued these two solutions can 
differ at most by a multiplicative constant. A further analysis (Appendix) then 
establishes (3.5). A similar comparison of (3.2) with the t,b resulting from a local 
solution near B yields (3.6) : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2n(n,+3) =fc, Pdq = /;Pldq+ lP P' Plrrdq (3.6) 

where 0, 0', P, P' are arbitrary points on their respective caustics, as in fig. 2. 
It may be emphasized for this derivation that the local separation of variables near 

a caustic is used only to obtain the connection formulae of the ( A  exp iFJs. The 
global nature of the ( A  exp iF2)'s as solutions, for points not near caustics, is the 
principal tenet (asymptotic expansion) of semiclassical theory. 

Eqn (3.5) and (3.6) have been obtained earlier by a different argument zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2o : each 
( A  exp iF2) term was assumed to be single-valued and A was allowed to vary on 
passage through a caustic. (This appears to be a type of phase integral argument.) 
The present discussion and that in Section 4 avoids a phase integral approximation, 
though the latter frequently suffices. 

F2 satisfies the Hamilton-Jacobi partial differential equation and the method of 
characteristics (classical trajectories) is a convenient method for solving it. However, 

that method is not the only one. Thus, it should be emphasized that the Jpdq's 

need not be along dynamical trajectories, that is, along a ray congruence. In fact, 
in the case of a nondegenerate system the motion is not periodic and so one cannot 
compute the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC1 and C2 path integrals merely by integration along classical trajectories. 
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Instead, one can use an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA" interpolation '' of the exact trajectory data to close the ends 

of an open ended path. For example, the j p d q  data obtained from the single 

trajectory can be represented by a Fourier series. One may then use that series to 

join two ends of a trajectory and so compute $p dq along the two independent paths. 

Fourier series, suitably chosen to avoid the " small divisor '' problem when necessary, 
have been extensively used in the astronomical l i t e r a t ~ r e . ~ ~  Fig. 1 describes an orbit 
which has been termed " box-like " in the computer-simulated stellar dynamics 
literature.26 Other classes of orbits exist (" shell-like," " tube-like "),26 readily 
understood physically, and can be analogously treated. 

The need for supplementing trajectory data by interpolation for calculation of 

$p dq has been missed, incidentally, by a number of who accordingly but 

incorrectly insisted on periodic dynamical trajectories. (The classical Feynman 
propagator, with its usual dynamical associations, was used as a starting point.) Two 
other approaches should also be recalled : perturbation theory 28 and a proposed 
mapping of the nonseparable problem onto a separable one.2 Quasi-periodicity 
implies incidentally, that there exists a canonical transformation for a mapping of 
the nonseparable one onto a separable one, since the problem in (3.1) has become 
separable. 

- 
' =+ & 

4. SEMICLASSICAL THEORY OF COMPOUND-STATE RESONANCES 

The description of the quasi-bound (q-b) state, like the bound state, involves 
caustics. The two states differ, in that the q-b state is connected via (real or complex) 
trajectories to other states, e.g., to open collision channels. We consider, by way of 
example, the situation depicted in fig. 3, where AB, BC, DC and DA are caustics 
bounding the q-b state. The semiclassical wave function for collisions involving 
compound-state resonances is constructed below so as to satisfy the boundary 
conditions at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR = 03, and in the vicinity of the various caustics. 

I@ 
-~ IB, 
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40 R E S O N A N C E S  A N D  B O U N D  S T A T E S  

As zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin Section 3 a solution based on local separation of variables near A, to find the 
connection formula, yields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3.2). Comparison with a solution determined near D 
yields (3.5). A local separation of variables is made in a segment near caustic EB, 
followed by use of the one dimensional solution for the coordinate normal to EB and 
the two turning-point one dimensional solution l 1  for the curvilinear coordinate 
parallel to EB. (The two turning points occur on EF and on BC.) When the latter 
is fitted to the solution (3.2) one obtains the desired connection formula, whence a 
standing wave solution (q(rt2E) for the q-b state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAInzE) is found to be 

<qIn2E) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 231d2Fi/dqda()(exp {iG') + exp (iG"))+ 

where 

21j82F',"/aqdalt(exp (iG"') + exp (iG")) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4.1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
GI = F\ +a,, - &bS - &T, G" = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3'; - 6, + &5s + $71 (4.2) 

GIv = Fiv - a,., + $+s 
GI11 = FIII 

2 + 6,s - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 4 s ,  

F: = J' p,dq zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(y  = I , .  . ., IV). 
E 

(4.3) 

The pr's are related as in (3.4), and so F" = -P i  and Piv= -F!. Thus, (4.1) is a 
standing wave solution. a,, and c $ ~  are independent of n and m and are discussed 
later. s denotes n,E. 

Eqn (4.1) contains two radially ingoing terms (branches I1 and IV) whose sum is 
denoted by (qln2Bi), and two radially outgoing terms (branches I and 111), whose sum 
is denoted by (qlnzE9, so that (qln2E> is the sum of these. Each sum is separately 
normalized to 6(nz-n2)[2n6(E-E)] (and hence to unit radial flux). 

. We turn now to the $+(q,nE) satisfying the appropriate boundary conditions 
for a collision. The incident term in (2.1), denoted by (qlnE'), is given by (4.4) 
using conventional coordinates, 

(qlnE') = 2-*[la2Pk1'/i3qi3a,J3 exp (iFk"++in) + 

where 

1d2~$1v/aqda,l* exp (iF$IV - tin}] exp (i~"n/2}, (4.4) 

(4.5) FLY = s' py dq-k,R ( y  = 11, IV). 
BPI 

B,, is the vibrational turning point in state nE at the given R (fig. 3). In branch I1 the 
vibrational momentum points toward and in branch IV away from B,,. Similarly, the 
wavefunction (qlnEf) for an outgoing wave is identical with (4.4)-(4.5) but with I1 
and IV replaced by 111 and I, respectively. The unperturbed wave function is the 
sum (qlnE') +(qlnEf). 

To construct the desired wave function $+(q, nE) analogous to (2.1) with (4.4) as 
the incident term, it is necessary to follow the two congruences of rays in (4.4) during 
the collision until they have become outgoing rays at large R. To do this we match 
an ingoing ray(s) of (q1.E') with one(s) of (qln,Ei) by finding the stationary phase 

vaIue of J<nzEilq> dq'(q1nE'). (The q' indicates integration at a fixed large R.) 
The stationary phasing serves to match a p(q) in InE'} with one in InsEi) and so provide 
a smooth trajectory to the q-b state. The outgoing ray(s) emerge as <qlnzE'>. Thus, 
the rays lead from the initial state nE to a congruence in the q-b state. Then, from 
another congruence in the q-b state they go out to some q at large R. Upon summing 
the contributions from all q-b states and including the contribution (if any) from any 
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direct collision trajectories not involved in the caustics of fig. 3 ((qlnE+),) one obtains 

$+(q, nE) (qlnE+) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (qlnE'> + (qlnE+)d+ (qln2Ef><n2EilnEi>, (4.6) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n2 

where the first term is the incident term, as in (2.1), and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n,E1lnEi) denotes the 

stationary phase value of l(n,Eilq) dq' (qlnEi). 

Comparison of eqn (2.6) and (4.6) shows that 

-Smn = (mE'lnE+)d + (mEfln2Ef)(n2EilnEi),I (4.7) 
n2 

where (rnEfln2Ef) is obtained by stationary phasing J(rnEfJq> dq'(qln2E?. The 

latter also serves to match an outgoing ray(s) in <qlnzEf) with one(s) in (qlml?). 
Eqn (4.1)-(4.5) yield (after some manipulation related to that in eqn (7) of ref. (1 5)) 

(n2E'lnE') = P n s  exp W r s - - + + s - + 4 } 9  (4.8) 

P n s  = 3 c Iiaw;la4+ exp (i[~1;+3(ln+3)n]>, (4.9) 

where 

y = 1I.W 

and 

F i  = P,,dq-k,R = - q dp, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( y  = 11, IV), (4.10) 

where wY, is canonically conjugate to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2nn2, being equal to aFqYp(2~n~) ,  and the inte- 
gration over py in (4.10) is over the path from B,, to E. 

s 1- s 
(mE'InE') = 

where 

P i s  = 

and 

Fj; = 

The a,, in eqn (4.8) and 

p,, dq- kmR = - q dp, (7 = I, 111). (4.13) Jt J 
(4.1 1) is given by 

and, when EF and BC are real caustics, 

(4.14) 

(4.15) 

C3 is a contour encircling BC and EF. & a function of OS given in ref. (1 l), is close 
to zero unless the system is near the top of the barrier between BC and EF. 0, is 
given by a related equation l 1  when BC and EF are complex caustics. 

The exponential, exp{ 1, in (4.8) can be written as (exp( } - 1)+ 1 and, it can be 
shown, that stationary phase value of X&pns has the same form as (2.11). It 

constitutes contribution from the direct collision trajectory involving reflection from 
caustic EF. If the sum of this contribution and of S:,, is written as Szn, eqn (4.7), (4.8) 
and (4.1 1) yield 

(4.16) 

nz 

Snl" = - C' flAsPnsKexP W r s  - i4.D - 11, 
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where the sum over s denotes the sum over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn2 (at the given E). If the exponent is 
expanded about E-E, one obtains zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl1  

S m n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= G'm - C P~sPnsrsI(E-E,+ir,/2), (4.17) 

where the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, are the E's for which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnl is an integer (when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+s w 0) and where r, is given 
by eqn (24) of ref. (1 1). When exp( - OJ 4 1, we have 

(4.18) 

where vl, is the frequency i3E/i3(271n1) for the mode corresponding to n1 in the q-b 

state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs. iOs can be calculated as the difference of the $p dq overa path (from any nE to 

any mE) which encircles caustic EF and one over a path which encircles both EF and 
BC. (The ends of the paths at large R are joined analytically, and care is taken to 
compare paths on the same ingoing branch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy.) 

To apply eqn (4.16) or (4.17) in a form utilizing exact trajectories it is necessary to 
obtain the F2 for the q-b state, as deduced from Section 3. From caustic BC one 
then calculates trajectories leading to the open channels. The usual analytic argu- 
ments at large R then yield the integrals in /Ins and #&.* 

S 

L P  w v,sexp{ - OS), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5. DISCUSSION 

Eqn (4.16) has the appropriate factorization pr~per ty ,~  one which reflects the 
" loss of memory " of" indirect " collisions occurring in the q-b state. It also: has the 
appropriate time-reversal symmetry of S,,, since Bt is a time-reversed j?. 

When state In2E) couples strongly with some state, the #I for that state will be 
close to and can be replaced by unity or evaluated by an integral expression (suitably 
expressed in terms of W's) used to obtain (4.8). The small P's can still be evaluated by 
the semiclassical expression (4.8) and (4.11). When the collision system is purely 
elastic, the sum over s reduces to a single term pf& (= l), and the formulation 
reduces to that l1 for elastic collisions, as it should. 

One implication of (4.17) for purely classical calculations involving complexes may 
be noted. When the relevant I'Gs are large, one may anticipate that classical tra- 
jectories will reasonably well reproduce the quantum dynamical behaviour. When, 
however, a relevant rs is small one should, at least, exclude from such calculations 
certain trajectories-those for which an individual vibration associated with the r, 
has, for any significant time, an energy substantially less than its zero-point energy. 
Otherwise the calculations could not approximate in this respect the corresponding 
quantum mechanical behaviour. 

Some extensions and applications, computational and perturbative, will be des- 
cribed elsewhere.§ As in the case of direct collision trajectories some partial averag- 
ing 30 should serve to isolate aspects of the collision which are predominantly quantum 
mechanical. 

* E.g., to calculate Pns the analytic expression for py(q) in state nE at large R is used to calculate 

- jq dp, from Bn to a point on the trajectory leading to BC. The pr(q) data for that trajectory are 

then employed, and the q-b py(q) data are used to obtain the contribution to reach B. Subtraction of 
i0J2 then yields the value to reach E. 

J Eqn (4.3)-(4.13) refer, for simplicity, to a vibration-translation problem, but are readily extended 
to include rotational and orbital problems by including appropriate generating functions, functions 
which disappear in the second halves of (4.10) and (4.13). Certain +7r terms, arising from passage 
through vibrational turning-points, are also omitted for brevity. 
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APPENDIX 

DERIVATION OF EQN (3.5) A N D  (3.6) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The path from A to D on any branch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy can be deformed to lie along the caustic AD. The 

component of p normal to AD is zero, and so (fig. 2) pr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= prv = --pn = --pru on AD. The 

integral lpydq from A to D for y = I or IV thus equals that from D to A for y = I1 or 111. 

This fact is used in the comparison of the solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3.2) and the corresponding one originating 

from D to show that the magnitude of the above integral equals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn(n2+3), whence f p  dq 

equals 27t(n2+$) if the cyclic path zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC2 lies along AD. 
To prove (3.5) one may suitably deform the above path, and to do this it is necessary 

to remove the multivaluedness of p. While p (and hence VF2) is a function of q, one may 
introduce a Riemann surface on which it is single-valued.20 As usual the pair of sheets 
which have the same p at a branch cut (caustic) are joined. When one does this at all 
caustics, one obtains for the Riemann surface a torus,’O as in fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, where the torus is an 
open “cylinder”, whose rims are the “ellipse” passing through C and D and the one 
passing through A and B. 

A 
I 

FIG. 4.-Riemann surface for the system in fig. 1 and 2. The two lines joining D to C coincide 
spatially, as do the two joining A and B. The congruences in fig. 1 and 2 are indicated, as are the 

cyclic paths zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC2 and C1 in eqn (3.5) and (3.6). 

The momentum p(q) is now a (single-valued) analytic function of q on this surface, and 

so one may deform the contour C2 for f p  dq, which originally went from A to D and back to 

A along AD, to be any other equivalent cyclic Cz path as indicated in fig. 4. Mathematically, 
this path is equivalent to the second half of (3.5). Eqn (3.6) is obtained similarly. 

In three dimensions, points A and D lie at the corner of a cube, instead of a square, and 
AD lies along an edge. Once again all pr’)~ are equal in magnitude on AD, since the com- 
ponents of p normal to the edge vanish. Thus, the preceding argument can be generalized. 

For an N-dimensional system, it leads to p dq equal to 2n(ni+3), for the N topologically 

independent paths Cj. 
Fig. 2 is, essentially, a deformed square. An equilateral triangle has also been treated, 

by a different method.20 
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