SCISPACE

formerly Typeset

@ Open access « Journal Article -« DOI:10.1063/1.1677083
Semiclassical Theory of Electronic Transitions in Low Energy Atomic and Molecular
Collisions Involving Several Nuclear Degrees of Freedom — Source link [F

William H. Miller, Thomas F. George

Published on: 01 Jun 1972 - Journal of Chemical Physics (American Institute of Physics)

Topics: Classical limit, Semiclassical physics, Degrees of freedom (physics and chemistry), S-matrix and
Potential energy

Related papers:

« Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H+ with D2
« Molecular dynamics with electronic transitions

« Non-Adiabatic Crossing of Energy Levels

« Time-Dependent Semiclassical Scattering Theory. Il. Atomic Collisions

« A classical analog for electronic degrees of freedom in nonadiabatic collision processes

Share this paper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/semiclassical-theory-of-electronic-transitions-in-low-energy-
1r8m59bk2n


https://typeset.io/
https://www.doi.org/10.1063/1.1677083
https://typeset.io/papers/semiclassical-theory-of-electronic-transitions-in-low-energy-1r8m59bk2n
https://typeset.io/authors/william-h-miller-3c5kiryc0n
https://typeset.io/authors/thomas-f-george-2me946s0qd
https://typeset.io/journals/journal-of-chemical-physics-10x5po75
https://typeset.io/topics/classical-limit-1btkqwff
https://typeset.io/topics/semiclassical-physics-a25dxn0r
https://typeset.io/topics/degrees-of-freedom-physics-and-chemistry-2kfvaaet
https://typeset.io/topics/s-matrix-3bh1vgeg
https://typeset.io/topics/potential-energy-16fif2ji
https://typeset.io/papers/trajectory-surface-hopping-approach-to-nonadiabatic-23qwr236de
https://typeset.io/papers/molecular-dynamics-with-electronic-transitions-39jwikyow5
https://typeset.io/papers/non-adiabatic-crossing-of-energy-levels-53rz0ie3b6
https://typeset.io/papers/time-dependent-semiclassical-scattering-theory-ii-atomic-1n19e3t7ct
https://typeset.io/papers/a-classical-analog-for-electronic-degrees-of-freedom-in-19vsq3xmpv
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/semiclassical-theory-of-electronic-transitions-in-low-energy-1r8m59bk2n
https://twitter.com/intent/tweet?text=Semiclassical%20Theory%20of%20Electronic%20Transitions%20in%20Low%20Energy%20Atomic%20and%20Molecular%20Collisions%20Involving%20Several%20Nuclear%20Degrees%20of%20Freedom&url=https://typeset.io/papers/semiclassical-theory-of-electronic-transitions-in-low-energy-1r8m59bk2n
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/semiclassical-theory-of-electronic-transitions-in-low-energy-1r8m59bk2n
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/semiclassical-theory-of-electronic-transitions-in-low-energy-1r8m59bk2n
https://typeset.io/papers/semiclassical-theory-of-electronic-transitions-in-low-energy-1r8m59bk2n

Lawrence Berkeley National Laboratory
Recent Work

Title

SEMICLASSICAL THEORY OF ELECTRONIC TRANSITIONS IN LOW ENERGY ATOMIC AND
MOLECULAR COLLISIONS INVOLVING SEVERAL NUCLEAR DEGREES OF FREEDOM

Permalink

https://escholarship.org/uc/item/8tq5632§

Author
Miller, William H.

Publication Date
1972

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/8tq56328
https://escholarship.org
http://www.cdlib.org/

why

Submitted to Journal of : L BIL.-466
- Chemical -Physics - Preprint

!

SEMICLASSICAL THEORY OF ELECTRONIC TRANSITIONS IN
LLOW ENERGY ATOMIC AND MOLECULAR COLLISIONS
INVOLVING SEVERAL NUCLEAR DEGREES OF FREEDOM

William H. Miller and Thomas F. George

January 1972

AEC Contract No. ‘W—7405-eng-48

( | A
TWO-WEEK LOAN COPY
This is a Library Circulating Copy

which may be borrowed for two weeks.
For a personal retention copy, call

Tech. Info. Division, Ext. 5545

. 99%-T14d"1



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



-y

Y

"energy regime\the dynamics is essentially clessical»motion of the nuclei
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"Semiclassical Theory of Electronic Transitions in Low Energy Atomic
and Melecular Collisions Involving Several Nuclear Degrees of Freedom”
I o & o
William H. Miller and Thomas F. George
Inorganic Materials Research D1v131dn, Lawrence Berkeley Laboratery

. and Department of Chemistry; University of California,
i Sl v Berkeley, California 9L720

ABSTRACT

A semiclassical theory is developed for deScriEing electronic transi-
tions in low energy>atomic and molecular collisions,'such as A + BC, .that
involve quantized nuclear degrees of freedom (i.e., rotation and vibration)

~ as well as translation. The principal physical idea is that in this low

on electrbniealiy adiabatic potential energy surfaces, with transitions |
,betweenvsurfaces being events which are-localized.in space and time. The . !
quantum principle of superposition is incorporated in’the formulation in
thathlassical;dynamics is used to construct the classical limit of ampli- - z
tudes (ife!, S-matrix elements) for transitions ffom a specific initiel .
eiectronic-rotational-vibrational state of A + BC t0 a specific final
electronic-rotational-vibrational state of A + BC or AB + C, etc. Approxi- |
mate and "éxact" versions of:the theory are developed; and in the "exact" | ' %
version it is seen ciearly thaf elecfronic transitions are inherently a
"classiea;ly forbidden" prdcess in that the classical action along the

trajectories appropriate for such transitions has an imaginary contribution.
I ! . 5



I. Introduction

There has recently.been considerable iﬁtereétlaﬁd development ih
understanding the‘various ways in which classical mechanics can be'uséd
to describe atomic énd molecular collisioﬁsl—h.. For the cglliSion of two
'molecular species, such as an atom A and a diatomicfmoieculevBC, on a
single eiectronically adiabatic potenfial energy surface, for example, it
has beenvseen that the primary role of quantum mechaﬁics is often simply
to superposé:probabiiity amplitudes‘corresPonding‘toldifferent classical
contributions to a particular transition. A quantum formulation df the
scattering problem_is thus employed so as to incorporate quantum suéer-

position properly, but all dynamical parameters in the scattering ampli-

tude (i.e:, the S-matrix elements) are evaluated by the appfopriate use of
classical mechanicsu. This "classical S-matrix" approach has been seen in
several applications to be an accurate descriptidn_df molecular collision
dynamics.

AY
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Although quantum superposition and classical dynamics can be easily

combined (as noted above), it is in'general more difficult to mix classical
and quantﬁm dynamics per se. For the electronically adiabatic A + BC
collision, for example, one can treat the quantized internal degrees.of '
freedom (i.e., rotation and vibration of BC and the orbital angular
momentuﬁ of A rel ative to BC) and the translational_degreé of freedom both -
quantumimechanically (a coupled-state expahsion and numerical solution of
. . ‘ /
the coupled radial Schrodinger equations) or both classically (the use of
numgriCale computed classical trajectories to éonStruct the "classical

S-matrix"), and in either of these approaches the formulation of the scat-

tering calculation is a straight-forward matter.. If one mixes classical

i

3
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and quantum dynamics explicitly, hdwever_— such as a coupled-state expan-
sion of the internal degrees of freedom with a classical treatment of the
radial motion — it is difficult to make progress unless dynamical approxi-

matiOns_(such as the sudden approximation) are"indorporated in the approach.

‘When elecﬁronic traﬁsitions are possible, hpwever, one cannot

proceed.completely cléssically - l.e., it is clear that
electronic dégrees of fréédom muét Bé»handled in a quantum framework. 'To
exploit the fact that dynamics of the nuclear degreés are described well
classically,ifhéreforé, one cannot avoid dealing w;th an explicit mixture
of classical and quaﬁtum dynamics. The plan is ﬁo‘sﬁate—expand in the
electronic dggreesyOf freedoﬁ, but to treat all nuclear dynamics classically;
quantum éupérposition is incorporated within the spirit of the "classical

S-matrix" approach, and quantization ©of rotation and vibration accomplished,
3-k

as before” ', with action-angle variables.

For the simpler case of electronic transitions in .atom-atom collisions,

‘A + B, the.only nuclear degree of freedom (once the cpnserved orbital

angular momentum is taken account of) is translation itself, and this leads
to the well-known Landau-Zener-Stuckelberg problem5’6. Section IT
summarizes Stuckelberg's general results6 which, with minor modifications,

we refer to as the "exact" semiclassical solution to this atom-atom

problem. '(Approximations to Stuckelberg's primary results lead to the

popular Landau;Zenervformula? see Section II.) The goal of this paper is

to consfruct_an analogous "exact" semiclassicai theory for the multi-

electronic state p?oblem fof a system, such as A + BC, which has iﬁternal
o S o

nuclear degrees of freedom in addition to transla/.tiorﬁT In view of

Stuckelberg's solution for the atom-atom case Section II discusses the

general properties and requirements one expects of such a theory.
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Before attempting the "exact" semiclassical solution of the problém of
’elgctrqﬁic transitiéns iﬁ complex (e.g., A + BC) coliisions, Section III
presents an approximatetversion. This approxiﬁateischeme‘is seen to have
much in common with the recent work by Tully and'Prie:ston8 and in some
' éense may be viewed as a justificafion and extenSionvoflgome‘of'théir.

procedures. Section IV develops the "exact" semiclassical solution to -

the problemj it is seen that an electronic transition between two adiabatic

eléctronic éiates_is in general a classically forbidden process and must be
treaﬁed és such if a éonsistent theofy is to resuit.

In coﬁcludiné this Introduction it should be pbinted out)that‘there
may be céses.for which no semiclassical treatment ("exact" or otherwiée), ‘
of the el?ctronic transition is useful. A primary.requirement for a
semiclaséical description of such processes appears to be that the transi-
tion be localized in space and time. This will obviously fail to be true
at sufficiently high collision enérgies (many eleéfrén volts), but there
may also be low ehergy situatibns for which the‘pOSSibility of transifion
is delocaliéed- The very division between "high" éﬁd "low" collision
energy is.also indefinite and may depend onvthe nature of the potential
_ energy surfaces.

II. Summary of Stuckelberg's Solution for Electronic Transitions in Atom-

Atom Collisions.

There have been several recent extensive studies of the Landau-Zener-
Stuckelbergﬂproblemg, ancé. here we wish only to summarize the results to
emphasize those features that motivate our treatﬁent-of the more general

collision system.. Once the relative'orbital angular momentum of the two

/

L]
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atoms is separated (i.e., a partial wave expansion),_an'expansion of the
total wavefuhctiOn‘in electronic states leads to the standard coupled-

channel equations for the radial functions:

A

2. .2 , : '
| [’%%wm ~E}'3<R>=o S e
i 4r= ¥ R | - ,

‘where R is the radial (translational) coordinate, V(R) is the matrix of the

total potenﬁial energy in the basis of the electrbnic states, g is the
I N N ~o

diagonal matrix (E Q'ei)Bi 57 €i being the electronic energy of state i

2

and E the total energy, and E(R) is the matrix of radial-functipns which

is to be determined by solving Equation(E.i); for simplicity the‘;entrifugal
potential ﬁ2£(z+l)/2pR2 has been omitfed, and no index @ is attached to

u(R).
The éeneial WKB-1like solution to Equation (2{1) is quite simplelo

If U(R) is the unitary matrix that diagonalizes € + V(R) at each inter-

nuclear distance R,

J(R) - [s + X(R’)] g(R)* =HR) ... o (§-2>

~

A

where Wi-j(R) ='Wi(R)Si 3 are the adiabatic potential curves, then the
> > .

WKB solution for u(R) is
u®) = u® R A - (2:3)

where vi'j(R) = vi(R)Si ; is the ordinary one-dimensional WKB wavefunction
34 ) ’

for the potential'wi(R) )
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Important point No. 1: The genefal WKB solution fOr.the multi-channel

1

" problem is elastic scattering on the adiabatic pgtehtial curves. Even

»;

though one does not begiﬁ.with adiabdticﬂélectronic states, thereforé; iﬁ
is the adiabatic potentials whichvemérge naturally as thevones.fundamental
to a semic}assical description of the multi—channel problem. Stuckelberg's
radial fuﬁctibns are simply the twé—channel case'Qf'Equation (2.3).
Thévmulfi—channel WKB solution is thus very disappointing, for it

i

gives no.inelastic transitions. _ s

( ) .
Important point No. 2: All inelastic processes result from a breakdown

of the WKB solution.  In general, therefore, one would expect the WKB

solution to be rather worthless, for everything of interest is contained
in its Breakdown. One can make progress Semiglaséiéally, however, if the
breakdown ié local. In practice fhis is fairly easy to identify, for the
breakdown ié typically éssociated with tﬁo adiabétic potential curves whose
difference_gbes through a minimum as a function qf R; i.e., gh‘{wi(R) -
Wj(R)] =0 for R = R, say. The problem is thus reduced to that of
deriving connectionvformnlas that join the WKB séiution valid for R Ro
to that valid for R >> RO. Stuckelberg6 has derived such connéction
formulas for the two-state problem, but they apply, of course, to any such
local breakdown that invdlves only two electronic‘states at a time. Since
. one expectsA(or hopes) this to be the casé, Stuckelberg's connection
formulas prdyide the general solution to the probiem, no matter how many
such local two-state breakdowns accur. |

If there is onl& one region of breakdown, then there will be two

"crossing encounters” due to the fact that the radial coordinate R, is

passed twide, once on the way in and once on the way out. The S-matrix is



given in this case by

;‘?l I T 1 L .
g _ Iyg dio, . I, i¢%, . '

Sl,J - (Pi,J ) € l,J .*: (Pi,j ) € 1,4 o > (2‘)4')
for i,j = 1,2, where Wl(R) is chosen to be lthe lowerv adiabatlic potential
'curve’(Wl(R) < WE(R) for all R), the ¢'s are WKB phase integrals (i.e.,
classicai-aétioh.integrals), the P's are transition probabilities; the
Roman numerals I and II refer to the two crdssing encounters and thus to
the two‘different classical trajectories that contribute to each transition:

T 1lim T R ' : ~
- L ) - t 1 : .
®,1 R e 2 [H kR +>f dR' k, (R )] - (2.5a)
. Ry )
' ‘ ReR R
IT  1im T * . . . o
SN __R%me[ﬂ-k13_+f dR" k(R )_{rf dR' k4 (R")| (2.5V)
! : i R2 ReR_x_ ’
I I lim [T B :
) = - AN _ s 1 1
%, %1 TRow [E SER-KR+ [ R KR
' R ReR, . o
14 1 | ? .
+_f dR ke(R ) +.2 f aR kg(R )] _ (2.5¢)
ReRy R2 ' ‘
I IT _ 1im [ 7 R '
. N . = — - - - + 1 1
_ "’1,2 ¢2,l R o> [ T - KR - KR f . dr kl(R )
- ‘ . - " ReR
R ’ ReR,, Y
- ‘ _ t 1 1 1 : . ,
, P R k(R )+ 2 [ e _)] | (2.54)
" ReR,, f Rl .
' T - - R v , :
. . - . 1 t o . .
| 02,2 = plim 2 [E _ kgR +f .d_'R k2(R )] | . (2.5e)
. : . © = . _

2
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| II ©  1lim T ReR,
= - t + 1 2
 ¢2,2 TR w [ kR+f d_'Rk(R) f de(R)]( )
: E 1 . ReRy
P 1_ P I_ (1;p)2 , : ' ' - (2.6a)
S IT T 2 ' o o
>~ = - = : : 2.6b
P17 = Fe =P | o (2.60)
T IT T T | -
= = = i l - 2-6
Pyp =P o =By =By, =pll- 12! - (2.6¢c)
where p = e_2§ : ' ' (2.7)

Il

and o}

ij{‘**'dk[kg(R) - kl(R)]
R

*

212* k (R) - k (R)] L (2.8)
The local momenta ki(R) refer to the adiabatic potential curves
k,(R) = {Eu[E—wi(R)] /% }2

R1 and R2 are the turning points on the adisbatic potentials, and Ry is

the "complex crossing point", i.e., that value of R for which
W (Ry) = W,(R,) o , (2.9)

since Wl(R) and Wg(R) do not cross for any real R, it is clear that Ry
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must bebcompléxll- [One must thus be able to analytically continue Wl(R)

~and WQ(R) fovcomple% R in order to_find‘R¥ and evaluate the phase integral

for & in Equation (2.8).] Equations (2.5c) and (275d) are not precisely

fhe ones given by Stuckelbérg in that the constant_phases + E and - % are

not the ones he obtainé; it is clear now, however, that the phases given
9

in Equation (5) are the more desirable ones”.

Important‘point No. '3t All the quantities in the S-matrix in Equation (2.5)

are classical action integrals that refer only to the adiabatic potential
curves; i.e., there is no reference whatever to any "diabatic" potential
curves an& off-diagonal interaction which, when diagonalized, give the
~adiabatic cruves. Within this "exact" semiclassical’treatment, therefore,
all neceééary knowledge of the non-adiabatic coupiing is contained
implicitiy in the structure of the adiabatic'poﬁehtiél curves. If one
expands the:phase.integral for & in Equation (2;8) to lowest order in -
l/vo (vO é local velocity at 30), then a Landau-Zener-like expression is‘
obtained for o:
5 = C/vo 5

where C is a constant which depends on the shape of the potentials at the
"gvoided crossing". If one furfhermorg assumes that Wl(R) and WE(R) result
" from diagonalizing a 2 x‘2 diabatic potential matrix g(R), where Vll(R) ‘
and V22(R)'are linear about R (Vll(Ro)'= VQQ(RO)) and VlE(R) is constant

near R, then the Landau-Zener expression is obtained for the constant C:
¢ ) ’VIE(RO)I /Ivllv(Ro) - Voo (Ro)l'
It should be emphasized, howe#er,-that this familar Landau-Zener formula for

3 is & I/vO expansion of the phase integral in Equation (2.8); the well-known

failure of the Landau-Zener formula
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~

near threshholdlg, for example, is a failure of this approximate way of

evaluating the phase integral in Equation (2.8) ahd is not necessarily an
 inherent failure of the general semiclassical theory.

‘From the above summéry of Stuckelberg's solutioh to the problem of
electrdnic transitions in slowratom—atom collisions 6ne can attempt to
"guess" the type of solution expected for the Casé of elecﬁionic.transifions
in, for example, A + BC collisions. Thus we expectlthe dynamics to be

classical motion on the adiabatic potential surfaces with the possibility
of transitions between surfaces localized to certain regions Qf’configura-
tion spéce’(the "surfaces of avoided intersection"); To effect such a
éolution onevneeds (1) a criterion for deciding at‘what 1océtions a
transition from one surfaée to another should be permitted; (2) an expres-
sion for the probability of changing surfaées at a given transition region;
vthis probability should depend only on local structﬁre of the adiabatic
potential surfaces; (3) a prescription forassigning initial conditions for
.thé clasSical motion on the new potential surface. In the atém-atom case
point (3) is no problem, for total energy conservation fixes the initial

~

. radial momentum on the new potential curve; for the A + BC case,_however,
.there are not enough-constanté of the motion to‘detérmine initial values
for all the momenta on the mnew surface. (The coordinates are assumed to
.be éonserﬁed at the instant of transition; this ié‘in the spirit of the
' Frahck—Coﬁdon principle.) |

Assuming that such a form bf‘the solution exists (it will be seen in
Section IV that the general situation is actualiy qonsiderably more com-

plicated), ‘it is easy to see how classical S-matrix elements are con-

structed. If (n,q),denote collectively the action-angle variables of all



nt
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the internal nuclear degrees of freedom and (R,P)'thé translational coor-
dinate and momentum, then one starts a classical trajectory on potential
).

Integration of Hamilton's equation of motion is continued on potential

Surface:l (i.g.,'electronic state 1) with iﬁitial values (n ,P

17908 Py
surface 1 until d transition region.is encountered (if no such region is-
encountéred, then there is no electronicvtransitiOn); this is designated
crossing éﬁCounter number T, and_the'probability‘qf chgnging to-the new
surfacez'pI, is calculated. From this time on one follows two trajectories —
the one beginning on the new surface with probability Py associated with it,
and the one remaining on the original surface with probability (l—pI)
associatéd with it. If either of these trajectorieé éncouﬁters a transi—)
tion region II, say, theh(it splits into two braﬁches,/one with probability
P11 and the other with probability (l-pII). This procedure continues, with
branching at each transition region, until the'radiél coordinate of all
branches-éf the trajectory\is sufficiently large.

The final nuclear "quantumlnumber" ngr(ql,nl) is thus a multivalued
function, where y labels thedﬁultiplicity, namely the particular braﬁdh of
nuclear trajectory. _To construct Ehe classical S-matrix element

1

states;_and ny and n, the quantum numbers of the internal nuclear degrees

of freedom), one must find roots of the classical trajectory relation

for the trénsition lIn. - 2n2 (where Arabic numerals label the electronic

~

ny'(ap,m) =ny | o ~ (2.10)

Iwhere n, is a set of integers, for all branches v that end up on potential

surface 2. The S-matrix element is then given by
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4 n |-z ,
- 3 {__2 T N/
SQng,lnlt_ :E:I}* 2 dq n eXp‘l¢_(n2,nl)/hn ’ 7(2.11)

where ¢Y(n2,nl) is the classical action along the pafﬁicular trajectory v,

T o

&»Y(ng,ni) = -/‘ at R(t) ib(t) + q(t) at) , - | (2.12)_

. =00

- and the sum in Equation (2.11) is over all values of 9 which satisfy

Equation (2.10) and also a sum ovef all branches of the trajectory that
end on botential surface 2. P; ié ?he prqbability that the parﬁicular
branch v of the\trajectoyy ?s followed; i.e., PY is_the product‘of N
prbbability factors, where N is the number of transitioﬁ regions that
that particular branch of the trajectory experiences, for example,

Po= (o) (opp)opp) op)eoe - (e3)

-

ITI. Genéral Formulation and Approximate Solution. -

~

A. - General Formulation

An extremely convenient way of setting up the problem of elec-

 tronic transitions in atom-diatom collisions is the path integral formula-

tion of Feynman; one proceeds along the lines of Feynman's discussion of

’
nl3

"the path integral as a functional” . This is also the framework in

which Pechukas discusses .the semiclassical theory of electronic transitions

. .. 2a
in atom-atom collisions. : \

The total Hamiltonian for the system is

£
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s}
I

T, T+ V(x,q) . (3.1)

i

Tq + h.(x,q) .’ | : v _i o (3.2) .

where x and q denote all electronic anq‘nuclear.coordinates, respectively,
Tq and T are the kinetic energies of nuclei and electrons, V(x,q) is the
total potential energy, and h(x,q) = T, + V(x,q) is the electronic

Hamiltonian for fixed nuclei. The path integral representation for matrix

N

. elements of the propagator is13

-iH(t,-t.)/0 o
< qug'le L lqlxl > - - (3.3)

Dq £ Dx exp{."m[qu),x(t)]/ﬁ; ,

_ ]
N
g '-~,m><

where the path integral is over all nuclear and electronic paths with
double-ended boundary conditions (q2,ql) and (xg,xl),vrespectively; ¢ is

'the classical action functional,

o 6, ,
@[q(t),x(t)] =,.§~ dt .Tq + T, - v(x,q). ) - (3.4)
_ A )
1

Following Feymnman, one imagines performing the electronic path integral

first, whereby Equation (3.3) becomes

o ~1H(t -t /& q o
< q_2x2 ‘e 21 |qul > = f Pg < XglK[q(t):”xl)
B .ql o L
. ‘. : (3.5)
X exp 3%-{2 dt T f -
1



_]_3 a;.

with the "electronic propagator” < XQ'K[Q(t)]le > defined as

‘ o | X (. t ‘ . |
< XE]K[q(t)]'lxl > = f2 Dx exp{%f at ',[TX -V(x,q)]} . (3.6)
_ Xy _ ‘tl, L

Equation (3-6) is the electronic transition amplitude for the system with
time-dependent electronic Hamiltonian h(x,q(t)), the time-dependence coming
from the fixed nuclear path q(t); it is this sense in which the electronic

propagator is a functional of the nuclear path-

N

" ) - a ’ . .
As Pechukas has noted,2 one actually requires matrix elements of the
p ) .
total propagator of Equation (3.3) with respect to initial and final

lim

q—)OO

electronic states of the asymptotic eleétronic Hamiltphian ho(x) =
h(x,q). If ®l(x) and ¢2(x).arelsuch electronic states, then this "reduced
propagator” is defined as
: ~H(t.-t, YA
2 1 .
-1H(t2-tl)/h

1) ( )* . > : ) .
o) < apx,le layx; > 0y () j

f

i.e., one is simply changing from an electronic coordinate representation

to an electronic representation:in the eigenstates of ho. If EQuation (3.5)

is used for the propagator in the integral of Equation (3.7), then this’

takes the form

-iH(t-e—tl)/‘h
< 2,q2|e Il,ql >

. | . o
= f ™ Koy [a(t) ] exp 3% fz db TS 3 - (3.9)

q
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where Kél [a(t)] is the matrix element of Equation (3.6) with the elec-
tronic wavefunctions‘wi(x); i.e., Kgl[q(t)] is the transition amplitude
for the 1 - 2 electronic transition with the nuclei constrained to fbl}ow'
the path d(t)- \ | _ |

. Equation (3.8) .is a fundamental and important relation, gi&ing' the
'foliowing.pféscription for constructing the amplitude for propagation from
nuclear poéitionqul and electronic state 1 to ﬁuclear positions a5 and\ 
Velécﬁrohicvstate 2. one. first solves the time-dependent electrohic
problem for the_fixed nuclear path q(t) and theﬁ,-after supplying the
phase factor that is the action dué.toinuclear kinetic energy, path-
integrates'over all nuclear paths q(t) with boundary conditions(ql,qg)T
" This has‘tWo_important interpretations. First, iﬁ places in an exact
‘framewoik ﬁhe various approximate time-dependent models often used in
scatfering‘problemslu.v In such procedures one usualiy'éhooses a nuclear
trajectory q(t) determined by some "distorting poteﬁtial" (which is oﬁén
set to zero) énd then solves the time dependent electronic problem (often
within the sudden approximation) for transitions bétweeﬁ electrqnic‘States-
~ Equation (3{8) shows that this would @ctﬁally‘be exact if one then path-
integrated over all possible nué;ear pathé. Second, Eqﬁétion (3;8) has
a "dynamic Born-Qppenheimer" interpreta%iOn analogous to the Born- ,
Oppenheimer solution for bound staﬁé prqblems. ”For bound states, for ex-
ample, one first fixes the positions of“the nuclei.énd solves for electronic
eigenvalues, whereas iﬁ Equatibn (3.8>,one fixes the trajectory of the

nuclei and solves for electronic transition ,amplitudes; in the former

case the electronic eigenvalues are functions of the nuclear positions,

and_in Equation (3.8) the electronic transition amplitude is a functional

\
N
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of the nuclear path. In the bound state problem one then takes account of
nuclear~kiﬁetic energy, deriving a Schrodingef equation which leads to the
total eigénvalues, and in Equation (3.8) éné'adds in the factor_due to the
action associated with nuclear kinetic energy‘and'iﬁtegrates over all
nuclear pafhs tobqbtain the total transition ‘-amplitude.

A1l the above equations of this section are exact quantum mechanical.

relations.. As discussed in the Introduction, however, one wishes to treat

‘the nuclear dynamics classically; this means that the path integral,in

Equation (3.8) will be evaluated in a stationary phase-like approximation,
which will lead to classical trajectories on some effective potential.
One can then proceed in the same manner as in constructing classical S-
matrix elements for A + BC collisions with only one potential energy
surfaceu.. Thus one would replace the propagator by the S-operator
—1H(t2_—t1)/'h 1Hot2/’f1 -1»H(t2-tl)/h -motl/ﬁ s
e - e e e
where H0 :'Tq + ho(x), and change from a nuclear coordinate representation
to a momentum representation of the action-angle variables for the nuclear
degrees of freedom. The S-matrix elehénts S would be constructed by
. - 2n2,ln1
finding those classical trajectories that begin on potential surface 1 with

nuclear quantum numbers ny (i.e., integer values Qf.thé action variables)

and end on potential surface 2 with guantum numbers né (also integer values

of the action variables); the initial and final integer values of the
nuclear aétion variables — the rotaﬁidn_and vibrational qﬁantum numbers —
replace,ql and\q2 as the double-ended boundary conditions fhat determine
the nuclear trajectéfy. Since the details of this aspect of the problem

are identical to those for‘the)classical S-matrix'with Just one electronic
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potential energy surface, there is no need to go'more explicitly into them.
Cons1der now the electronic transition amplltude K, [ (t)} its con-.
struction is a two-state time-dependent electronic problem. Anticipating

the fact that an adiabatic representation is the one fundamental to semi- Co ®
classical theory, we introduce the adiabatic (i.e., Born-Oppenheimér)
electronic states Wi(X§Q) which become the electronic states ¢i(x) in the

as&mptotic»regions; i.e.,
n(x,q) ¥5(5a) = W;(Q) ¥y(5a) - (3-9)

where Wi(q) are the adiabatic electronic eigenvalues which are the poten-
tial energy surfaces for nuclear motion. The timefdépendent electronic
wavefunction ¥(x,t) satisfies the time-dependent electronic Schrodinger

equation
Lod o o | :
o ¥(x,t) = hix,q) ¥(x,t) o . (3.10)

where g = q(t) is a fixed nuclear path; ¥ is expanded in the adiabatic
basis
b

~

¥(x,8) = oy (8) ¥y (x50) + cp(t) wy(50) 5 (3.11) :
and this-leads to coupléd equations for the coeffiéients7:

vy
1‘hcl(t) = W. (q) c (t) -in <Yy i > e ( ) o (3.122a)
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e . oV .
1h¢2-'(t)- = Wg(q) cg(t) - < wgl-aT.>-cl(t) , (3.12p)
where the dots denote time derivatives. One solves Equations (3.12) with

initial conditions cl(tl) =1, cé(ﬁi) = 0, and the-electronic transition

émplitudes are easily shown to be given by

Kop[a(8)] = ep(ty) | | (3-132)

K la(6)] = e (5) . R (3-13b)

1

It is interesting to note the solution for cl(t) in the one-channel

1

case; the equation is S S Co R '

N

3, (1) = o ()W ()

with solution

.t - ,
cl(t) = exp { %i .[ dti Wl(t')§ s : (3.14)
tl

1

where Wi(tf) = Wi(q(t')), so that

.t
K i[a(t)] = expg = f dt Wl(t)§ - (3-15)

This is the usual phase factor due to the potential energy contribution to
the classical action; thus if Equation (3.15) is substituted into the.

one-channel version of Equation (3.8), one has -
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. -1H(t-t. /H I A , -
< _,1,;’12|.e | (tp-t, )/ ll’q1>=fq2 Dq_"ex'_p{%f @t [T, - Wl(q)]} )
' . ' q ¢1 :
the standafd path integral expression for nuclear motion‘on tﬂe poténtial
eﬁergy surfaée Wl(q). | | | |
Finélly? rather than ﬁsing Eqpation (3.12)fdirectly, one usually7
takes account of . the diagonal time'dependanée of Eé;ation (3.14) and

subtracts this out by defining the coefficientsa{(t);

,ai(t) = ci(t) exp { %- j’ at’ Wi(t')} 5 o _ ' (3-}6)

which are found to satisfy the'equations

. a\;,
él(t) = -3 (t) <y lg— > exp§ f dt! Aw(t )} \ (3.172)
. l ’
. - 5&]/1 +i t | | |
ay(8) = -8 (t) < ¥plgem > exp:—ﬁ—f at’ Aw<t')} | (3-170)
ty ‘
where ' , ' _' s
Aw(fc) = uy(t) - W (t) . ) (3.1.‘8)

The electronic transition amplitudes are given in terms of ai(t) by

t o '
Ky lalt)] = ay(t,) exp{ ; ]‘2 at We(t)} | | (3-19.)
t ' _ '
1
.t ' _ .
K ;[a(t)] = a (%) exp§ = f dt wl(t)§ : (3.190)

.

by
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B. Approximate Solution.

- Before pursuing an "exact" semiclassical solution for the
electronic transition problem [Equation (3.17)], it is illustrative to

consider the first-order perturbation solutionlSj this gives

~

o 5 ol i b o S \
ae(te) = - J‘ at <\;;2|. ST > emgg jf dt! cht')f > (3.20)
A S _ _ )

1 : 1

which can be combined with Equation (3.19) to give

» t2 ‘ awl \ -1 t‘ 1 1
Koy [a(t)] = - j‘ at < wgl-a—t— > expg 5 J' at' W (t")
tl tl
i Lo - | :
-5 j‘* at! wg(t')z . ' - (3.21)
t

-Equatioﬁ (3.21) has an interesting inferpretation:ﬁ the integrand is a
magnitude times a phésej iecalling from Equation (3.15) that the phase

of K21[g(t)]vis %he classical action due to nuglear poteﬁtial énergy, one
sees that ﬁhe phase of the inﬁegrand is precisely that appropriate to a
nuclear trajectory'which propagates on potential energy sﬁrface 1 from

time tl to t and then on potential surface 2 from t_to tg- The integrand
of EqUation (3.21), therefore, is the transition émplitude for the case
that the electronic tranéition takes place at timevt. Since the transition

can take place at any time between t. and t2 (with varying probability),

1
the net transition amplitude is a "sum" over all possible transition times; .
this is another instance of guantum superpositionl

To proceed semiclassically one considers evaluation of the time

integral in Equation (3.21) by stationary phase; the reqﬁirement that t be
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v

a point of stationary phase for the integral is‘tﬂat.

. t ' t 1 ’v' .;-
Q:_%jc-, [f att wo(t') + f at' Wg(t')] o,
by . -t | S
0=-am(t) o, S R

i.e., that the nuclear configuration q(t) be a point in configuration space
where the potential surfages are degenerate. vathé potential surfaces
Wi(q) are functions of f independent variables (e.g., f = 3 for the
A + BC case), however, their "surface of intersection" for real values of
q is of dimension f-2 or lesslé. Thus even if such a "conical intersection”
exists, there is zero probability of a trajectory passing through'it.
[If the électronic states are of different symmetry{ howevgr, the&'can of
course intérsect in an (f-1) dimensional.surfaée;'one would then need to. -
consider interactions (such asspin-orﬁit couplihg)_that couple thé two
electronicrstates oﬁ their surface of intersection. ] |

Failing to find a solution to Equation (3.22), bne thus‘lopks for a

time at which the phase of the integrand of Equation (3.21) is least

rapidly varyingl7, i.e., a value of t satisfyihg_f |

£ It " » o
— t 1 1 1
0= [J’ at' W (t') + f AR AC )] |
dt -
| L% | t

or
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0= - a M) . : B (3-é3)
T T &t _‘ : :

Let t ‘be a solution of Equatlon (3 23), i.e., t 1s a'time for whiéh

Aw(t) passes: through 8 local minimum. The phase is.-expanded in a Taylor's

~

~ series about-to

t T :
. . - l % ..

1 1 1 1 _ - - - - .
J‘_dt Wl(t_) + '{2 dt Wg(t ) =1 - (% @O) L+ 0 - 6(t to) o (3.24)
ty : t

wheré
ER
T = J” at w (t je at W, (t)
N = Aw(to)
MNi =d° M(t) , t =t -,
o =5 o)
at ’

and t_ is the root of MW(t) = 0 . Taking the magnitude of the integrand to

be constant at t Equation (3.21) becomes

8 .

S , a\’fl ) _17/ i !
Kel[Q.(t)] =-< Wel"é?— > -bo J
/'
M A : :
exp {1 52(t-t ) + i S%S(t-to)3§ , (3.25)

where the t-limits are extended to * « since it is the region about to

that dominates the contribution. The integral over t in Equation (3.25)
L : . : 8

is recognized as the integral representation of the Airy functionl , and

invoking its asymptotic form gives
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- ‘alifi ’ | S
Koy [a(t)] = - < vl > 27 /(?AWO/AWO) 12
' o2 A, ."\ i i_to 3 : ) 5
X exp; - ':3)' —’E—(QAWO/AWO)2 -7 d‘_t‘ Wl(t)‘ o
| - b
i t2. ) B - v 6
“n [ at 'Wg(t . (3.26) .

t
e

The exponential part of Equation (3.26) is aétﬁany quite similar to
the ﬁexact" semiclassical solution of Section IV; the pre—exponéntial
factor obtained via this perturbafion approximation, howevéf; is esseh-
tially m@anihgléés. The."exact" result most closely corresponds to

Equation (3.26) if the pre-exponential factor is set to 1, which we now

dof~
%
- A\ ve 1 . o
KglIQ(t)J = e)@[— %"EQ(EAWO/AWO)%J emziif at W, (t)

. : o ‘ tl

i be . '
i f o Wg(t)% : o (3.27)

, . .
(o)

In 1ight of the discussion at the beginning of this-sectién if is seen
that Equation (3.27) implies that the'l - 2 electronic transition takes
place at t_, the time at which LW(t) goes through a local minimum.
Although all times t contribute as transition times in Equation (3.21),
the stationary phase approximation singles out this particular time'to as
the dominate one; this is a typical semiclassicai approximation to quantum

mechanics. The probabilility of the 1 -2 transition is

. ' A 1- , J
Foy = lel[q(t)]l2 = e@{' %To(%wo/&o)é—] K (3-28)



-23-

Equdtions (3-27) and (3.28) have an even more suggestive form. It

was noted ﬁhat AW(t) % O for any real t; one can easily see, however, that

there are complex times at which M(t) = O. Expanding about to,

[

: : 2 ee '

() =MW+ 0+ %(t-to) TS ' - (3.29)
one .sees that

Mi(t) =0 at t,, where

ty =t 1 (200 /AW )2 . | (3.30)

The action integral between t, and its complex conjugate 1is

T, t t -

j‘ at MW (t) = ef AtAW(t) = 2 f at [aw )+ %(t-to)g AWO]

by . to o A
I (20 /N7 )% (3.31)
T T3 %% oo -

so that the'electronic transition emplitude of Equation (3.27) is equivalently

written

t 6
-5 i 0 .2 , o
Kgl[q(t)]; e exp%-_% ‘ﬁ’ dt wl(t)-% j. at Wg(t)gv ; (3.32a)
t1 ,to_
wher¢ t, . |
5 = '%{ at aw(t) ‘ g (3.32b)
t - .
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or even more- compactly as

o+

. t .
e . (o o
Kéi{q(t)] =’exp§ 5% .s at Wi(t) A%,- dt'wl(t)j
IR vtl vto g
to' %y
_% j' at wg(t)-,—r,1 j‘ at W2(t)§
ty -y '
t, t
= exp%‘é% dat Wi(t)-.% .{2 dt w2(t)$ o (3.33)
t) Tty

‘Frﬁm.Equation (3.33).one may say that the transition actually tékes place

at the complex_time.t* where the potentials crossv(i.e., Aw(t*) = 0); the
eiectrdnic transition amplitude is the negative.éxponential of the time.
integral‘ofbthe effective potential energy for this trajectory from tl to

ty on potential surfacé 1 énd from t, to t2 on p@tehtial surface 2. If
there are several solutions to the equatibn determining tys then one chooses
the root:for which P2l of Equatioﬂl(3.32) is largesﬁ; this will normaily

be thevdne for which [Inm*| is smallestll.

Equations (3.32) and (3.33) are more fUndaméﬁtal (as will be

seen in Section IV) and accurate than those of Equdﬁions_(3.27) and (3.28)
which are based on a quadfate approximation to AW(t) about t - In practice,
for example — after Equation (3.33) is substituted into Eguation (3.8) and
the nuclea: path integral evaluated by stationary phase — one will be
computing éfclassical trajgctory on potential sUrféce Wl(q) until a time to
_at which AW(t) is ebserved to.go through a ﬁinimum; here the trajectory is

allowed to braﬁch, and one then follows two trajectories. In calculating
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these trajectories One will have the function AW(t) at fairly closely

spaced tlme 1ntervals. It would thus be a 31mple matter to fit Aw(t) to
~an accurate 1nterpolat10n formula (e.g., a spllne flt) and find ty, the

root .of MW(t) = 0, quite accurately; similarly, the time 1ntegral of .
‘ MW(t) reduired for & in Equation (3.32b) could be computed from this

accurate fit to M(t). The probability associated‘with'the branch of the.
trajectory originating on surface 2 is P, = e_ga,”end (l—PQl) is the -
probability associated with the branch of the trajectory remaining on

surface 1. An interesting point is that, just as With Stuckelberg’s

solution for the atom—atom case sumarized in Section II, Kgl[q(t)]'isgiven in
\t Equations (3.33) in terms of classical action integrals on the adiaoatic potentialv
surfaces. :

Flnally, we note that elther of the two branches of the trajectory

may come to-another time at which AW(t). goes through another local minimum,
and one would then allow:for a further branchingu',It is also easy to see

how many electronic states can be incorporated into'the theory. As the
trajectory'propagates on-the initial potential surface 1, say, one |
monitors the difference between Wl(q(t)) and all other potential surfaces
Wf(q(t)); if !Wi(q(t)) - Wl(q(t))l is observed to go through a minimum at
some time; then the trajectory starts a oranch oh surface i with proba-
bility P., [of the same form as above with /W - Awi =W, - W,] associated
with it;‘ This branching process continues in thevobvious fashion and the -
overalldS-matriX 'element_is constructed in the manner discussed at the

end of Section II.

_C. Initial Conditions on the New Potential Surface.

The results presented in the previous section lack only one
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elément in order to be a workable solutiop: one needs an unambiguous
procedufe'for assigning.initiﬁl values for‘the édordinates and momenta on
the new potential surface. \Since Wg(q(ts)) £ Wl(q(to)), if is ciear that
the coordinates and moménta at to on the-new'pbtential sgrféce 2 cannot
all bg the sgpefas'thosé on' potential surface 1 at to. In this section

we present a\solgtion to this asﬁect of the problem that‘is valid, héwever,
only fdf a special case of the.general sifuation.' If wa.s cbnsideration |
of these "switching conditions";lin fact, that necessitated the more
general attack on the problem presented in Section IV.

As noted in the previous séction; potential surfaces 1 and 2, functions’
of f independent variables, can intersect for réal,coordinates only on a
surface of dimension f-2 or lessl6. They may, hoWever, have a surface of
-avoided intersection of dimension f-1l. If, forzexample, the potential
surfaces were functions of two variables (i.e., f':“2), then their
graphical»representatiOn would actually be a surface invthree-dimgnsional
space; a "surface of avoided intersection" of dimehsibn 1 could exist,
this being a line in three diménsionél The highesf dimension in which
the surfaces coula actually intersec% wbuld be a point; this being Teller'319
"conical intersection".’

Assuming that suéh an (f—i) dimensional surféce"of avoided intersection
exists, a crossing from surface 1 to sﬁrface 2 takes place (with some
probability) at the time to that the trajectory, initially on sﬁrface 1,
crosses the surface of avoided intersection. To describe the branch of

the classical trajectory that crosses onto surface 2, we consider the

effective potential surface W(q),

D)

W(g) = wl(g)h[f(g)J +Wy(anl-#(g)] S (3.34)

I



-27-

wheie f(q)is some function of coordinates that is rositive (negative) for
points q on the initial (final) side of the surface of avoided intersection
(i.e., f(q) = 0 defines this surface of avoided intersection), and h(x) is

the usual'step function

h(x) I, x>0

0, x <0 .-

Thé'potential surface W(%) of Equation (3.34) corresponds to a "sudden
approximétion" for the electronic transition (i.ef, the electronic transi-
‘tion is-a "Franck-Condon transition").

The plén is to integrate the classical equations of motion for a
short time interval about t_ with £he potential surface w(%); this will
give the initial values for ali the coordinates and momenta on surface.2
in terms of their values on surfaée 1.  Since the effective potential W(g)
of Equation (3.34) does not involve fhg time, total energy will be con-
served. (This is why the "switching condition" had to be specified in a

time-independent manner.) Furthermore, any other conserved quantities,

such as total angular momentum, will also be autbmatically conserved.

To see this last point, consider the atom-diatom case, A + BC: There are
six coordinates for this system (with its overall'éenter of mass motion
eliminatéd), but the potential surfaces actﬁally depend on only three,
namely any three coordinates that specify the size and shape of the

A-B-C triangler(e.g., the three interparticle distances), and the potentials
are independeht of the three Euler angles that orient the A-B-C triangle

in space; it is this fact, of course, that leads to conservation of total

angular momentum. Since.W§q) and wg(q)are independent of the Euler angles,
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the sﬁrfacé of avoided intersection of Wl and W2 is‘élso&indepéndent of.
them, so -tha_t'the function f(g) in Equation (3.34) 'aiso.is, c$r finally,
one sees that the_effective potential W(g) of Equation (3:3&) is indepen-
dent of thérEﬁier angles. ‘Thergfore,'any trajecfbries determined by the
potential’ surface ﬁ(%)'will conser&e total angular momentum as well as
.totaiﬂenergy. |

The effective Hamiltonian for the crossing trajectory is

H(p,q) = & Jg'g'l'g +W(g) | o | | (3-35)
where M is the "mass matrix"; for simplicity, and with no loss of
generality,”we have taken p and g to be Cartesian variables, and_% is thus
diagonal.’ |

Let g(l) and R(l)-be the coordinates and momenta on surface 1 at time

g (i.e., "just before" the transition) and 3(2) and E(g) the coordinates

and momehta on surface 2 at time t_ (i.e., "just'after" the transition);

g() (1) (2) (2)

and p are known, and q and p are to be determined. It is

easy to see that the coordlnates are conserved at the 1nstant of transi-

tion, for the equations of mqtlon are

. | H
4. = A = pi/Mi

2

t
@@ a0 . G
) |

as € » 0. The RHS of Equation (3.36) is zero because the integrand is
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bounded and the range of integration is infintesimal.
For thé'momenta, on the other hand, the equations of motion give

oW,

5. . OH . o h[f(g)]? —Z n[-£(g)] + W ‘(g) - W, (g)]:
U 0gy 9% 29 ' &

-

x %gi s[e(a)] 5 | } . (3.37)
whefe we have used the facts that h'(x) = 8(x) and S(—x) = 8(x). Thé first
two terms’iﬁ Equation (3-37) ﬁre bounded and wili not contribute‘when
integrating Equation (3.37) over the infinitesimal time interval (té-e,
td+€)' Since the coordinates ére conserved. -at to? integration 6f

Equationl(3.37) gives

t + €

(2) _ (1) of ° . SRR -
. = p, = =L | = dt B[f \ , .38
P, - P o(aqi q re(@)1 (3-38)
: JC - € .
ov
s the (1) pog @ o . £(q) may ©
where 9 is the common value of q and ! . For t near o’ q) may be

expanded as .

f(Q = f£(g,) + Z (%(%) . Mivi—l [pi(l-)h(to-t)

(o]

+ pi(2> h(t-t )] (t-t) ; o - (3439)

sincevf(go) =0 (i.e., % is & point on the surface of avoided intersection},

\

f(q) is of the form

f(g) =2 h(to—t)(t-to) +D h(t-to)'(t-to)
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By using some convenient form of the step-function, one can show that

€

Equation (3.42) is not a solution for P

2(2). If E(g) from Equation (3.42) is

| (3.1;0).

Jdt 6[a h(t)t + b h(-t)t] =.a—§_—b— 5
-€ A - :
so that Equatibnx(3.38), with Equations (3.39) and (3.40), becomes
o (@ L (W) oy (2 Do)
i i o aqi 9 - aqi 9 ii
. A _l’ .‘
X (pi(l) + pi(e)) s (3.)4-1)
or if we define the vector v b&
{8
1 aqi ‘go ’
Equation (3.41) is
p® M iay (3.52)
t
where
A2 [y - wl '(1)- T E(2)]-1 (3.43)

(2)

sincé-the constant A depends on

substituted into Equation (3.43),

however, one obtains a quadratic equation for A, the solution of which is

é‘

)%1 - [1 - 2AWQ b/gé’]%
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(2) (1)

Thus the explicit expression for the momenta. P in terms of p is

@)=£d>+é(ﬁ.¢ifpu“

2
24
2

nof

(1§2 1 | O (3.4)

where fi is the unit vector along v.

Finally,-it is easy now to give a clearer interpretation of the

vector v_and_the unit vector fi. Since the surface of avoided intersection

is defined by the equation f(gq) = 0, it follows that the vector v

(af )lg'f».is a vector that is normal to this surface, and thus 0 is the
O.. '

unit vector normal to the surface of avoided interSéction. Equation (3.Lk)

‘says, therefore, that all of the#correction to the momenta is normal to

the surface of avoided intersection and, thus, that the component of p
parallel to_this surface 1s conserved at the instant'of transition. This
"switching condi£ion" is essentially the one uséd By'Tully and Preston8
and|justified by numerical studies. This section has shown that thé
switching c§nditions'in Equation (3.44) are a direct result of the assump-
tion of a well-defined surface of avoided interséction and that it
automatidally conservesall consfaﬂts of the motion (e.g., energy and’ total

A

angular momentum).

IV. "Exact" Semiclassical Solution.

A. Electronic Transition Amplitude. 

First we consider the coupled equations [Equations(3.17)] that
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define the electronic transition amp}itude. The two first order equations
for al(t) and ag(ﬁ) are equivslent to one second order equation; if‘ae(t)

is expressed in terms of‘al(t),.for example,

N

| »_._é,(t).",_'gi o ,g _ ,
as(t) = - "1'7 Texp atr (e o, , (4.1)
& B(t) _ n "{l o C ,

~

where B(t) is the nonéadiabatic coupling function -

C oV ‘ - o
B(t)=<dfl~15{_’g> 5 o \ - - (k.2)

then the second order eqﬁation fér ai(t) is
a'l(t)'% [%— Aw(*g) - é(t)/B(t)] é,'l(t) v |B(t)|__2- a(t) =0 . _(u.g)

The term‘in‘Equation (4.3) involving the first derivative can be eliminated

by defining the function (t) by

| ;} AR : .
£(t) = a, (t) B(£)72 expg'gﬁ [ o AM(t')f_ , (1.4)
. : . t : ? .
1

and f(t) is found to satisfy the equation

£(t) + k(t)% £(t) =d s o - (&5)

K(+)2 = [Ag(lt} +1B(8)]° + -lz;ﬁ [- M) + H(t) I.B(t)/B(t)}
' _ 12 '
1 [rosw] - [rswsm] (1.6)
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Equation (4.5) looks formally like a one-dimensional Schrodinger
equation, and since  AW(t)/n is expected to be a:lafge slowly varying
function of time we solve it within a WKB-like éppréximation.b Thus the

general soiﬁtion to Equation (L4.5) is
C2(8) =, () + e f(8) , I O (T)

where the WKB approximation for the functions f, (t) gives
j - .

L t -
- 11 _ ‘ : -'
£,(t) =272 k()72 exp 3t i j.dt'k(ff% y - (4.8)
0
with k(t) as defined by Equation (4.6); ) is any convenient lower limit
: ’ 1 B ‘
in Equation (4.8), the factor 2 2 has been inserted for later convenience,

and the constants c, in Equation (4.7) are as yet arbitrary.

To lowest order in A T the function k(t) is
x(t) & au(e)/2h S | (k.9)

so that the WKB solutionsinuEQuation (4.8) become invalid in any region

where Awft)‘goes to zero.or becomes small. If t, is a time at which

M(t) has a minimum, therefore, the interval about ty is a region where

the WKB sélution'is poor. Thus one is. faced with the usual problem of
determining the coefficients cé that are valid fof t >>_to in terms of the
coefficienﬁs c, that are valid for t << to. This failure of the WKB approxi-
mation due to a ﬁinimum in k(t);'however,4isidenticél to the one-dimensional
barrie? tféﬁsmission-reflection problem for the case that the energy of the

particle is greater than the barrier maximumgo
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Thus one may use the connection formula derived by_FTBman and_Frémangl'for -

the barrier problem to relate the coefficients c+'ahd c! of Equation (4.7),

c! (1 + e26)2 --iee AN
= ‘ : 2 . (4.10)
c! ie? (1 + ege)2 c_
where 6 i the "barrier penetration integral”
20 = ifdt k(t) , ‘ ” o (Lk.11)

with the contour integral in the complex t-plane enclosing the two branch

points of k(t).

In Appendix I we show that for t >> to or t << to, the WKB solutions

in Equaﬁion (4.8) become

_ t : _
'f+(t) = B(t)—é— expg ;—ﬁ- f at!' AW(t')f S | , ', (4.12a)
L mB(s)E -i , . S -
£ (t) = G e}@;—é-h— ]d-t Mt )} . - (k.12p)
: _ t ~ ' )

Equations (h.h) and (4.1) can be used to express él(t)_and ag(t) in terms
of f£(t):

: t : -
s <2w? eofgd [ aienf w0 (4. 132)
) |

1
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ay(t) = -B(t)™" expz% f at? AW(t')}
S A
x gt [B(t)? expi:g—;'l f at' Aw(t')}' f_(t)} " (k.13D)
| | (9 | -

1

‘and with £(t) given by Equations (4.7) and (4.12) one has for t << t

: : ' to ' 3. B S
al(t) =c_. exp{ %—ﬁ}- f - dt AW(t)$ o _ (4.14a)

_ _ fl _ )
e (t) = ic_ exp;-;—h- Cdt Aw(t)s . (4. 1kp)

- l . .

for t >§ tO,Equétion (4.14) is mddified only in that c, - cj. [The c_
term in the éxpreséion for‘algt) was dropped in writing Equatioﬁ;(h.lha)
since the-coefficient has a factor of & multiplying it.] It is physically
correct»£hatwthe fuﬁctions {ai(t)} in Equation (L.1L) are‘c?nstant in
time fo; tknot near to, for the WKB solution is wvalid in the 1imit of zero
non-adiabatic_coupling, and it is clear from‘Equétién (3.17) that {ai(t)}
will be constant in any region for which B(t) is neglible.

One now chooses ¢, from Equation (L. lh) so that a (t) =1, a (t) =0

+

for t <<;t — i.e.,
S ‘t
c, = % = f at AW(t)} o | (4.15a)
' )

c '=‘<_j S . (4.15Db)

and then uses the connection formula [Equation (4.10)] to determine the
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coefficients c! and thus {ai(t)}for t >t from Equation (L4.14); fhis»

b

gives

. 1 . to ' . , . ‘

al(tE) = (1 + 826)5 expz %% J. S dt AW(t)} ',d' '.' (4.16a) =~ ¢
A t .
1
. t o
. o -

ae(tg) = -e. 315 j at Aw(t)s .o o (4.16b)

. % o v

Equation (3.19) gives the electrohic amplitudes indterme of these final

values of {ai(t)}, and with Equation (L.16) this is

" 29,1 i f " X
S R o el o
. ) . v
. 5 3 o ' e X
Ky [q(t)] = -e eXp3 i j e (s) - 7 at wy(e)b . (4.17m)
| B SR ) ,
1 0

To conclude the solution we cons1der the contour 1ntegral of

Equation (4.11)_wh1ch defines 6. If k(t) is expanded in powersof'ﬁ

-0t L igleow 0 e
then
26 = %—-h § at aw(t) + —21—}; at M(t)/Mu(t) + ()(ﬁ) , o (1,',19)

where the term involving the non-adiabatic coupling function has been

discarded. If ty and its complex conjugate are ﬁhe_zeros of MW(t), then
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the first term in Equation (4.19) is

!
!

b, | .
Ehj at (%) =% j; .dt M(t) = -2 - ;o }(u.eo) |

where d is real and positive. The second term in Equation (4.19) can be
evaluated by writing AW(+t) in an approximate form that has the correct

branch point character

vmv, 2 2%
M(t) ~ constant [(t—to) s,
where t, = t0'+ is . Thus
AWQE) N tfto

mie) (et )P e £

and the second term of Equation (h-19) is

lf %% f(tt). 7 - .

- so that Equation (k.19) is

26 = -25 + iT , | (4.21)
and in Equation (4.17) one has

I | (4. 222)
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_ee';_;ie S o -~ (4.22p)

The amplitudes in Equation (L4.17), with the probability factors
given by Equation (4.20) and (h.22), are identical to the ones suggested
in Section IIIb, and this presenﬁ:derivation thus gives a more rigorous

justification of the ;e§ult discussed there.

o fa(t)] of Bquation (4.17b) and (k.22b) is

given diréctly in the form of the exponential of the classical.actionEQ,

It is interesting‘that X

the imaginary part of the time integral providing the probability factor
-26)%

e .. The probability factor (1 - e for Klltq(ﬁ)], however, is of a
more indirect form, essentially a renormalization'factor tq account for
the fact that some probability has been lost to the new branch of the
trajectéry.  It is also interesting (and reasSﬁring):that this same
probability factor for Kil ié obtained by invokiﬁg the unitary relation
fbr'%he'full S-matrix; Appendix IT shows the details of the procedure.
Finaliy, it is important that within this WKB abproxiﬁation for
Equation (4.5) the electronic transition amélitudes in Equation (4.17)
depend only on the adiabatic potential surfaces and do not involve the
non-adiabatic coupling function B(t) aefined in Equation (4.2); PIf the
adiabatic potentials Wl(q) and Wg(q) are of different symmetry and

actually do cross, then of course the results do depend on B(t); the , *

discussion in Appendix I includes this possibility as well. ]

B. Switching Conditions; Complex Time and- Complex Surfaces of

JIntersection.
One now substitutes the électfdnic transition amplifude given

by Equatidns (4.17) and (4.22) into the nuclear path integral of
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BEquation (3.8). The result of evaluating this path integral by stationary
phase (or actually by a steepest decent method since the pﬁase of Kgl[q(t)]
is complex).is that one computes classical trajectories that etart on
potentiai eurface 1 and branch onto various othér surfaces i when bimes
are paséedvfor which [Wi(t) - Wl(t)l hae a local minimum. There remains,
however; the problem of how in general to specify the initial conditions
for the new branch of the trajectory beginning oﬁ surface i; Section IIIc
gave the solution only for a special (elthough probably common)isituetiona'

The point of vieﬁ adobted here is that of the discussion following
Equation (3.33) of Section IIIB, namely that the‘frensition actually
takes place at t*,'thev(complex) time at which AW(t) =.0. Thus the transi-
tion from one.surface to another occurs at a posiﬁion.q* E.q(ﬁ*) for which
the potential surfaces are degenerate; i.e., q*'satisfies the equation
wg(q*) = Wl(q*), which defines a surface of dimension (£-1) (vwhere the
potentiél_éurfaces are functiene of independentb§ariables). These
remarks are entirely consistent with the "non;erossing rule"l6 which says
that_fhe real surface of ‘intersection muéf be of dimension (f-2) or less;
if complex coordinatee are admitted, however, it is clear that the complex

. surface of intersection is of dimension (f-1). TFor the one-dimensional

case (f=l),‘for exemple, potential curves cannot intersect for any real R
(since f-2 = -1), but there can be complex points (a surface of dimension
f-1 = 0) of intersection as discussed in Section IT.

Since the electronic states aredegenerate.at tysall the coordinates
and'momenta are conserved at time Ty Ohe thue imagines performing the
calculation as fellows: the trajectofy propagates on potential surface 1

until time t, at which AW(t) is observed to go through a minimum; thig ig
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the "signal" that "close by" there is a éompiex time't* (the\real pgrﬁ of
which isbapbroximately to) at which AW(t*) =-O; .One fhen allows the timev
(and‘thérefére the coordinates and momenta) to become cémplex*as one
integrates'Hamilton’s equations to ﬁhis time't;:-_At t, the trajectdry
branches and the' mumerical integration of Hamilfon's equatibns for the

two branches.continues. For the branch remginingVOn surféce 1 the time is
incremenfed from t, back»torto where the coordinaﬁes and momenta ali
become regl”again, equéifin factvtovtheir previous values at to; time is
further incremented in the real time direction and the trajectory on
surface 1 continues as though there had never been this "side-track” to

& - t*:Qlté (except for the probability factor (1 - e‘gg)% that is
acqﬁired). For the brahch of the trajectory begiﬁning on surface 2 at t,,
the initial values of the coordinates and momenta are simply the same

wlues aé tﬁosé on surface 1 at time t, (to emphasize again, this is possible
only because the potential surfaces intersect at't*); time is incremented

4

back toward’to and then in the real timé direction as this branch of'the :
trajectory propagates on surface 2. .

For the new branch of fhe trajectory beginningioﬁ surface 2 one would "’
like to_bé able to increment the time from t* to a value to' gt which ail
the coordiﬁates and momenta on surface 2 bécome real; and then to add only
real increﬁents to thé time so that the.coordinétes énd maonenta would all
remain'féall(at least until another crossing enCouﬁter). For N nuclear

coordinates and momenta, however, it is not possible in general

to find one time to' for which {qi(t), pi(t)}, i = 1...N all become

-real. Only fof the case N =1 (i.e., there is only one nuclear .degree of’

freedom, namely translation) it is possible to find such a to': one

| }]



formula for a single crossing encounter. It is also easy to see that to'

~lh1- -

chooses £d' go that ql(t) (the translation coordinaﬁe) is real; and since
the poténﬁ{al wg(ql)'is then real, the momgntum pl is forced by total~

energy.cénservation to be real also. This case N:= 1, in which there are
no interna; nuclear degrees of_freeddm; is the driginal Stuckelberg problem
discussed in Section ITI, and one caﬁ.quite easlly show that the érocedure

outlined in the previous paragraph exactly reproduces Stuckelberg's

>

‘the time at which the radial coordinate on the new potential becomes real,

is not a real value of time; this is clear on physical gfounds since the
trajectory from Ro to Ry (the radial coordinates corresponding to to and
t,) on potential Wl(R) requires a different amount of time than the

trajectory from Ry to RO on potential WQ(R):_

=

. Ry«
b - by = f dﬂg 2[E - wl<R)]/uf‘
o R

. Ro , 1
t! -ty = f ng 2[E - W,(R)]/u 5'2 ,
% .

*

s

d
= 5(E) ,

with & given by Equation (2.8). This last equation is an example of the
géneral_rélation between "time delays" and the energy derivative of the

23

classical action. It may seem strange that tg’ the final time, can turn
out to be complex at the end of the trajectory,_but this actually causes

no problem. From the "formal theory of scant’t:er‘ing"glL it is clear that

_ the felation
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;eiHotg/ﬁ :e-iH(tz—tl)/h e-iHétl/h, o

P

S = 1lim
- (té'tl) v_’ %0

is valid for complex (te_tl)’ and the limit actualiyirequires Rg(tg-tl) -
+o0 with Im(tg—tl) finite and non-negative.

For more than one nucléar degree of freedom,vhbwever, althdugh it is
possible to choose to' sco that ql(to') ié real,‘ﬁhe.other coordinates aré

not necessarily'real at to'. To make sense of this dilemma it is necessary

to re;think just which variables one must require to be real and which ones
are not obsefvable and therefore may be complex. if ql(f) aﬁd pl(t) are
_the usual'translatiop céordinate and momentum (i.éf, ql=E R, Py = PR) and
{qi,pif ; 1 =2,...,N are the action-angle variables for the internal
nuclearvdegrees of freedom (i.e., pi,_i-z 2...N are the nuciear quantum

numbers), then it should be clear that the only physical requirements are

i

that q, and {pi} , 1= 2...N be real in the asymptotic regions t, - -,
t, > +o; since E =H = plg/zp +»€(p2,.;.,pN) in thé-asymptotic regions,
where é(pg,,w.,pN).iS the internal (rotational and vibrational) energy
(which is real since {pi} i= 2,...,N;ére real),:itifollows that the
translational momentum.is also real in the asymptotic iegions. Thus the
translational coordinate and momentum are both reai in the asyﬁptotic
regions, bﬁt‘for the internal nuclear degree; of freedom only the action
variablés (i-e., gquantum numbers) are requifed fo be real; the phase angles
{qi}, 1= é,...,N,may have complex values. During the tim¢ of interacﬁion,
of course, any (and all) of the variables may take oﬁ complex values, for
/scatteriﬁg boundary conditions refer only to the‘iﬁitial and final

N

'asymptotic regions.
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Let ﬁs-see how the boundaryconditions work out fér this case of N
nuclear dégrees of freedom. The quantum numbersv{pif,\i = 2,...,N,are
initially set eqﬁal to some integers, q, has a large.(real) value, and
Py is determined by total energy consérvation (and ié thus real); ithe
initial phase angles {qi} i= 2,...,N are unspeéified at this point and -
may be éompiéx- One integrates Hamiltonians equations, allowing for branch-
ings at gomplex times for which two potential surfacés intérsect, and in the

final asympﬁotic region for each branch of the trajéctory one demands the

following:
Im p; =0 - ‘ ' (k.23a)
Re pi = specified integers;- (4.23b)

i=2,...,N, and
q1 = real . v - (h.2L)

The 2N-2 equations in Eéuation (k.23) are satiéfied by proper choice of
the 2N-3 initial variables (Re qi, Im qi), i =7é5;.,,N, and the final
requirement, Eqﬁation (L.24), is achieved by the choice of Im t,. Thus
there are precisely the number of variables at oﬁr disposal tO'fulfill
Equations (4.23) and (L.24), but it is necessary to utilize the fact
that the initial phase angles faj} s 1= 2,;..,N, apd the final time ty
can be complex. .

In earlier "classical S-matrix" work involving only one potential
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surface it was necessary to allow the phase angles gqi;., i = 2,...,N, to

be complex in order to describe classically forbidden'transitions.u The

discussion in the previous paragraph thus emphasizes the fact that an ,

eiectronic transition is an'intrinéicélly claésically forbidden process.
The_formifound previously for the transition prob;bility associated with
a classically forbidden process was éxp[—E Im ¢/h], % being the classical
action along the appropriate trajeétory; this is identica1 to the form
obbained above in fiquations (3.33) aﬁd.(h.17). With the additional
flexibility introduced by allowing the time to'be,COmplexll, therefore,
it is seen that the entire problem of electronic £ransi£iohs emerges as a
special typé of classically forbidden process. The proper definition of a
classically forﬁi&den process thus'appears to be éne_that can take place
only for éiassical trajectories which require some (or all) of the
coordiﬁates and momenta, and/or the time, to be comblex for some part of
the trajectory; the result of this is ﬁhat the.leSSiCal action § acquires
an iﬁaginary par£ along suqh a trajeétory, and the.classicai S-matrix has
the damping factor exp(-Im ¢/#) which is the signature of claggically

forbidden processes. -

C. Tocalization.-

_The problem of determining initial condiﬁions for new branches
of thevtrajectory was solved in the previous éegtion by integrating the
equations>of motion directly to the complex timg Ty at which the original
surface actually intersects the surface on which the new branch originates.
The price.paid in achieving the general solution for thig problem of
"switching conditions"”, however, is that all the cdordiﬁates and momenta,

and the time also, must.be allowed to be complex. Thus it appears that

¥
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the classical action ¢ could have imaginary contributions all along the

trajectory. This wuld be highly unsétisfactory,'howéver, for then it

~would not be possible to speak meaningfully.about’separate crossing

encounters, and one would not be able to identifybﬁhe probabilities

= 1-D__that.are associated with an indivi-

P, = exp (_2 Tm ¢/A) and P, -

21

dual crossing encounter.

In order to be able to construct the probability factors P2 and Pl

1 1’

therefore, it is imperative that one be able to localize the region of

time during.which the classical action acquireé imaginary coﬁtributions.
If this is not bossible, then one would not be:able to deal with the
electronic transitions as isolated "binary" events, and this present
type of semiclassical theory would probably not be uséful. The procedﬁre
outlined below is formally capable of achieving iocalization in géneral;
if the electronic transition is physically very de-localized, howevér, one
would expect practical difficulties in carrying it out. The basic idea
is to exploit the fac£ that thé coordinates and moménta at time %,
{qi(t), pi(t)}, i=1,...,N, depend 6nly on their initial values at time
t, and the time difference (t-tl) ; i.e.,.gqi(t), pi(t)}, i= 1?..,;N,
are independent of the path in'thg éomplex t—plane from tl to & along
which the £ime is incremented in integrating Hamilton's equations of
mo%ion. (This follows because the Hamiltonian is time independent.)
Mofé'specifically, consider a particular trajectory begihning at ti
on potential surface 1; as discussed in Section IVb, the initial phase
angles-{qi}, i=2,...,N, may bechmplex.v‘The phése of the S-matrix in

the action-angle variable representation, however,_is
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0 ?“"efdtzl qi(t\) b, (t) , o : | ~ (4.25)

so that even if the phase angles aréicomplex in thevinitial asymptotic
region,;thé fact that the.quantum ﬁumbgrs{pi}, i=2,...,N, are constant

_prevents ¢ from'accumulating any complex part. As the interaction region
is reached the quantum numbers change with time, and ¢ becomes non-zero;
for a shoftffime increment JAY R thé phase gains an:increment oD,

N | |
2o = -t Z a,(6) B, (%) . (h.26)
i=1 o ' '

To preVent ¢ from becoming complex, therefore, one does not integrate
~ precisely along the real time axis, but allows At to be complex and chooses
its direction in the complexAt—plane so that the increment A¢ in Equatidn

(4.26) is real; i.e., the choice is

- \ . |
ot =[] expginﬁ -1 arg[z a; (%) iai(t)]ig ;o (e

where |At| is the magnitude of the time increment and n is some integer
such that Re(At) > 0. This manner of incrementing fhe time variable

- continues (with ¢ thus remaining puiely real) until, as discussed before,
a time t_ is passed for which,lwl(t) - Wi(t)l is:observed to go through

é minimum, signaling thét there is a t, close by for Which Wlft*)_= Wi(t*).
At this point one integrates to this time t, (the criterion in Equation
(4.27) now abaﬁdoned) and‘at t* starts a new branch of the trajectory on
surfaceji; From t, each branch of the trajectdry is integrated in.thé

direction of the complex t-plane that decreases the imaginary ircrement to ¢;

0
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for a giveh.branch fhe condition Tm(A¢) = O determines the time to' froﬁ‘
which one increments the time once mofe according to Equatioh (4.27). 1In
this manner the imaginary contribﬁtion to ¢ is locaiized to the time
intervél'(to,to'),.so that one can indeed speak qf therelectronic transi-
tion as ldcaliZed, an@ the local transition probabiliﬁy le = exp (-EIIm ¢/h)
is thus well-defined for eéch isqlated crossiﬁg encoﬁnter.

.~Finally; it is iﬂteresting to note that this localization of the

imaginary contribution to the classical action would actually not be

necessary if there were just one crossing encounter: the probability P21

would still be exp (-2 Im ¢/A) eveﬁ\if the imaginary contribution were
spread out.bverfa long time interval (i.e., the value of ¢ is independent
of the path in the t-plane so long as the path gbes»throggh t*), and the
pfobability (l - PEl) woﬁld likewise be unambiguously identified. If there
is mbre.than one crossing encounter,vhowever, it is abéolutely essential

that the imaginary contribution to ¢ associated‘with each separate encoun-

~ter be localized; i.e., it is only;this'that allows one to calculate the

local probability factors, P.. and (1 - P21)’ associated with the various

21

individual crossings and non-crossings.

V. Discussion and Summary.
| . ‘ v
The previous sections have explored the possibility of constructing

a genefal theory of electronic transitions in low energy atomic and
molecular collisions that involve more than just one (i.e., the traﬁslational)

nuclear degree of freedom. The basic physical idea is that of Stuckelberg's

solution for the case of one nuclear degree of freedom, namely that the

motion of the nuclei is-governed by classical dynamics on theelectronically
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adiabatic potential energy surfaces, with the possibility of transitions
between the surfaces localized in space and time. The guantum principle
of‘éuperpositioﬁ is incorporated for both electronic ahd nuclear degrees

-

of freedom by using the classical dynamics to construct the classical |
limit of transition amplitudés (i.e., S-matrix elements) in the same
manner aé has been done.previously for systems with many nuclear degrees,
of freedom énd only one adisbatic electronic state; Since the electronic
transitibn involves only two electronic states.at each crdssing encounter,
there is no limit in principle tovfhe number of_eleétronic stateé that

can be included in the description.

Section III has developed an approximate-spheme that sﬂould be appli-
cable if the adiabatic potentidl energy surfaces have a well-defined
"surface of avoided intersection” of>dimension f—l, or if the adiabatic
' states aie of different symmetry and have a reaiiéuiface of intersection
of dimension f-1; in the latter case some "residual interaction" (e.g.,
spin-orbit coupling, or the non-édiabatic coﬁplihé itself) would have to
be taken into account. These results were seen to.have several features
in commén with the "surface hopping model" employed“by'Tully and Preston8
in their ciassical trajectory study of H+ + DE:‘ Since thé transition |
occurs whén the surface of avoided intersection ié crossed, localization
of the electroﬁic tfansitions is achieved automatically in this épproxi-
mate theory. The switching conditions of-Sectioh IITc also have a Siﬁple
physical interpretation and are seen to conserve total energy and total
_angular moﬁentum.

-The "exact" version of this semiclassical theory has been presented

in Section IV, "exact" meaning that there are no inherent dynamical
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approximatiéns in this forﬁulation other than that of electronic adiabaticity
itself;. The switching conditions are particularly simple in this apprbach,
for the transitioné take place at céﬁplex<times on the "complex surface

of intersection” (an f-1 dimensional sgrface) for ﬁhich the'adiébatic
potentiélISurfaces are degénerate; To make the'ﬁrOCedure'internally con-
sistent:it was found necessary to allow all coordinates and momenta, -and

the time, to take on complex values; this causes no problems in principle,

however, there being precisely the number of boundary conditions available

" to insure that physically observable variables are real gquantities. The

transitibn probability P21 emerges naturally in terms of the imaginary
part of the classical action (which signals the classically forbidden
character of the transition), and localization of the electronic transi-

tion was achieved by choosing the path of integration in the complex

t—plané-so»that the classical action acquired imaginary increments only

- for finite time intervals.

Finally, although we have not discussed the possibility of reactive
collisions‘explicitly, it should be-clear from prévious_workh dealihg
with only one electronic state how the results are generalized to account
for this. In fact Equation (Qtll) applies as Written if one allows the
indices 1 énd 2 to reﬁresent specific electronic states of specific
nuclear arrangements. The electronicaspect of the problem is completely
unaltered by the fact that the nuclear trajectory'may end in one of several

nuclear arrangements.



APPENDIX I

Here we wish to show that the functions f+(t) defined in Equation
(4.8) have the limiting forms of Equationv(h.lQ) for t far from t . If
one expands k(t) [defined in Equatioh (4.6)] in powers of #,

k() ® % +% [- %4% ] +0(m) - (1.1)

where AW = AW(t), B = B(t), then it is easy to show that

t : t , 1
+ L ty — +.i_ ' ' éﬂ .EQ e '
+5 f at' k(t*') = % = f at' A(t') £ £ 3 'Awo) (1.2)
'tO tO
where B_ = B(to), M= Aw(to)_. With Equation (I.2), Equation (4.8)
becomes:
. 1 ’
hBOE v-% mi.t '
= ooty e 1) .
fi(t) ._<AW - B(%) | exp; = f at' Aw(t )g (1.3a)
. o) ot o
(o]
l . .
W\ 2 L t. - o
-+ \EB Mi{t) 2n att aw(sr)d - ~ (1.3p)
.,O ’

This would be identical to Equation (4.12) if the dimensionless constant
hBO/AWO Weie equal to unity; there is no obvioué;way, however, fo see
that this must be so. (In fact it is not true.)::

The failure in the above straight—forward.proéedure.stems from the
neglect of the term B(fc)2 in the expression fof k(t)2 [Eqﬁétion.<hﬂ6)];‘
i.e., it is clear that there can be nOvtransitioné if B(t) =0, and it

;iS«fOf this reason that inconsistencies appear if it is neglected at too
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early a stage in the development. Thus the expansion in Equation (I.1) is

replaced by

| 2 = 5 _ L .; .
k(t) =f(%hw-) + B2] + %[(%g) + Bg] 2 ;}ﬁ (-AW# o %) s

which can also be written as

L 2 L
o) - (@) =T (&) +2]7 & (&) (1.4)

S0 that Equation (I.2)'is replaced by

S | & o 1
£1 ._fdt' k(t?) = ii"f at! (%)+ 32]2'
t, o t, -
)

Nl ol

1
1 —_
: [ )2 ; 1] 2 ) °
OhB . |\ZAB
+ .21'1 ] - . (I‘5)
AW RAWO )2 }%
o l\@B/
(o] (o)
Since
r‘- I._ l ) ) P
2 = +1
A N NN 2 [ _

as #B/AW - 0, it is easy to see that Equation (IaS)vreduceé to Equation‘
. ‘
(1.2) if NB/AW and —hBO/Awo are assumed small.
Tﬁe‘non—adiabatic coupling B(t) is indeed expected té be neglibly
small for f not close to t_, éo that Equation (I,§) applies for t ‘not

near té-'.At to, howevef, which is a local minimum of MW(t); the non-
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adiabatic coupling is strong,.so that instead of Equation (I.6) one had

~

the opposite limit

| > 1 | - K |
A N VA RN 2 : o -
O . (o) ' :

as Awb/hB§ - 0. Equation (I.5) thus becomes (with Equations (I.6) and

(1.7) )

£ ' 2 - i - i
*1 f at' k(t') = £ f at! [(%) ‘*‘32]2 * (%)2 e (58)

t
"t
o

In the integrand of the first term on the RHS of Equation (I.8) the term
B2 can now bevneglected in comparisén to AM/Eﬁ sincé iﬁ is non~zero only
near té, and the desired result'[Equation (h.lé)j then follows directly
from Equation (I.8). |

;n conclusion we note that the discussion in this Appendix applies
and W, are of

equdlly_well to the case that the potenﬁial surfdées Wl 5 ‘
- different symmetry and actually intersect at t.s AWO = O} Equations (I.6)-
(I.8) apply as written. The non-adiabatic!coupling at t_ is of course
required,in this case and must be included in the ba:rie; penetration

integral; Equation (4.20) is thus replaced by
1

25=_i§ dt[(%)2+32]§ . | | : - (i.9)

If B(t) is roughly constant and AW(t) is linear near t_, for example,

Equation (I;9) gives a lLandau-Zener-like expression
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25=2rh B /AW
- (0] O
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(1.10)
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APPENDIX TII

Here we wish to show that’the hdrmalizaﬁio# factor in Equatioh',
_(u.eea):for the 1 » 1 electronic transition can be obtained from the known .
1-2 Eransition amplitude by invoking unitarity of'the full S-matrix.

The result is the same as that in Equations (h.22) and thus confirms the
the derivation in Seétion Iva. |

hConsider the case that there is just‘one croséing encounter; since
the eléctnqnic transition is localized (see Secfion IVc), the reSulfs for
one crossing can be applied repeatedly to deal with several independent
'crossing_encounters. If ¢ and n denote collectively the angle and action
variables for the inte?nal’nuclear degrees of<freéd0m (i.e., n denotes
the quahtum.numbers forzotation and vibration), then the 1 - 2 electronic
transifion amplitude ié given direétly in terms of the appropriéte classi-
callaction fUnction: .

o ' SR _
9 ¢21(n2’n1) / om 2 exp [i¢2l(n2,nl)/ﬁ 1, (11.1)

-
an on,

S r.. B
¢n2?lnl

where ¢é1(h2,nl) 1s the classical éctioh coﬁputed.along the trajectory

that begins on potential surface 1 with nuclear quantum‘numbers nl,

crosses to surface 2 at the time t, that the potentials intersect, and
ends on potential surface 2 with quantum numbers*ng; ¢21 is complex.

The 1 » 1 transition amplitﬁde is :
1

2%, (nym,) \° | »
[/ 2m | e [i6,,(ny,n,)/4], (I1.2)

Sl_ng,lnl = A<n2’nl) Bné Bnl
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where ¢ nl) is the classical action for the trajectory that remains

171 (7

on potential surface 1 and has initial and final quantum numbers ng and ne;

N is real. The usual Jacobian factor has been included in Equation (II.2),
and Aﬁné,nl) is the additional factor which is to be determined.

The statement of unitarity for the S-matrix is

E dn, - s = & | 5(n!-n_) | (11.3)
a "n 50 nl a"ng,anl a'sa e R

Where tﬁebdiscrefe electronic index g takes on values 1 and 2, and the
nuclear‘qﬁantum numbers are assumed continuous f§r purposes of normaliia-
tion. If o' %‘a, then it is easy to see that the integral over n, gives
no contribﬁtion, for there is no point of stationary phase. Thus one only
needs to consider the case a = o' = 1, and n, and ni infipitesimally close
£0 one,éndther. -

For this case Equation (II.3) is

*

% ‘
6(-n - fdn ) S +ﬁn g 'S - (IT.4%)
_ v 2 ln 4 lng,ln 2 2n2,ln1 2n2,1nl

and with Equations (II.1) and (II.2), this becomes

Bn2 Bnl

ot o(n! - n)) = fan, [A(ny,n )2

X exp% % [q)ll(ne’ni) - ¢11_(n2’_nl%

>
o 9705, (ny5ny)
* dng an,. on

k4 o 9y

. i . "
eng 7 [4’»21(’“2’“1)

- “’Zl(ng,nl)]g ; - (11.5)
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where n! has been set eqﬁal to n. everywhere except in the phases. Expand-

1 1
ing ¢(n2,ni) about n, - R
‘ 6¢(n2,n1) '
1 —_ . -
¢(n2,nl) = ¢(n2,nl) + ——gﬁz———— (nl nl)

gives

: . . a J (n :n )
275 (n]-n, =.lén2‘A( >0y )I ' llg«gnl |
i 9%y, (np,my) (af-n.)
X exp "y ——gﬁ—-—‘-—- nl-nl
41/ané

1
| ; 0 2’n ) |
x exp[—2 Tme ., (ng,n )/‘h + = ——-—-—-5——- (n -n. )] (11.6)

52¢21(n2’n1)
ang anl

The action functions ¢(n2,nl) are generators of canonical transforma-

25

tions of the Fu-type and thus dbey the derivative relation

30 (ny,m,)

n

=q, N ‘ - (I1.7)
1 1 ’ :

where ql is the initial angle variable determinedvby_n2 and n, - Thus .

2, |
o ¢(n,,n;) dq , | :
— g 1 (al)n , (11.8)
2 9%\ /My o |

so that  (for fixed.nl) the Jacobians that appear in the integrands of
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Equation (II.6) are precisely the factors necessary to change the inte-

gration variable from-n, to ql; with this change of integration variables

2
Equation (II.6) becomes '

2m v - _ :
\ (1) 2 i
! _ . 1_
2Wh8(nl-nl) = .!. da, ,A[%g (ql{nl),nl i explgql(nl nl)
: O :
| 2 _ @), - N
+ qul exp{— ¥ Imd>21l:n2 (ql,nl),nl}}
C . ' .
: 3 .
x exp!}l ql(n:L nl)J , | | (T1.9)
where ne(l)(ql,nl) and ng(g)(ql,nl) are the final nuclear quantum numbers,

|» that end on potential

as a function of the initial values q, and n
surfaces 1 and 2, respec'tivel;y. In the first term of Equation (II.9)

9 is real, but in the second term the’ 9 integral is a line integral

aldng the curve C in the complex ql’-plane that is defined (for fixed n'l)

by L

Im'ng(g)(ql,nl) =0 . o (I1.10)

Ir ﬁhe‘i.nte_gxam of the second term is suffi‘cientls.f well-behaved (i.e.,
analytic), however, the integration path can be_distorted to lie along
the real q, axis from 0 to 27. Fourier transforming Equation (II;9) then
gives

L (S LS S 1F

SO that_ the desir{:ed result is obtained:



| 58
, -28 \ = ' . : .
A(ng,nl.) = (1 - e )2 . - - (11.11_)
where
_ L (2) L
5 = 5 Im ¢21[£2 (ql,nl),nl] _ R S,

with qi3equal to that value for which
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APPENDIX IIT

Tt is interesting to show how one can find-(formally at least) the

time t, at which the potential surfaces Wl(g) and_WE(q) intersect; one

utilizes the formal solution of the Liouville equation26

If £(g,p) is

any funétion of the coordinates and momenta, its total time derivative

is given by the chain rule

df . Of

S fla®), p®)1= ¥ 5o, & 55, B

T
and with introduction of Hamilton's equations
..o _aH" » aH .
g =—6“"'R‘. (E’ ) ) E=-—-—.(_'g_".E_). 2

%

N

this becdmes

S at), p(8)] = -iLf

A

where L is the Liouville operator

The formal solution to Equation (III.2) is

£1q(ty)s p(t,)] = exp[ -i(t,-t)L]  £(g,p) 5

(III.2)
(I1I.3)

7(III.u)
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’

or if the‘exponential operator is. expanded in its power series this is

R CHR L SH S | i ‘a' n
£1a(t,), plt,)1= Z — (SE 55 5:8)
n=0 ‘ .
?; £(g,p) | . (III.5)

where g and. p are the coordinates and momenta at time t.
- For our case the function f(g,p)is AN(g)_E We(%)-wl(g), H is the
Hamiltonian for motioh on potential surface 1, and we wish to find the

time t, at which AW is zero. The equation for t,, therefore, is

n

| (65-)" > a3 . |
0= L TET (553 'Fg"a'g) Aw<g), (111.6)

where

and g aﬁd p are the coor&inates and momenta at time t. The value of t,
defined by Equation (III.6) is indepénden£ of thé particular choicevfdf t3
i.e., if one changes t, then the values of g(t) aﬁd E(t) also change so'
that t, is unchanged. If Equation (III.6) is 1;5 be used to calculate t,,
however, oﬁe wishes to choose t as close to t, as possible so that the .
power series in (ty-t) is rapidly convergent. If t is chosen as té; the
minimum of AMW(t) for real t, and terms,thro_ugh.(_t*-t)2 retained in-
Equatiqn'(iII.G), then the quadratié approximation of Equatioﬁs (3.29):7

and (3.30) is obtained for Ty
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