
JOURNAL OF CHEMICAL PHYSICS VOLUME 109, NUMBER 17 1 NOVEMBER 1998
Semiclassical theory of electronically nonadiabatic dynamics: Results
of a linearized approximation to the initial value representation
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A linearized approximation to the semiclassical initial value representation~SC-IVR!, referred to
herein as the LSC-IVR, was used by us in a recent paper@J. Chem. Phys.108, 9726 ~1998!# to
calculate reactive flux correlation functions for a model of a chemical reaction on a single potential
energy surface. This paper shows how the LSC-IVR—which is much easier to apply than the full
SC-IVR because it linearizes the phase difference between interfering classical trajectories—can be
applied toelectronically nonadiabaticprocesses, i.e., those involving transitions between different
potential-energy surfaces. Applications to several model problems are presented to show its
usefulness: These are the nonadiabatic scattering problems used by Tully to test surface-hopping
models, and also the spin–boson model of coupled electronic states in a condensed phase
environment. Though not as accurate as the full SC-IVR, the LSC-IVR does a reasonably good job
for all these applications, even describing correctly Stuckelberg oscillations~interference between
nonadiabatic transitions! and the transition between coherent and incoherent behavior in the spin–
boson example. ©1998 American Institute of Physics.@S0021-9606~98!02041-8#
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I. INTRODUCTION

The semiclassical initial value representation1–4 ~SC-
IVR! is undergoing a rebirth of interest as a way of gene
izing classical molecular-dynamics simulations to inclu
quantum interference and tunneling effects. Applications
number of groups are demonstrating the accuracy that
SC-IVR provides for a variety of phenomena: Tunneling a
interference in chemical reactions,5 photo-dissociation,6

vibrational–rotational eigenvalues~including tunneling split-
ting! of HCl dimer.7 It has also been shown how the mod
of Meyer and Miller8 ~MM ! for treating electronic and
nuclear degrees of freedom on a dynamically equiva
footing can be implemented within the SC-IVR,9,10 so that it
is also possible to describe electronically nonadiabatic p
cesses within this unified dynamical framework.

The evidence is, therefore, mounting that the SC-IV
provides a useful description of quantum effects in ess
tially all aspects of molecular dynamics, and the cruc
question now is how efficiently such calculations can be c
ried out for systems of interest. An SC-IVR calculation~see
Sec. II below! involves a phase space average over the in
conditions of classical trajectories, but it is considera
more difficult than that for ordinary classical mechanics b
cause the integrand is oscillatory~whence arise quantum in
terference and tunneling effects!. The development of effi-
cient algorithms to carry out such calculations is an act
area of research.

Much simpler than a full SC-IVR calculation, howeve
is a linearized approximation to it that we have recen
suggested11–13 and found to give excellent results for
model of condensed phase unimolecular isomerization~a
double well potential coupled to an infinite bath of harmon
7060021-9606/98/109(17)/7064/11/$15.00
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oscillators!. The approximation—which involves linearizin
the phase difference in the integrand~see Sec. II below!—
leads to an extremely simple computational procedure,
that is only slightly more complicated than an ordinary cla
sical calculation. Because of its simplicity, and thus poten
for useful applications, it is important to investigate the a
curacy of thislinearizedSC-IVR ~which we will refer to as
the LSC-IVR! for as wide a range of problems as possib
such is the purpose of this paper.

The applications of the LSC-IVR pursued in this pap
are to electronically nonadiabatic processes, based on
MM model noted above. Specifically, we apply it to th
model problems Tully14 has used for testing his ‘‘fewes
switches’’ version of the surface hopping model for ele
tronically nonadiabatic transitions~which two of us also used
earlier9 to test the full SC-IVR!. We also apply the LSC-IVR
to the popular spin–boson problem,15 a two level system
~e.g., two electronic states! coupled to an infinite bath o
harmonic oscillators~e.g., a condensed phase environmen!,
looking specifically at the transition between coherent a
incoherent tunneling behavior discussed by Mak a
Chandler.16 ~Stock and Thoss10 have earlier successfully
treated the two level system coupled to one harmonic m
by the full SC-IVR.! The LSC-IVR provides a reasonabl
good description of the results in essentially all these ca

Section II first reviews and summarizes the lineariz
approximation to the SC-IVR which leads to the LSC-IVR
and the MM approach for treating electronic and nucle
degrees of freedom in a consistent way is summarized
Sec. III. The applications noted in the above paragraph
presented and discussed in Sec. IV, and Sec. V conclud
4 © 1998 American Institute of Physics
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II. LINEARIZED SEMICLASSICAL INITIAL VALUE
REPRESENTATION „LSC-IVR…

Consider a generic quantum mechanical transition pr
ability from stateuC1& to uC2& in time t; the quantum ex-
pression for this is

P2←1~ t !5uS2,1~ t !u2 ~2.1a!

with

S2,1~ t !5^C2ue2 iĤ t/\uC1& ~2.1b!

5E dq1dq0C2~q1!* ^q1ue2 iĤ t/\uq0&C1~q0!,

~2.1c!

where Ĥ is the ~time-independent! Hamiltonian of the sys-
tem. With the standard semiclassical approximation17 for the
matrix element of the propagator,e2 iĤ t/\, and the IVR trans-
formation of the integrals,2 the SC-IVR expression for the
amplitude becomes

S2,1~ t !5E dq0dp0FdetS ]qt

]p0
D Y ~2p i\!FG1/2

3eiSt~q0 ,p0!/\C2~qt!* C1~q0!, ~2.2!

whereqt(q0 ,p0) is the coordinate at timet for the classical
trajectory with initial condition (q0 ,p0), andSt(q0 ,p0) is the
action integral along it.~The phase factore2 ipn t/2, wheren t

is the Maslov index18—the number of zeros experienced b
the determinant of]qt /]p0 in the time interval (0,t)—is in-
cluded in Eq.~2.2! as part of the pre-exponential squa
root.! It is the oscillatory nature of the integrand in Eq.~2.2!
that complicates the integration over the phase space of
tial conditions.

The linearization approximation that we now make
the SC-IVR of Eq.~2.2! has been described before,19,11,12so
we only give a brief synopsis here. One explicitly squares
amplitude in Eq.~2.2! to obtain the transition probability via
Eq. ~2.1c!, and this leads to a double phase space avera

P2←1~ t !5
1

~2p\!FE dq0dp0E dq08dp08

3FdetS ]qt

]p0
•

]qt8

]p08
D G 1/2

ei [St~q0 ,p0!2St~q08 ,p08!]/\

3C2~qt!* C2~qt8!C1~q0!C1~q08!* , ~2.3!

whereqt5qt(q0 ,p0) andqt85qt(q08 ,p08). One then makes a
sum and difference transformation of the integration va
ables

q05q̄01
Dq

2
, q085q̄02

Dq

2
, ~2.4a!

p05p̄01
Dp

2
, p085p̄02

Dp

2
, ~2.4b!

and expands the phase of the integrand in Eq.~2.3! through
second order inDq andDp
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St~q0 ,p0!2St~q08 ,p08!5
]St~ q̄0 ,p̄0!

]q̄0

•Dq1
]St~ q̄0 ,p̄0!

]p̄0

•Dp

5~ p̄t
T
•Mqq2p̄0!•Dq1p̄t

T
•Mqp•Dp,

~2.5!

the quadratic terms vanish because the phase difference
odd function of the difference variables. Consistent with t
approximation to the phase, the trajectoriesqt and qt8 are
expanded to first order inDq and Dp, and within this ap-
proximation the Jacobian factors are thus independent ofDq
andDp, i.e.,

]qt

]p0
'

]qt8

]p08
'

]q̄t

]p̄0

5Mqp , ~2.6a!

and similarly

]q̄t

]q̄0

5Mqq . ~2.6b!

~As a matter of interest, note that all of the above appro
mations following Eq.~2.3! are exact if the system is a set o
harmonic oscillators.! The integration over the differenc
variablesDq andDp can now be carried out to give the fina
result of the LSC-IVR

P2←1~ t !5
1

~2p\!FE dq0dp0 r2~qt ,pt!* r1~q0 ,p0!,

~2.7!

where the ‘‘bars’’ have been dropped fromq0 and p0 , and
rn(q,p) is the Wigner distribution function20 of staten, de-
fined as

rn~q,p!5E dDq e2 ipT
•Dq/\K q1

Dq

2
uCn&^Cnuq2

Dq

2 L .

~2.8!
It should be clear that it is much easier to evaluate the LS
IVR expression than in Eq.~2.7! than the full SC-IVR ex-
pression of Eq.~2.2! because the integrand in Eq.~2.7! is
essentially free of high-frequency oscillations.@The oscilla-
tory character has been subsumed in the Fourier transfo
that define the Wigner distribution functions, Eq.~2.8!.#

The same manipulations and approximations can also
carried out for a more general time-correlation function
the form

CAB~ t !5tr@ÂeiĤ t/\B̂e2 iĤ t/\#. ~2.9!

P2←1(t) above corresponds to Eq.~2.9! with

Â5uC1&^C1u, ~2.10!

B̂5uC2&^C2u. ~2.11!

Writing out the full SC-IVR expression for Eq.~2.9! and
making the linearization approximation as above gives

CAB~ t !5
1

~2p\!FE dq0dp0Aw~q0 ,p0!Bw~qt ,pt!,

~2.12!
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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where Aw(q,p) and Bw(q,p) are the Wigner–Weyl trans
forms of operatorsÂ and B̂, e.g.,

Aw~q,p!5E dDq e2 ipT
•Dq/\K q1

Dq

2
uÂuq2

Dq

2 L .

~2.13!

Our previous work on thermal rate constants11,12 corre-
sponded to the case ofÂ being the Boltzmannized flux op
erator

Â5e2bĤ/2F̂e2bĤ/2, ~2.14!

and B̂ being the projection operator onto products

B̂5ĥ~q!, ~2.15!

whereh(q) is 1~0! for coordinatesq on the product~reac-
tant! side of the dividing surface which separates reacta
and products.

It is clear from both Eqs.~2.7! and~2.12! that this LSC-
IVR includes quantum effects only via the Wigner functio
of the initial and final states; all the real time dynamics
purely classical. This fact manifested itself in our earl
work on thermal rate constants12 in that quantum effects
were well described forshort time, but the longer time dy-
namics was that given by classical rather than quantum
chanics. Whether or not this is adequate will depend on
application at hand.

Finally, we note that what we have called the LSC-IV
i.e., Eq.~2.7! or Eq. ~2.12!, has appeared in many approx
mate dynamical theories.13,21,23–25 With regard to thermal
rate constants, for example, it is very similar to a SC
proximation put forth many years ago by one of us22

Heller23 has given a particularly illuminating discussion
this type of ‘‘Wigner overlap’’ approximation~and its limi-
tations! and used it for photodissociation. Lee and Scull24

have used it to treat inelastic scattering. More recen
Filinov25 has presented an approach for evaluating time c
relation functions that starts with the Wigner transform of t
quantum trace expression, the lowest order approximatio
Eq. ~2.12!. Pollacket al.13 have presented a ‘‘quantum tran
sition state theory’’ that utilizes this expression also. T
reason we have emphasized that the result is obtaine
linearizing the SC-IVR expression@Eq. ~2.2!# is that it sug-
gests immediately how one can improve the LSC-IVR: e
by keeping higher order terms in the expansion inDq and
Dp, or simply by evaluating the full SC-IVR expression n
merically. Indeed, in our own recent work,12 we saw that the
full SC-IVR describes quantum effects in the flux correlati
function to significantly longer times than the more appro
mate LSC-IVR. A more conventional treatment of quantu
corrections25 to the time evolution of the Wigner functio
leads toadditive corrections of order\2, but these canno
describe quantum interference and tunneling behavior~as the
full SC-IVR can!.
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III. THE DYNAMICALLY CONSISTENT TREATMENT
OF ELECTRONIC AND NUCLEAR DEGREES
OF FREEDOM

Some years ago McCurdy, Meyer, and Miller8,26 showed
in a series of papers how one could introduce classical
grees of freedom that model a finite number~N, say! of elec-
tronic states. In the Cartesian representation for these cla
cal electronic degrees of freedom, the Meyer–Miller~MM !
version of this approach gives the following classical Ham
tonian for the electronic (x,p)[$xi ,pi%, i 51•••N and
nuclear (Q,P) degrees of freedom~assumed for simplicity to
be Cartesian!

H~x,p,Q,P!5
P2

2m
1Hel~x,p;Q! ~3.1a!

with

Hel~x,p;Q!5(
i 51

N

Hi ,i~Q! 1
2 ~xi

21pi
221!

1 (
i , j 51

N

Hi , j~Q!~xixj1pipj !, ~3.1b!

where Hi , j (Q) is a diabatic electronic Hamiltonian matri
that depends parametrically on nuclear coordinatesQ and is
assumed to come from a quantum mechanical electro
structure calculation.~We note that Stock and Thoss10 have
recently shown that this Hamiltonian can also be obtained
extending Schwinger’s angular momentum formalism to
N-level case.! MM used this Hamiltonian to carry out clas
sical trajectory simulations, treating electronic and nucl
degrees of freedom on the same footing; i.e., the initial c
ditions for the nuclear and electronic degrees of freedom
both sampled by the standard ‘‘quasiclassical’’ prescript
~integer values for the initial action variables and rando
angle variables!, histogramming the final action variables
obtain final electronic and nuclear quantum states. Theith
electronic state, for example, corresponds to action varia
ni5

1
2 (xi

21pi
221) equal to one, and all other action var

ablesnj50 ( j Þ i ). @It is easy to show that with the Hamil
tonian of Eq.~3.1! the sum of the electronic action variable
is a constant of the motion, i.e., (d/dt) ( i 51

N ni(t)50.# A
variety of applications using this model were qui
successful.27

More recently, two of us9 showed how this classica
electronic-nuclear model could be implemented at the S
IVR level of description, and calculations using the full SC
IVR gave excellent results for Tully’s electronically nonadi
batic model problems. Stock and Thoss10 also carried out
SC-IVR calculations using Eq.~3.1! for the case of a two-
level system coupled to one harmonic oscillator, also obta
ing excellent agreement with quantum results.~Meyer and
Miller,8 in fact, also noted that the model could be impl
mented semiclassically and gave some results of this u
‘‘classical S-matrix’’ theory,28 i.e., the stationary phase limi
of the SC-IVR.! All that is needed to apply Eq.~2.2! of the
previous section are the initial and final electronic-nucle
wavefunctions, which are of the form

C i ,n~x,Q!5F i~x!xn~Q!, ~3.2!
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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the nuclear wave functionxn(Q) is as before, and the elec
tronic wave function for statei is

F i~x!5f1~xi ! )
j 51,j Þ i

N

f0~xj !, ~3.3a!

wheref0(x) andf1(x) are the ground and first excited ha
monic oscillator wave functions, respectively; thus one h
the specific form

F i~x!5A2S 1

p D N/4

xi expF2 (
k51

N
1

2
xk

2G . ~3.3b!

The model of the electronic degrees of freedom is thus
of a harmonic oscillator for each electronic state; theith elec-
tronic state corresponds to one vibrational quantum is theith
mode, with all the other modes being in their ground sta

Though the construction of this nuclear-electron
Hamiltonian in Eq.~3.1! was motivated by the desire to hav
a classicalmodel that treated the electronic and nuclear
namics on an equal footing, it is important to note that
quantum mechanical Hamiltonian operator correspondin
Eq. ~3.1! is an exact representation of thequantum
electronic-nuclear dynamical system. This is easy to see
cause the matrix of the ‘‘electronic’’ Hamiltonian operat
Ĥel of Eq. ~3.1!

Ĥel[(
i 51

N

Hi ,i~Q! 1
2 ~ x̂i

21 p̂i
221!

1 (
i , j 51

N

Hi , j~Q!~ x̂i x̂ j1 p̂i p̂ j !, ~3.4!

in the basis$F i(x)% of Eq. ~3.3! is the original diabatic elec
tronic matrix, i.e.,

^F i uĤeluF j&5Hi , j~Q!, ~3.5!

as can be easily verified by using standard harmonic osc
tor matrix elements. Furthermore, the total electronic qu
tum number( i 51

N ni is conserved byĤel ~just as the sum of
the action variables is classically!, so that theN statesuF i&
have no matrix elements with any other oscillator states.

We also note the interesting property that if the dyna
ics is such that the nuclear trajectoryQ(t) does not depend
on the electronic degrees of freedom—e.g., because of
nuclear kinetic energy, weak coupling, etc.—then the S
IVR treatment of the electronic transition probability will b
exact. This is because the electronic Hamiltonian in this ca
Hel(x,p;Q(t)), is a time-dependent quadratic Hamiltonia
for which the semiclassical approximation of Eq.~2.2! is
exact. This is a bonus for the SC-IVR, so that to the ext
that the nuclear trajectory is not effected much by the e
tronic degrees of freedom, it will be especially accurate.

The purpose of the present paper is to apply the sim
fied approximate version of the SC-IVR, i.e., the LSC-IV
result given by Eqs.~2.7! and ~2.12!, to the MM model of
electronically nonadiabatic processes, to see if it is capa
of describing them to a useful degree of accuracy. One t
Downloaded 19 May 2005 to 169.229.129.16. Redistribution subject to A
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needs the Wigner functions corresponding to initial and fi
wave functions of the form in Eqs.~3.2! and ~3.3!, and it is
easy to see that they are given by

r i ,n~x,p,Q,P!5r i
el~x,p!rn~Q,P!, ~3.6!

where the electronic factor is especially simple

r i
el~x,p!52~N11!~xi

21pi
22 1

2!expF2 (
k51

N

~xk
21pk

2!G .

~3.7!

Finally, it is useful to remind the reader of the conne
tion of the present approach to the ‘‘mixed quantu
classical’’29–32 ~or semiclassical time-dependent self cons
tent field, SC-TDSCF! model that is popular for treating
nonadiabatic molecular dynamics. As has been no
before,8 the classical equations of motion generated by
MM Hamiltonian @Eq. ~3.1!# are equivalent to the time
dependent Schro¨dinger equation for the electronic degrees
freedom, the time dependence coming from the classical
tion of the nuclear degrees of freedom~whose trajectory is
determined by the Ehrenfest average force!; these are the
same equations of motion as in the mixed quantum-class
SC-TDSCF model. However, the way the boundary con
tions are imposed makes the models different. In the us
implementation of the mixed quantum-classical/SC-TDS
approach, for example, a given classical trajectory begin
one electronic state but ends up in a mixture of states.
quasiclassical implementation by MM assigns each tra
tory to a particular final electronic~and nuclear! state by
histogramming the final electronic~and nuclear! action vari-
ables; this makes the approach more akin to the surfa
hopping model in that a given trajectory is assigned to o
one final electronic state. The SC-IVR imposes the init
and final state boundary conditions on the equations of m
tion through the initial and final wave functions of the ele
tronic and nuclear degrees of freedom~or via the initial and
final Wigner functions in the approximate LSC-IVR ve
sion!, and as noted above, if the Hamiltonian of Eq.~3.1!
were implemented fully quantum mechanically, one wou
have an exact quantum description of the process. The p
of view of all of our work, starting with that of McCurdy
et al.,26 is that the Hamiltonian of Eq.~3.1! allows one to
treat the electronic and nuclear degrees of freedom on
equivalent dynamical footing, be it done classically, sem
classically, or fully quantum mechanically.

IV. TEST APPLICATIONS

Here we apply the LSC-IVR, Eqs.~2.7! and ~2.12!, to
several examples to test its accuracy.

A. One-dimensional two-state scattering problems

The first example is the set of three one-~nuclear! di-
mensional two ~electronic!-state scattering problems tha
Tully14 used several years ago to test his ‘‘fewest switche
version of the surface-hopping model for electronica
nonadiabatic dynamics. Two of us also recently used9 these
model problems to test the full SC-IVR of Sec. II for treatin
the MM model of Sec. III. We thus refer the reader to Re
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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14 and 9 for the specifics of the models and here give o
the new features relevant to applying the LSC-IVR to
Figure 1 shows the two adiabatic potential curves for th
three cases.

Equation~3.1! gives the Hamiltonian of the system, wit
N52 electronic degrees of freedom and one nuclear~trans-
lational! degree of freedom~Q,P!. The initial nuclear wave
function is a minimum uncertainty wave packet

x~Q!5S g

p D 1/4

e2 ~g/2! ~Q2Q0!21 iP0Q/\, ~4.1!

with the initial positionQ0 far to the left of the interaction
region in Fig. 1 and initial momentumP0.0. The quantity
of interest is the transmission probability to the rig
asymptotic region for each final electronic statej as a func-
tion of the initial momentum, which is given by

Pj← i~P0!5 lim
t→`

E
0

`

u^f j ,Que2 iĤ t/\uxf i&u2dQ. ~4.2!

This can be written equivalently as

Pj← i~P0!5 lim
t→`

tr@ uxf i&^xf i ueiĤ t/\uf j&

3ĥ~Q!^f j ue2 iĤ t/\#, ~4.3!

so as to be in the form of Eq.~2.12! with

FIG. 1. The adiabatic potential curves~solid line! and the nonadiabatic
coupling ~dash line! for the three model scattering problems discussed
Sec. IV A. ~a! Single avoided crossing. The nonadiabatic coupling is
duced by a factor of 60.~b! Double avoided crossing. The nonadiaba
coupling is reduced by a factor of 15.~c! Extended coupling.
Downloaded 19 May 2005 to 169.229.129.16. Redistribution subject to A
ly
.
e

Â5uxf i&^xf i u, ~4.4!

B̂5uf j&^f j uĥ~Q!. ~4.5!

The Wigner functions corresponding to these operators
easily found to be

Aw~Q,P,x,p!5r~Q,P!r i
el~x,p!, ~4.6!

Bw~Q,P,x,p!5h~Q!r j
el~x,p!, ~4.7!

wherer(Q,P) is the Wigner function for the initial nuclea
wave function of Eq.~4.1!

r~Q,P!52e2g~Q2Q0!22~P2P0!2/g\2
, ~4.8!

and $r i
el(x,p)%, i 51,2 is given by Eq.~3.7! for N52. In

actual calculations, these Wigner distributions allow na
rally for Monte Carlo importance sampling which we ha
used for the results presented below.

Figure 2 shows the transmission probability from initi
electronic state one to each of the two final electronic sta
for the first test case, which corresponds to a single avoi
crossing@cf. Fig. 1~a!#. The agreement between the LSC
IVR results of Eq.~2.12! and the exact quantum mechanic
values is quite good for all energies except those close to
threshold region. Here, quantum mechanical effects suc
tunneling through the crossing area are more important,
the classical dynamics in the LSC-IVR is less able to d
scribe this behavior quantitatively.

-

FIG. 2. The transmission probabilityPj←1 as a function of the initial mo-
mentumP0 for the single avoided crossing case. The solid lines are
exact quantum results and the points are the LSC-IVR results.~a! j 51, ~b!
j 52.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Figure 3 shows the same plots as Fig. 2 for the sec
version of the model, the case of two avoided crossing
gions @cf. Fig. 1~b!#, where the possibility of Stuckelber
oscillations~i.e., interference effects between the two cro
ing regions! arises. The LSC-IVR is seen to describe th
interference behavior quite well. The most significant erro
again seen to be in the low-energy threshold region.

Finally, Fig. 4 shows the transmission probability for t

FIG. 3. The transmission probabilityPj←1 as a function of the log of initial
energyE5P0

2/2m for the double crossing case. The solid lines are the ex
quantum results and the points are the LSC-IVR results.~a! j 51, ~b! j
52.

FIG. 4. The transmission probabilityPj←1 as a function of the initial mo-
mentumP0 for the extended coupling case. The solid lines are the ex
quantum results and the points are the LSC-IVR results. These result
for j 51 and 2.
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third case, that with an extended coupling region@cf. Fig.
1~c!#. Since the diabatic states are very close in energy,
transmission probabilities are essentially identical for b
final states. This was the case for which Tully’s surfac
hopping approach gave unphysical oscillations in the tra
mission probability. The LSC-IVR results do not exhibit th
problem, and they do not reproduce the sharp steplike st
ture in the quantum values forP0'25 a.u. They do, how-
ever, give the correct magnitude of the transmission pr
ability over the whole energy range.

The linearized approximation to the SC-IVR, i.e., th
LSC-IVR approximation of Eqs.~2.7! and ~2.12!, is thus
seen to do a reasonably good job for these three model p
lems which have quite different dynamical features. The
sults are not quite as good as our previous ones9 using the
full SC-IVR, but the present LSC-IVR calculation is muc
easier to carry out than the former.

B. The spin-boson problem

The next test problem we consider is the so-called sp
boson problem,15 which also consists ofN52 electronic
states but where the nuclear degrees of freedom are an
nite set of harmonic oscillators. This is about the only e
ample of a system with many degrees of freedom for wh
accurate quantum mechanical results are available to serv
a benchmark for approximate treatments. It has often b
used as a model for two interacting electronic states i
condensed phase medium, e.g., a radiationless transitio
electron transfer process in a liquid, a solid, a cluster, o
protein.

The specific form of the 232 diabatic electronic matrix
Hi , j (Q) in this case is

Ĥel~Q!5S H11~Q! H12~Q!

H21~Q! H22~Q!
D

5S V0~Q!1V1~Q! D

D V0~Q!2V1~Q!
D , ~4.9!

where the off-diagonal electronic couplingD is independent
of nuclear coordinates, and

V0~Q!5 (
k51

F
1

2
mkvk

2Qk
2 , ~4.10a!

V1~Q!5 (
k51

F

ckQk . ~4.10b!

The total Hamiltonian of the spin–boson model

Ĥ51̂ (
k51

F Pk
2

2mk
1Ĥel~Q!, ~4.11a!

is typically expressed as

Ĥ5H01̂1V1~Q!ŝz1Dŝx ~4.11b!

where

H05 (
k51

F Pk
2

2mk
1V0~Q!, ~4.12!

t

ct
are
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and ŝz and ŝx are the Pauli spin matrices. The dynamics
the spin—boson model is fully specified by the combinat
of the coupling parameters$ck% and the distribution of fre-
quencies that define the spectral densityJ(v)

J~v!5
p

2 (
k

ck
2

mkvk
d~v2vk!, ~4.13!

a common choice for which is the Ohmic case with exp
nential cutoff

J~v!5hve2v/vc. ~4.14!

This model is thus completely specified by the cutoff para
eter vc and the coupling coefficienth ~or more frequently
the Kondo parametera52h/p).

We examine two relevant dynamical quantities of int
est for the spin–boson model: The first is the time-depend
electronic population, defined as

D~ t !5
1

Zb
tr@e2b~H01V1!u1&^1ueiĤ t/\ŝze

2 iĤ t/\#

5 P̄1←1~ t !2 P̄2←1~ t !, ~4.15!

where the initial electronic state isu1& with the nuclear de-
grees of freedom in Boltzmann equilibrium for the nucle
Hamiltonian of state 1, H01V1 (Zb5tr@ u1&
3^1ue2b(H01V1)#); the second quantity is the spin correl
tion function, defined as

C~ t !5Re
1

Z
tr@e2bĤŝze

iĤ t/\ŝze
2 iĤ t/\#, ~4.16!

where the bath and the two-level system are both in ther
equilibrium, andZ is the total partition function of the sys
tem and bath. The literature on these quantities for the sp
boson model is vast: Mak and Chandler,16 for example, per-
formed a systematic study of the spin-correlation funct
for a wide range of parameters to determine, among o
things, the coherent–incoherent transition boundary. T
also studied the temperature dependence of the decay ra
C(t) for several sets of parameters. Makriet al.33 performed
calculations of the time-dependent electronic population a
using path integral methods. These are the primary resul
which we shall compare the LSC-IVR approximation.

For the spin–boson Hamiltonian in Eq.~4.11!, the MM
Hamiltonian of Eq.~3.1! is easily found to be

H~x,p,Q,P!5 (
k51

F F Pk
2

2mk
1

1

2
mkvk

2Qk
2G

1
1

2
~x1

21p1
22x2

22p2
2!(

k51

F

ckQk

1D~x1x21p1p2!. ~4.17!

It is also immediately clear how to apply the LSC-IVR a
proximation of Eq.~2.12!. For the time-dependent electron
population of Eq.~4.15!, the operatorsÂ andB̂ of Eq. ~2.12!
are
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Â5
1

Zb
e2b~H01V1!u1&^1u, ~4.18!

B̂5ŝz5~ u1&^1u2u2&^2u!, ~4.19!

so that Eq.~2.12! give D(t) as

D~ t !5
1

~2p\!2E dx0dp0E dQ0dP0Wb
1~Q0 ,P0!r1

el~x0 ,p0!

3@r1
el~xt ,pt!2r2

el~xt ,pt!#, ~4.20!

where Wb
6(Q,P) is the Wigner transform of

e2b(H06V1)/@Zb(2p\)F#

Wb
6~Q,P!5)

k51

F
tanh~b\vk/2!

p\

3expH (
k51

F
2 tanh~b\vk/2!

\vk

3F Pk
2

2mk
1

1

2
mkvk

2S Qk6
ck

mkvk
2D 2G J ~4.21!

andrn
el(x,p) is the Wigner transform ofun&^nu already given

in Eq. ~3.7! (n51,2).
For the spin-correlation function of Eq.~4.16!, the situ-

ation is slightly more complicated. In this case the operat
Â and B̂ of Eq. ~2.12! are

Â5
1

Z
e2bĤsz , ~4.22!

B̂5ŝz , ~4.23!

one needs to find the Wigner transform ofÂ. It is not pos-
sible to obtain this quantity exactly without a fully quantu
calculation, but a reasonable approximation can be obta
by using a split operator type approximation fore2bĤ

expS 2b~H01V1! 2bD

2bD 2b~H02V1!
D

'S e2b~H01V1! 0

0 e2b~H02V1!D expS 0 2bD

2bD 0 D
5S e2b~H01V1!cosh~bD! 2e2b~H01V1!sinh~bD!

2e2b~H02V1!sinh~bD! e2b~H02V1!cosh~bD!
D .

~4.24!

The trace ofe2bĤ, which is the partition functionZ, is then

Z52 cosh~bD!tr~e2bH0!expF1b(
k51

F ck
2

2mkvk
2G . ~4.25!

Multiplying by ŝz and writing everything in the basis se
representation, one obtains
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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e2bĤŝz

5S e2b~H01V1!cosh~bD! e2b~H01V1!sinh~bD!

2e2b~H02V1!sinh~bD! 2e2b~H02V1!cosh~bD!
D

5e2b~H01V1!cosh~bD!u1&^1u

1e2b~H01V1!sinh~bD!u1&^2u

2e2b~H02V1!sinh~bD!u2&^1u

2e2b~H02V1!cosh~bD!u2&^2u, ~4.26!

so that the final result for the Wigner transform
e2bĤŝz /@Z(2p\)F# is

1

~2p\!F Aw~x,p,Q,P!

5Wb
1~Q,P!@cosh~bD!r1

el~x,p!1sinh~bD!r12
el ~x,p!#

2Wb
2~Q,P!@sinh~bD!r21

el ~x,p!

1cosh~bD!r2
el~x,p!#, ~4.27!

wherer12
el and r21

el are the Wigner transform ofu1&^2u and
u2&^1u

r12
el ~x,p!523~x12 ip1!~x21 ip2!

3exp@2~x1
21x2

21p1
21p2

2!#, ~4.28!

r21
el ~x,p!523~x11 ip1!~x22 ip2!

3exp@2~x1
21x2

21p1
21p2

2!#, ~4.29!

andWb
6(Q,P) is given in Eq.~4.21!. The final result for the

LSC-IVR approximation toC(t) is, therefore

C~ t !5Re
1

~2p\!2E dx0dp0E dQ0dP0$Wb
1~Q,P!

3@cosh~bD!r1
el~x,p!1sinh~bD!r12

el ~x,p!#

2Wb
2~Q,P!@sinh~bD!r21

el ~x,p!

1cosh~bD!r2
el~x,p!#%@r1

el~xt ,pt!2r2
el~xt ,pt!#.

~4.30!

Equations~4.20! and ~4.30! are the final LSC-IVR expres
sions forD(t) andC(t).

For comparison, Stock32 recently carried out calculation
for D(t) using the mixed quantum-classical/SC-TDSCF a
proach, where the electronic transition between the two-le
system is treated quantum mechanically but the bath
treated classically. This approximation givesD(t) in a form
similar to Eq.~4.20!,

D~ t !5
1

2pE0

2p

duE dQ0dP0Wb
1~Q0 ,P0!

3@r1
TDSCF~xt ,pt!2r2

TDSCF~xt ,pt!#, ~4.31!

wherer1,2
TDSCF is the probability of being in state 1 or 2. I

our language, these probability functions are
Downloaded 19 May 2005 to 169.229.129.16. Redistribution subject to A
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r1
TDSCF~xt ,pt!2r2

TDSCF~xt ,pt!5~x1t

2 1p1t

2 2x2t

2 2p2t

2 !

~4.32!

and the initial conditions of the electronic trajectories are

x10
5cos~u!,

p10
5sin~u!, ~4.33!

x20
5p20

50, ~4.34!

where theu ranges from 0 to 2p. It is clear that this is very
different from our present approach.

Figure 5 shows the decay of the time-dependent e
tronic population,D(t), for a ‘‘coherent’’ ~i.e., oscillatory!
case, Fig. 5~a!, and also an ‘‘incoherent’’~nonoscillatory!
one, Fig. 5~b!. The LSC-IVR results are seen to be in exce
lent agreement with Makriet al.’s33 accurate quantum re
sults, showing that the LSC-IVR captures the essential f
tures of the dynamics in both these cases. This also mak
clear that the oscillatory nature in the coherent case@Fig.
5~a!# is of classical rather than quantum mechanical orig
For stronger couplings, i.e., largera, the LSC-IVR results
begin to deviate somewhat from the quantum results,
shown in Fig. 6. However, the differences are still mode
and the LSC-IVR is in somewhat better agreement with
quantum results than the mixed quantum-classical/S
TDSCF results obtained by Stock.

FIG. 5. The time-dependent electronic population,D(t), for two different
parameter sets, showing~a! coherent oscillatory behavior and~b! incoherent
relaxation behavior. The solid lines are the LSC-IVR results and the po
are the exact path integral results. The cutoff frequency isvc52.5D. ~a!
a50.09, bD55.0. ~b! a50.09, bD50.1.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Mak and Chandler16 studied the behavior of the spi
correlation function,C~t!, for a variety of different param-
eters and determined the boundary between coherent an
coherent behavior. Figure 7 shows the results obtained f
the LSC-IVR expression, Eq.~4.30!, for three coupling val-
ues that span this boundary. One observes reasonably
agreement of the LSC-IVR results with the correct quant
values in all these case.~The approximations made to th
Boltzmann operator, Eqs.~4.24!–~4.27!, to obtain the
Wigner function for the operator in Eq.~4.23! thus appar-
ently cause no significant error.! The results of the LSC-IVR
are actually somewhat better than the ‘‘noninteracting b
approximation’’34 for treating the spin–boson problem.

If coupling to the bath is sufficiently large, thenC(t)
exhibits exponential decay for the short time regime, i.e.

C~ t !'Ae2t/t, ~4.35!

so that one can define a rate constantt21 for transitions from
one state of the two level system to the other. Figure 8 sh
the results given by Eq.~4.30! for t as a function of tem-
perature for the parametersa50.64, vc52.5D. The decay
rate exhibits the correct inverse power-law dependence
temperature,t;Td, and the LSC-IVR results are essentia
in quantitative agreement with the exact results of Mak a
Chandler. For higher coupling values, however, the pro
dure outlined in Eqs.~4.24!–~4.27! for obtaining the Wigner
transform involving the Boltzmann operator is not valid,
we will not consider this regime. One could, of course, ca

FIG. 6. The time-dependent electronic population,D(t), for higher cou-
pling parameters, comparing the LSC-IVR results~solid line! and the mixed
quantum-classical/SC-TDSCF results~dashed line! with the exact quantum
results~points!. a52.0, vc51 andb50.25. ~a! D50.8. ~b! D51.2.
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out a more complete quantum calculation for the Boltzma
operator in order to obtain the Wigner function for the o
erator in Eq.~4.23!, but this is not central to our presen
discussion of the LSC-IVR.

V. CONCLUDING REMARKS

As shown previously, the semiclassical initial value re
resentation~SC-IVR, summarized in Sec. II! can be general-

FIG. 7. The spin-correlation function,C(t), for increasing values of the
coupling, showing the transition from the coherent to incoherent relaxat
vc52.5D, b52.5D. ~a! In the coherent relaxation regime,a50.13. ~b!
Near the coherent–incoherent boundary,a50.25. ~c! In the incoherent re-
gime, a50.64. The solid lines are the LSC-IVR results and the points
the exact path integral results.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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ized to describe electronically nonadiabatic processes in
lecular dynamics by utilizing the Meyer–Miller~MM ! model
to treat electronic and nuclear degrees of freedom on
equivalent footing. The purpose of this paper has been
investigate the usefulness of an approximate version of
SC-IVR for nonadiabatic processes. This LSC-IVR is mu
easier to apply than the full SC-IVR: As seen from the
sulting expressions@Eqs. ~2.7! and ~2.12!#, it involves the
overlap of the Wigner distribution function for the initia
state~or operator! with the classically time-evolved Wigne
distribution for the final state~or operator!. The actual dy-
namics in the LSC-IVR is thus completely classical, t
Wigner distribution functions effectively providing th
boundary conditions for the classical trajectories.

The LSC-IVR is seen to provide a reasonably good
scription of the three nonadiabatic scattering problems
lized by Tully, including the effects of Stuckelberg oscill
tions ~interference between nonadiabatic transitions
different times!. It also provides a good description of time
dependent transition probabilities in the spin–boson prob
~two electronic states coupled to an infinite set of harmo
oscillators!, including both coherent and incoherent dec
and the transition between them. Altogether, this sugg
that the LSC-IVR should be useful for simulating a wid
range of nonadiabatic dynamic phenonmena in ‘‘real’’ m
lecular systems.

In conclusion, it should be noted that the LSC-IVR do
not describe everything correctly. As seen in our previo
work,12 for example, purely quantum effects in the long tim
coherent dynamics may not be described correctly. Such
fects were apparently not a major contributor in the examp
treated in this paper, and this may perhaps often be the
for complex systems, i.e., those with more than a few
grees of freedom.
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