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A linearized approximation to the semiclassical initial value representé8@nIVR), referred to

herein as the LSC-IVR, was used by us in a recent pahe€hem. Phys108 9726 (1998] to
calculate reactive flux correlation functions for a model of a chemical reaction on a single potential
energy surface. This paper shows how the LSC-IVR—which is much easier to apply than the full
SC-IVR because it linearizes the phase difference between interfering classical trajectories—can be
applied toelectronically nonadiabatiprocesses, i.e., those involving transitions between different
potential-energy surfaces. Applications to several model problems are presented to show its
usefulness: These are the nonadiabatic scattering problems used by Tully to test surface-hopping
models, and also the spin—boson model of coupled electronic states in a condensed phase
environment. Though not as accurate as the full SC-IVR, the LSC-IVR does a reasonably good job
for all these applications, even describing correctly Stuckelberg oscillatiotesference between
nonadiabatic transitiongnd the transition between coherent and incoherent behavior in the spin—
boson example. ©1998 American Institute of Physids$S0021-96008)02041-§

I. INTRODUCTION oscillatorg. The approximation—which involves linearizing
the phase difference in the integratmbe Sec. Il beloyw—
The semiclassical initial value representatioh(SC-  |eads to an extremely simple computational procedure, one
IVR) is undergoing a rebirth of interest as a way of generalyhat is only slightly more complicated than an ordinary clas-

12Ing clas_5|ca:c molecular(;dynan]!cs s:cfmulatlins I_to '_”C|“dbesical calculation. Because of its simplicity, and thus potential
quantum interference and tunneling effects. Applications by, \co applications, it is important to investigate the ac-

number of groups are dgmonstratmg the a.ccuracy.that thg}uracy of thislinearized SC-IVR (which we will refer to as
SC-IVR provides for a variety of phenomena: Tunneling and

interference in chemical reactionsphoto-dissociatiofi, the L_SC'IVR’ for as W'de,a range of problems as possible;
vibrational—rotational eigenvaluémcluding tunneling split-  SUch is the purpose of this paper. o
ting) of HCI dimer? It has also been shown how the model ~ 1he applications of the LSC-IVR pursued in this paper
of Meyer and MilleP (MM) for treating electronic and are to electronically nonadiabatic processes, based on the
nuclear degrees of freedom on a dynamically equivalenMM model noted above. Specifically, we apply it to the
footing can be implemented within the SC-IVR%so thatit model problems Tulli has used for testing his “fewest
is also possible to describe electronically nonadiabatic proswitches™” version of the surface hopping model for elec-
cesses within this unified dynamical framework. tronically nonadiabatic transitiorig/hich two of us also used
The evidence is, therefore, mounting that the SC-IVRearlier to test the full SC-IVR. We also apply the LSC-IVR
provides a useful description of quantum effects in essento the popular spin—boson probléma two level system
tially all aspects of molecular dynamics, and the cruciale g., two electronic statesoupled to an infinite bath of
question now is how eff.iciently such calculations can be caryarmonic oscillatorge.g., a condensed phase environment
ried out for systems of interest. An SC-IVR calculati®®e ooking specifically at the transition between coherent and
Sec. Il below involves a phase space average over the 'n't'a|ncoherent tunneling behavior discussed by Mak and

conditions of classical trajectories, but it is considerably 016 (Stock and Thos8 have earlier successfully
more difficult than that for ordinary classical mechanics be-

cause the integrand is oscillatofyhence arise quantum in- Lrea;ed fthl(la QNCOI{/e;/{el_?gStT_ZCC?\l;EIed to.gne harmonic EOde
terference and tunneling effegtsThe development of effi- y the fu -IVR) The ) provides a reasonably

cient algorithms to carry out such calculations is an activddood description of the results in essentially all these cases.
area of research. Section |l first reviews and summarizes the linearized

Much simpler than a full SC-IVR calculation, however, @Pproximation to the SC-IVR which leads to the LSC-IVR,
is a linearized approximation to it that we have recentlyand the MM approach for treating electronic and nuclear
suggestett % and found to give excellent results for a degrees of freedom in a consistent way is summarized in
model of condensed phase unimolecular isomerizatmn Sec. lll. The applications noted in the above paragraph are
double well potential coupled to an infinite bath of harmonicpresented and discussed in Sec. IV, and Sec. V concludes.
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Il. LINEARIZED SEMICLASSICAL INITIAL VALUE

9SG, P 9S(o»Po
REPRESENTATION (LSC-IVR) S(Go.po)— S pp) = 20d0-Po) o 9SG0 Po)
d0o JPo
Consider a generic quantum mechanical transition prob- o
ability from state|¥,) to |¥,) in time t; the quantum ex- =(E~qu—po)-Aq+a-qu-Ap,
pression for this is 2.9
Po1(D)=S4(D)]? (2.19 the quadr.atic terms \{anish becau_se the phasq difference ig an
. odd function of the difference variables. Consistent with this
with approximation to the phase, the trajectortgsand q; are
_ Zifu expanded to first order ihq and Ap, and within this ap-
S =(Vole W) (2.1 proximation the Jacobian factors are thus independentopf
. andAp, i.e.,
:f da;dae¥,(a1)* (asle” "oy ¥ 1(qo), ; o
(2.19 L S SV (2.69

whereH is the (time-independentHamiltonian of the sys- o
tem. With the standard semiclassical approximafidor the and similarly

matrix element of the propagata, '"# and the IVR trans-

o
formation of the integral%,the SC-IVR expression for the i:qu. (2.6b
amplitude becomes 990

1/2 (As a matter of interest, note that all of the above approxi-

J
de< a—qt) / (2mih)F mations following Eq(2.3) are exact if the system is a set of
Po harmonic oscillator$. The integration over the difference
X @St(0-Po) i, () * W 1 (qp), (2.2)  variablesAqg andAp can now be carried out to give the final
result of the LSC-IVR

S(t)= f dqgodpo

whereq;(do,Pg) is the coordinate at timefor the classical
trajectory with initial condition o, po), andS;(qy.,po) is the _ 1 f *

action integral along it(The phase factoe™' "2, wherew, Poca(® (2mh)F dgodpo  p2(at-Py)* p1(do.Po).

is the Maslov indeX—the number of zeros experienced by 2.7

the determinant 0fq;/dp, in the time interval (@)—is in- where the “bars” have been dropped frogg andp,, and

cluded in Eq.(2.2 as part of the pre-exponential square is the Wianer distribution functidf of staten. de-
root) It is the oscillatory nature of the integrand in Eg.2) ﬁg(e?j Z)S g ’

that complicates the integration over the phase space of ini-

tial conditions. T Al Ag Aq
The linearization approximation that we now make topn(q'p):f dAq e q+ — (WX (Wala— =)

the SC-IVR of Eq.(2.2) has been described befdietl1?so 2.8

we only give a brief synopsis here. One explicitly squares the L i '

amplitude in Eq(2.2) to obtain the transition probability via It should be clear that it is much easier to evaluate the LSC-

: IVR expression than in Eq2.7) than the full SC-IVR ex-
Eq. (2.19, and this leads to a double phase space average ; i . i
a-(2.10 P P g pression of Eq(2.2) because the integrand in E.7) is

1 essentially free of high-frequency oscillatioi¥he oscilla-
Pa1(t)= (277—ﬁ)Ff dQOdef ddodpo tory character has been subsumed in the Fourier transforms
1 that define the Wigner distribution functions, Eg.9).]
aq  Ig {1840 .p0)— S0 L)1/ The same manipulations and approximations can also be
x|d E erroTo 00 carried out for a more general time-correlation function of
Po dpg the form

XWo(q)* Wo(g)Pa(ag)Pi(ae)*, (2.3

whered;=d:(do.po) andg; =q(dg,Po). One then makes a
sum and difference transformation of the integration vari-

Cag(t) =tr AgiftBe-iRtAT, 2.9
P,_,(t) above corresponds to E(R.9) with

ables A=W )(W4, (2.10
— A — A N
do=0o+ Tq, do=0o— 70' (2.49 B=[W,)(¥,l. (211
Writing out the full SC-IVR expression for Eq2.9) and
— Ap , — Ap making the linearization approximation as above gives
Po=Pot -  Po=Po~— (2.4b g PP g
1
and expands the phase of the integrand in @) through Cas(t)= (277—ﬁ)Ff ddodPoAu(do,Po) Bu( Py,
second order ilAg andAp (2.12
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where A, (q,p) and B,,(q,p) are the Wigner—Weyl trans- Ill. THE DYNAMICALLY CONSISTENT TREATMENT

forms of operatorsh andB, e.g. OF ELECTRONIC AND NUCLEAR DEGREES
’ ’ OF FREEDOM
. Aq. Aq Some years ago McCurdy, Meyer, and Mi#é?showed
Aw(q,p)=f dAq e 'P 'Aq”’<q+ 7|A|q— -/ in a series of papers how one could introduce classical de-

(2.13 grees of freedom that model a finite numigir say of elec-
tronic states. In the Cartesian representation for these classi-
] cal electronic degrees of freedom, the Meyer—MillstM)
Our previous work on thermal rate constdii$ corre-  yersion of this approach gives the following classical Hamil-

sponded to the case of being the Boltzmannized flux op- tonian for the electronic X,p)={x;,p;}, i=1---N and
erator nuclear Q,P) degrees of freedofassumed for simplicity to
be Cartesian

A=e BH2Eg=BHI2 (2.14 p2

andB being the projection operator onto products with
N
B=h(q), (2.15 Hel(x,piQ)= 2, Hii(Q)z(x(+p{~1)
N

whereh(q) is 1(0) for coordinatesg on the productreac- n H. - DD 1
tand side of the dividing surface which separates reactants iqzl (QOXFpiby), (310

and products.

It is clear from both Eqs(2.7) and(2.12) that this LSC-
IVR includes quantum effects only via the Wigner functions
of the initial and final states; all the real time dynamics is
purely classical. This fact manifested itself in our earlier

where H; ;(Q) is a diabatic electronic Hamiltonian matrix
that depends parametrically on nuclear coordingesmd is
assumed to come from a quantum mechanical electronic
structure calculation(We note that Stock and ThdSshave
work on thermal rate constaffsin that quantum effects recentl_y shown t-hat tbis Hamiltonian can also be qbtained by
extending Schwinger’s angular momentum formalism to the

were well descnbe;d foshort tlmg but the longer time dy- N-level case. MM used this Hamiltonian to carry out clas-
namics was that given by classical rather than quantum me-

chanics. Whether or not this is adequate will depend on th%ICaI trajectory simulations, treating (.ele(.:t.ronlc an.d' puclear
o egrees of freedom on the same footing; i.e., the initial con-
application at hand.

Finally, we note that what we have called the LSC-IVR ditions for the nuclear and electronic degrees of freedom are

. . ."both sampled by the standard “quasiclassical” prescription
Irfé’teE?j.y(r?ézi(c):;IE?Héi}iléz')g"zg]'gg‘%miﬁrigégr;netlgytf?grprrrglq (integer values for the initial action variables and random

rate constants, for example, it is very similar to a SC ap_angle variables histogramming the final action variables to

T 2 obtain final electronic and nuclear quantum states. ifhe
proximation put forth many years ago by one of ?ds. . . )
3 . . i 2 . . electronic state, for example, corresponds to action variable
Heller”® has given a particularly illuminating discussion of

=1(x24+p2— i i-
this type of “Wigner overlap” approximatioriand its limi- N =z (x+pj ~1) equal to one, and all other action vari

tation9 and used it for photodissociation. Lee and Scdlly abl_esnj=0 (1#1). [itis easy to show tha_t W'th. the H§m|l-
. ) . . tonian of Eq.(3.1) the sum of the electronic action variables
have used it to treat inelastic scattering. More recentlyis a constant of the motion, i.e.dfdt) =N ,n ()=0] A
Filinov®® has presented an approach for evaluating time Cor\_/ariet of apolications usi,n. .this mic?ollell w_eré Lite
relation functions that starts with the Wigner transform of thesucce)gsfup PP 9 q
guantum trace expression, the lowest order approximation is More recently, two of % showed how this classical

13 “ )
Eq. (2.12. Pollacket al. “have presented a "quantum tran electronic-nuclear model could be implemented at the SC-

sition state theory” that utilizes this expression also. TheIVR level of description, and calculations using the full SC-

reason we have emphasized t'hat the regult IS qbtalned lW/R gave excellent results for Tully’s electronically nonadia-
linearizing the SC-IVR expressidieq. (2.2)] is that it sug- o = o) problems. Stock and Thtsslso carried out
gests immediately how one can improve the LSC-IVR: e'g'SC-IVR calculations using Eq3.1) for the case of a two-
by keeping higher order terms in the expansioniigq and ) : . .

: . . level system coupled to one harmonic oscillator, also obtain-
Ap, or simply by eyaluatmg the full SC-IVR expression nu- ing ex?:/ellent agr%ement with quantum resulideyer and
merically. Indeed, in our own recent workwe saw that the Miller,® in fact, also noted that the model could be imple-
full SC-IVR describes quantum effects in the flux correlationmentéd semiciassically and gave some results of this using
function to significantly longer times than the more apprOXi_“classical S-matrix” theory® p.e., the stationary phase limit
mate LSC-IVR. A more conventional treatment of quantum A

of the SC-IVR) All that is needed to apply Ed2.2) of the

correctiond® to the time evolution of the Wigner function . . o ) )
leads toadditive corrections of ordeh2 but these cannot previous section are the initial and final electronic-nuclear
’ wavefunctions, which are of the form

describe quantum interference and tunneling behgemthe
full SC-IVR can. Wi n(X,Q)=D;(X) xn(Q), (3.2
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the nuclear wave functiog,(Q) is as before, and the elec- needs the Wigner functions corresponding to initial and final

tronic wave function for stateis wave functions of the form in Eq$3.2) and(3.3), and it is
\ easy to see that they are given by
() =dy(x) I o)), (3.33 pin(%.P,Q.P) = pfl(x,p) pn(Q.P), (3.6
j=1j#i

where the electronic factor is especially simple
where ¢y(x) and ¢4(x) are the ground and first excited har- N
monic ogqllator wave functions, respectively; thus one has ey p)=2(N*1D(x24 p2— %)exr{ —> (X+pd
the specific form

(3.7
1\ N4 N1 Fi it i i )
o - _ _ L2 inally, it is useful to remind the reader of the connec
CD'(X)_\/E( 77) Xi exp{ gl 2%k | (3.3 tion of the present approach to the “mixed quantum-

classical’®®=%? (or semiclassical time-dependent self consis-
The model of the electronic degrees of freedom is thus thagent field, SC-TDSCF model that is popular for treating
of a harmonic oscillator for each electronic state;itheelec- nonadiabatic molecular dynamics. As has been noted
tronic state corresponds to one vibrational quantum istthe before® the classical equations of motion generated by the
mode, with all the other modes being in their ground state. MM Hamiltonian [Eq. (3.1)] are equivalent to the time-
Though the construction of this nuclear-electronicdependent Schdinger equation for the electronic degrees of
Hamiltonian in Eq(3.1) was motivated by the desire to have freedom, the time dependence coming from the classical mo-
aclassicalmodel that treated the electronic and nuclear dy-ion of the nuclear degrees of freeddmhose trajectory is
namics on an equal footing, it is important to note that thedetermined by the Ehrenfest average fordbese are the
quantum mechanical Hamiltonian operator corresponding tgame equations of motion as in the mixed quantum-classical/
Egq. (3.1) is an exact representation of thequantum SC-TDSCF model. However, the way the boundary condi-
electronic-nuclear dynamical system. This is easy to see beions are imposed makes the models different. In the usual
cause the matrix of the "electronic” Hamiltonian operator implementation of the mixed quantum-classical/SC-TDSCF
|3|el of Eq. (3.1 approach, for example, a given classical trajectory begins in
one electronic state but ends up in a mixture of states. The
N N Lo np quasiclassical implementation by MM assigns each trajec-
HeIEiZE1 Hii(Q)z (X +pi—1) tory to a particular final electroni¢and nuclear state by
histogramming the final electroniand nuclearaction vari-
N A ables; this makes the approach more akin to the surface-
+i<12:1 Hi j(Q)(XiX;+pip;), (3.4 hopping model in that a given trajectory is assigned to only
one final electronic state. The SC-IVR imposes the initial
in the basig®;(x)} of Eq. (3.9 is the original diabatic elec- and final state boundary conditions on the equations of mo-

tronic matrix, i.e., tion through the initial and final wave functions of the elec-
tronic and nuclear degrees of freeddan via the initial and
<‘bi||:|e||q’j>:Hi i(Q), (3.5  final Wigner functions in the approximate LSC-IVR ver-

sion), and as noted above, if the Hamiltonian of E§.1)
as can be easily verified by using standard harmonic oscillawere implemented fully quantum mechanically, one would
tor matrix elements. Furthermore, the total electronic quanhave an exact quantum description of the process. The point
tum numberEiN:lni is conserved by:lel (just as the sum of of view of all of our Work, Starting with that of MCCUrdy
the action variables is classicallyso that theN states|®;) et al,”® is that the Hamiltonian of Eq(3.1) allows one to
have no matrix elements with any other oscillator states. treat the electronic and nuclear degrees of freedom on an
We also note the interesting property that if the dynam-equivalent dynamical footing, be it done classically, semi-
ics is such that the nuclear trajecto®(t) does not depend classically, or fully quantum mechanically.
on the electronic degrees of freedom—e.g., because of high
nuclear kinetic energy, weak coupling, etc.—then the SC-
IVR treatment of the electronic transition probability will be IV. TEST APPLICATIONS
exact This is because the electronic Hamiltonian in this case, Here we apply the LSC-IVR, Eq$2.7) and (2.12), to
He(x,p;Q(t)), is a time-dependent quadratic Hamiltonian, several examples to test its accuracy.
for which the semiclassical approximation of E@.2) is
exact. This is a bonus for the SC-IVR, so that to the exten
that the nuclear trajectory is not effected much by the elec- The first example is the set of three orfeucleaj di-
tronic degrees of freedom, it will be especially accurate. mensional two (electronig-state scattering problems that
The purpose of the present paper is to apply the simpliTully'* used several years ago to test his “fewest switches”
fied approximate version of the SC-IVR, i.e., the LSC-IVR version of the surface-hopping model for electronically
result given by Eqs(2.7) and (2.12), to the MM model of nonadiabatic dynamics. Two of us also recently ddbdse
electronically nonadiabatic processes, to see if it is capablmodel problems to test the full SC-IVR of Sec. Il for treating
of describing them to a useful degree of accuracy. One thuthe MM model of Sec. Ill. We thus refer the reader to Refs.

tﬂ\. One-dimensional two-state scattering problems
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FIG. 1. The adiabatic potential curvésolid ling) and the nonadiabatic ~FIG. 2. The transmission probabili;. , as a function of the initial mo-
coupling (dash ling for the three model scattering problems discussed inmentum P, for the single avoided crossing case. The solid lines are the

Sec. IV A. (a) Single avoided crossing. The nonadiabatic coupling is re-exact quantum results and the points are the LSC-IVR redalts=1, (b)
duced by a factor of 60(b) Double avoided crossing. The nonadiabatic j=2.
coupling is reduced by a factor of 1&) Extended coupling.

14 and 9 for the specifics of the models and here give only A=lxdiixdil, 49
the new features relevant to applying the LSC-IVR to it.  B=|¢;)(¢;|h(Q). (4.5
Figure 1 shows the two adiabatic potential curves for thes
three cases.

Equation(3.1) gives the Hamiltonian of the system, with

q’he Wigner functions corresponding to these operators are
easily found to be

N=2 electronic degrees of freedom and one nuclé&ans- AW(Q,P,x,p)=p(Q,P)pf(x,p), (4.6
lational) degree of freedontQ,P). The initial nuclear wave o
function is a minimum uncertainty wave packet Bw(Q,P,x,p)=h(Q)pj(X,p), 4.7
y\ 14 , wherep(Q,P) is the Wigner function for the initial nuclear
x(Q)= ;) e~ (Y2 (Q=Qo)"+iPoQ/h (4.)  wave function of Eq(4.1)
p(Q,p):2e*7(Q*Qo)2*(P*Po>Z/7h2, (4.8

with the initial positionQ, far to the left of the interaction
region in Fig. 1 and initial momentuR,>0. The quantity and {pie'(x,p)}, i=1,2 is given by Eq.3.7) for N=2. In

of interest is the transmission probability to the right actual calculations, these Wigner distributions allow natu-
asymptotic region for each final electronic stpt@s a func-  rally for Monte Carlo importance sampling which we have

tion of the initial momentum, which is given by used for the results presented below.
o I Figure 2 shows the transmission probability from initial
P;_i(Pg)=lim f [{#;.Qle™ M| x¢)|2dQ. (4.2 electronic state one to each of the two final electronic states
t=e 0 for the first test case, which corresponds to a single avoided

crossing[cf. Fig. 1(@)]. The agreement between the LSC-

This can be written equivalently as -
IVR results of Eq.(2.12 and the exact quantum mechanical

Pi_i(Po)= Iimtr[|X¢i>(X¢i|eiﬁ”ﬁ|qﬁj) values is quite good for all energies except those close to the
t=e threshold region. Here, quantum mechanical effects such as
~ ~iA tunneling through the crossing area are more important, and
) iHt/A
Xh(Q)<¢l|e 1 (4.3 the classical dynamics in the LSC-IVR is less able to de-
so as to be in the form of E¢2.12 with scribe this behavior quantitatively.
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10 third case, that with an extended coupling regjeh Fig.
1(c)]. Since the diabatic states are very close in energy, the
08 | transmission probabilities are essentially identical for both
final states. This was the case for which Tully’s surface-
06 | hopping approach gave unphysical oscillations in the trans-
- mission probability. The LSC-IVR results do not exhibit this
n-"M | problem, and they do not reproduce the sharp steplike struc-
) ture in the quantum values fd?y~25 a.u. They do, how-
ever, give the correct magnitude of the transmission prob-
021 ability over the whole energy range.
The linearized approximation to the SC-IVR, i.e., the
0.0 : : : . LSC-IVR approximation of Eqs(2.7) and (2.12), is thus
o seen to do a reasonably good job for these three model prob-
’ lems which have quite different dynamical features. The re-
sults are not quite as good as our previous dmesing the
081 (b full SC-IVR, but the present LSC-IVR calculation is much
easier to carry out than the former.
0.6 |
2 04l B. The spin-boson problem
The next test problem we consider is the so-called spin—
02 | boson problem® which also consists oN=2 electronic
states but where the nuclear degrees of freedom are an infi-
0.0 M . nite set of harmonic oscillators. This is about the only ex-

-0 =30 ‘“}JO (E)“-" 0.0 10 ample of a system with many degrees of freedom for which

. accurate quantum mechanical results are available to serve as
FIG. 3. The transmission probabiliy;. ; as a function of the log of initial & benchmark for approximate treatments. It has often been
energyE = P3/2m for the double crossing case. The solid lines are the exactused as a model for two interacting electronic states in a

quantum results and the points are the LSC-IVR res@sj=1, () j  condensed phase medium, e.g., a radiationless transition or
=2. . L .
electron transfer process in a liquid, a solid, a cluster, or a
protein.

Figure 3 shows the same plots as Fig. 2 for the second The specific form of the 22 diabatic electronic matrix

version of the model, the case of two avoided crossing reti,j(Q) in this case is
giops [gf. Fi'g. 1(b)], where the possibility of Stuckelberg A Hi(Q) HiAQ)
oscillations(i.e., interference effects between the two cross- Hg(Q)= Hy(Q) Hy(Q)
ing regions arises. The LSC-IVR is seen to describe this 2t 22
interference behavior quite well. The most significant error is (Vo(Q)+V1(Q) A
again seen to be in the low-energy threshold region. =

d N o A Vo(Q)~V4(Q)

Finally, Fig. 4 shows the transmission probability for the
where the off-diagonal electronic couplidgis independent
of nuclear coordinates, and

) , 4.9

F
1
0.90 22
Vo(Q)= 2 5 miQf, (4.108
0.80 | k=1
070 i F
0.60 |- 1 V1(Q)= kzl CkQx - (4.10b
0.50 |
. . o Jo 0 The total Hamiltonian of the spin—boson model
0.40
F 2
0.30 ~a k ~
H=1 — +Hq(Q), (4119
0.20 | i k=1 2mk
010 1 is typically expressed as
0.00 - . ~ ~ ~ ~
10.0 15.0 20.0 25.0 30.0 =
Initial Momentum (P,) H=H 01 + Vl(Q) Uz+ AO-X (4llb
o . . - where
FIG. 4. The transmission probabilify;_; as a function of the initial mo-
mentum P, for the extended coupling case. The solid lines are the exact F E
qua_ntum results and the points are the LSC-IVR results. These results are Ho= 2 —+Vy(Q), (4.12
for j=1 and 2. k=1 2my
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and o, and o, are the Pauli spin matrices. The dynamics of .1 —B(Hg+Vy)

the spin—boson model is fully specified by the combination A= Z_be oI, (4.18
of the coupling parametefs,} and the distribution of fre-

guencies that define the spectral density) Bzf}z:(|1><1| —[2)(2]), 4.19

2
c .
Iw)= T > S(w—wy), (413  so that Eq(2.12 give D(t) as
2 K My wy

1
a common choice for which is the Ohmic case with expo-D(t)= Wf dxodpof dQOdPOWZ(Qo,Po)p‘f'(xo,po)
nential cutoff (27h)

)= pae—lee. 414 X[pF(%: PO = p3 (%P, (4.20

This model is thus completely specified by the cutoff param-WPe(LeWV;IE(Q*P) s the  Wigner transform  of

eter . and the coupling coefficieny (or more frequently € PRo=Y][Zy(2h) "]

the Kondo parametek=2#/ ). F
We examine two relevant dynamical quantities of inter- = @.p=1I tanh( Bh w\/2)

est for the spin—boson model: The first is the time-dependent B k=1 Th

electronic population, defined as =
2 tanl(,[;’ﬁw /2
Xex E —k )

1 A -
D(t):Z_btr[e—B(Ho+V1)|1><1|elHt/ﬁO,Ze—|Ht/ﬁ] k=1 ﬁwk
P2 1

2
+ —mywi| Qx S
>+ sMw +
2mk 2 k®k k mkwﬁ

:Eb—l(t)_EZ—l(t)! (415) X

where the initial electronic state j&) with the nuclear de- ol . ) .
grees of freedom in Boltzmann equilibrium for the nuclear@1dPn(X.P) |s£he Wigner transform df)(n| already given
Hamiltonian  of state 1, Ho+V, (Z,=tf|1) NEAGD(n=12). _ _
X<1|efﬂ(Ho+V1)]); the second quantity is the spin correla- For the spin-correlation function of E¢4.16), the situ-
tion function. defined as ation is slightly more complicated. In this case the operators

A andB of Eq. (2.12 are

] (4.21

C(t)=Re %tr[e*BHfrze‘H”ﬁ&Ze*i”“"], (4.1 R
A= Ze—ﬁHoz, (4.22
where the bath and the two-level system are both in thermal
equilibrium, andZ is. the total partition functi.o_n of the sys- B=o 4.23
tem and bath. The literature on these quantities for the spin— z
boson model is vast: Mak and Chandifor example, per- one needs to find the Wigner transformAf It is not pos-

formed a systematic study of the spin-correlation function ible to obtain this quantity exactly without a fully quantum
for a wide range of parameters to determine, among othet . 4 Y y withot ya .

. ) o calculation, but a reasonable approximation can be obtained
things, the coherent—incoherent transition boundary. The

. . L i
also studied the temperature dependence of the decay rate®df USing & split operator type approximation tor?

C(t) for several sets of parameters. Magtial >3 performed
calculations of the time-dependent electronic population als%X —B(Ho+Vy) —BA )
using path integral methods. These are the primary results to —BA —B(Ho—V)
which we shall compare the LSC-IVR approximation. ~B(Hg+ V) 0 0 _BA
For the spin—boson Hamiltonian in E@t.11), the MM %(e )exp( B )
Hamiltonian of Eq.(3.1) is easily found to be 0 e AlHo~V1) -BA 0O
F ﬁ 1 efﬂ(HOJer)COS}'(IBA) _eB(HOJer)Sin"(BA))
— 22 = .
H(X,D,Q,P)—gl [Z_mk + 5 Mo Q —e AHo~Vigin BA) e PHo~Vilcosi BA)
1 F (4.24
+-(xX3+p2-x3-pH) D ¢ -
2( 1P pz)k§=:l R The trace ofe™ ", which is the partition functioi, is then
+A(X1Xo+ P1P2). 4.17 F cﬁ
= —BHo
It is also immediately clear how to apply the LSC-IVR ap- Z=2costipa)ti(e )ex;{ +'8k21 2mewi |’ 4.29

proximation of Eq.(2.12. For the time-dependent electronic

population of Eq(4.15), the operatoré andB of Eq. (2.12) Multiplying by o, and writing everything in the basis set
are representation, one obtains
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e o,
e Aot VilcoshBA)
—e Ao~ Viginh BA)
=e AHo"Vicosh BA)|1)(1]
+ e AlHo Visinh BA) |1)(2]
—e Ao~ Visink( BA)|2)(1]
—e PHo~Vilcosh BA)[2)(2],

e PHo*Visinh BA)
_ eiB(HO?Vl)COShiﬁA)

(4.26
so that the final result for the Wigner transform of

e ARG, I[Z(27h)F] is

1
(277—ﬁ)FAW(X, p.Q.P)

=W} (Q,P)[cosh{BA)p'(x,p) +sinh(BA) p3H(x,p) ]
— W, (Q,P)[sinh( BA) p5i(x,p)
+cosBA)pS(x,p)], (4.27)

where p$), and p$) are the Wigner transform dfL)(2| and

12)(1]

pSo(X,p) =2%(x,—ip1) (Xp+ip2)

xex — (G +x5+p5+p3)], (4.29
pgll(X,p) = 23(X1+ip1)(X2_ |p2)
xexf — (X7 +x5+p5+p3)], (4.29

andWE(Q,P) is given in Eq.(4.21). The final result for the
LSC-IVR approximation taC(t) is, therefore

1
C(t)=Re WJ dXodpoJ dQodPo{W, (Q,P)

X[cosh BA) pS'(x,p) + sinh( BA) pSy(x,p)]

— W (Q,P)[sinh( BA) pSi(x,p)

+cosh BA) pS(x,p) I pS'(X; ,Pr) — p5'(X¢ Py ]
(4.30

Equations(4.20 and (4.30 are the final LSC-IVR expres-
sions forD(t) andC(t).

For comparison, Stoc¢krecently carried out calculations
for D(t) using the mixed quantum-classical/SC-TDSCF ap

proach, where the electronic transition between the two-level?

system is treated quantum mechanically but the bath i
treated classically. This approximation givig¢t) in a form
similar to Eq.(4.20,

1 2m
D(1)= 5| "do | dQudPoW; (Qo.Po

X[p1Px b)) — P32 (x Py, (4.3
where p15°F is the probability of being in state 1 or 2. In

our language, these probability functions are

Sun, Wang, and Miller 7071

1.0

(a)
05

D)

0.0 |

5.0 10.0 15.0 20.0

1.0

(b)
05 | 1

0.0 |

D(t)

2.0 3.0 4.0
tA

1.0

FIG. 5. The time-dependent electronic populatibr{t), for two different
parameter sets, showirig) coherent oscillatory behavior arfb) incoherent
relaxation behavior. The solid lines are the LSC-IVR results and the points
are the exact path integral results. The cutoff frequency s 2.5A. (a)
a=0.09, BA=5.0. (b) «=0.09, BA=0.1.

TDSCF, TDSCF,
1« (

(22 2 2
2 (Xt,P) = (X1 +Pp1,— X3 —P3)

(4.32

and the initial conditions of the electronic trajectories are

p Xt,Pr) —p

X1,=C0g 6),
p1,=sin(6), 433
X20: p20:0, (434)

where thef ranges from 0 to 2. It is clear that this is very
different from our present approach.

Figure 5 shows the decay of the time-dependent elec-
tronic population,D(t), for a “coherent” (i.e., oscillatory
case, Fig. &), and also an “incoherent’(nonoscillatory
ne, Fig. 8b). The LSC-IVR results are seen to be in excel-
ent agreement with Makret al’s® accurate quantum re-
gults, showing that the LSC-IVR captures the essential fea-
tures of the dynamics in both these cases. This also makes it
clear that the oscillatory nature in the coherent cdsg.
5(a)] is of classical rather than quantum mechanical origin.
For stronger couplings, i.e., larges, the LSC-IVR results
begin to deviate somewhat from the quantum results, as
shown in Fig. 6. However, the differences are still modest,
and the LSC-IVR is in somewhat better agreement with the
quantum results than the mixed quantum-classical/SC-
TDSCEF results obtained by Stock.
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FIG. 6. The time-dependent electronic populati@(t), for higher cou-
pling parameters, comparing the LSC-IVR resiéslid line) and the mixed 0.0 o5 1.0 1.5
guantum-classical/SC-TDSCF resultiashed lingwith the exact quantum At/n
results(pointy. @=2.0, w.=1 andB3=0.25.(a) A=0.8. (b) A=1.2.

1.0

Mak and Chandléf studied the behavior of the spin
correlation function,C(t), for a variety of different param- 05T .
eters and determined the boundary between coherent and in- ’
coherent behavior. Figure 7 shows the results obtained from o o
the LSC-IVR expression, Eq4.30), for three coupling val- g oof
ues that span this boundary. One observes reasonably good
agreement of the LSC-IVR results with the correct quantum
values in all these cas€The approximations made to the -05
Boltzmann operator, Eqs(4.24—(4.27, to obtain the
Wigner function for the operator in Eq4.23 thus appar-
ently cause no significant errphe results of the LSC-IVR -0} : 1
are actually somewhat better than the “noninteracting blip Atz
apprOX|mat|pn’34 for treatlng.the Sp",]_boson prObIem' FIG. 7. The spin-correlation functiorG(t), for increasing values of the

If coupling to the bath is sufficiently large, theD(t) coupling, showing the transition from the coherent to incoherent relaxation.

exhibits exponential decay for the short time regime, i.e., ».=2.5A, =2.5A. (@ In the coherent relaxation regime,=0.13. (b)
—t/r Near the coherent—incoherent boundary; 0.25. (c) In the incoherent re-
C(t)~Ae ) (4.39 gime, «=0.64. The solid lines are the LSC-IVR results and the points are
the exact path integral results.

so that one can define a rate constant for transitions from
one state of the two level system to the other. Figure 8 shows

the results given by Eq4.30 for 7 as a function of tem- 4yt 4 more complete quantum calculation for the Boltzmann
perature for the parametets=0.64, w=2.5A. The decay gperator in order to obtain the Wigner function for the op-
rate exhibits the correct inverse power-law dependence Ogrator in Eq.(4.23, but this is not central to our present
temperaturer~T?, and the LSC-IVR results are essentially discussion of the LSC-IVR.

in quantitative agreement with the exact results of Mak and

Chandler. For higher coupling values, however, the proce:
dure outlined in Eqs(4.24—(4.27) for obtaining the Wigner V. CONCLUDING REMARKS

transform involving the Boltzmann operator is not valid, so  As shown previously, the semiclassical initial value rep-
we will not consider this regime. One could, of course, carryresentatio(SC-IVR, summarized in Sec.)ltan be general-
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