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This series of papers is concerned with the derivation of the equations of the classical pic-
ture of atomic collisions,

ik „dg(t) =Q hi—~(t)d~(t),
d

f
which describe the "time" dependence of electronic-quantum-state amplitudes as the nuclei
move along a classical trajectory. These equations are derived in two ways. In the first
formulation, which coincides with the intuitive classical picture of the collision, the nuclear
part of the wave function is treated as a superposition of narrow wave packets, each traveling
along a classical trajectory. In the second formulation, a semiclassical approach is used.
The validity and meaning of the two formulations are discussed and compared.

I. INTRODUCTION

A. Objective

It is possible to achieve a simple and accurate
theoretical description of many atomic and molecu-
lar collisions by treating part of the system classi-
cally or semiclassically, and the remaining part
quantally. We consider primarily the case of dis-
crete electronic excitations in slow atomic colli-
sions, but this approach often can be applied to other
processes as well: For example, under appropri-
ate conditions, vibrational or rotational excitation
of molecules may be treated in the same way. This
is the first in a pair of papers on the validity and
meaning of such descriptions. In a separate series
of papers, we are considering their application to
the potential-curve-crossing problem.

In a full quantum-mechanical description, atomic
collisions are described by the Schrodinger equa-
tion

H(R, r)4(R, x', t) = ih —4 (R, r, t)

H(R, r) = —(h /2M) V„+ V,„,(R) + h(r, R),
It(r, R) = —(S '/2)x)V„+ V„(r) + V„,„,(r, R) .

(2)

If the wave function is expanded in terms of a dis-
crete basis (P„(r, R)}; which spans the space of
electronic coordinates and nuclear angle variables,
the result is a set of coupled equations for the nu-
clear wave functions2

1/n
i

1 —. +v(R) +1V, ,(R)

with

r „.(Rl= )d(r, R)(-N ) d„(r, R)drdO,

together with the usual outgoing wave boundary con-
dition. Here the electronic coordinates r, are col-
lectively denoted by r, and the nuclear coordinates
R, by R. In this condensed notation, the Hamilto-
nian is
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g „(R)= fp„*(r, R)h(r, R)p, (r, R) dr dQ . (4)

The integration here extends over the full space of
electronic coordinates and nuclear angles, leaving
only the scalar internuclear separation as the in-
dependent variable.

Among the simplest possible basis sets is one
formed by products of atomic orbitals for the elec-
trons and spherical harmonics for the nuclear
angles. These have the property that the matrix
v(R) vanishes identically for all R. An alternative
set is based upon Born-Oppenheimer molecular
wave functions, for which h(R) is diagonal, and in-
elastic coupling is contained in v(R). It should be
emphasized that considerable sophistication is re-
quired in choosing a basis set, even for seemingly
simple situations. ' In this paper, we use a gen-
eralized representation in which coupling can be
due either to p(R) or h(R) or both. This transcends
the question of whether a diabatic, adiabatic, or
some other representation is more appropriate to
any given situation.

Let us now consider the following classical Pic-
t~y'e of a collision. Assume that the nuclei move
along some classical trajectory R(t), with their
positions and momenta well defined at every in-
stant. The internuclear and nuclear-electronic
potentials are then time dependent because of the
motion of the nuclei. Therefore, the electronic
wave function must satisfy the time-dependent
Schrodinger equation

After expansion in a discrete set of electronic wave
functions, this equation takes the form

where h „(f)=h (R(t)), as in Eq. (4), and

We refer to Eqs. (5) and (6) as the "equations
of the classical picture, " or as the "classical-
trajectory equations. " The objective of these papers
is to derive these equations from the quantal
equations (3), displaying explicitl) all a,ssumptions
and approximations. In this paper and the follow-
ing one, the classical-trajectory equations are de-
rived by several different arguments. These argu-
ments are based upon different assumptions and
approximations, and, correspondingly, they lead
to different levels of interpretation of the equa-
tions. Our main concern is with the validity and
meaning of the different derivations, and their
relationship with one another.

The first derivation in this paper is based upon

a classical-wave-packet description of the colli-
sion. In this description, the initial state is taken
to be a superposition of microscopic wave packets„
each of which is very small compared to the size
of the interaction region. Analysis of the motion
of these packets shows that they obey a classical
equation of motion and that the classical-trajectory
equations are valid provided that certain conditions
are satisfied. These conditions are precisely
strong enough to imply that the packets could (in
principle) actually be observed moving along the
classical trajectory. Thus, we derive the classi-
cal picture itself.

In the second derivation, we use a semiclassi-
cal approach to obtain the classical-trajectory
equations under weaker, more general assump-
tions, which do not imply that the system actually
follows the trajectory. A remarkable result fol-
lows from this derivation: The classical-trajectory
equations are valid more generally than the classi-
cal picture of the collision.

B. Perspective

The classical-trajectory equations were apparent-
ly first suggested by Mott, ' and they have become
the most commonly used formulation of inelastic
heavy-particle collisions. Recently, there have
been several attempts at rigorous derivations of
these equations, and we will try to display the rela-
tionships between them.

The narrow-wave-packet approach to single-
channel processes goes back to Ehrenfest, and it
is discussed in all textbooks on quantum mechanics.
However, it is not generally appreciated that the
conditions required for the validity of the approach
are very severe —an order of magnitude more
severe than the conditions for the validity of the
semiclassical approximation —and many mis con-
ceptions on this point still persist. The most de-
tailed and complete study yet undertaken of the mo-
tion of wave packets is being carried out by Lebed-
eff. On the other hand, we feel that these papers
do not make clear the severe restrictions on the
validity of the approach. The first attempt to de-
velop a wave-packet theory for multichannel colli-
sions was made by Mittleman, by the use of a vari-
ational principle. While many of his results are
correct, the omission of some critical steps led to
an incorrect statement of the validity of the theory.
More recently, Corrigall, Kuppers, and VYallace
have independently postulated (but not derived) the
trajectory equations that result from the wave-
packet theory, and they are using them to numeri-
cally study certain low-energy collision processes.
For those cases, the trajectory equations being
used cannot be proved to be valid.

The narrow-wave-packet formulation can be very
misleading because if it is applied under inappro-
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priate conditions it introduces complications which

are irrelevant and unnecessary. The wave-packet
theory s~gesfs that the appropriate trajectory for
inelastic collisions is that of the center of mass of
the wave packet; it also suggests that certain cor-
rections should be applied because of the energy
of localization and the spreading of the packet.
Before we understood the severe limitations of such
a theory, we tried to apply it to a calculation of
the 2p excitation of hydrogen atoms by protons at
30 eV, for which we had done an exact quantum
calculation. ' We found that the center-of-mass
trajectory was not the best one, and that attempting
to introduce the refinements suggested by the nar-
row-packet theory only made results worse.
This illustrates the fact that narrow-wave-packet
concepts have very limited applicability (to high
energies only) and extrapolations to low energies
based on these concepts must not be made. We
here present a brief account of the narrow-packet
formulation of the classical picture in order to
contrast it with alternative and quite distinct deri-
vations of the classical-trajectory equations, and

thereby remove previous misconceptions; we do
not believe that the packet approach leads to use-
ful results.

The limitations of the classical picture (i.e. ,
wave-packet approach) were previously discussed
briefly by Coulson and Zalewski. Recognizing
that the classical picture itself is not valid at low

energies, they incorrectly concluded that the equa-
tions of the classical picture are likewise not

valid, and they proposed a different formulation
that is less satisfactory than the trajectory de-
scription. But, by use of a semiclassical formula-
tion, we will show that the classical equations are
valid much more generally than the classical pic-
ture.

The first attempts at semiclassical derivations
of the classical-trajectory equations were made by

Breit and Gluckstern' and by Lawley and Ross, '
but their arguments are little more than ex post
facto rationalizations. Derivations involving the

assumption of rectilinear trajectories have been
given by Wilets and Wallace and by McCarroll and

Salin; however, the classical-trajectory formu-
lation is valid much more generally than the recti-
linear approximation. ' " More satisfactory deriva-
tions have been obtained independently by Cross,
Bates and Crothers, Knudson and Thorson, and

Child. However, we feel that these presentations
have not made clear either the conditions required
for their validity, or the implications of the semi-
classical conditions for the interpretation of the
equations. As a result, misconceptions have per-
sisted about the accuracy of the equations as well
as about their meaning.

In particular, a major objective of much prior

work has been the determination of the best possi-
ble nuclear trajectory —ideally, one which con-
serves the total energy and angular momentum of
the system. '~ But we will show that such considera-
tions can be rigorously justified only when the
corrections they introduce are unimportant; i.e. ,
they cannot be proved to be valid unless they are
unnecessary. All the derivations of the classical-
trajectory equations [Eqs. (5)] implicitly assume
that the various possible trajectories differ only
slightly from each other, at least where inelastic
coupling is important. We believe that the goal of
determining in general the "best" mean trajectory
cannot be achieved. For the existing derivations of
Eqs. (5) a significant variation of the results with
the choice of trajectory would make the derivations
themselves not valid.

II. WAVE-PACKET DERIVATION OF
CLASSICAL-TRAJECTORY EQUATIONS

A. Philosophy of Derivation

For an idealized scattering process, the initial
state can be regarded as an incoherent superposi-
tion of wave packets, each of which is the wave
function for a single particle. On the macroscopic
scale of the experimental apparatus, these packets
are well-enough localized that they initially have
negligible interaction with the target. However,
it is easy to show~0 that these individual packets
are very large on an atomic scale: typically 10
or more atomic diameters. Thus, on an atomic
scale, the actual time dependence of an incident
wave packet is negligible, and the spatial depen-
dence is that of a uniform plane wave. The funda-
mental result of the so-called "formal theory of
scattering" is that the results of collisions can be
precisely described by treating the macroscopic
wave packet as if it were a stationary fully de-
localized eigenstate of the Hamiltonian.

The classical approximation is directly related
to the intuitive classical picture of the collision.
We may regard the macroscopic wave packet (or
delocalized eigenstate) as a coherent superposition
of microscopic wave packets, each of which is very
small compared to the potential field. As these
microscopic packets evolve, the expectation values
of the position and momentum operators obey the
equations

—R(t)=, —P(t) = F(R) =F(R),d — P(&) d-
dt M dt

so the expectation values of operators over a wave
packet obey the classical equations of motion pro-
vided that the packet width is small compared to the
distance over which the force changes appreciably.

Our derivation of the classical-trajectory equa-
tions follows a completely analogous approach, in
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which the central assumption is that the wave func-
tion can be divided into microscopic packets which
do not spread appreciably. Afterward, we will
examine this assumption more closely.

B. Notation and Preliminaries

For our purposes, Eq. (9) can be regarded as
equivalent to Eq. (6); (9) is the form we will de-
rive.

The complete density operator for the quantum
system of nuclei and electrons is

p (t) =d(t) d'(t), (6)

We need not be concerned with details of the
motion of packets, but only with the expectation
values involved. Accordingly, it is easier to carry
out the derivation using a density-operator formula-
tion.

From Eq. (6), let us define a "classical" elec-
tronic density operator (for quantal electrons and
classical nuclei)

p= l~&(~l, (io)

p(R, R', t) = u(R, t)u'(R', t) .

The equation of motion for the abstract density
operator is, of course,

and, in the general representation discussed above,
the density matrix is

which obeys the equation

„~p(t)= [lh(t) —~(t)]; ~p(t)] . (9)

I

8
i@—p = Ilp —pH,

8g

and in the matrix form,

8 ~ 1 . Lf
2

ih
8

p(R R' t)=
2

—ihl R+r(R) +1V .(R)+h(R) p(R R'. t)

1 d—p(R, R', t) ill, + v(R') +1V,„,(R')+h(R'), (13)

where, in this expression, d/dR' is considered to
act toward the left.

A few words about the momentum and kinetic en-
ergy operators may be appropriate. In a situation
involving no coupling between electronic levels,
the three-dimensional momentum operator is
—iSV~; when a single partial wave is considered,
it is customary (though sloppy) to refer to —ik&/&R
also as a momentum operator. When many elec-
tronic levels participate, this same operator be-
comes 1(—its/sR) if the electronic basis is R inde-
pendent, or P= [1(-ih s/8R)+v(R)] if the electronic
basis is R dependent. It follows that the expecta-
tion value of the operator of interest is

p„(t) = fdRp(R, R, t') .
We will show that if the wave packets are narrow
throughout the collision, then p, (t) =g, (t). There-
by we will establish the validity of the classical-
traj ectory equations.

C. Derivation

Once we have made clear the basic motivation
and strategy, the actual derivation is trivial. The
equations of motion for the average position and
average momentum of the wave packet are

dR R[H, p] [R, H]p

dP(t)=Z l dRdR' 6„. -ia- +v, ,(R)
&e J~ dB

XPq, (R, R', t) ll(R —R')}

=P(t) +v(t),l (14)

= Tr —i'll- +g R —. =P M,

dP [P, H]p T 1 dV, „, dh(R)

(16)

. where i) is the expectation value of —ihd/dR, and
f is the expectation value of the ~ matrix. We re-
fer to P(t) as the average momentum of the wave
packet, and we will show that it is related to the
packet speed.

Finally, let us consider the quantal electronic
density matrix, averaged over nuclear coordinates

.(R), L(R)1 p, (t)

The above relationships are exact. If the wave
packet is narrow, V,„,(R), h(R), and v(R) can be
expanded in a Taylor series about R(t), with the
result that
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Making use of the identity

[P, h(R)]= —ih +[v(R), h(R)] =tFF(R),. dh

where

F „(R)= ~P"( v„,„)p„di,

this becomes

It is easy to show that the force and the resulting
trajectory are independent of the electronic repre-
sentation, and that the trajectory conserves energy
and (in three dimensions) angular momentum.

We now show that within these same approxima-
tions, the electronic density matrix obeys the clas-
sical-trajectory equations (9). Starting from Eq.
(13) we integrate over the nuclear coordinate. The
part involving the electronic Hamiltonian matrix
gives

J [h(R)p(R, R, t) —p(R, R, t)h(R)]dR

= Tr., F(R) - V,„,(R)1 ~p., (t) . (16) =h(R)p, (t) —p, (t)h(R), (19)

The effective force on the nuclei is therefore equal
to the internuclear force at the center of the packet
plus the electron-nuclear force averaged over the
positions of the electrons. This is to be expected.

l

provided the width of the wave packet is small com-
pared to the size of the region over which h(R)
changes significantly. The terms involving V,„,(R)
cancel. The parts involving the kinetic energy
operator are more complicated:

2M dR d'R'p
—

g p(R R, t) 6(R —R')dRdR'+' —n(R) —p(R, R', t), p(R) R', t) v(R')

x5(R —R')dRdR'+ — p(R, R, t)+p(R, R, t) dR +2 Lv (R)p(R, R, t) —p(R, R, t)n (R)]dR .
2M dR — ' ' — ' ' dR

(20)

The term containing second derivatives vanishes.
In the second term, m(R) can be approximated by
v(R ), and —Ndp(R, R', t)/dR can be approximated
by g (t)p(R, R', t); this term then becomes approxi-
mately

(P(t)/M)[~(R) p, (t) —p, (t)v(R)] . (21)

(2&)

we see that (22) is equivalent to (9), and we have
derived the classical-trajectory equations.

D. Validity

Two assumptions were made in this derivation,
one explicitly and one implicitly. We explicitly

Again we have neglected terms of the order of the
width of the wave packet.

Now let us examine the order of magnitude of
the terms. The matrix elements of g are of order
8/ao, those of h(dv/dR) and v are of order (tt/ao),
while those of pv are of order (h /Xao). Since, as
we will show, a wave-packet theory necessarily in-
volves very short wavelengths, we may neglect the
last two terms in (20) and the second term in (16)
to obtain

N p„(t) =—[h(R), p, (t)]+ [v(R), p„(t)] .
(22)

Finally, noting that

bR(to) = (2LX) b,R(t) = (LX)

Taking L =ao, and since Ehrenfest's theorem re-
quires ER(t) «ao, we obtain the condition

(&/aoP" «1. (24)

The sam~ requirement can be stated in another
way: Clearly we require aR(to) «ao if the packet
is to behave classically near to; but, if it is to

I

assumed that the nuclear wave function could be
subdivided into microscopic wave packets which
remain small throughout the collision. We also
.implicitly assumed that when these wave packets
are summed at the end of the collision, the inter-
ference between them produces no effect; hence the
flux density is equal to the density of the individual
packets times their velocity. However, it turns
out that these assumptions are so restrictive that
the wave-packet theory is of little interest in atom-
ic-collision theory.

Let us first return to the case of single-channel
scattering. By deriving a differential equation for
the width of a wave packet moving in a potential, it
can be shown that the width is well approximated by
that of a free wave packet,

bR(t) = AR(to) (1+]La/2[DR(to)p])' ',

where L is the distance traveled by the Packet. bR(to)
may be chosen in such a way as to minimize aR(t);
the result is
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~emain narrow, the width in momentum space must
also be small, b,P«P. Since P=h/X and hP

8/b, R, we must require
V(R) = 1 V,„,(R) +h(R), (25)

of a scattering experiment. Defining, for conve-
nience,

x«aR«ao (25) the stationary Schrodinger equation is
a condition which is essentially equivalent to (24).

If (25) holds, then it is possible in principle to
prepare a microscopic packet and actually observe
its motion along the trajectory. Simultaneous
measurements of position and momentum involve
an error of order hPaR =6, and the requirement
that this be relatively small leads directly to (25).
Thus, in this derivation of the equations of the
classical picture, we have established the validity
of the classical picture itself.

In the multichannel case, it is necessary to add
to the spreading of a free-particle packet the
spreading that results from the fact that systems
in different electronic states travel at different
speeds. This spreading is small if and only if the
difference between the diagonal elements of the
potential matrix h(R) is small compared to the
average nuclear kinetic energy. Therefore, all
trajectories must approximately coincide in the
region of inelastic coupling.

A numerical estimate may help to illustrate the
above restrictions. For the wave-packet theory to
be valid AR/ao- 0. 1 and W/ao~ 0. 01. For particles
of reduced mass 1000 (e.g. , hydrogen atoms), this
means E = 8 /2M% ~ 5 hartree =140 eV. Then the
potential-difference spreading is small for all elec-
tronic states within 1 or 2 hartree of the ground
state. This includes all discrete states and an
important part of the continuum.

III. SEMICLASSICAL DERIVATION OF
CLASSICAL-TRAJECTORY EQUATIONS

A. Philosophy

We have seen that the wave-packet derivation
is valid only under very severe restrictions, in-
volving energies of the order of hundreds of elec-
tron volts. But it is well known that the semiclas-
sical approximation for elastic scattering is valid
for energies down to a few eV. Therefore, it is
appropriate to ask whether the classical-trajectory
equations may also be valid in this energy range.
To establish their validity more generally, we
must abandon the classical picture and consider a
totally different approach.

Just as in Sec. II, we begin with the coupled
Schrodinger equations for a discrete set of internal
states (3). However, we consider now only the de-
localized stationary solutions to these equations,

u(R, t)=u(R)e ' "" .

According to the formal theory of scattering, such
stationary solutions suffice to describe the results

~

—i@1 +m(R) +V(R) —lE u(R)=0, (27)

and it is the starting point for the derivation. Note
that it contains no reference to time.

The objective is, as before, the classical-tra-
jectory equations (6), but this time we will derive
them in the equivalent form

where

c„(t)= d (f) exp[- (i/5) f' 0 „(t')dt I .
We present a derivation that does not involve the

classical picture, but is based upon simple exten-
sions of the usual semiclassical (WKB) approxima-
tion. This derivation starts from Eq. (27), and
makes no reference to the classical picture of mov-
ing packets; therefore it carries no implication that
any system could be observed moving along a clas-
sical trajectory, with internal-quantum-state am-
plitudes changing according to (28). The derivation
only shows that the classical-trajectory equations
correctly predict the asymptotic fluxes and the
cross sections.

Two mathematical approximations are made in
the derivation, the "WEB approximation" and the
"+ separation. " These approximations are valid
if three physical conditions are met: (a) the de
Broglie wavelength must be small compared to the
interaction region; this is the usual semiclassical
condition. X/ao «1 [not to be confused with the much
stronger requirement (X/ao)'~ «1, needed for the
validity of the classical picture j. (b) The differ-
ences V (R) —V (R) mustbe small comparedtothe
kinetic energy of the system, at feast where in-
elastic coupling due to V „(R) is important. (c) The
inelastic coupling must be negligible near the clas-
sical turning points. These three conditions are suf-
ficient to ensure validity of the classical-trajectory
equations; it will later be shown that the third
assumption is not necessary.

For simplicity, the derivations are carried out
only for the two-state case, as the many-state
generalization is not difficult. Also, we make the
simplifying assumption that the electronic basis .

functions are real, so that V2&= V», z»=g»=0,
and g,2= —~2, = —jh p.

B. Derivation

We write the two-state Schrodinger equation in
the form



SEMICLASSICAL THEORY. . . I. . .
8' d'
2M dA2-~ +V11-Eul

2M dA
+ V22 —E u2 (29)

2lt'dm . d
+ V2, +I1

I
+2m —u1=0 .

|dR

Let us write

p dry
+ Vlp —6 + 2m up —

p

and we take 9+ to be the classical turning point
for the jth state, i. e. , the point such that (p/(R2/)
=0. Since the two possible signs of (P are explicit-
ly included in (30), we consider that all (p's are pos
itive. The Schr odi'nger equations (29) can deter-
mine only two functions, but in Eq. (30) we have
four quantities to be determined, so we are free to
impose any two restrictions on a/, (R). The appro-
priate equations are

at eislih+al e-is1/h

+v(a2, e("/" +a2 e "2'")=0,
(p) (S/&R&/2 + - ( S/(R) /2

u& —a&, e +a& e

where

(30)
i S2/h + I - x S2/h

2+ . 2»

(33)

s,.(a) =f (p, (z') d&' . (»)

(p/(f(, ') is the momentum classically associated with
the position R:

Defining

&,'(&) = [c' «)I"'a, (&), (34)

+v(a e(81/I ~ - ( s1/I() 0

[(P,(Z)]'/2M+ V/, , (ft) = E, (32) we obtain the equations

pe

bl,

bl

bp,

(pi/2(p ) 2(S1/2

12e
i(S1- S2)/h

O2]2 i ( S2+Sl) /h

((p&/2p )e- 2( 21/h

D e- i ( S2+S1) / h

12eei{S2-Si)/h

i (S2- Sl) / h
lae

pic e i ( SP+ S1) / h

(~g/2(p )e2(22/5

-i (Sp+ Sl) / h12e

B+ i (Sl S2) /12e

((pp&2g) ) 2( S2/2-

bl+

bl

b

(35)

where

fl12 [ 2v(+2+ (pl) 1MV12/@] ( 1p1)

+12 [+ 2&(+2 +1) 2MV12/@] (P1P2) ~

These equations are rigorously equivalent to the
Schrodinger equation (2V); in particular, they are
valid even in the classically forbidden region,
where the S,'s are purely imaginary.

We now make two approximations.

l. VKB Approximation

In the classically allowed region, well away from
the turning points, we drop the coupling between
b„and d, , and between ba, and b2 . The ignored
terms are

((pi /2(p )
+ 2(S/ /2

For the case of elastic scattering, in which V12=0
and g =0, this is clearly just the %KB approximat-
ion� .

2. + Separation

Ne drop the coupling between b„and bl . The
ignored terms are

([-' ((P (P )+ MV /2@] ((P (P )-"']e'"'2' ""

I

and it is assumed that these are negligible compared
to the remaining terms

([-' ((p +(p ) ~ MV /'8] ((P (P ) '"]e""2 '1""

Physically, this corresponds to the assumption that
electronic transitions cannot change the direction
of the nuclear motion. Speaking loosely, one might
say that if, just before the electronic transition, the
nuclei were moving toward each other with speed
(P, /M, then just after the transition they will be
still moving toward each other, but with speed
(p2/M. For this to be true, we require

I
(p2- (p1 I

«(p2+ (p1 ~

The validity of this approximation also depends
upon the properties of V». First, V» must be
sufficiently slowly varying that [V,2/((p, .(p2)' ]xe" 2+ " " approximately averages to zero.
Second, we must have

I v»I «(c ', +~22)/2M

for otherwise the difference between the momenta
in the adiabatic representation becomes compara-
ble to their magnitude.

The WKB approximation and the + separation re-
sult in the equations
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ib((Pi(pp) d bi, 0 [-i@i(((pi+ (pg)/M + Vip] e i "
bi (38)

[ e ((p, +a,)/2'+ v„] 0 b.,

d& ipf

a i(R)a, (R)
(37)

To obtain the classical-trajectory equations, we
define a new variable 7, having units of time, such
that (TP is the turning point)

c, (~) = b, .(~) e'"", ~ & 0

c,(i)=b, (&),
(39)

I

in the equations for b& . Then, defining c&(w) such
that

in the equations for b& „and
~2 1 /2

a, (R)a', (R)
(38)

and approximating ((p, +a', )/2 by ((p, (p, )'~', we ob-
tain

c,(i.)ia—
~ (~) dR, "

()'~~ —)'s~)dv

)k
(40)

Since a,z= —eq, =ikv(dR/d7'), we have again arrived
at the classical-trajectory equations.

C. Treatment of Nonclassical Region

Obviously the approximations used above are not
valid in the classically forbidden region or near
a classical turning point. For the time being, then,
we neglect inelastic coupling in such a region. As
shown by Froman and by Kemble, i Eqs. (35), with

V» = 0, lead directly to the usual %KB connection
formulas,

b, ,(R„)=e ""
b,. (R„),

and from Eq. (39) it then follows that c,. (v) is con-
tinuous at the turning point. A better treatment
of the nonclassical region is given in Paper II of
this series.

D. Many-State Case

The derivation is essentially unchanged if several
quantum states are involved. Equation (35) then
becomes

bq, = ((pq /2(pq) e- ' J)' "b,+Z( [2M V)), + (()R((p) + (P„)]/

2ih((p a )"']e'"i 'i)l" b„,

+~ f[2bft „+v,,((PJ —(p, )]/2i@(a,a,)'12]

((si,+ sy&/)) b (42)

and after the WKB approximation and the + separa-
tion is made, we have

m,', =Z ([2'v„+,,(a, + a,)] /2((p, .(p,)"'}
Ale

I

In order to obtain the equations of the classical
picture, (28), it is necessary to choose an average
velocity i)(R) such that

((pwca'

) dR
(44)

M d&

This approximation is valid if all elastic momenta
are nearly equal, and therefore, it is consistent
with the + separation, which requires that

I +y (PR I
~~ (p~+ +) (45)

for all j, P. One may use any reasonable average
trajectory in Eq. (44), and, if it makes much
difference what trajectory is used, then this deriva-
tion of the classical-trajectory equations is not
valid.

In other discussions and derivations of Eqs.
(27) it apparently has not been recognized that the
+ separation requires that the difference between
the trajectories be small, and this has led to some
misconceptions. Thus Cross'6 suggested that (43)
is more accurate than (28) and some conclusions
of Lawley and Boss~~ are based on this assump-
tion. There may exist cases for which (43) is more
accurate than (28); on the other hand, we know of
cases for which (28) is more accurate than (43)
(potential curve crossings near the turning point).
But in general, if there is a substantial difference
between the trajectories (pi(R), neither form is
reliable, and no average trajectory can be defined.

E. Example

The + separation can be illustrated with an exact-
ly solvable model. In the diabatic representation,
a closed-form solution exists for the case

x e" ~ ~' "b . ~ (43) 5'~ = const, V»= const .
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The exact solution to the Schrodinger equation (29)
ls

u-
1 y-1/2 g + j6'gR/0 +g + f(P~R/tl

~

u2
' ' -d -d. )

where

(p-1/2 ~ )(p~.R /& + ~ f(tp~g (g
"d

d,

~.'/2M=~--. (v»+V„)~[—.(V»- V») +V»]',
p = g, g for + or —,respectively,

2 1/2 [I~ t/(I ~ t3)1/2]1/2

t = (Vgp —Vgg)/2 F2,

and A„B,are arbitrary constants. Comparing
u/ and their derivatives with Eqs. (6) and (9), we
find the exact result

&,= (a', /a, )"'d.([I+(a,/a, )]A, "

[I (~ /(p )]~ 8 l((pg+d'g)B/h]

+(a'~/a'&)"'d ([I+(a', /a'&)] &+ e"~~ '~'"/"

+ [I - (a, /a ) ]a e ""'~"'"] (46)

and corresponding equations for the other coeffi-
cients. The bz, contain both rapidly varying and
slowly varying oscillatory terms. The rapidly
oscillating terms have a wavelength about half the
de Broglie wavelength; their amplitudes are small
provided I a'2 —a'q I «a'2 + a'q and V» «(a' f +a'2)/2M.
The slowly varying terms have amplitudes of order
unity and wavelength of order XD= (X,' —X2') ' with
x/= 2vh/a /.

Now we examine the results of the approximations
used in the derivation. The %KB "approximation"
has no effect here since (P~=O. There is also no
turning point, and no nonclassical region, so it
causes no difficulty. Then the equations

ta(a, a', )'/2

0

V -fd V fc
12e 12~

" V128 V128

—V12e' -V
0.

2-

p
8(cp/II 5 p egggR/h (4V)

with constant p,-, g/. . The solutions g are given by

.'(a', a', )—~[-.'(—a', —a, )'+ (M'vm»/a', a', )]"'
= [2Mv»/(a'g+ a'g)]

x(- t+ [t'+ (a', + a', )'/4a', a,]'/$, (48)

where t= (a'q —a 2)/4MV, 2. In the exponentials of
Zq. (46),

~.—~, = [2M V»/(~. + ~, )][-t+(I+t'P/2],
(49)

a, —a, =[2Mv„/(a, +a,)][-t-(l+/)"'] .

Comparing (48) and (49), we see that the + separa-
tion gives a good approximation to the slowly vary-
ing term in the exact solution, provided that
(a) the "diabatic" momenta are not too different,
and (b) the adiabatic momenta a'„are not too dif-
ferent from the diabatic momenta. The + separa-
tion entirely ignores the smaller, rapidly oscil-

where
& = (a'2 —a'g)R/tt and Z = ((Pq+ a'3)R/k

are rigorously equivalent to the Schrodinger equa-
tion, with the solutions (46). 'Ihe + separation
gives the form (36), with v =0. The solution to the
approximate equations can be written in the form
(+ case)

lating terms. Clearly, if there is a substantial
difference between (P, and 6„ then there is no
nuclear trajectory that will give an accurate an-
swer in general.

F. Applications to H+-H Scattering

At low energies (~0. 5 keV)the H'-Hsystemis
best described in terms of Born-Oppenheimer
states; the three important ones are

separated atom united atom denoted here

1sog

2g +
Q' sou 2pcF

The collision begins with amplitude distributed
equally between P~ and Q~. As the nuclei approach
each other, P, and Q2 become nearly degenerate,
and they are coupled by coriolis terms in the Hamil-
tonian. The coupling is proportional to I/R2 for
small R.

This system is a particularly useful test of the
derivation of the classical-traj ectory equations.
That derivation used three assumptions: (i) that
the WEB approximation is valid in the absence of
coupling, (ii) that l a'2 —a', 1 «a'~+.(P„and (iii) that the
coupling is negligible near the turning points. For
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1
6

11
16
21
26
31
36
4]
46

1
6

11
16
21
26
31
36
41
46
51
56
61
66

S (a.u. )

0.031
0.144
0.255
0.367
0.478
0.589
0.700
0.811
0.922
1.033

0.024
0.112
0.198
0.284
0.370
0.456
0.542
0.628
0.714
0.800
0.887
0.973
1.058
1.145

Pg

E =30 eV
0.0111
0.1649
0.3158
0.3304
0.2496
0.1520
0.0785
0.0352
0.0138
0.0048

E=50 eV

0.0138
0.1989
0.3831
0.4447
0.4172
0.3491
0.2699
0.1954
0.1330
0.0855
0.0520
0.0299
0.0164
0.0086

0.0073
0.1062
0. 1968
0.2026
0. 1622
0.1141
0.0773
0.0529
0.0375
0.0276

0.0124
0. 1749
0.3287
0.3718
0.3389
0.2746
0.2058
0.1454
0.0986
0.0650
0.0424
0.0276
0.0184
0.0126

P3

0.0074
0.1204
0.2267
0.2308
0.1669
0.0907
0.0365
0.0087
0.0007
0.0000

0.0124
0.1977
0.3781
0.4328
0.3985
0.3250
0.2433
0.1689
0.1101
0.0681
0.0409
0.0240
0.0139
0.0078

the H'-H system, the first assumption is satisfied
for E~0. 1 hartree, the second is satisfied for E

3 hartree, and the third assumption is never
satisfied.

Exact quantal calculations and semiclassical cal-
culations using the classical-trajectory equations
were performed on this system and are described
in a previous paper. ' For E~ 3 hartree, the two
methods give almost identical results. This
clearly proves that the third assumption is not
necessary: The clas sical-trajectory equations may
be valid even if there is strong coupling near the
turning points.

For E~ 3 hartree, there were substantial differ-
ences between the quantal and semiclassical cal-
culations. In the previous calculations of Knudson
and Thorson, a classicaI trajectory determined

TA BLE I. Iso„—2P7r„excitation probability for slow
H"-H collisions. Probability vs total angular momentum
L (impact parameter b) for relative collision energy E:
P&, probability calculated using classical trajectory for
1so.„potential; P2, using root-mean (1so.„—2P7r„) trajectory;
P3, exact quantal results. [For the small L values involved
the comparison is a good test of the %KB approximation
to the radial motion; also, previous calculations (Ref. 5)
have shown that the strong coupling at the turning point
does not affect the validity of the classical-trajectory equa-
tions. j The tabulated data show that when the possible
choices for the classical trajectory differ substantially,
no significant improvement is made by the root-mean
trajectory.

by the iso„(initial state) elastic scattering poten-
tial was used. Here we have repeated the calcula-
tion using the geometrical-mean trajectory as sug-
gested by Eqs. (37). As shown in Table I, the
agreement is improved somewhat, but not very sub-
stantially. This shows that a geometrical-mean
trajectory is not superior when turning points are
involved. This is not surprising, since the whole
derivation breaks down in that case. Bates and
Sprevak2' have shown that a different choice of
trajectory gives an improved answer for this case.
A rigorous treatment of turning-point phenomena,
presented in the following paper, shows more
clearly why their procedure leads to improved re-
sults.

or, from Eq. (34),

6 1(+) &1,(~) I'+s 2(I~)
I ~2,(~) I

'= I

Also, 6', (~) 1 a&,(~) I represents the asymptotic flux
moving outward from the scattering center in the
jth electronic state; hence I c&(~) I is the transition
probability to the jth state. Thus it is quite natural
to regard I c,.(&) I as a time-dependent probability
for finding the electronic system in state j during
the course of collision. However, such an inter-
pretation is not correct. The essential point is
that this derivation in no way implies that the
nuclei could actually be observed moving along a
classical trajectory according to Eq. (38), or that
the electrons change quantum-state amplitudes with
time according to (40).

This is in sharp contrast with the interpretation
associated with the derivation in Sec. II. There
we decomposed the stationary eigenstate of formal
scattering theory into microscopic packets, and
showed that under sufficiently stringent conditions,
these packets move along approximately classical
trajectories and the electronic state amplitudes
change with time according to the equations of the
classical picture. The major criterion for the
validity of that description is that the de Broglie
wavelength be very small,

[X/g, j' '«I . (50)

This condition is much more restrictive than the
usual semiclassical condition.

IV. DISCUSSION

We now consider the physical meaning of the
derivation given in Sec. III. The quantities c~(~)
in Eqs. (40) appear to play the expected role of
probability amplitudes. The Hermitian property
of the matrix in Eqs. (40) implies the conservation
law
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Under the more stringent classical conditions (50),
the full classical interpretation of a system moving
along a trajectory, with amplitudes c&(7 ) changing
in real physical time, is valid. This state of af-
fairs, and only this one, is the situation implied by
the correspondence yrinciple.

The derivation of Sec. III employs fully delo-
calized stationary states; for such wave functions
no probability amplitudes actually depend on time.
In principle, it is possible to measure simultaneous-
ly the electronic quantum state and the nuclear
position, because the operators representing these
observables commute. If one were to make such
a measurement, one would find that the probability
of finding the electrons in, say, the mth excited
level varies with the nuclear position: It is greater
in "post collision" regions of space than in '"pre-
collision" regions.

In Sec. II, we showed that if the wave-packet
formulation is applicable, a simultaneous mea-
surement of the nuclear position and momentum
and the electronic quantum state could (in principle)
be made without appreciably disturbing the system.
However, under the more general semiclassical
conditions, such a measurement would clearly
reveal the quantum-mechanical nature of the sys-
tem: The final scattering amplitudes would be
completely changed. Thus, in the semiclassical
case, there is no observable object moving in real
time along a classical path.

Strictly speaking, the correspondence principle
tells us only that there exist wave-packet states
which behave like classical particles; hence, it is
relevant only under the strict condition (50).

The weaker semiclassical condition (51) is not
strong enough to invoke the correspondence prin-
ciple. However, we have demonstrated that the
classical-trajectory equations offer a valid means
of computing inelastic scattering cross sections un-
der essentially semiclassical conditions; therefore
the equations of the classical picture are valid more
generally than is required by the correspondence
principle. There is thus a sense in which we may
say that some elements of classical mechanics
emerge at a much deeper level from quantum
mechanics than does the correspondence principle.

V. SUMMARY

We have presented two quite different deriva-
tions of the classical-trajectory equations [in the
forms (9) and (28)]. The equations are equivalent,

but their interpretations are very different.
The wave-packet formulation of Sec. II describes

a genuine and, in principle, observable time depen-
dence in a suitably prepared wave packet. It is
the proper mathematical expression of the intuitive
classical picture of collisions, and is the only rigor-
ous means by which we may demonstrate the truth
of the correspondence principle; of course, it must
therefore yield the classical formula for the elastic
scattering cross section. This wave-packet formu-
lation was extended to systems with several dis-
crete internal quantum states, and the classical-
trajectory equations [Eqs. (9)] are the result. In
this case, the classical-trajectory equations express
for a multichannel system the idea of the corre-
spondence principle; the meaning of the equations
is precisely that given to them intuitively by the
classical picture. However, there is a price for
this, i.e. , the very stringent restrictions (25).

The striking empirical success of the classical-
trajectory equations, even at energies far too low
for these severe conditions to hold, makes it clear
that the equations must have alternative and less
restrictive derivations.

The formulation of Sec. III is one such deriva-
tion. It describes a mathematically approximate
solution to the time-independent Schrodinger equa-
tion in configuration space. Two approximations
are involved —the WEB approximation and the +
separation. These are valid if (a) the wavelength
is short, (b) there is a negligible difference between
the several elastic scattering trajectories asso-
ciated with various internal states, and (c) the
inelastic coupling is negligible near the classical
turning point. These "semiclassical" conditions
are sufficient to ensure the validity of the classical-
traj ectory equations (28).

However, it is not evident that all these conditions
are necessary. In particular, calculations on the
H'-H system show that condition (c) is not neces-
sary.

In Paper II, we present a third derivation of the
classical-trajectory equations with a different
condition substituted for the above condition (c).
It is again a semiclassical formulation, rather than
a packet theory, and involves an approximate solu-
tion to the time-independent Schrodinger equation
in the momentum representation. Together with
the formulation of Sec. IG, it will permit us to
offer a general semiclassical picture that is not
subject to the special limitations of the WEB ap-
proximation.
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Semiclassical Theory of Inelastic Collisions. II. Momentum-Space Formulation
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The time-dependent equations of the classical picture of inelastic collisions (classical-tra-
jectory equations) are derived using the momentum-space semiclassical approximation. There-
by it is shown that the classical-trajectory equations remain valid in the vicinity of classical
turning points provided that (a) the momentum-space semiclassical approximation is valid, (b)
the trajectories for elastic scattering in the various internal states differ only slightly, and (c)
the slopes of the elastic scattering potentials have the same sign. A brief review of the exist-
ing derivations of the classical-trajectory equations is given, and the general conditions for their
validity are discussed.

I. INTRODUCTION

This is the second in a series of papers' dealing
with the derivation and application of semiclassical
methods to collisions involving a quantal change in
the internal states of the colliding systems. We
are primarily interested in discrete electronic ex-
citations in slow atomic collisions.

The starting point is the set of coupled radial
Schrodinger equations

+Z U„„(R)u„(R) = Eu (R) .

In this paper, we restrict ourselves to the diabatic
representation; analogous results can be obtained
in the adiabatic representation, but the analysis is
much more complicated.

In the classical picture, we imagine the nuclei

to be moving classically on some trajectory R(t);
in the basis (n) the electronic system obeys the
time -dependent Schrodinger equation

~t

xexP i 5 V Rt' —V„„Rt' gt' 2

The objective of this series is the derivation of
these classical-trajectory equations (2) from the
full coupled Schrodinger equations (1) under the
most general assumptions possible.

In the second derivation in Paper I, the classical-
trajectory equations (2) were derived by an exten-
sion of the usual semiclassical approximation. One
of the assumptions used, (c), was that inelastic
coupling is negligible near the classical turning
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