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Semiclassical  Theory of Noise in Multielement 

Semiconductor  Lasers 

Abstract-We present a derivation of the noise spectra of multiele- 
ment semiconductor lasers. We model the noise by a set of Langevin 
sources which drive a system of small-signal field equations. The Lan- 
gevin sources are normalized to transition rates within the laser and 
general formulas for relative intensity, frequency fluctuation, and field 
spectra are produced. We evaluate the formulas for several specific 
cases of interest, including those of a passive-active resonator and ac- 
tive-active coupled cavity resonator. In each case, the linewidth is gov- 
erned by effective a-parameter(s) which generally differ from the ma- 
terial parameter. In the active-active cavity, the linewidth consists of 
two parts, one which is similar to the Schawlow-Townes linewidth, and 
a second which is proportional to the FM modulation index. 

INTRODUCTION 

S INGLE-mode  semiconductor  lasers  are  desirable  for 
use as  transmitters in fiber-optic systems because of 

their  potential for high-speed modulation and narrow 
spectrum. The narrow  spectrum  minimizes  dispersion  as 
an  optical  pulse  travels  through  a  dispersive  fiber,  and 
consequently  increases  the  available modulation band- 
width for a  given  length of fiber (or  vice  versa).  Simple 
single-element  Fabry-Perot  lasers tend to oscillate in 
multiple longitudinal  modes,  however, particularly under 
current  modulation.  This property unnecessarily broadens 
the  spectrum  of  the modulated signal. To restrict the  laser 
to single-longitudinal mode operation,  more  complicated 
structures  have been proposed,  including  distributed- 
feedback  lasers [1], [2] and  various  geometries of cou- 
pled-cavity lasers [3]-[  121. 

Many of the  laser  geometries  are  plagued by chirping, 
or  FM under  current modulation [13] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, [14].  While  this 
property may be desirable  for an FM modulation system, 
it  also  broadens  the  spectrum of the modulated laser.  Re- 
cently,  it has been demonstrated  that  chirping in two-sec- 
tion lasers  can  be reduced by splitting  the modulation 
current between the  two  sections [13] or by judicious  se- 
lection of the  bias point [12]. More  recently, we derived 
analytic  expressions for both the  frequency and amplitude 
responses of a  general  multielement  semiconductor  laser 
[ 151 in  terms of the  bias point quantities.  The  knowledge 
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of which physical  quantities affect the  chirp, resonance 
frequency, etc. , allow one to design multielement lasers 
with a minimum of chirp  under  modulation. 

The  fundamental  limit  to  the  linewidth of the  laser, 
however, is the noise associated with the process of spon- 
taneous  emission  and  quantization of the  carriers  and pho- 
tons.  In  the  past five years,  the noise properties of semi- 
conductor  lasers  have been the  subject of scrutiny,  and 
several  anomalous  features  have been observed and ex- 
plained,  including  a  spiking  resonance in the intensity 
spectrum  [16], [17] and  frequency fluctuation spectrum 
[ 181, a  linewidth  some 30 times greater than that  pre- 
dicted by the modified Schawlow-Townes theory [19], 
[20] , power-independent linewidth components [21] , 
asymmetry in the field spectrum [ 181, and excess noise at 
low frequencies in both  the intensity and frequency fluc- 
tuation  spectrum [22]-[24], [28]. 

To our  knowledge,  there  have been no attempts to date 
at  analyzing  the noise properties of semiconductor  lasers 
with multiple  active  elements.  Recently, it was observed 
[25], [26] that  phase noise could be reduced in a passive- 
active  laser by varying  the coupling between the  cavities, 
and  it  seems likely that such would be the case in an ac- 
tive-active cavity. On the  other  hand, coupled-cavity las- 
ers  are known to possess an  FM  response to current fluc- 
tuations, which may increase the fundamental linewidth 
even in the  absence of modulation. A theory of multiele- 
ment laser  noise would be useful in evaluating multiele- 
ment lasers  for  systems  applications. 

A  common  technique  for  analyzing noise properties is 
to model the  noise by a  Langevin  (white)  source with an 
appropriate  normalization which drives  the  rate equations 
of the  system in question [27]-[30]. In  this  paper,  we  ap- 
ply the  Langevin  theory  to  small-signal  rate equations to 
calculate the spectra of a multielement laser. In Section 
11, we  develop  the  small-signal  linear rate equations from 
the  nonlinear  equations  describing  the  dynamics of the 
laser  and  introduce  the  Langevin  driving  sources. In Sec- 
tion 111, we normalize  the Langevin sources and calculate 
their  correlations  and  spectra.  In Section IV, we combine 
the results of Sections I1 and I11 to produce general for- 
mulas for  the  relative intensity spectra, frequency fluctua- 
tion spectra,  and field spectra of an  arbitrary  multielement 
semiconductor  laser.  In  addition,  we  evaluate some of the 
formulas  for  several specific cases.  In Section V, we sum- 
marize  the  important results of the  analysis. 
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11. RATE EQUATIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The  system  we  are considering in a  semiconductor  laser 

consisting of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN active  elements  (and  an arbitrary number 
of passive elements).  For each  active  element, the carrier 
dynamics  can  be described by volume-averaged rate equa- 
tions as 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAni is the  carrier density in the ith cavity, J j  is the 
pump  current  density, q is  the  charge  on  an  electron, d is 
the  active  layer  thickness, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT~ is the spontaneous  lifetime, 
g j ( n i )  is  the gain constant (as a function of the carrier 
density),  and pi is  the  photon density in the ith cavity. 

The DC operation of the resonator (threshold carrier 
density and  lasing  frequency) is governed by a dispersion 
relation of the  form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

F(w, n1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' * nN) = 0 (2) 

particular  to the geometry  under consideration. The deri- 
vation of (2) has been carried out  for several geometries 
of  interest [5]-[12], and  is generally straightforward. In 
Section IV  we will derive the dispersion function F for 
those  systems  which  we consider in detail,  but  for now 
we will assume  that it  exists  and is known. We will also 
require a set of fill factors defined by 

r i ( w ,  nl ,  - - * nN) = - Pi 

P 

where p is the average  photon density in the  composite 
cavity,  and w in (3) is implicitly defined by (2) as  a  com- 
plex function of the  carrier densities (n i } .  

In  an  earlier  work,  we  showed that if one takes the elec- 
tric field amplitude to be of the  form ei$@), then the dis- 
persion equation (2) is an instantaneously valid descrip- 
tion of the  dynamics of the  system if we  replace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo by I). 
The result is a first-order nonlinear differential equation 
for  the field amplitude  and  phase [15]. We substitute (3) 
in (1)  and  linearize (1) and (2) about  a steady-state oper- 
ating point 

(3) 

J j  = Jio + qd * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAej(t) 

ni zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr nio + vi@) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IC/ = oo + Aw(t) - j b  (t) (4) 

which yields 

where 

and  all derivatives are evaluated at the operating point. 
Equations (5)-(7) are now a set of linear differential equa- 
tions giving the response  to  a  small  modulation. 

We  Fourier  transform (5)-(7) (so that the operator d/dt 
becomes  a  factor j Q )  , and  we  denote  transformed  dynam- 
ical variables by a  tilde.  We  make  the following defini- 
tions: 

The transformed  equations, now linear  algebraic,  can  be 
put into  matrix  form  as 

jQ  0 -8ieff * * -gheff 

0 . 1  alef fg ief f  OlNeff gheff \ * 

Equation  (1 1) defines the small-signal response of the field 
amplitude (c) ,  frequency (A&), and  carrier densities (Vi) 
to fluctuations in the  pump  current (Ei). Had  we  some 
physical mechanism  for directly driving  the  amplitude  or 
phase,  that,  too,  could  be incorporated into  the right side 
of (1 1). In the next  section,  we  develop  the  appropriate 
Langevin  sources  for insertion into (1 1) .  

111. LANGEVIN SOURCES 
When  several  systems of particles interact  with  each 

other  and/or with  external baths through  random particle 
interactions,  there  are fluctuations associated with  each 
interaction.  Such fluctuations can  be  accounted  for by in- 
cluding appropriately normalized  Langevin sources into 
the equations of motion.  This  approach  can  also  be  used 
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with variables which vary continuously (e.g., tempera- 
ture, phase [27])  but  the normalization procedure is not 
as clear-cut as it is  for  particulate  variables.  In  the  latter 
case,  each  independent  number  variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( A )  will have  as- 
sociated with it  a fluctuation source zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ u )  which satisfies 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( ) denotes  ensemble  average. The source { a )  is 
then used to  drive  the  rate  equation  for  the fluctuations in 
{ A } .  If there is more  than  one independent mechanism 
creating  particle fluxes into or  out of the number variable 
pool,  there  will  be  a  driving  source  associated with each 
transition  rate.  Alternatively,  the  various  sources may be 
lumped  into  a  single  source  whose  autocorrelation is the 
sum of the  individual  sources  (as is done  here). 

In  our  system,  the  number  variables  are  total photon 
number  in  the  optical  mode,  and  carrier  number  in each 
cavity. Thus,  for  the photon number,  the  appropriate  Lan- 
gevin source  possesses  the  autocorrelation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( s ( t )  s(t ’))  = (RfTE + RfTA + /3RfpE) + RcA’ 
[ i  1 

6(t - t ’ )  (13) 

where RfTE is the  stimulated  emission  rate  from cavity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, 
RfTA is  the  stimulated  absorption  rate, R f p E  is the  spon- 
taneous  emission  rate, RY‘ is the cavity loss  rate,  and /3 
is  the  fraction of spontaneous  emission rate coupled into 
the optical  mode. For carrier  number in cavity i, we  have 

( ~ i ( t )  ci(t’)) [RSTE + RfTA + RfpE + RrMp] 6(t - t’) 

(14) 

where RrMp is the  pump  rate  into cavity i. 
Since 6 = we can drop  it  from (13); in addition, 

balancing input and  output flows from  the  particle  pools 
yields  the  relations 

RCAV = RSTE - R ~ T A ,  R ~ M P  = R~TE - R ~ T A .  (15) 
i 

Also, if we  introduce the spontaneous  emission  factors 

R f“ 
vi = STE - R ~ T A  (16) 

Ri 

we can relate  these rates to  the  variables  in  the  rate equa- 
tions 

RSTE - RQTA = T/igirip, RfTE = ni/rs. (17) 

The Langevin  sources  possess nonzero cross  correlations 
whenever an event  changes  two  variables  at  once (which 
stimulated  emission  and absorption do; spontaneous 
emission  does  also  but  the  cross-correlation is on  the  or- 
der zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof  /3 and  can safely be  ignored). The cross-correla- 
tions of interest are 

( ~ ( t )  ci(t’)) = - (RfTE + R F )  6 ( t  - t’) 

(ci(t)  ci(t’)) = 0 for i # j .  (18) 

We should now convert  these  Langevin  sources  appro- 
priate  for  number  variables  to  sources  appropriate for the 
variables in our system-namely, relative  amplitude and 
carrier  density.  If we define the sources as A for relative 
amplitude  and Xi for  carrier  density, then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

s = 2pVA, ci = V.“. I - [  (19) 

where Vis the  total  volume of the  optical mode and Vi is 
the volume of the ith active  element. The phase, too, is 
subject to random fluctuations due to spontaneous emis- 
sion. Being a  continuous  variable,  the  correlations of its 
Langevin  source + are not as immediately obvious  as 
those of the  amplitude  and  carrier  sources. Using a model 
discussed  by Henry [20], Vahala zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet ul. have shown [26] 
that the Langevin  source driving the  phase  has  the  same 
autocorrelation  as  that  of  the  source driving the  amplitude 
fluctuations but  is  uncorrelated with any other  source. 
(Although they were  considering only a single-element 
laser,  their  argument is independent of the number of sep- 
arate  active  regions.) Using (15)-(  17)  to put the transition 
rates in  terms of the  rate  equation  variables,  we can sum- 
marize  the relevant correlations  for  the  amplitude  Lan- 
gevin source A ,  the phase source 9, and the  carrier sources 
e, as c 

(A ( t>  A@’)) = (+(t> +(t ’)) 

= 4 vigirivi6(t - t? (20) 
2PV 

( A ( t )  Z i ( t ’ ) ) =  -- (2vi - 1) 6(t - t ’). (22) 
gi ri 
2 v  

All other  cross-correlations  are  zero.  Equation (11) is in 
terms of transformed  variables, so it is convenient  to cast 
(19)-(22) in the same  manner, particularly since  we  are 
interested in  spectral  functions W’JQ) which are  them- 
selves  transformed  quantities.  Mathematical problems 
arise  when  one  attempts  to  transform  a stationary signal, 
however; to  be rigorous,  one must use finite-domain Fou- 
rier transforms defined as follows: 

i T/2 

J-(W) E j dtf(t)  e-jwt, 
- T/2 

+ T/2 

gT(w) E dt g ( t )  e-Jat. (23) 
- T/2 

Then one can calculate  the  spectral quantities defined by 
the Wiener-Khintchine relations as 

w~-(Q> 5 d ~ ( f ( a t )  g(t + 7)) e-jQr (24) s 
from  the finite-domain transforms by 
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Strictly speaking,  the relations that  make  the  Fourier 
transform useful (transformation of differential operators) 
do not hold  as  long as  the object of the transform  is finite 
at  the limits of integration;  for  example,  the  derivative 
transforms as 

(26) 

However,  the first term  on  the right in (26) (and others 
like it) drop out after  ensemble  averaging  and dividing by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T in (25).  Therefore,  we will continue to  use properties 
of infinite-domain transforms with  the  understanding that 
at some point down  the  line,  we will perform  the  average 
and  limit of (25).  Questions of validity and existence 
aside, we can calculate the spectra of the Langevin sources 
in (19)-(22) directly from  (24).  They  are 

All spectra of Langevin sources are white; all other spec- 
tra between sources are zero. 

IV. FLUCTUATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASPECTRA 

A. General Formulas 

At this point, we insert our appropriately normalized 
Langevin sources into  the driving term of the small-signal 
equations,  that  is,  the right side of (1 1) .  In  the  absence of 
external modulation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Ei zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0), the result is 

439 

recognizing,  as  we  said,  that  the transforms exist  only  for 
finite intervals.  Now  the  formulation  is  complete; by in- 

verting (30), we  can write each  response zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5 ,  A&, &} as a 
linear  combination of the Langevin sources {a, 6, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg i } ,  
and  consequently  write spectral functions of the  response 
elements [e.g., W,, (Q)] as  linear  combinations of the pre- 
viously defined spectra of the  Langevin sources (e.g., 

WAA). 
Equation (30) can  be  solved  using  Cramer’s  rule, yield- 

ing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A -gieff * * - &eff 

~1 ~ 1 1  + dl . * CIN 
F 

r7 
A N  cN1 ’ CNN + d N  

p ” ( m  = 
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and the frequency fluctuation spectrum 

So, a  spectral  term Wfg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0) is given by 

(33) 

(34) 

and  we can produce  this by multiplying the expressions 
forj;(Q) and g( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-Q)  together  and replacing each product of 
Langevin  sources (e.g., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALA) by the  associated  spectral 
quantity (e.g., WAA). In this manner  one can produce any 
desired spectral  quantity. We shall not carry this process 

out  in  full generality (although the prescription is here for 
anyone so inclined).  Instead, we shall spend the rest of 
the  paper  deriving  spectra for  some specific devices  of 
interest. 

B. Single-Element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFabry-Perot Laser 
To begin to get a  feel for how to use (27)-(29) and 

(31)-(33) to calculate spectra,  let us first rederive the noise 
spectra  for  a  single-element,  simple  two-mirror  resonator. 
As pointed out  previously, the term  c1 I can be  absorbed 
into l / r l ,  so that when we  evaluate  (31)  and  (32) we get 

(35) 

which leads to the  relative intensity spectrum 

Now we  substitute in  the normalizations for the Langevin 
sources 

We  recognize the above as  the  relative intensity and fre- 
quency fluctuation spectrum of a  simple  single-cavity, 
two-mirror  laser  [26]. Of particular interest is the contri- 
bution of the  frequency fluctuation spectrum to the  line- 
width. If amplitude fluctuations are negligible or sup- 
pressed in  measurement, then the field spectrum W,(wo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 
w) (where w is the  deviation  from  the  lasing frequency wo) 
is [27] 

W,(w + wo) = - E: Re dr e-jw7 

2 

in which E, is the field amplitude. If W,, is  a sum of 
several  components, then the field spectrum is the con- 
volution of the  spectrum computed individually from each 
of the  components.  While high-frequency structure in the 
spectrum of W,, is  responsible  for  structure in the field 
spectrum (e.g., sidebands at the relaxation resonance 
[26]),  the  dominant  contribution  to linewidth comes from 
the Q = 0 component of W,,. It in fact produces a  Lor- 
entzian with linewidth exactly equal to W,,(O) [27]. Ex- 
amination of (40) shows that the  linewidth of a  single- 
element  laser is 

that is,  the  enhanced modified Schawlow-Townes line- 
width [20]. To  calculate cyleff, we recall that  the  disper- 
sion equation for a  single-element,  two-mirror  laser is 
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where yl(nl) is the  power  gain per unit length, yo is the 
loss, L1 is the length of the  laser, pl'(nl) is  the  index of 
refraction,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR is  the  mirror reflectivity. Applying re- 
lations (8) and  (10)  to  (43),  we get 

where  a  prime  on  a  material parameter denotes differen- 
tiation with respect  to  the  carrier  density. So, for  this  con- 
figuration,  the effective modulation  quantities  are  equal to 
the material  modulation  quantities, which is, in fact, what 
we expect from the  conventional  theory. 

C. Passive-Active Coupled Cavity 
The above  situation (effective parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= material 

parameters) does not always  hold,  even  for  single-active- 
element  cavities. The addition of a  passive  element to the 
resonator (e.g., an  external  cavity)  changes  the  dispersion 
equation,  and  consequently  alters the effective modula- 
tion parameters;  their  values  end up depending upon the 
relative  tuning of the  two  cavities. We shall now treat the 
case of an  active  element coupled to a  passive  cavity, il- 
lustrated  in Fig. l .  Two cavities of length L1 and L2 are 
coupled via an effective mirror (e.g. , an  air  gap; the length 
of the  gap may be  zero  as  long as the discontinuity re- 
mains) with transmission  and reflection coefficients T2 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R 2 ,  respectively.  (In  all  calculations  and graphs which 
follow,  we will assume  the  following material parame- 
ters:  loss yo = 80 cm- , nonresonant refractive index 
pGaAs = 3.5, and  linewidth  enhancement  factor aGaAs  = 
-5.) The resonance  condition is determined by requiring 
that  the field reproduce itself after  one roundtrip through 
the  composite  structure.  Following  the  approach of Henry 
[20], we find that  the field E; at the  coupler results from 
reflection of El and  transmission of E2:  

E; = R2E1 + T2E1 (45) 

while  the  roundtrip through cavity 1 results in 

El = R1 exp [(Yl - Yo) L1 - 2J'wcLlLl/Cl Ei. (46) 

A  similar  pair of equations holds for Ea and E2. To min- 
imize  the  algebra,  let us define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

cpdw, n J  = -(yl - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA70) L1 + 2 j w ~ ~ L 4 c  - In RlR2, 

p2(w) = 2jwp2L2/c - In R3R2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m 

(47) 

Then  (45) and (46)  and  their  companion  equations  for 
cavity (2) yield 

[e"' - 11 E, = K1'2E2, [e"' - 11 E2 = K1'2E1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(48) 

Eliminating  the field variables  yields  the  dispersion  equa- 
tion 

F(w, nl) = [e"' - 1 IC ea - 11 - K = 0. (49) 

Fig. 1 .  Schematic of a  longitudinally-coupled-cavity  laser.  Cavity 2 may 
be  either  passive or active. E ;  and E ;  are  the  fields  incident  upon  a  gap 
of width D. L I and L2  are  the  lengths of cavities 1 and 2, respectively. 

If the  gain  per unit length  is not too  large, then it is  a 
good approximation  to  take  the photon density  in  the ith 
cavity as  proportional to ( E j  1 2 .  (More  exact results can be 
obtained by integrating  the fields in each  cavity,  but  in 
the interest of obtaining  maximum  information  for mini- 
mum algebra,  we  shall  use  the  approximate  results.)  Ma- 
nipulation of (48) gives  the fill factor 

The effective modulation  quantities gieff,  mieff are  deter- 
mined by (1 8) in terms of partial  derivatives of (49) , eval- 
uated at the  operating  point.  Unfortunately,  (49) is a tran- 

scendental equation  that must be  solved  numerically. We 
can find approximate  solutions  for  weak  coupling between 
the  cavities,  however  (that  is,  K << 1) by doing  a per- 
turbation  series  in K.  

For small  coupling,  we can treat  the  passive  resonator 
as providing a  frequency-dependent  load  on  the  other;  we 
expand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw in a  perturbation  series 

w = wo + w1 + O(K2) (5 1) 

where w1 is  O(K).  The zeroth order  equation is 

[e"1(uo) - 11 [ejP~(~o) - 11 = 0. 
(52) 

If cavity 2  possesses no gain, then the  right  bracket  of 
(52) cannot  be  zero  near  threshold. Thus, we  take  the  left 
bracket equal to  zero. 

[evl(w) - 13 = 0 -+ wo 

= @7r + & zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[(y 1 - yo) Ll + In R1R2 
PlLl 11 

(53) 

where k is  an arbitrary integer, chosen such that wo is close 
to  the peak of the gain spectrum.  The  next  order of the 
perturbation  sequence  is 

w1 represents  the effect of the  detuned  loading upon the 
resonance coo. The imaginary  part of wl changes  the 
threshold gain which provides gain selectivity between 
modes,  while  the  real  part  pulls  the  resonance  frequency. 
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Explicitly  evaluating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘p2(w0), we find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+ In R,R2 - In R2R3. 

P1L1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(55) 

We use  the  expression  for wo and wl  with (51) to formu- 
late  a  new,  approximate  dispersion  equation 

Now we can use this  approximate  equation to find the 
steady-state lasing frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi;s and threshold gain yl(nlth), 
and subsequently the effective modulation parameters 
gieff, mieff, and aleff to  order K .  

(58) 

(Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp l  depends upon filth, the way to evaluate (57) and 
(58) is to use the  zeroth-order  part of (58) to  calculate nl th ,  

and then use  this  value to find pl(nlth) for use in the first- 
order  equations  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW and yl.) In  a passive-active reso- 
nator,  the most conveniently tunable  parameter is the 
length of the  passive cavity L2,  so we  have plotted the 
threshold gain and  lasing  frequency,  respectively,  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K = -0.4 in Figs. 2 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 and  for K = +0.4 in Figs.  10 
and 11. 

The effective modulation  parameters  are given by (8)  to 
be 

Recall  that  the  material  parameters g; and mi were given 

by 

, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY k  , - WCL; 
- 

g,  = -, ml = ~ 

2Pl 
(60) 

PI 

and define the  complex quantity 

Then,  denoting  real  and imaginary parts of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv by an r and 
i subscript,  respectively,  the effective modulation param- 
eters are given by 

I 1 

ALZ/hC 

0 25 3 5  

Fig.  2.  Threshold  gain  for  several  modes  as  a  function of passive  cavity 
length in a (200-175 pm)  active-passive  laser,  with  a  coupling  factor K 
= -0.4.  Heavy  lines  indicate  the  lasing  mode,  i.e.,  the  mode with the 
lowest  threshold  gain. 

1 

0 75 
~~~~~r ~ 

ALz/ho  

0 5  

Fig. 3 .  Lasing  frequency  versus  cavity  length for the  device of Fig. 2, 
showing  the  effects of frequency  pulling on each  mode. As in Fig. 2,  the 
heavy  line  indicates  the  lasing  mode. 

Fig.  4.  Trajectory of &, micff in the g ’ ,  m‘ plane for the  device of Fig. 
2. The  slope of a  vector  from  the  origin  to  a  point on the  tuning  curve 
gives  the  effective  a-parameter.  The  vector  connecting  the  origin to the 
point in  the  interior of the  trajectory  corresponds to the  material  quan- 
tities g ’ ,  m’. 

Sieff = gi(1 + vr-1 + vim;,  

mieff = m;(l + v,) - vi&. (62) 

From (62) we see that  the effect of the  passive cavity is 
to “mix”  the  material differential gain and index to pro- 
duce  the effective quantities. For negative imaginary val- 
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-0 25 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
&/b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 5  

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Linewidth  enhancement  factor alef versus  cavity  length for the  de- 
vice of Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 .  

ues of vi, we get a  simultaneous  increase in gieff (and re- 
lated quantities,  like  the relaxation resonance frequency) 
and  a  decrease  in mieE (and the phase modulation). In 
Figs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 ( K  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0) and 12 (K  < 0) we plot trajectories of 
g; eff and mieff in the ( g  ’, m ‘) plane  which illustrate this 
mixing. The  effective  a-parameter,  which  determines  the 
linewidth,  can  be written in terms of the coupling  quan- 
tities and the material  parameter a1 as 

In  Figs. 5 and 13 we plot aleff versus L2 for the same set 
of parameters as  in  Figs.  2  and 10. It is  clear  that by vary- 
ing the tuning of the  laser cyleff can  be reduced, and  since 
(with only one  active  element) (42) still applies,  the line- 
width may be reduced (or  increased). A comparison of 
Figs. 5 and  13  shows  that  the potential for linewidth al- 
teration is much  greater  for  the K > 0 case than for K < 
0; conveniently, that is also  the  case in which the gain 
selectivity between  modes is highest (compare  Figs. 2 and 
10). If the  coupling  element  between the active  and pas- 
sive cavity is  lossless  (e.g.,  a single mirror),  then K is 
always  negative. We see  from  Figs.  2  and 10, however, 
that the  widest  range of variation in aleff occurs for K > 
0 (which  occurs,  for  example,  when  the  coupling is a  gap 
of half-integral-wavelength spacing [ 111). This result then 
suggests that by suitably coating the output facet of a pas- 
sive-active resonator  with  a  thick lossy coating, the line- 
width  could  be  reduced well below that which’ is other- 
wise  attainable.  It  should  be  noted that such linewidth re- 
duction predicted [25] and  subsequently  observed [26] by 
Vahala et al .  and  was  explained in terms  of  a  detuned 

loading  mechanism,  where  the passive cavity became  a 
frequency-dependent  load  upon the active  one,  and  our vr, 
plays the  same  role  as  the p1,2 in their  treatment. If the 
second cavity becomes  active,  however,  then  such  a  de- 
scription is  no  longer  applicable.  The “load” becomes 
both  frequency-  and  intensity-dependent,  and it intro- 
duces noise of its  own  into the system. In the  next  section, 
we  derive  the  relative intensity and  frequency fluctuation 
spectra for  a general two-active-element laser in terms of 
the effective modulation  parameters,  and explicitly eval- 
uate them  for  a  system consisting of two  weakly  coupled 
active  cavities  (e.g.,  a C 3  laser with  a  large  air  gap). 

D. Active-Active  Coupled  Cavity 

Let  us first restrict ourselves  to  the  case in which  the 
fill factors ri do not change appreciably under  modula- 
tion,  that  is,  we  assume cij zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7i << 1 for  all i j  pairs.  This 
assumption will not qualitatively alter the physics, but it 
cuts  down  on  the  algebra considerably and renders the 
rather formidable  expressions  for  the spectra somewhat 
more  tractable.  Then (31) and (32) give  the  responses to 
the Langevin  sources 

2 2 

jst + 0 leff + W 2eff 

jst + 1 / ~ ~  j Q  + 117, 

- Y  - 0 7  9 9 

The relative intensity and field fluctuation spectra are then 
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2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I) 

A fundamental quantity of interest  is  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ = 0 compo- 
nent of W,,, since it gives the  major contribution to the 
linewidth.  We define for  convenience  the  dimensionless 
ratios 

If we also  make the assumption  that 117, << 1 / ~ ] , ~ ;  that 
is, that we  are well above  threshold,  then  these relations 
simplify when we insert  the normalizations for  the  Lan- 
gevin  spectra.  The  cross-correlation  terms W A ~ ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
WAz2 cancel  each  other out, and  we  are  left with 

as  the  linewidth  of  a  two-active  element  laser.  The first 
part  arises  from  optical  fluctuations; in fact, it looks ex- 
actly  like  the  enhanced Schawlow-Townes formula 

W,,(O) = - (1 + a2) 
2PV 

?% 

where  the material parameter a has been replaced by a 
weighted average of the effective aier’s.  The second part 
arises from the WEE’s, and represents direct FM due  to 
carrier fluctuations. It is proportional to the  square of the 
difference in the effective a’s. Consequently, were we  to 
attempt to utilize detuned loading  to  change  the effective 
a’s and shrink  the  linewidth,  we should not only seek to 
reduce the effective a’s, but  at  the  same  time to minimize 
their difference. Both contributions to the linewidth vary 
with inverse  power.  Equation (70) holds for any two-ac- 
tive-element  laser C 3 ,  axially groove-coupled, or laterally 
coupled  cavity. The evaluation of a1 eff and a 2eff depends 
on the exact  configuration,  however, so we will now eval- 
uate  them  for  the  case of two weakly coupled active  cav- 
ities.  We can adapt  some of our results from the pptssive- 
active  case by making cavity (2) of‘ Fig. 1 an active  one, 
with gain y2 and  index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp z  both dependent upon the  carrier 
density n2 in cavity 2. Equations (49) and (50) remain 
valid if we redefine 

cp2(w) = -(y2 - yo) L2 + 2jwp2L2/c - In R3R2. (72) 

As with the passive-active case,  the resonance equation 
is  transcendental.  For weak coupling, we can again per- 
form a  perturbation  series  in K ,  although it is not clear 
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whether our  zeroth-order  equation  should  be 

[ep*fwo) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 11 = o or [epz(wo) - 11 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. (73) 

For weak  coupling,  there will be  two families of modes, 
one associated with  each of the two  equations in (73). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASo, 
we will consider  only  the  modes in which cavity 1 is dom- 
inant,  and cavity 2 assumes  the  role of the frequency-de- yl(cm-') 

pendent loss.  There  is still one  degree of freedom  left  un- 
accounted  for  (in  a  two-element laser, the gain is  clamped 
onto  a line in the (rl, y2)-plane, rather than  a point [20]) 
so we will take y2 as  the  free parameter. If we  use the 
following as the definition of p2(w0), 

160 

150 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

60 80 I00 

y 2 ( c m 9  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
11. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2L2 
PlL1 

Fig. 6. Threshold  gain  for  several  modes  of  a (200-50 pm)  active-active 
laser  versus  gain y2 in cavity 2, with a coupling  factor K = -0.4. 

' p2 (00 )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 j  - kx - ( 7 2  - Yo) L2 

+ tL2L2 In R1R2 - In R2R3 (74) 

then (53), (54) and (56)-(59) give  the correct results for 

11.A 
b ~ ( l O 1 z H z l  

- 
w ,  y1(nlth), gieff and mieff. Differentiating (56) with re- 
spect  to n 2  yields 

or, recognizing v of (61) (using the appropriate p2(w0), of 
course) and  the material quantities 

Y i C  , - w11.i 
211.2 11.2 

- 

g$ = -, m2 = -. 

The effective differential quantities are  given by 
(a) 

gieff = g iv ,  + mi v i ,  mieff = mi v, - gi v i .  (76) 

Consequently,  the effective linewidth enhancement fac- 
tors that enter  into equation (71) are  given by 

a1(l + v,) - vi a 2 v r  - vi 
aleff = (1 + v,) + a1vj ' a 2 e f f  = v, + a2vj 

. (77) 

In a  two-active-element laser both L1 and L2 are fixed and 
what varies the tuning is the gain and  index y2 and 11. 2 ,  so 
in Figs. 6-9 and 14-17 we plot the gain, lasing fre- 
quency, effective a's and linewidth versus y2 for K = 
t-0.4. A cursory inspection of Fig.  8(b)  and (76) shows 
that it is  quite possible for sieff to go to zero, in which (b) 
case a2 eff -+ 00, and  the linewidth would  seem to diverge 
as  well.  However,  there  are  gieE-dependent terms in (70) 
(e.g., x 2 )  which  remove the apparent  singularity.  In this 
case,  the  direct FM contribution to linewidth can  be writ- 
ten as 

0.5r 03 yr(crn-') 60 1 0 0  

Fig. 7. Lasing  frequency  versus y2 for the  device of Fig. 6. 

10, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

71 2 g 2  
2 

WEf(0) = ("I + -) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(E) r*) a; (78) 
P r2v2 r1v1 Fig. 8.  Effective  a-parameters  for  the  device of Fig. 6. (a) ales, (b) a2er. 
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y2(cm?) 

Fig. 9. Linewidth  of  the  device  of  Fig. 6 as a  function of y2 (logarithmic 
scale)  relative  to  that  of  a  single-element  cavity of length  250:mm, re- 
flectivities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR , ,  R3 at  the end mirrors. 

14’200 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi[: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 5  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A L Z b 0  

Fig. 10. Threshold  gain  for  several  modes  of  a  passive-active  laser  with 
coupling  factor K = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+0.4. 

1 ’  

I I 
,~ -.--T-~-- 

25 
-~ ~ ~- 

c 5  

A L Z b 0  

Fig.  11.  Lasing  frequency  versus  cavity  length  for  the  device  of  Fig. 10. 

where a2 is the  material CY for cavity 2. The  chirp (direct 
FM under modulation) in an active-active coupled-cavity 
laser has been shown  to be proportional to the difference 
in effective a’s [15]; in (70), we showed that  there is a 
component of the  linewidth which scales with this  differ- 
ence.  Consequently, it would be  desirable to reduce both 
the  chirp  and  linewidth by tuning the a’s to  be  equal.  As- 
suming that  the  material CY’S are  equal (and denoting  them 
by a devoid of subscript),  the difference in the effective 
a’s is given by 

Fig.  12.  TrajectoIy  of siea, mieff for  the  device of Fig.  10. 

-ICc 1 1 
25 

&/ io  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA35 

Fig. 13.  Linewidth  enhancement  factor  for  the  device  of  Fig.  10 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

I 
20 4 0  60 80 133 

y2(crn-’i 

Fig. 14. Threshold  gain  for  an  active-active  cavity  versus y2 for  a  cou- 
pling  factor K = +0.4. 

- V i ( 1  + 2 )  
- (79) 

[(l + v,) + avi][vr + 0lVi ] ’  

So when vi = 0, the cavity is tuned at the  chirpless bias 
point. At that  point,  however,  we  see  from (77) that aleff 

= a2eff = a,  the  material  linewidth enhancement factor. 
The upshot of  this re.sult is that while  we  can  eliminate 
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" L -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACO 23 40 & , a0-.J0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r2 icrn-') 

Fig. 15. Lasing  frequency  versus yz for device of Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 -  

Q l d f  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0- 

yZ(crn-') 

(b) 

Fig. 16. Effective  a-parameters for device of Fig. 14. (a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaleff, (b) a2,~. 

chirp  in  two-active  element  lasers  by selection of bias 
point,  we give up the potential for linewidth reduction 
using the  detuned loading mechanism that was possible 
with  the passive-active cslvity . Conversely, any attempt 
to reduce the linewidth through de.tuned loading will re- 
sult in a  chirp  under  modulation. ,4nother feature,  is  that 
the largest linewidth excursions  occur  near  a  mode  hop, 
so that  the  mode selectivity is likely to  be  iow when  tuned 
to a  narrow  linewidth.  On  the  other  hand,  one  could locslte 
the riarrow-linewidth regions by tuning to  the vicinity of 
a  mode  hop.  Although it has  been  shown that away  from 
the zero-chirp bias point,  the chirp may be  reduced by 
driving both of the cavities with  a fixed amplitude rela- 

Fig. 17. 

y2!cm-'l 

Linewidth  of  the  device of Fig. 14 relative  to  that of an equivalent 
single-element  laser  (logarithmic  scale). 

tionship 1131, this  modulation will not affect the noise 
properties: Consequently,  the linewidth of the  laser may 
still be larger  than that at  the zero-chirp point due  to the 
FM contribution. It  must  be  noted that (76)-(79) are  based 
on  the  assumption of weakly-coupled  cavities; for two 
strongly coupled  cavities,  one  must  numerically  solve the 
transcendental dispersion equation  for  the threshold gain 
and lasing frequency (although once in possession of those 
quantities, (8) may be evaluated directly for the effective 
modulation  parameters).  We  expect,,  however, that the re- 
sults of the perturbation analysis will still hold  qualita- 
tively. With  strong  coupling, the modulation quantities 
should  vary  even  more  widely  from  their material values, 
yielding larger excursions of the linewidth and  other func- 
tions of noise (as well as  dynamic  quantities,  like  the re- 
laxation resonance). The formalism presented in this sec- 
tion  is easily applicable  to  larger  ensembles of coupled 
cavities since the matrices in (30)-(33) are general and 
the  dispersion function F ( w ,  nl, - - - , n,) is usually 
straightforward to derive.  However, the complexity  and 
large  number of degrees of freedom in such  a  device will 
likely limit  its technological significance. 

V. CONCLUSIONS 
In  summary,  we  have  provided  a  formalism for calcu- 

lating  any  spectral  function  of  an arbitrary multielement 
semiconductor  laser. We carried out the analysis for  a sin- 
gle-active element  laser  and  showed that the spectra ob- 
tained were identical to those calculated from  the  more 
conventional theory. When  a passive element  is  added  to 
the  system,  the material differential gain  and  index  con- 
stants are replaced by effective quantities which  can  be 
calculated from  the dispersion equation.  For  the  case of a 
passive resonator weakly  coupled  to  an  active one, we 
found  hpproximate sblutions for  the  lasing  frequency, 
threshold,  and effective modulation  quantities consistent 
with  prior  results.  The effective parameters  were  shown 
to be  mixtures  of  the material parameters,  with  the rela- 
tive coritributions determined by the relative tuning of the 
two  cavities. 

We  then calculated expressions  for  the relative intensity 
and  frequency fluctuation spectra of a  device  with  two  ac- 
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tive  elements, e.g., a C3 laser.  We derived formulas 
which defined the effective modulation  parameters,  and 
for  the special case of a subthreshold cavity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(‘ ‘modula- 
tor”) weakly  coupled to another  active cavity we pro- 
duced  approximate solutions for  the gain and lasing fre- 
quency  as  a function of carrier density in the modulator 
cavity.  We  also  gave simple expressions for the effective 
modulation quantities in terns of the material parameters 
and  a single complex  constant  which  determines  the 
amount  of  mixing.  For  the  weakly  coupled  geometry,  the 
cavities  can  be  adjusted so that there is no chirp under 
modulation, but in that  case,  it  is not possible to  reduce 
the linewidth below  the  enhanced  Schawlow-Townes 
limit  with  detuned  loading.  On  the  other  hand, if the  laser 
is not biased to the zero-chirp condition, the linewidth 
may  be  increased  or  decreased  beyond that given by the 
enhanced  Schawlow-Townes  formula, depending. upon 
the tuning of the  cavity. 
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