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Abstract

The statistical properties of the energy spectrum of classically chaotic closed quan-

tum systems are the central subject of this thesis. It has been conjectured by O. Bo-

higas, M.-J. Giannoni and C. Schmit that the spectral statistics of chaotic sys-

tems is universal and can be described by random-matrix theory. This conjecture

has been confirmed in many experiments and numerical studies but a formal proof

is still lacking. In this thesis we present a semiclassical evaluation of the spectral

form factor which goes beyond M.V. Berry’s diagonal approximation. To this

end we extend a method developed by M. Sieber and K. Richter for a specific

system: the motion of a particle on a two-dimensional surface of constant negative

curvature. In particular we prove that these semiclassical methods reproduce the

random-matrix theory predictions for the next to leading order correction also for a

much wider class of systems, namely non-uniformly hyperbolic systems with f ≥ 2

degrees of freedom. We achieve this result by extending the configuration-space

approach of M. Sieber and K. Richter to a canonically invariant phase-space

approach.

Zusammenfassung

Das zentrale Thema dieser Arbeit sind die statistischen Eigenschaften des En-

ergiespektrums geschlossener Quantensysteme deren klassische Analoga durch chao-

tische Dynamik gekennzeichnet sind. Für diese Systeme stellten O. Bohigas,

M.-J. Giannoni und C. Schmit die Vermutung auf, daß die spektrale Statistik

universell ist und den Vorhersagen der Zufallsmatrixtheorie folgt. Diese Vermu-

tung wurde bereits durch eine Vielzahl von Experimenten und numerischen Un-

tersuchungen bestätigt, ein formaler Beweis konnte bisher jedoch nicht gefunden

werden. In dieser Arbeit wird der spektrale Formfaktor auf der Grundlage semi-

klassischer Methoden berechnet, die über M.V. Berrys Diagonalnäherung hinaus

gehen. Die Grundlage dafür stellt die Erweiterung einer Methode von M. Sieber

und K. Richter dar, welche für die Bewegung eines Teilchens auf einer zweidimen-

sionalen Fläche konstanter negativer Krümmung entwickelt wurde. Insbesondere

wird in der vorliegenden Arbeit gezeigt, daß die Anwendung dieser semiklassischen

Methoden auf die viel größere Klasse nicht-uniformer hyperbolischer Systeme mit

beliebiger Anzahl von Freiheitsgraden ebenfalls die Vorhersagen der Zufallsmatrix-

theorie reproduziert. Zu diesem Zweck wird eine kanonisch invariante Phasenraum-

methode entwickelt, welche den Ortsraumzugang von M. Sieber und K. Richter

erweitert.
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CHAPTER 1

Introduction

1.1 Chaos in classical and quantum mechanics

The chaotic motion of macroscopic bodies as well as the quantum mechanical prop-

erties of microscopic particles have been intensively studied for more or less one

hundred years now. Nevertheless it took more than fifty years until the first signifi-

cant attempts were made to bring the two fields together. The traditional theory for

classical mechanics goes back to Newton, Lagrange and Hamilton. According

to this theory the dynamical state of any macroscopic body is described by its po-

sition qt and its velocity q̇t or momentum pt at a given time t. The motion of this

macroscopic object can then be described quantitatively by solving the equations

of motion. The solution uniquely determines the position and the momentum at

any later time t for given initial conditions (q0,p0) at time t = 0. Therefore, the

state of a classical body (or a system of many bodies) can be uniquely character-

ized in terms of a point x = (q,p) in the associated phase space and the dynamics

of the body is then given by the trajectory xt in that phase space. This implies

that the motion as described in the framework of classical mechanics is completely

deterministic. However, this does not mean that the motion represented by the so-

lution xt necessarily shows a simple and regular behavior as a function of time. As

one can imagine, the motion of many particles interacting with each other, e.g. via

their gravitational or electromagnetic forces, can easily become extremely complex.

In this case it would be hopeless to look for a specific solution of the equations of

motion and one typically employs statistical theories for the characterization of this

type of systems. But also systems with only a few degrees of freedom can show
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a very complex dynamical behavior. This can be caused by non-linearities in the

equations of motion. For example, already the problem of describing the dynam-

ics of three interacting bodies can lead to very complex solutions as first shown by

Poincaré in 1892 [Poi92]. This complex behavior is related to the fact that the

dynamics shows a very sensitive dependence on the initial conditions. By this one

means that two trajectories starting at close points x
(1)
0 and x

(2)
0 in phase space

diverge from each other very rapidly, i.e. exponentially. The distance |x(1)
t − x

(2)
t |

between two initially close trajectories grows approximately as ∼ exp λt with time t

until it reaches more or less the system size. Here, λ > 0 is the so-called Lyapunov

exponent which characterizes the time scale of the exponential growth. If a bounded

and energy conserving system is considered this sensitive dependence on the initial

conditions leads to a chaotic motion. This especially implies that it is impossible

to predict the dynamics of a chaotic system for long times λt ≫ 1 as the initial

conditions can always be measured with a certain accuracy only.

A definition of a classical system with regular motion can be given in terms of

the invariants of motion [Arn01]. Assume that there are f degrees of freedom for

the dynamics, e.g. f = 3 for the motion of a single particle in the three dimensional

space. For closed systems without dissipation the total energy E is conserved. If

there are further f − 1 independent functions h(qt,pt) that are invariant under the

classical dynamics then the system is called integrable and shows regular dynamics.

These constants of motion can be chosen to be actions. They restrict the motion in

phase space to tori which form an f dimensional hypersurface in the 2f dimensional

phase space. Hence the time evolution of a state is either periodic or quasi-periodic.

If on the other hand there are no further conserved quantities besides the energy then

the motion in phase space is only restricted to a 2f −1 dimensional hypersurface. In

this case the dynamics can be either completely chaotic or partially chaotic, which

is then called mixed.

After the early work by Poincaré on the three body problem several significant

contributions were made to the field of chaotic dynamics, e.g. by Birkhoff, Kol-

mogorov, Smale and others, and the original description suitable in the theory of

classical mechanics was extended towards the more general mathematical concept of

dynamical systems (see e.g. [ASY96], [Rei96] and [GH02]). However, until the mid

1970’s these activities were mostly of purely mathematical nature. It was only then

when digital computers started to become a common scientific tool that the interest

in chaotic dynamical systems began to grow significantly. Extensive numerical stud-

ies of dynamical systems and computer experiments stimulated the application of

the theory of dynamical systems to a large variety of different fields such as biology

(e.g. predator-prey models), hydrodynamics (e.g. Rayleigh-Bernard convec-

tion), nonlinear electrical circuits and many others (see e.g. [Sch84], [Ott93] and

[LL92]).

As opposed to macroscopic bodies, the dynamics of microscopically small par-
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ticles (such as electrons in semiconductor devices) has to be treated within the

framework of quantum theory, see e.g. [Mer98]. It is described in terms of a wave

function Ψ(q, t) which is a solution of the Schrödinger equation. The concept

that single points in a phase space represent the state of the system can no longer

be applied because of the Heisenberg uncertainty principle. This principle basi-

cally states that a single quantum state occupies a finite phase-space volume (2π~)f

determined by Planck’s constant ~. Due to the linearity of the Schrödinger

equation with respect to the wave function Ψ(q, t) one would not expect any sim-

ple relation to chaotic behavior, i.e. sensitive dependence on the initial conditions,

as described above. The time evolution of an arbitrary state being a superposi-

tion of energy eigenstates is quasi-periodic. On the other hand one can always

study the classical limit of the quantum dynamics of a given system by ’making’

the particle under consideration macroscopically large again. This limit is given

when the typical wavelengths appearing in the wave functions are negligible com-

pared to all other length scales of the system. The following question then arises

naturally. Consider two different closed quantum systems with one of them showing

regular and the other chaotic dynamics in the classical limit. Can one then find

a criterion based on the Schrödinger equation only, i.e. its energy eigenvalues

En or eigenfunctions Ψn(q, t), to distinguish these two systems? To put it in other

words, is the chaotic nature of the underlying classical system observable within its

quantum mechanical description? The physical phenomena related to this kind of

questions are central to the field of quantum chaos [Ber87]. Numerous experiments

and numerical simulations do indeed show different statistical properties of the eigen-

functions and eigenenergies if chaotic quantum systems are compared to integrable

systems. This is for example reflected in different nearest neighbor distributions or

two-point correlation functions for the energy eigenvalues (for an overview see e.g.

[Les89, Stö99, Haa01]).

Of particular interest in this field is the semiclassical regime. Roughly speaking,

this regime lies in the middle between classical mechanics and quantum mechanics.

Here, one expects that classical objects like trajectories play a role while quantum

effects like interference are still present. Semiclassics is comparable to the transition

from wave optics to ray optics in the limit of short wavelengths. Formally, the

semiclassical limit can be achieved by letting ~ → 0 as all other parameters in the

problem remain unchanged. A very instructive discussion on how the semiclassical

limit emerges from quantum mechanics can be found in [Ber89].

Various semiclassical methods have been developed since the early days of quan-

tum mechanics. For integrable systems a semiclassical quantization can be per-

formed using the action variables that define the invariant tori in phase space. One

can make a canonical variable transformation so that the Hamiltonian is expressed

in terms of these actions [Arn01]. The Bohr-Sommerfeld quantization scheme

is then based on the requirement that each of these actions is an integer multiple
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of Planck’s constant (2π~). However, as Einstein already pointed out in 1917

[Ein17], this quantization procedure is not applicable to chaotic systems.

It was only in the early 1970’s when the first links between classically chaotic

Hamiltonian systems and their quantum mechanical counterparts could be made.

M. Gutzwiller derived a formula for the semiclassical limit of the density of states

in terms of a sum over classical periodic orbits (see [Gut90] and references therein).

This trace formula expresses the density of states (which is directly related to the set

of quantum mechanical eigenenergies) in terms of classical quantities like the actions

and the stabilities of the periodic orbits. The original theory of Gutzwiller gives

only the leading contributions in ~ with respect to the analytic parts in the density of

states — thus being exact in the semiclassical limit ~ → 0. Later on it was extended

to an expansion in this small parameter [GA93, AG93]. However, there are certain

technical problems connected with the trace formula concerning the convergence of

the sum over periodic orbits, see e.g. [Ber89] for a discussion of these issues. Despite

these subtleties Gutzwiller’s trace formula is a frequently used tool to study the

quantum mechanical energy eigenvalues of chaotic systems in the semiclassical limit.

Our analysis of the spectral form factor is based on this trace formula.

Not only the energy eigenvalues but also the individual eigenfunctions Ψn(q)

of the Schrödinger equation are influenced by the underlying classical dynamics

[Hel96]. According to Shnirelman’s theorem the probability density |Ψn(q)|2 is for

almost all energy eigenstates of a classically chaotic system given by the microcanon-

ical distribution [Shn74]. However, there can be exceptions in the form of scarred

wave functions [Hel84, Hel89]. These scars are due to a localization of the wave func-

tion in the vicinity of a periodic orbit. Statistical properties of energy eigenfunctions

belonging to a certain energy interval were studied by Bogomolny [Bog88] who

showed that energy averaged wave functions can indeed show an enhanced proba-

bility density in the vicinity of classical periodic orbits. However, the first model for

wave functions in chaotic systems was developed by Berry [Ber77]. This so-called

random wave model proposes that the wave functions Ψn(q) are random superpo-

sitions of plane waves and was successfully applied to a variety of physical systems

(see e.g. [AL97], [BS02] and references therein). A proof for this model could not yet

be found and chaotic wave functions are still subject to ongoing research activities.

Besides the above mentioned interest in fundamental questions concerning the

correspondence principle between quantum mechanics and its classical limit there are

many practical applications for which a sound understanding of semiclassical meth-

ods and issues concerning quantum chaos is essential. Semiclassical methods have

successfully been applied to atomic and molecular physics, e.g. photo-absorption

spectra of Rydberg atoms and atoms in magnetic fields [FW89] or the semiclassical

treatment of the Helium atom [WRT92]). Another important field where semiclas-

sical methods have been applied with great success is that of mesoscopic electronic

devices [Ric00]. Here the idea is that most of the relevant physically quantities,
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as for example in electronic transport problems [Jen95], can be expressed in terms

of single electron Green’s functions. Therefore, a semiclassical treatment of these

systems can be achieved by employing similar semiclassical approximations for the

Green’s function as Gutzwiller used when deriving the density of states. For

example, in this way it was shown that classical chaotic dynamics of a semicon-

ductor microstructure has experimentally measurable consequences for its quantum

conductance [Mai90, BJS93]. A semiclassical analysis of the Kubo formula for the

conductance of mesoscopic systems is given in [Arg95, Arg96], a semiclassical de-

scription of tunneling is presented in [BR99], chaotic scattering is reviewed in [Ott93]

and decoherence phenomena were discussed in [FH03].

Another physically slightly different yet formally very close research field is that

of microwave billiards [Stö99, Ric01]. In this case the same semiclassical methods

can be applied as the Helmholtz equation, which describes the microwaves, has the

same structure as the Schrödinger equation when two-dimensional systems are

considered. Therefore, experiments on microwave billiards can yield many insights

into problems related to quantum chaos.

A general introduction into the field of quantum chaos based on a broad selection

of experimental results is given in [Stö99]. More fundamental questions and the most

widely used techniques are presented in [Rei92, BB97, Haa01]. Collections of many

important original results and overviews over central issues concerning quantum

chaos can be found in the conference proceedings [Les89] and [Qua00] as well as in

[Cas95].

In the remaining sections of this introduction we first give a short overview

on how exactly certain statistical properties of the eigenenergies are related to the

underlying classical dynamics. In particular, we describe the relation between the so-

called random-matrix theory and the quantum mechanical energy levels of a chaotic

system. This relation was explicitly stated for the first time in a conjecture by

Bohigas, Giannoni and Schmit [BGS84]. Then we briefly summarize why certain

model systems, namely billiard systems and quantum graphs, are suitable candidates

when investigating chaotic systems. Finally we give an outline for this thesis.

1.2 Random-matrix theory and BGS conjecture

A very successful model to describe the quantum properties of various complex

systems is given within the framework of the random-matrix theory. This theory

has been developed by Wigner, Dyson and Mehta in the 1950’s and 1960’s to deal

with the spectra of complex many-body quantum systems like large nuclei [Por65,

Meh90]. The basic idea of this approach is that matrices occurring in the quantum

mechanical treatment of complex systems, like the Hamiltonian or the scattering

matrix, can be modeled by random matrices. The only restriction imposed on these
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Figure 1.1: (a) Nearest neighbor distribution. The solid line represents a Pois-

sonian distribution of the energy levels while the dashed and dotted lines are results

of the random-matrix theory. In subfigure (b) we present the corresponding results

for the spectral form factor K(τ). The additional dashed-dotted line shows the result

of the semiclassical evaluation using the diagonal approximation in the GOE case.

matrices is that they belong to the same symmetry class as the original quantum

mechanical operator. For example, the Hamiltonian of a complex quantum system

with time-reversal symmetry is described by an ensemble of hermitian matrices

being invariant under orthogonal transformations. This ensemble is the so-called

Gaussian orthogonal ensemble (GOE). A nice and rather recent review on the

theory of random matrices in quantum physics can be found in [GMGW98].

However, as it turns out, random-matrix theories can also be applied to chaotic

systems which possess only few degrees of freedom. This has first been conjectured

by Bohigas, Giannoni and Schmit [BGS84] in 1984 (BGS-conjecture). They

numerically investigated the eigenenergy spectrum of a single particle in a two-

dimensional quantum system with the shape of a Sinai billiard. Based on these

results they conjectured that the fluctuations in the spectra of all chaotic systems

(more specifically, of all so-called K-systems) show the same statistical properties as

the eigenvalues of random matrices belonging to the appropriate ensemble. If this

conjecture is indeed applicable to all chaotic systems then it would provide a system

independent and thus universal mean to identify the type of the underlying classical

dynamics on a purely quantum mechanical basis.

To illustrate the meaning of the conjecture we briefly discuss the nearest neighbor

distribution of energy eigenvalues and the spectral form factor as two examples. In

order to extract the fluctuations in the energy spectrum it is first rescaled by the sys-

tem specific mean density of states. For the nearest neighbor distribution one then

considers the probability P (s) that a certain difference s between any two consecu-

tive rescaled energy levels occurs. For the semiclassical limit of a quantum system
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with corresponding integrable classical dynamics Berry and Tabor argued that

P (s) is given by the Poisson distribution [BT77] P (s) = exp[−s], see Fig. 1.1(a).

This distribution is characteristic for energy levels distributed at random and with

no correlations. If, on the other hand, chaotic systems with time-reversal symmetry

are considered within the framework of the random-matrix theory then one obtains

[Boh89] P (s) ≃ π
2
s exp[−πs2/4], see Fig. 1.1(a). For comparison we also mention

the result given by the Gaussian unitary ensemble (GUE) which represents sys-

tems without time reversal symmetry [Boh89]: P (s) ≃ 32π−2s2 exp[−4s2/4]. The

meaning of these results is that chaotic systems should exhibit level repulsion while

integrable systems do not if Bohigas’ conjecture applies.

Another important quantity when studying statistical properties of the energy

spectrum is the spectral form factor K(τ). It is defined as the Fourier transform

of a two-point correlation function with respect to the density of states and thus

contains information about the correlations among the energy levels. This spec-

tral form factor is the central object to be studied within this thesis. As it will

be thoroughly introduced in Section 2.2 we just briefly state the results obtained

by applying random-matrix theory [Boh89, Haa01]. For energy levels distributed

according to a Poissonian there are no correlations and the form factor is just a

constant. The results for K(τ) obtained from the random-matrix theory in the GOE

and GUE case are shown in Fig. 1.1(b). As one can observe the small τ ≪ 1 behav-

ior is significantly different if compared to the case with a Poissonian distribution

of the energy levels.

A vast number of experiments and numerical simulations support Bohigas’

conjecture, e.g. the energy level statistics of a hydrogen atom in a magnetic field,

the excitation spectrum of a molecule, billiard systems etc. The observed energy

level statistics of these chaotic systems does indeed follow the random-matrix theory

predictions, see e.g. [Stö99] and [Haa01] for an overview. However, a complete theo-

retical link between random-matrix theory and classical chaos could not yet be estab-

lished. A first step towards a proof of the conjecture was made by Berry who semi-

classically evaluated the spectral form factor using the periodic orbit theory [Ber85].

Since the form factor is related to a two-point correlation function its semiclassical

representation contains an infinite double sum over phase-carrying periodic orbits γ

which arise from the semiclassical expression of the Green’s function. The evalua-

tion of these double sums over periodic orbits faces serious technical problems. One

way to circumvent these problems is to apply the so-called diagonal approximation.

Within this approximation the sum over all possible pairs of periodic orbits (γ, γ ′)

is reduced to those terms where an orbit is only paired with itself which restricts the

double sum to the pairs (γ, γ). If time-reversal symmetry is present then the pairs

(γ, γi), where γi represents the time-reversed version of γ, have also to be included.

Applying this approximation Berry derived the form factor K(τ) and found agree-

ment with the universal random-matrix theory prediction for small τ as shown in
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Fig. 1.1(b). As the main objective of this thesis is to go beyond this diagonal approx-

imation we summarize the major steps in Berry’s approach in Section 2.3. After

this early attempt by Berry to deal with the evaluation of multiple infinite sums

over phase-carrying classical paths several different attempts trying to tackle this

problem followed [AIS93, ADD+93, BK96, Tan99, PS00, Bog00, SR01, Sie02, SV03].

The spectral form factor is a representative of a class of quantum mechani-

cal functions that are based on products of Green’s functions. Since many other

quantities of great physical importance, e.g. matrix element correlations or response

functions in linear transport theory, are based on a formally similar structure a pro-

found understanding of the semiclassical treatment of the spectral form factor is

essential. If a general scheme for the computation of multiple sums over periodic

orbits beyond the diagonal approximation could be developed a more precise semi-

classical treatment of many more complicated quantum mechanical objects would

be possible.

There have been a number of conceptually different approaches to reveal the re-

lation between spectral statistics and random-matrix theory besides the one based

on semiclassical periodic orbit theory. Several attempts were made to transfer well

known methods developed in the theory of disordered systems to chaotic yet clean

ballistic systems, as for example the non-linear sigma model [Ler03]. The universal

features of the spectrum were studied in [SA93, SSA93] while non-universal contri-

butions were investigated in [AA95]. The relation between chaotic and disordered

systems was discussed in [AAA95, GM02a, GM02b]. However, in most of these

approaches the physical framework was different as ensembles of systems instead of

single systems were considered. This implies for example that an additional aver-

age, e.g. over the disorder, can be applied which is not the case for a clean chaotic

system.

1.3 Model systems in quantum chaos

Billiard systems are frequently used model systems when classical or quantum chaos

is studied [Bäc98]. They are based on the free motion of a particle with a given

boundary. The shape of the boundary then determines the nature of the classi-

cal dynamics. Prominent examples for integrable billiards are the rectangular or

the circular billiard while the stadium billiard [Bun74, Ber81], the Sinai billiard

[Sin63, Sin70] and the family of Limaçon billiards [Rob83, Rob84] are frequently

investigated chaotic billiards. The family of Limaçon billiards is obtained by a

specific continuous deformation of the boundary of the circular billiard. The two

limiting cases are thus the completely chaotic cardioid billiard and the completely

integrable circular billiard. As the deformation of the boundary can be described

by a single parameter this family of billiards is suitable to study the transition be-
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tween integrable and chaotic dynamics. One advantage of billiard systems is that

their classical properties can be rather easily calculated numerically as the motion

inside the billiard follows straight lines while the reflections at the boundary are

simply such that the angle of the incoming path with the boundary equals that

of the outgoing path. Another useful tool applicable to billiards is that of sym-

bolic dynamics [AY81, BD97, Bäc98] which allows to find all periodic orbits via an

associated symbol code.

Besides studying the classical dynamics of billiard systems much effort has been

put into the investigation of the quantum mechanical properties. The eigenvalue

problem for the Limaçon billiards was studied in [Rob84, PR93a, PR93b, BS94,

Bäc98, BBR99]. Furthermore the semiclassical quantization was applied to the

stadium billiard [Tan97], billiards with mixed boundary conditions [SPS+95] and

others (see [Bäc98] and references therein). The eigenfunctions for different billiards

were investigated for example in [BSS98] and [CVL02].

In addition to the billiard systems that are based on the motion in a bounded

region of a plane a slightly different model was intensively considered: the motion on

a two-dimensional surface with constant negative curvature [BV86, AS88]. Although

this system is less intuitive because of its non-euclidean metric it has a very simple

uniform phase-space structure. This implies for example that all periodic orbits

share the same Lyapunov exponent. A semiclassical treatment is thus greatly

simplified and a recent attempt to go beyond Berry’s diagonal approximation for

the spectral form factor of such a system was performed by Sieber and Richter.

Their approach [SR01, Sie02] is based on the identification of off-diagonal pairs of

correlated periodic orbits which are associated with each other via self-crossings

in configuration space. They found agreement with the universal predictions of

random-matrix theory. However, the question remained open whether these results

are specific for the uniformly hyperbolic system or whether they pertain also for more

general chaotic systems with different periodic orbits having different Lyapunov

exponents. As this thesis aims at a solution of this problem we summarize the con-

figuration-space approach of Sieber and Richter in Section 2.5 and Section 3.1.

There have been rather intense research activities in the last few years in order to

verify and extend this approach based on off-diagonal orbit pairs [Heu01, BHH02,

BHMH02, RS02, NS03, TR03, Spe03, Mül03].

Another yet somewhat more artificial model to mimic quantum chaos is that

of quantum graphs [KS01, KS03]. A graph is a network of bonds and vertices.

The quantum mechanical approach for the graphs is based on the assumption that

the bonds cause a simple free wave evolution in one dimension while the vertices

are associated with scattering matrices. Similarly to Hamiltonian systems a pe-

riodic orbit theory for quantum graphs was developed and the spectral statistics

studied [KS99]. The ideas of the Sieber and Richter approach for the evalua-

tion of the semiclassical spectral form factor beyond the diagonal approximation
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could also be successfully applied to quantum graphs [BSW02b, BSW02a, Ber03].

Recently, a scattering theory for quantum graphs was formulated [KS03] and trans-

port properties such as shot noise investigated [SPG03]. However, as the dynamics

of quantum graphs does not have a deterministic chaotic classical limit we restrict

our considerations to classical Hamiltonian systems and their quantum mechanical

counterparts.

1.4 Purpose and outline of the work

This thesis aims at an extension of the configuration-space approach of Sieber

and Richter for the computation of off-diagonal contributions in the semiclassical

form factor K(τ) [SR01, Sie02]. We propose a canonically invariant formulation of

this approach which naturally allows for an extension to non-uniformly hyperbolic

systems with more than two degrees of freedom.

To this end we first introduce the necessary concepts in the theory of dynami-

cal systems and define the statistical quantities under consideration in Chapter 2.

Furthermore we summarize the semiclassical approach based on the periodic orbit

theory. Finally, we briefly review the configuration-space approach to go beyond

the diagonal approximation. In its original version the approach applies to two-

dimensional uniformly hyperbolic systems with time-reversal symmetry.

We study the crossing angle distribution of classical trajectories in a non-uni-

formly billiard system in Chapter 3. This crossing angle distribution is one of

the crucial ingredients in the approach by Sieber and Richter. To this end we

numerically investigate the family of Limaçon billiards in detail. As a result we

find that the crossing angle distribution is qualitatively unaltered compared to the

uniformly hyperbolic system if a certain class of crossings is neglected. However,

it also turns out that for non-uniformly hyperbolic systems a phase-space approach

is more suitable than a configuration-space approach based on the crossing angle

distribution.

Therefore, the purpose of Chapter 4 is to present the phase-space approach we de-

veloped for two-dimensional (f = 2) non-uniformly hyperbolic systems. We explain

in detail why the crossings in configuration space have to be replaced by ’encounter

regions’ in phase space. Furthermore we present results for the action difference of

the off-diagonal orbit pairs and discuss the issue of the Maslov indices. Finally

we develop a phase-space concept that replaces the crossing angle distribution and

provides an alternative way to count the partner orbits. Putting all these ingredients

together we proof that (similarly to the uniformly hyperbolic system) the universal

random-matrix theory prediction can be reproduced for non-uniformly hyperbolic

systems as well.

The phase-space approach allows us in a natural way to extend the method
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to systems with more than two degrees of freedom, i.e. f > 2. This extension

is presented in Chapter 5. Furthermore we check whether the transition between

systems with time-reversal symmetry and systems where this symmetry is broken

also follows the predictions of the random-matrix theory. In the last section of

Chapter 5 we then present an application to the problem of the correlations among

semiclassical matrix elements.

Chapter 6 gives a summary of our results and a brief outlook concerning open

problems.



12 1 Introduction



CHAPTER 2

Chaotic systems and spectral

statistics

The main goals of this chapter are the following. First, we review a

few necessary mathematical concepts in the context of classical chaotic

systems. Then we introduce the quantum spectral correlation functions,

especially the form factor K(τ). We summarize the semiclassical ap-

proach using periodic orbit theory in the case of fully chaotic systems

including the evaluation of the form factor within the so-called diagonal

approximation. Finally, we review the major ingredients for the calcula-

tion of the first off-diagonal correction to K(τ) in a uniformly hyperbolic

system and stress in detail why an extension of the theory, as presented

in Chapter 4, is inevitable.

2.1 Dynamical systems and chaos

We use this section to introduce the notation and some necessary mathematical

methods frequently applied when dealing with chaotic dynamical systems. Start-

ing from the classical equations of motion we consider their linear approxima-

tion described by the stability matrix in the vicinity of a given classical trajec-

tory. After a brief description of the properties of the stability matrix we will

introduce the Lyapunov exponents and the notion of stable and unstable man-

ifolds in the Poincaré surface of section. Finally we will specify the systems

under investigation in more detail. Most of the definitions and relations presented
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in this section can be found in a book by Gaspard [Gas98]. Besides that, the

properties of dynamical systems are nicely presented in [Rei96]. Further introduc-

tions to chaotic systems and some specific properties of manifolds can be found in

[GH02, Wig94, Ott93, LL92, Rue89, BGS85].

Throughout this thesis we consider closed quantum mechanical single particle

systems whose classical counterparts are Hamiltonian systems with f degrees of

freedom, e.g. two-dimensional billiard systems where f = 2. The classical dynamics

is governed by the Hamiltonian function

H(q,p) =
p2

2m
+ V (q) . (2.1)

Introducing the phase-space coordinates x ≡ (q,p) the equations of motion can be

written as
d

dt
x = Σ

∂H(x)

∂x
with Σ ≡

(

0 1

−1 0

)

. (2.2)

The unique solution to these 2f equations of classical motion corresponding to the

initial condition x0 is denoted by xt = (qt,pt). Thus, the dynamics of the system

maps any point x0 in phase space onto another point xt after time t. For conservative

systems, as considered in this work, the motion is restricted to the constant energy

surface H(x) = E for a given energy E of the particle. A solution of Eq. (2.2)

is called a periodic orbit γ of period Tγ if x
γ
t = x

γ
Tγ+t. If the considered system

exhibits time-reversal symmetry the equations of motion (2.2) are invariant under

the time-reversal operation T x = T (q,p) = (q,−p) together with t → −t. This

is the case if H(T x) = H(x). Besides this conventional time-reversal symmetry

represented by T there are also non-conventional time-reversal symmetries [Haa01].

However, throughout this work, we will consider only the case of conventional time-

reversal symmetry. The time-reversed version of a periodic orbit x
γ
t is then given

by x
γ,i
t = T x

γ
Tγ−t = (qγ

Tγ−t,−p
γ
Tγ−t).

A very useful tool in the context of dynamical systems is the concept of Poincaré

maps [Poi92]. Here, a 2f − 2 dimensional hypersurface P(x) = 0 is defined within

the constant energy shell. Let us denote the vectors1 in this hypersurface by ~y. The

continuous dynamics of the systems can then be described by a discrete map in

terms of the set of intersection points {~yi} of xt with the hypersurface P(x). One

particular useful example of a Poincaré surface of section (PSS) is constructed by

using a local coordinate system defined in each phase space point x via the solution

of Eq. (2.2) through that point. In this case a Poincaré surface of section can be

defined at every phase point x by all vectors ~y ≡ (q⊥,p⊥) perpendicular to the flow,

see Fig. 2.1(a).

1We will indicate that a vector lies in the 2f−2 dimensional Poincaré surface of section (PSS)

by using an arrow, e.g. ~y, while vectors in the 2f dimensional phase space are written in bold face,

e.g. x. Nevertheless all vectors in the Poincaré surface of section are of course also vectors in

the phase space which implies that for example the addition x + ~y is well defined.
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(a) Poincaré surface of section (PSS)

0 PSS at xtPSS at x

x0M(t;     )

(b) Mapping between two PSS

Figure 2.1: (a) Schematic drawing of a Poincaré surface of section (PSS) at

xt. It is defined by the perpendicular coordinates of the local coordinate system

of a classical path going through xt. (b) The stability matrix M(t,x0) maps the

Poincaré surface of section at x0 linearly to the one at xt. The dotted lines within

the surface represent the local stable and unstable directions while the dots represent

the intersection points of another trajectory.

Each trajectory xt is characterized by its linear stability which describes how

a small perturbation δ~y evolves with time. Thus, for a given classical path the

dynamics in the vicinity of that path can be described by the so-called stability

matrix2 M(t,x), see e.g. [Gas98, Rei96]. For any vector δ~y ≡ (δq⊥, δp⊥) which

lies within the constant energy surface and describes a small displacement perpen-

dicular to the trajectory the solution to the equations of motion (2.2) is given by

δ~yt = (x0 + δ~y0)t − xt. Within the range of validity for the linear approximation of

Eq. (2.2) it can be approximated by M(t,x):

δ~yt(x) ≃ M(t,x) δ~y0(x) . (2.3)

The meaning of Eq. (2.3) is therefore that the stability matrix M(t,x) maps the

Poincaré surface of section defined at x0 linearly to the Poincaré surface of

section at xt, see Fig 2.1(b). Since the flow of a dynamical system forms a group,

i.e. (xτ )t = xτ+t, the stability matrix also satisfies a similar relation:

M(t + τ,x0) = M(t,xτ ) · M(τ,x0) . (2.4)

For chaotic systems small initial deviations typically grow exponentially with

time if considered in the long-time limit. According to Eq. (2.3) this implies that

the matrix elements of M(t,x) also grow exponentially. To extract this exponential

2Here, we consider the perpendicular directions (δq⊥, δp⊥) only while neglecting the neutral

direction along the flow.
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growth in the stability matrix one can reduce M(t,x) to a diagonal form by the

means of a Lyapunov homology [Gas98]. In general, the decomposition of M(t,x)

has the structure

M(t,x0) =

2f−2
∑

i=1

~ei(xt)Λi(t,x0)~f T
i (x0) , (2.5)

where the vector fields {~ei(x)} and {~fi(x)} are not growing exponentially. If there

is any exponential growth with respect to the time t then it is absorbed in the

{Λi(t,x0)}. That means that one can find a local set of directions {~ei(x)} and {~fi(x)}
at each phase space point x so that Eq. (2.5) is fulfilled. However, it is important

to realize that the decomposition (2.5) is not identical with a diagonalization of the

matrix M(t,x0), since the vectors {~fi(x)} in Eq. (2.5) are evaluated at the initial

point x = x0 while the set {~ei(x)} is evaluated at the final point x = xt. The vectors

{~ei(x)} and {~fi(x)} satisfy the relations
∑

i

~ei(x) ~f T
i (x) = 1 and ~f T

i (x) · ~ej(x) = δij . (2.6)

However, these relations do not imply that the vectors {~ei(x)} and {~fi(x)} are

mutually orthogonal.

In the decomposition (2.5), there is a stretching factor Λi(t,x) corresponding to

each direction ~ei(x). From the group property (2.4), the decomposition (2.5) and the

relations (2.6) it is clear that Λi(t + τ,x0) = Λi(t,xτ )Λi(τ,x0) also holds, similarly

to Eq. (2.4). The stretching factors allow to calculate the Lyapunov exponents λi

associated with the directions ~ei via the relation

λi ≡ λ(x, ~ei) = lim
t→∞

1

t
ln |Λi(t,x)| . (2.7)

The equations of motion for the stretching factors follow from a linearization of

the original equations of motion (2.2) together with the decomposition (2.5) and the

conditions (2.6). They can be written as [Gas98]

Λ̇i(t,x0) = χi(xt) Λi(t,x0) . (2.8)

Solving this differential equation for Λi(t,x0) one finds with Eq. (2.7)

λi(x0) = 〈χi(xt)〉t , (2.9)

where 〈. . . 〉t stands for the time average which for any function f(x) is defined by

〈f(x0)〉t ≡ lim
t→∞

1

t

t
∫

0

dτ f(xτ ) . (2.10)

The χi(x) introduced in Eq. (2.8) are local growth rates [EY93] which yield the

Lyapunov exponents when averaged along a trajectory, as in Eq. (2.9). In general
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Figure 2.2: Mapping of the Poincaré surface of section (PSS) at x0 to the one

at xt. The manifolds are represented by the dotted lines. The solid lines are their

linear approximations at the origin. All vectors pointing into the unstable direction

(u) are stretched while the components with respect to the stable direction (s) become

smaller. However, the total volume in phase space is conserved which is reflected in

the different sign of χ in the pairing rule (2.13).

they depend on the position in phase space. Only the uniformly hyperbolic system

is defined such that χ(x) = λ independently of x.

Another important concept is that of stable and unstable manifolds, see e.g.

[Gas98, Rei96]. The local stable and unstable manifolds W s,u(x) in the Poincaré

surface of section at x = x0 are defined as

W s,u(x) = {~y0 : ‖~yt‖ = ‖(x0 + ~y0)t − xt‖ → 0 for t → ±∞} . (2.11)

This definition means the following. Consider a trajectory starting at x0 and a

neighboring trajectory starting at x
(n)
0 = x0 + ~y0. Then for all ~y0 lying in the stable

manifold W s(x) the neighboring trajectory converges towards the original one when

propagated forward in time. This implies that not all initial deviations have to grow

exponentially. This exponential growth occurs only if the initial deviation ~y has

at least one component which lies outside the stable manifolds. Furthermore, it is

clear that the exponential growth is limited by the system size. This means that

the initial deviations ~y0 must be small so that the exponential long-time behavior

can be seen before ~yt is of the order of a typical system size. Equivalent arguments

hold if the time evolution is reversed, e.g. t → −∞, leading to the definition (2.11)

of the unstable manifold W u(x).

Because of the mathematical structure of the Hamiltonian system (2.2) the

stability matrix is symplectic which means that M T Σ M = Σ with MT being

the transposed matrix. Therefore, the symplectic product defined as δ~y T
1 Σ δ~y2 is

conserved under the evolution of the system, i.e. δ~y T
1 Σ δ~y2 = (Mδ~y1)

T Σ (Mδ~y2) for

any two vectors δ~y1,2. Furthermore, the symplectic property implies a pairing rule

for the vector fields {~ei(x)} and {~fi(x)} which can most easily be seen by calculating
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the inverse of M(t,x0):

M−1(t,x0) = Σ · MT (t,x0) · Σ

=

2f−2
∑

j=1

(

Σ~fj(x0)
)

Λj(t,x0) (−Σ~ej(xt))
T

=

2f−2
∑

i=1

~ei(x0) Λ−1
i (t,x0) ~fT

i (xt) . (2.12)

The last representation of M−1 can easily be checked with Eqs. (2.5) and (2.6) by

verifying MM−1 = M−1M = 1. Let the vector fields {~ei(x)} and {~fi(x)} be fixed

for a given system so that Eqs. (2.5) and (2.6) are fulfilled. Then equality (2.12)

implies that for each direction i with {χi(x), ~ei(x), ~fi(x)} there is a corresponding

direction j for which

{

χj(x), ~ej(x), ~fj(x)
}

=
{

−χi(x), Scl

(

Σ~fi(x)
)

,
1

Scl

(−Σ~ei(x))
}

. (2.13)

In order to keep track of the units one has to introduce a classical action denoted

by Scl which can be, for example, the action of the shortest periodic orbit in the

system. The pairing rule (2.13) also means that because of Eq. (2.9) all the different

directions come in pairs (i, j) with λi ≥ 0 and λj = −λi ≤ 0. This property is an

expression of the fact that the phase space volume is conserved. According to the

definition of the Lyapunov exponents (2.7) and the definition of the stable and

unstable manifolds (2.11) the directions ~ei(x) with a positive Lyapunov exponent

λi > 0 are tangent to the unstable manifold, see Fig. 2.2. Therefore they are called

local unstable directions and characterized by a superscript u. Similarly, the ones

with λi < 0 are the stable directions indicated by a superscript s. This connection

between the manifolds W (x) and the vectors ~ei(x) can most easily be seen by using

the linearized equations of motion in the form (x0 + δ~y0)t ≈ xt + M(t,x0)δ~y0 in

definition (2.11). In terms of stable and unstable directions the pairing rule can

then be rewritten as
~f s,u
i (x) = − 1

Scl

Σ~eu,s
i (x) (2.14)

where Σ is the matrix defined in Eq. (2.2) and the index i labels the number of the

pair and thus ranges from i = 1 . . . (f − 1).

Throughout the rest of this work we will mostly be concerned with continuously

hyperbolic systems. The precise definition of a hyperbolic system can for example

be found in [Gas98]. The important properties of a hyperbolic system are: i) all

Lyapunov exponents (except the one corresponding to the direction along the flow)

are strictly nonzero (λj 6= 0) and ii) the angles between the local directions of the

manifolds are nonzero in every phase space point x. This ensures that each vector

δ~y in the Poincaré surface of section at x can be decomposed into its stable and
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unstable components

δ~y ≡ δ~y s + δ~y u =

f−1
∑

i=1

si ~e
s
i (x) + ui ~e

u
i (x) . (2.15)

Thus it can be characterized by the set of stable coordinates {si} and unstable co-

ordinates {ui}. Using the pairing rule (2.14) the relations (2.6) can be reformulated

so that they contain only the vector field {~e u,s
i (x)} which are the local directions of

the stable and unstable manifolds:

~eu
i (x)T Σ~e s

j (x) = Sclδij , ~eu
i (x)T Σ~eu

j (x) = ~e s
i (x)T Σ~e s

j (x) = 0 . (2.16)

However, these relations (2.16) do not imply that the basis {~e s,u
i } is orthogonal since

they are based on the symplectic product rather than the usual scalar product.

Furthermore, hyperbolicity implies that after a certain time all initial deviations

δ~y grow exponentially except when they lie on a stable manifold. This can be

illustrated by considering the time evolution of a vector δ~y0 by applying the stability

matrix M(t,x). By means of the decompositions (2.5), the pairing rule (2.14) and

Eq. (2.15) one directly finds

δ~yt =

f−1
∑

i=1

si(t)~e s
i (xt) + ui(t)~eu

i (xt) ≃ M(t,x0) δ~y0

=

f−1
∑

i=1

Λi(t,x0)
−1 si(0) ~e s

i (x0) + Λi(t,x0) ui(0) ~eu
i (x0) . (2.17)

Thus one can read off the equations of motion for the components si(t) and ui(t)

of δ~yt. Together with the equations of motion for Λi(t,x0), Eq. (2.8), they can be

expressed as

ui(t) = Λi(t,x0) ui(0) and u̇i(t) = χi(xt) ui(t) (2.18)

and similarly for si(t). According to the definition of the Lyapunov exponent (2.7)

hyperbolicity means that Λi(t,x0) ∼ exp λit grows exponentially in the long-time

limit. Therefore, all unstable components ui(t) of any vector δ~y(t) also have to grow

exponentially on time scales t ≫ λ−1
i because of Eq. (2.18).

The assumption that the considered system is continuously hyperbolic can be

expressed by the requirement that

~e s,u(x + δ~y) = ~e s,u(x) + O(δ~y) (2.19)

is fulfilled for any point in phase space x and any small displacement δ~y. This re-

striction to continuous local stable and unstable directions is not very severe. If for

example a hyperbolic billiard system without any singularities of the boundary is
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considered then the stability matrix M(x, t), see Eq. (2.3), is a continuous function

of the phase space position x. Since the local stable and unstable directions can be

extracted from M(x, t) via the homological decomposition (2.5) one can conclude

that such a system is also continuous hyperbolic. Even if there are isolated singular-

ities of the boundary as it is the case for the cardioid and other billiards the number

of phase space points x where the continuity relation (2.19) is violated is negligible.

Besides being continuously hyperbolic, the systems we consider are also assumed

to be mixing which means that

lim
t→∞

〈a(xt) b(x)〉x = 〈a(x)〉x 〈b(x)〉x (2.20)

for any two functions a(x) and b(x) defined in phase space. The average 〈. . . 〉x
introduced in Eq. (2.20) is the phase-space average over the constant energy surface,

i.e.

〈f(x)〉
x
≡ 1

Ω(E)

∫

phase
space

dx δ (E − H(x)) f(x) (2.21)

with the normalization 〈1〉x = 1. Thus the volume of the constant energy surface in

phase space is given by Ω(E) ≡
∫

dx δ (E − H(x)). The mixing condition basically

states that correlations between two different functions at different times decay in

the long-time limit. It also implies that a mixing system is ergodic meaning that

the time average (2.10) taken along any non-periodic path equals the phase-space

average (2.21), i.e. 〈f(x0)〉t = 〈f(x)〉x for almost all initial conditions x0. Ergodicity

thus implies that almost all trajectories scan the phase space uniformly in the long-

time limit.

Although the above mentioned requirements to the class of systems we consider

seem to be rather restrictive they basically just mean that the system shows a strong

chaotic behavior. In particular, we are not imposing the condition that the system

has to be uniformly hyperbolic. We stress once more that the systems considered in

this work are clean chaotic systems without any disorder.

2.2 Spectral statistics in complex systems

The spectral quantities that are investigated further on are defined in this section.

Based on the density of states we introduce the spectral two-point correlation func-

tion and its Fourier transform, the spectral form factor. Finally, we state the

results for these quantities that are found by applying random-matrix theory.

The properties of the quantum mechanical spectrum {En} of the system defined

by Eq. (2.1) are determined by the solutions of the corresponding Schrödinger

equation

Ĥψn(q) =

(

− ~
2

2m
∆ + V (q)

)

ψn(q) = Enψn(q) (2.22)
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subject to the boundary conditions. Based on the corresponding Green’s function

one can define a generalized density of states da(E) as

da(E) ≡ − 1

π
ℑ tr

[

â Ĝ+(E)
]

=
∑

n

ânn δ(E − En) (2.23)

for a given quantum mechanical operator â. Here, Ĝ+(E) = 1/(E − Ĥ + iε) is the

retarded Green’s function, the En denote the eigenenergies of the closed system

and ânn ≡ 〈n|â|n〉 are the diagonal matrix elements in the energy eigenbasis {|n〉}.
Averaging this quantity (2.23) over an energy window of width ∆E ≪ E leads to

the average density of states d̄a ≡ 〈da(E)〉∆E. This averaged density of states is a

smooth and on quantum scales only slowly varying function of the energy E if the

energy average includes many energy levels, i.e. ∆E ≫ 1/d̄. If not further specified

we will always use an average of the form

〈f(x)〉∆x =

∞
∫

−∞

dx′ g∆x(x
′ − x) f(x′) . (2.24)

The window function g∆x(x) can be any normalized, smooth and at x ∼ ±∆x/2

rapidly decaying function, e.g.

g∆x(x) =

{

exp
[

−π (x/∆x)2] /∆x Gaussian

θε (|x| − ∆x/2) /∆x box-like
(2.25)

where θε stands for a ε-smoothed step function with ε ≪ ∆x. The usual density

of states is retained from Eq. (2.23) by choosing â = 1 and will be denoted as

d(E) ≡ d1(E).

In terms of the generalized density of states (2.23) the two-point correlation

function Cab(ω,E) is defined as

Cab(ω,E) ≡ 1

d̄2

(

〈

da(E + ω/2)db(E − ω/2)
〉

∆E
− d̄ad̄b

)

. (2.26)

Again, the energy average 〈. . . 〉∆E ensures that C(ω,E) is a slowly varying function

of the energy E. Taking the Fourier transform of Eq. (2.26) with respect to the

energy difference ω leads directly to the definition of the generalized form factor

Kab(τ, E) ≡ d̄

〈 ∞
∫

−∞

dω Cab(ω,E)e−2πiωd̄τ

〉

∆τ

. (2.27)

Here, the dimensionless time τ is defined in terms of the Heisenberg time TH ≡
2π~d̄ which represents the time scale associated with the mean level spacing. Ac-

cording to [Pra97] the time average 〈. . . 〉∆τ over a small interval ∆τ ≪ τ has to be

performed in order to obtained a self-averaging spectral form factor. This average
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leads effectively to a cutoff in the Fourier integral over ω at ωcutoff ∼ ±1/(d̄ ∆τ).

The special case of the spectral form factor K(τ) is obtained by â = b̂ = 1.

One theory to predict the spectral statistics of complex quantum systems is

based on the analysis of fluctuations of eigenvalues of random matrices [Meh90,

Por65, Boh89]. It allows for the calculation of the spectral form factor (2.27) in the

following way. The underlying assumption is that the Hamiltonian of the quantum

system can be represented by a N × N random matrix. The ensemble of matrices

is defined by the general symmetries of the system. In this work we are mainly

concerned with the Gaussian orthogonal ensemble (GOE) which corresponds to

Hamiltonians (2.22) that exhibit time-reversal symmetry, e.g. systems with zero

magnetic field. This ensemble is defined by all real symmetric matrices such that

the ensemble itself is invariant under orthogonal transformations. The linearly inde-

pendent matrix elements are assumed to be random variables. Another important

ensemble is the Gaussian unitary ensemble (GUE) representing systems without

time-reversal symmetry. It contains all hermitian matrices and is invariant under

unitary transformations. The random-matrix theory predictions for the spectral

form factor (Eq. (2.27) with â = b̂ = 1) in the GOE case are [Meh90, Boh89]

KGOE(τ) =

{

2τ − τ ln(1 + 2τ) for 0 < τ < 1

2 − τ ln
[

2τ+1
2τ−1

]

for τ > 1

}

≈ 2τ − 2τ 2 + 2τ 3 + . . . (2.28)

where the last approximation is a small τ ≪ 1 expansion of K(τ). On the other

hand, the GUE result reads

KGUE(τ) =

{

τ for 0 < τ < 1

1 for τ > 1
(2.29)

which is shown in Fig. 1.1(b). Either result is universal in the sense that no system

specific parameters enter. The random-matrix theory results (2.28) and (2.29) are

valid in the limit of large matrices, i.e. N → ∞.

The transition between the two symmetry classes can be described using a para-

metric random-matrix theory [PM83]. The basic idea is to introduce a transition

parameter α which defines an ensemble of N×N matrices H = S+iαA. Here, S is a

real symmetric matrix with matrix elements Sij that satisfy 〈Sij〉 = 0 when averaged

over the ensemble. Furthermore their variance v is fixed so that 〈S2
ij〉 = (1 + δij)v

2.

The matrix A is a real antisymmetric matrix with analogous statistical properties.

Hence, α = 0 yields the GOE case (corresponding to systems with time reversal

symmetry) while α = 1 gives the GUE case. However, in the limit of large matri-

ces N → ∞ the statistical properties of the eigenvalues of H are non-analytical at

α = 0 and therefore there is an abrupt transition from the GOE to the GUE case.

The proper transition parameter turns out to be λtrans ≡ αv/d̄ where d̄ is the mean

spacing between the eigenvalues and v is the variance [PM83, BGdAS95]. In terms
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of this parameter the GOE results are reproduced for λtrans → 0 while the GUE case

is given for λtrans → ∞. Within this random-matrix theory framework, the small

time limit of the form factor is then given as [PM83, NS03]

KGOE→GUE(τ) = τ
(

1 + (1 − 2τ) exp
[

−8π2λ2
transτ

])

for τ ≪ 1 . (2.30)

The same universal results that are obtained within the random-matrix theory

seem to be applicable for chaotic systems, as conjectured in [BGS84] and supported

by a large number of experimental and numerical results [Boh89, Stö99, Haa01].

All further investigations in this thesis are centered around the problem how this

statistical behavior described by Eqs. (2.28 – 2.30) in the energy spectrum can be

explained for clean chaotic systems. Since the considered clean chaotic systems

do not exhibit any disorder the only averages entering Eq. (2.27) are the energy

average and the time average but there is no ensemble of systems over which one

has to average.

2.3 Semiclassical approach to spectral statistics

In this section we summarize the semiclassical methods and results [Gut90, Haa01,

EFMW92] used for the calculation of the spectral correlation functions (2.26, 2.27).

This approach is valid in the semiclassical limit ~ → 0. To be more accurate with

the definition of the semiclassical limit one should introduce a dimensionless small

parameter instead of using ~ directly which has the dimensions of an action. If the

energy E of the particles is experimentally accessible then the semiclassical approach

should be valid for the energy regime where d̄ E ≫ 1 meaning that the energy is

much bigger than the mean level spacing. Another option is to compare the typical

wavelength of the wave functions under consideration with a typical system size.

In this case the semiclassical limit is given if the system size is much bigger than

the quantum mechanical wavelength of the particle. A third parameter, which we

will use frequently, is the ratio between ~ and a typical classical action Scl of the

system, e.g. the action of the shortest periodic orbit as in relation (2.13). Here, the

semiclassical limit is described by Scl/~ ≫ 1.

In order to arrive at a semiclassical approximation for the form factor (2.27)

one first evaluates the density of states (2.23) in the semiclassical limit. One way

would be to follow the derivation of the Gutzwiller trace formula [Gut90]. This

approach can be extended [EFMW92] to the generalized density of states (2.23) by

starting from the Wigner transform and its inverse

a(x) ≡ a(q,p) =

∫

dq̄

〈

q +
q̄

2

∣

∣

∣

∣

â

∣

∣

∣

∣

q − q̄

2

〉

exp

[

−i
pq̄

~

]

,

〈q1 |â|q2〉 =
1

(2π~)f

∫

dp a

(

q1 + q2

2
,p

)

exp

[

i
p(q1 − q2)

~

]

. (2.31)



24 2 Chaotic systems and spectral statistics

This Wigner transform is a representation of a quantum operator in terms of

the classical phase space [Ber77]. Especially, it follows from the definition of the

Wigner transformation (2.31) that the trace of an operator can be written as a

phase space integral

tr
[

â b̂
]

=
1

(2π~)f

∫

phase
space

dx a(x)b(x) (2.32)

with a(x) and b(x) being the Wigner transform (2.31) of the operators â and b̂,

respectively. This relation between the trace over quantum operators â and b̂ on

one hand and the associated classical functions a(x) and b(x) on the other hand can

be directly applied to the calculation of the semiclassical limit of the generalized

density of states (2.23). This limit is then obtained by determining the Wigner

transformation of the Green’s function and solving all rapidly oscillating integrals,

e.g. in Eq. (2.32), in the stationary-phase approximation. It turns out that the

occurring phases are stationary for the classical periodic orbits which for hyperbolic

systems are unstable and isolated. The result is that the semiclassical expression

for the generalized density of states of chaotic systems can be written as a sum

of its mean value d̄a(E) and fluctuations dosc
a (E) around this mean [Gut90, Wil88,

EFMW92, GAB95, CRR99]

da(E) ≡ d̄a(E) + dosc
a (E) (2.33)

where

d̄a(E) ≈ (2π~)−f

∫

phase
space

dx a(x) δ (E − H(x)) (2.34)

and

dosc
a (E) ≈ 1

π~
ℜ

∑

ppo{γ}

∞
∑

r=1

wγAγ exp [irSγ(E)/~] (2.35)

with

wγ ≡ Tγ exp(−iπµγr/2)
√

∣

∣det
(

M r
γ − 1

)∣

∣

and Aγ = A (xγ
0 , Tγ) ≡

1

Tγ

Tγ
∫

0

dt a(xγ
t ) . (2.36)

The first contribution d̄a(E), Eq. (2.34), is the leading order term with respect to ~

in the so-called Weyl expansion. The function a(x) is the Wigner function (2.31)

of the operator â. The function δ(E − H(x)) results from the Wigner transform

of the Green’s function. The average part d̄a(E) can be related to the phase space

average 〈a(x)〉x by using the fact that the average part of the energy density of

states d̄ is just given by d̄(E) = (2π~)−f Ω(E). Thus, one easily finds

d̄a(E) = 〈a(x)〉x d̄(E) (2.37)
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which is a function that depends only weakly on the energy E.

The second contribution (2.35) to the density of states (2.33) is a rapidly oscil-

lating function of the energy E. The first sum runs over all primitive periodic orbits

labeled by γ while the second sum counts the repetitions r of each primitive orbit.

The wγ represent the classical weights (2.36) in terms of the stability matrix M , the

Maslov index µ and the repetition number r. The dependence on the operator

â enters via Aγ which is the integral (2.36) over its classical phase space represen-

tation a(x) along the periodic orbit γ. To simplify the notation we will from now

on formally include the number of repetitions r in the label γ when summing over

periodic orbits.

Using the definitions of the two-point correlation function (2.26) and the form

factor (2.27) we obtain from Eq. (2.35) the semiclassical representation of the gen-

eralized form factor [Ber85, EM95] in chaotic systems

Kab(τ) =

〈

∑

γ,γ′

(wγAγ)(wγ′Bγ′)∗

T 2
H

exp

[

i
Sγ(E) − Sγ′(E)

~

]

δ∆τ

(

τ − Tγ + Tγ′

2TH

)

〉

∆E

.

(2.38)

Because of the energy average over ∆E with 1/d̄ ≪ ∆E ≪ E the function Kab(τ, E)

is a smooth and slowly varying function of E. Since the main interest however is in

the functional dependence on the rescaled time τ we will drop the argument E in

the spectral form factor, i.e. Kab(τ, E) ≡ Kab(τ), from now on. The width of the

δ-function is due to the time average 〈. . . 〉∆τ in Eq. (2.27).

As expressed in Eq. (2.38) the form factor in the semiclassical limit is determined

by a double sum over pairs of periodic orbits (γ, γ ′). The length of the involved orbits

is of the order of the Heisenberg time TH because of the δ-function in Eq. (2.38).

Since TH ≡ (2π~)d̄ = Ω(E)/(2π~)f−1 and f ≥ 2 the limit ~ → 0 implies that all

involved periodic orbits are very long compared to the classical length scales as for

example the system size. The typical classical actions Sγ(E) of these paths are large

compared to the quantum mechanical action ~. This means that the exponential

function in Eq. (2.38) is a rapidly oscillating function of the energy E as long as

the action difference Sγ,γ′ = Sγ − Sγ′ is not of the order of ~. Therefore, the energy

average over the quantum mechanically large interval ∆E ≫ 1/d̄ strongly suppresses

the contributions of most orbit pairs (γ, γ ′).

The major contribution to the double sum in Eq. (2.38) is therefore due to the

terms where a path γ is paired with itself or, if time-reversal symmetry is present,

with its time-reversed version γi. Then the action difference in Eq. (2.38) vanishes

identically. To cover either case we introduce a parameter g such that

g =

{

1 if time-reversal symmetry is absent

2 if time-reversal symmetry is present
(2.39)

assuming that there are no further symmetries among the periodic orbits. Consid-

ering only those pairs (γ, γ) and (γ, γi), see Fig. 2.3(a), reduces the double sum in
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Eq. (2.38) to a single sum. This approximation is known as the diagonal approxima-

tion [Ber85, EM95] and we will denote the resulting form factor by K
(1)
ab (τ). Within

this approximation it is furthermore Tγ = Tγi and wγ = wγi (see e.g. [FR97] for a

study of the Maslov indices under time-reversal) so that one finds

K
(1)
ab (τ) = τ

〈

AγBγ + (g − 1)AγBγi

〉

γ,τTH

= τ

〈

1

T 2
γ

Tγ
∫

0

dt a(xγ
t )

Tγ
∫

0

dt′
[

b(xγ
t+t′) + (g − 1)b(xγ,i

t+t′)
]

〉

γ,τTH

(2.40)

where the average over periodic orbits 〈. . . 〉γ,T contains all periodic trajectories of a

given length Tγ ≃ T = τTH each weighted by |wγ|2, Eq. (2.36). It is defined by

〈

. . .
〉

γ,T
≡ 1

T

∑

γ

. . . |wγ|2 δ∆T (T − Tγ) . (2.41)

In order to further evaluate Eq. (2.40) one has to perform this average over periodic

orbits. This can be done by means of a sum rule for periodic orbits [HA84]. The

last equation in (2.40) is already written such that it allows to employ the specific

form of the sum rule given by [PP90]

〈

1

Tγ

Tγ
∫

0

dt f(xγ
t )

〉

γ,T

≈ 1

T

T
∫

0

dt f(xt) ≈ 〈f(x)〉
x

for T → ∞ . (2.42)

The left hand side is an average of any function f(x) over all periodic orbits of

given length while the integral on the right hand side goes along any non-periodic

ergodic path starting at any initial condition x0. Physically it means that a set of

all periodic orbits with given long period T fills the phase space uniformly if the

weights wγ are included appropriately. However, this does not necessarily imply

that a single periodic orbit is ergodic. The sum rule (2.42) is based on the fact that

the classical weights are exponentially small, i.e. |wγ|2 ≈ T 2
γ exp [−λTγ], which is

compensated by an exponentially large number of periodic orbits. This large number

of periodic orbits then allows to replace the sum in Eq. (2.41) by an integral, i.e.
∑

γ →
∫

dTγ exp [λTγ] /Tγ .

Applying the sum rule (2.42) to the diagonal approximation (2.40) then leads to

the semiclassical result

K
(1)
ab (τ) = g τ 〈a(x)〉x 〈b(x)〉x for ~ → 0 . (2.43)

The long-time limit required for the sum rule (2.42) is automatically fulfilled in the

semiclassical limit because the δ-function in Eq. (2.41) ensures orbit lengths of the

order of the Heisenberg time TH . If the random-matrix theory results (2.28) in
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the GOE (g = 2) case and (2.29) in the GUE (g = 1) case are compared with

the semiclassical approach based on the diagonal approximation yielding Eq. (2.43)

then one finds that the leading small τ ≪ 1 behavior of the spectral form factor

K(τ) is reproduced, see Fig. 1.1(b). However, a detailed explanation of the com-

plete functional shape of K(τ) can not be given within the diagonal approximation.

The reason is that one has neglected all off-diagonal terms in the double sum over

periodic orbits in the semiclassical expression for the form factor (2.38). These off-

diagonal terms are related to correlations between the actions of classical periodic

orbits. If one assumes that the spectral statistics exactly follows the random-matrix

theory then one can draw conclusions about these action correlations [ADD+93].

Several works aimed at an extraction of these action correlations from the underly-

ing classical dynamics, see e.g. [Tan99] and [SV03]. However, a complete derivation

of the spectral form factor for any value of τ could not be found yet.

It is worth noting that a small but fixed rescaled time τ still implies large unscaled

times T = τTH in the semiclassical limit. The time scale on which we study the

form factor is thus given by terg ≪ T ≪ TH where terg is the time after which

the systems typically reaches its ergodic behavior. For shorter times T . terg, the

spectral form factor shows non-universal features which are determined by the short

periodic orbits. In case of the diagonal approximation this can be immediately seen

from Eqs. (2.40) and (2.41) which just give a sum over δ-peaks as the application of

the sum rule (2.42) is not justified for short times, see also [AAA95].

2.4 Matrix element statistics

In this section we briefly discuss the relation between matrix element fluctuations

and correlation functions such as the form factor (2.27). This problem is related

to the statistical properties of wave functions in chaotic systems. A frequently

used assumption supported by Shnirelman’s theorem [Shn74, Pec83, Zel87, dV85]

is that wave functions in chaotic systems tend to be uniformly distributed in the

semiclassical limit. More specifically, the theorem states that in the semiclassical

limit almost all matrix elements of an operator â converge to the microcanonical

phase space average of the associated Wigner function (2.31), i.e.

ânn ≡ 〈n|â|n〉 ≈ 〈a(x)〉x for ~ → 0 and En ≃ E = const (2.44)

where |n〉 is the energy eigenstate corresponding to the eigenvalue En. This relation

applies to almost all eigenstates |n〉. There are exceptions like Heller’s scarred

wave functions [Hel84] but the set of these exceptional states is of measure zero if

compared to all eigenstates.

One possibility to study the accuracy of the estimate (2.44) is to consider fluc-

tuations of the matrix elements around their expected mean value. An early step
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into this direction is described in [FP86] where the relation

∑

m

exp

[

i
En − Em

~
t

]

|anm|2 = 〈n|â(t)â(0)|n〉 ≈ 〈a(xt)a(x0)〉x = Caa(t) + 〈a(x)〉2
x

(2.45)

between the ânm and the classical correlation function Caa(t) was derived. This

classical correlation function is defined as

Cab(t) ≡ 〈a(x)b(xt)〉x − 〈a(x)〉x〈b(x)〉x (2.46)

where the phase-space average is taken over the initial conditions x = x0. The

relation given above can be used to consider the fluctuations of the matrix elements

by applying a Fourier transformation to Eq. (2.45). A similar analysis is presented

in [Wil87] where the spectral correlation function

S(E,ω) ≡
∑

n,m

|ânm|2 δ (ω − (En − Em)) δ

(

E − En + Em

2

)

(2.47)

was related to the Fourier transform of the classical correlation function Caa(t).

A slightly different approach was suggested in [EM95, Eck97] where the form

factor (2.27) was associated with the matrix element fluctuations in the following

way. The two-point correlation function (2.26) can be rewritten as

d
2
Cab(ω) =

∑

n

ânnb̂nn 〈δ(E − En)〉∆E δ(ω)

+
∑

n,m6=n

[

ânnb̂mm

〈

δ

(

E − En + Em

2

)〉

∆E

δ (ω − [En − Em])

]

− d̄ad̄b

(2.48)

if the diagonal terms are separated from the off-diagonal terms. The long-time limit

of the form factor (2.27), i.e. the time averaged Fourier transform of Eq. (2.48),

is hence given as

Kab(τ ≫ 1) ≈ d
−1 ∑

n
|E−En|<∆E/2

ânnb̂nn 〈δ(E − En)〉∆E ≈ 1

∆N

∑

n

ânnb̂nn (2.49)

with ∆N = d̄ ∆E being the number of states with |En − E| < ∆E/2. Based on

this relation and on the assumption that Kab(τ = 1) ≈ Kab(τ ≫ 1) the variance

of the matrix element fluctuations was semiclassically estimated using the diagonal

approximation [EM95]. Similarly, one can average the two-point correlation function

(2.48) over ω with ∆ω ≪ d
−1

and then set ω = 0. This gives the variance [EFK+95]

σ2
a ≡ 1

∆N

∑

n
|E−En|<∆E/2

â2
nn ≈ d̄ ∆ω

〈

Caa(ω = 0, E)
〉

∆ω
(2.50)
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where we have assumed that â = b̂ and that the matrix elements ânn fluctuate around

0, i.e. ânn = 0. The ω-average corresponds to a smearing of the energy levels on a

scale much smaller than the mean level spacing. The accuracy of this approximated

relation depends on the type of the window function chosen for the energy average.

A recent application of the techniques presented above to cross-section correlations

is described in [EFV00, EVP01].

These relations between the correlation function Cab(ω) or its Fourier trans-

form Kab(τ) on one hand and the matrix element fluctuations on the other hand

are a motivation to extend the semiclassical evaluation of the spectral form factor

K(τ) = K11(τ) to the generalized form factor Kab(τ). In Section 5.3, we will show

that to leading order in ~ the relation Kab(τ) = 〈a(x)〉x〈b(x)〉xK11(τ) holds. We

then focus on the special case 〈a(x)〉x = 〈b(x)〉x = 0 and determine the next order

correction in ~ which turns out to be related to the classical correlation function

Cab(t).

2.5 Beyond the diagonal approximation: configu-

ration-space approach

The first attempt [SR01] to include off-diagonal contributions to the small τ behavior

of the spectral form factor K(τ) based on orbit pairs with correlated actions is

briefly reviewed in this section. The starting point is once more the semiclassical

expression (2.38) with Aγ = Bγ ≡ 1 for the spectral form factor. The derivation

in [SR01] is restricted to two-dimensional, i.e. f = 2, uniformly hyperbolic systems

[BV86, AS88]. Time-reversal symmetry is assumed to be present. The basic idea

is that there are further pairs (γ, γp) of classical periodic orbits with small action

differences besides the ones considered in the diagonal approximation (2.40). The

contribution of these pairs to the spectral from factor is denoted by K (2)(τ). The

total result for the spectral form factor in the semiclassical approach is then a sum of

the contribution calculated in the diagonal approximation and the contribution due

to the first off-diagonal terms, i.e. K(τ) = K (1)(τ) + K(2)(τ) + . . . . The derivation

[SR01] which is summarized in this section aims at a calculation of K (2)(τ).

First, it is shown that a self-intersecting periodic orbit γ with a small crossing

angle ε ≪ 1 has a corresponding partner γp avoiding this crossing. Then the action

difference S(ε) is derived for this orbit pair as a function of the crossing angle. In

order to calculate the contribution of all these orbit pairs (γ, γp) in the spectral form

factor (2.38) one needs to know how many crossings of a given crossing angle ε there

are for a certain periodic orbit γ. This number of crossings is estimated via the

crossing angle distribution P (ε, T ) in the limit of long orbits T ∼ TH → ∞. It is

shown that the deterministic dynamics of the system (2.1) is responsible for a small

correction to the crossing angle distribution that one obtains by assuming ergodicity
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γp
γ

(a) Diagonal approximation

/ε 2

δ2

δ1

γ

γp

L
R

(b) Orbit pair for off-diagonal contribution

Figure 2.3: (a) Orbit pair (γ, γp) = (γ, γ) as considered in the diagonal approx-

imation (2.43). If time-reversal symmetry is present then one also has to include

the pair (γ, γi). (b) Schematic drawing of a periodic orbit γ (solid line) and the

corresponding partner orbit γp (dashed line) which are considered for the first off-

diagonal correction in the configuration-space approach. For each crossing with a

small crossing angle ε ≪ 1 there is a partner. Here, only the partner for the left

crossing is shown. The distance in configuration space between γ and γp at the cross-

ing is denoted by δ1 and δ2. The stability matrices of the left loop L and the right

loop R are denoted as L and R, respectively.

only. However, it turns out that it is exactly this small correction which eventually

reproduces the small τ ≪ 1 expansion of the spectral form factor as expected from

the random-matrix theory prediction (2.28), namely K(2)(τ) = −2τ 2.

The derivation of K(2)(τ) in [SR01] was based on the assumption that the two-

dimensional system under consideration is uniformly hyperbolic, e.g. the motion on

Riemann surfaces of constant negative curvature is considered [BV86, AS88]. The

calculation is significantly simplified if it is restricted to these special systems for

the following reasons. The phase space does not have an internal structure and the

local growth rate is constant, i.e. χ(x) = λ. Therefore all periodic orbits share the

same Lyapunov exponent λγ = λ. The stability matrix as defined in Eq. (2.3) can

be explicitly determined and is given by

M(x, t) = M(t) =

(

cosh λt (mλ)−1 sinh λt

(mλ) sinh λt cosh λt

)

. (2.51)

The local stable and unstable directions (2.15) are ~e (u,s)(x) ∼ (±1,mλ) indepen-

dently of the position x in phase space. There are no Maslov indices in the

uniformly hyperbolic system.

The orbit pairs (γ, γp) entering the first off-diagonal correction to the form factor

(2.38) can be characterized as follows. Consider a periodic orbit γ which has a self-

intersection. As it will turn out in due course it is sufficient to consider small crossing

angles ε ≪ 1 only. In this case there is a second periodic orbit γp which avoids this

crossing but otherwise follows the original orbit γ closely in configuration space.
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This implies that the partner orbit γp follows the original orbit γ during one loop

while having a different orientation during the second loop, see Fig. 2.3(b). Since the

crossing angle ε is assumed to be small one can employ the linearized equations of

motion (2.3) to determine the geometry of the partner γp. In terms of the stability

matrix L (R) of the left (right) loop these equations read
(

δ2

p(α2 + ε/2)

)

= R

(

δ1

p(α1 − ε/2)

)

,

(

−δ2

p(α2 − ε/2)

)

= L

(

−δ1

p(α2 + ε/2)

)

. (2.52)

This set of equations is correct up to first order in the small parameter ε. The

geometrical meaning of the parameters δ1 and δ2 is shown in Fig. 2.3(b). The

remaining geometry related parameters α1 and α2 describe the angle between the

momentum of the partner orbit at the crossing and the horizontal line. Thus one

has four independent equations for the four parameters δ1,2 and α1,2. Solving these

equations in terms of the parameters uniquely defines the geometry of the partner

orbit within the linear approximation.

The action difference between the two classical orbits γ and γp is then calculated

by expanding the action of the original path in terms of the small parameters δ1,2 and

α1,2. It turns out that the second-order terms are of the same order of magnitude as

the first-order terms. Including first and second order corrections then leads to the

resulting action difference Sγ,γp = pε(δ1+δ2)/2, where the δ1,2 have to be determined

by solving Eqs. (2.52). Because of the special structure of the stability matrix (2.51)

one finds the result

Sγ,γp = S(ε) =
p2

2mλ
ε2 (2.53)

which shows a quadratic dependence of the action difference on the small parameter

ε. Because only pairs (γ, γp) with small action differences contribute significantly to

the form factor (2.38) it is consistent to restrict the above considerations to small

crossing angles ε ∼
√

~.

The contribution of the pairs (γ, γp) in the double sum occurring in the spectral

form factor (2.38) is calculated in the following way. The first sum over periodic

orbits in Eq. (2.38) remains unaltered while the second sum is arranged in such

a way that all partner orbits are sorted according to their corresponding crossing

angles. If the number Pε(Tγ) = P (ε, Tγ)dε of crossings with an angle in the range

ε . . . ε + dε were known then the expression (2.38) could be rewritten as

K(2)(τ) = 2τ
2

T
ℜ

〈

∑

γ

∑

ε

Pε(Tγ)|wγ|2 exp

[

i
S(ε)

~

]

δ∆τ (T − Tγ)

〉

∆E

= 4τ ℜ
〈〈 π

∫

0

dε P (ε, Tγ) exp

[

i
S(ε)

~

]

〉

γ,T

〉

∆E

(2.54)
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for the uniform system. In the second line of Eq. (2.54) the average over periodic

orbits (2.41) was formally introduced in addition to the energy average. One factor

of two appears because of time-reversal symmetry. The second factor of two is due

to the fact that one has to count the pair (γ, γp) as well as the pair (γp, γ). Only

the first pair is associated with a crossing while the second pair is associated with

an avoided crossing. But since the action difference of these two pairs differs only

in sign, one can include this by taking twice the real part of the sum over all orbits.

In the semiclassical limit ~ → 0 the major contribution to the integral in Eq. (2.54)

is due to small angles ε ∼
√

2mλ~/p ≪ 1 which are associated with an action

difference S(ε) ∼ ~. Therefore, it is also sufficient to determine the crossing angle

distribution P (ε, T ) for small values of ε only. Furthermore, any length difference

of the orbits is neglected in the prefactor of the exponential in Eq. (2.54) since

it changes on a much larger scale than the exponential. Therefore, the correction

obtained by considering Tγp = Tγ + ∆T 6= Tγ in the prefactor would be small in the

limit of small crossing angles. This implies that the weights wγ and wγp can also be

treated as equal because there are no Maslov indices in the uniformly hyperbolic

system.

The crossing angle distribution is defined as

P (ε, T ) =

〈

1

2

T
∫

0

dt

T
∫

0

dt′ |J | δ(qt − qt′)δ(ε − |∠[pt,pt′ ]|)
〉

x0=(q0,p0)

(2.55)

with the average taken over different initial conditions x0 = (q0,p0). The angle

between the two momenta pt and pt′ is denoted by ∠[pt,pt′ ]. The Jacobian of the

variable transformation is given by |J | = m−2|pt × pt′|. Analytical considerations

for the uniformly hyperbolic system [SR01, Sie02] yield that the long-time limit

Tλ ≫ 1 of Eq. (2.55) can be written as a sum of a leading contribution and a

smaller correction

P (ε, T ) = P (lead)(ε, T ) + P (corr)(ε, T ) =
T 2 |p|2
2π m2 A

sin ε

(

1 +
4

λT
ln

[ε

c

]

)

. (2.56)

Here, c is a constant of order unity. The leading term can be obtained by using

ergodicity and neglecting the classical dynamics of the system. The correction is

of the order of ~ ln ~ compared to the leading term since the times involved are

of the order of the Heisenberg time, i.e. T ∼ TH ∼ ~
−1, while ε ∼

√
~. For

the uniform system numerical calculations showed excellent agreement with above

result [SR01]. The physical reason for the small deviations P (corr)(ε, T ) from the

leading contribution lies in the following fact [Sie02]. Consider two paths starting

at the crossing with a small crossing angle ε ≪ 1. If these two paths are to form

a loop they must have a certain minimal loop length. This minimal loop length is

determined by the fact that the deviation between the two almost parallel momenta
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has to grow so that the loop actually closes. This means that the momenta have to

point in exactly opposite direction when the loop closes. Quantitatively this time

Tmin can therefore be estimated for small ε by assuming an exponential growth of

the initial deviation pε until it reaches a given value determined by the constant

c ∼ 1. Thus, the minimal loop time is given by Tmin = −2λ−1 ln(cε). If this minimal

loop time is included in the derivation of the crossing angle distribution one is lead

to the result (2.56) given above.

The knowledge of the crossing angle distribution (2.56) allows to proceed with

the calculation of the spectral form factor (2.54). Since only the small crossing

angle limit of P (ε, T ) is important one can expand sin ε ≈ ε. Applying the sum rule

(2.42) to Eq. (2.54) and solving the integral over ε one finds that the energy average

suppresses the contribution coming from P (lead)(ε, T ) and yields K(2)(τ) = 0. This

means that one indeed must not neglect the dynamics of the system which gives rise

to the small correction P (corr)(ε, T ) in Eq. (2.56). If the contribution to Eq. (2.54)

due to this correction is evaluated one finds K (2)(τ) = −2τ 2 in the limit ~ → 0.

Thus the method described above to include off-diagonal terms in the derivation of

the semiclassical spectral form factor (2.38) does indeed reproduce the next order

term in the expansion of the universal random-matrix theory result (2.28).

It is clear that the procedure described so far works only in systems where time-

reversal symmetry is present. If this is not the case, e.g. if a magnetic field is applied,

then the action difference between the original orbit γ and its partner is not only due

to the geometric deviations in the region around the crossing. An additional action

difference is accumulated while going along the loop that is traversed in opposite

directions, e.g. during the left loop in Fig. 2.3(b). Therefore, in this case the

constructed partners (γ, γp) do not necessarily have small action differences. This

implies that their contribution to the double sum (2.38) also vanishes after averaging

over the energy. Therefore, the total correction to the diagonal approximation of

the form factor (2.43) can be written as K(2)(τ) = −2(g − 1)τ 2.

In conclusion, the derivation reviewed in this section provides a first step in the

direction of proving the applicability of the random-matrix theory results (2.28)

and (2.29) to chaotic systems. However, a few essential assumptions were neces-

sary in order to construct the theory based on the loops. First of all, the approach

described above is restricted to the uniformly hyperbolic system, e.g. the precise

knowledge of the stability matrix (2.51) was necessary to derive the action differ-

ence (2.53). Furthermore, Maslov indices are not present in uniformly hyperbolic

systems. However, in general the phase in Eq. (2.38) does not only contain the ac-

tion difference but also the difference in Maslov indices of the two periodic orbits.

The second point is that above scheme for the calculation of K (2)(τ) is based on a

configuration-space approach rather than on phase-space methods. Therefore the

formulation presented in [SR01] is not invariant under canonical transformations.

As we show in Chapter 4, the assumption that each single crossing corresponds to
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a partner orbit is in general also incorrect for non-uniformly hyperbolic systems.

This means that the crossing angle distribution is not necessarily the quantity that

enters the spectral form factor. However, an extension from the configuration-space

formulation towards a phase-space approach clarifies this question as well. Finally,

one would expect that the random-matrix theory result (2.28) is not restricted to

two-dimensional systems with f = 2. It is clear that one cannot use the formula-

tion based on crossings in the case of systems with more degrees of freedom since

the concept of two paths crossing each other is adapted to the motion in a plane.

Nevertheless, in Chapter 3 we first investigate to which extent the theory sketched

above can be generalized to non-uniformly hyperbolic systems and where exactly

the limitations for its applicability occur. To this end we first study a specific

two-dimensional non-uniformly hyperbolic system within the configuration-space

approach. In particular, we investigate the crossing angle distribution P (ε, T ) as

it is a major ingredient for the configuration space approach. Then, in Chapter 4,

we present a phase-space generalization which provides a canonically invariant for-

mulation of this approach. Eventually, our formulation makes an extension of the

theory to systems with more than two degrees of freedom possible, see Section 5.1.



CHAPTER 3

Crossing angle distribution in

billiard systems

In this chapter the crossing angle distribution for a non-uniformly hy-

perbolic system is investigated numerically. First we review the crossing

angle distribution of the uniformly hyperbolic billiard. Then we intro-

duce a specific non-uniformly hyperbolic system: we choose the family

of Limaçon billiards as an example. We present numerical results con-

cerning the crossing angle distribution and extract the corrections to the

leading ergodic contribution. We show that these corrections are indeed

due to the dynamics of the system and furthermore have a logarithmic

dependence on the crossing angle as in the case of the uniformly hy-

perbolic system. However, we also present arguments why an extension

of the approach for uniform systems to non-uniform systems should be

based on phase-space objects rather than on crossings in configuration

space.

3.1 Crossing angle distribution in the uniformly

hyperbolic billiard

In Section 2.5 we reviewed a semiclassical method for the calculation of off-diagonal

contributions to the form factor. This method is based on classical periodic orbits

with correlated actions. These correlations were expressible in terms of orbit pairs
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(γ, γp) with a small action difference. The geometrical basis for the identification

of these pairs are crossings in configuration space with small crossing angles ε. The

total contribution of all these pairs to the double sum over periodic orbits in the

semiclassical form factor (2.38) can then be evaluated in terms of the classical cross-

ing angle distribution P (ε, T ), Eq. (2.54). As the leading term in this distribution,

see Eq. (2.56), gives a vanishing result for the off-diagonal contributions to the form

factor one has to consider the next order correction P (corr)(ε, T ). Including this

correction then leads to the random-matrix theory prediction K (2)(τ) = −2τ 2. It

is crucial for the derivation of this universal result that the system specific Lya-

punov exponent occurring in the crossing angle distribution (2.56) exactly cancels

the Lyapunov exponent in the prefactor of the action difference (2.53). Hence the

approach in Section 2.5 is restricted to uniform systems as for them there is only

a single Lyapunov exponent associated to all periodic orbits, i.e. λγ = λ. In con-

trast to this basic system all non-uniform hyperbolic systems are characterized by

a whole distribution of Lyapunov exponents {λγ} or, equivalently, a non-constant

local growth rate χ(x), see Eq. (2.8), that depends on the position x in phase space.

Therefore, one expects that a universal result for the form factor must be due to a

somewhat different and more subtle mechanism as the one proposed in Section 2.5.

Before presenting our numerical results on the cardioid billiard in the follow-

ing sections, we give a short review of the arguments leading to Eq. (2.56) as they

were presented in [SR01, Sie02, RS02, BHH02]. Especially we focus on P (corr)(ε, T )

in Eq. (2.56) as this correction determines the final result for the form factor

K(2)(τ) = −2τ 2. It is worth stressing once more the fact that this crossing angle

distribution is a purely classical quantity.

The number of self-crossings with a certain angle ε . . . ε + dε is given by

P (ε, T ) dε =
2|p|2
m

T−Tmin
∫

Tmin

dtloop (T − tloop) sin ε perg dε . (3.1)

This expression can be understood as follows. The integration goes over all possi-

ble loop lengths and adds the probabilities that a crossing with angle ε . . . ε + dε

and corresponding loop length tloop occurs. This probability is proportional to the

length of the remaining trajectory (T − tloop) times the ergodic return probability

perg = 1/(2πmA) if ergodicity is assumed. Furthermore, the angular dependence

enters via the sin ε as small crossing angles are less likely than larger angles, see

Fig. 3.1(a). The leading ergodic part P (lead)(ε, T ) is given by setting the minimal

loop time Tmin = 0 in Eq. (3.1) and is derived in detail in [SR01]. However, the most

important part of the crossing angle distribution for our purpose is determined by

exactly this minimal loop time Tmin in Eq. (3.1). It accounts for the fact that a loop

starting and ending at the crossing needs a certain time to close itself. Therefore

each loop has a minimal length Tmin and a maximal length T −Tmin. This time Tmin
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ε
ε

(a) Ergodic model for crossings

ε

(b) Minimal loop time

Figure 3.1: (a) Simple model for the ergodic behavior of a billiard system with

respect to the crossing angle. We assume that a path of a fixed length can be rep-

resented by its single segments that fill the phase space uniformly. Then it is clear

that for fixed path length there are more large crossing angles (situation depicted in

the left part of the figure) than small ones (right part of the figure). Subfigure (b): If

two classical paths leave a crossing with small angle ε it takes a certain time Tmin(ε)

until they can form a closed loop. This time depends logarithmically on the crossing

angle if hyperbolicity is assumed.

depends logarithmically on the crossing angle ε as was confirmed in detailed numer-

ical [SR01] and analytical studies [Sie02, BHH02] for the uniform hyperbolic system.

The logarithmic dependence on ε is due to the hyperbolicity and can be seen easily

by the following argument [Sie02, RS02, BHH02]. Assume that two classical paths

leave a crossing with ε ≪ 1, Fig. 3.1(b). Their initial deviation with respect to the

momentum is therefore δp⊥init ∼ ε|p|. In order to form a closed loop this deviation

has to increase so that δp⊥final ∼ c |p| with the constant c being of order unity. This

means that the minimal loop length is determined by c ≃ ε exp [λTmin/2]. Hence

the minimal loop length is given by

Tmin(ε) = −2

λ
ln

[ε

c

]

. (3.2)

As in the semiclassical limit the total orbit length T increases like the Heisenberg

time TH one finds Tmin ≪ T for not too small angles ε, i.e. exp(−λT ) ≪ ε ≪ 1.

Thus, Eq. (3.2) together with Eq. (3.1) yields the result (2.56) given in the previous

chapter.

In the following section we study whether this argument can be extended to

non-uniformly hyperbolic systems. Especially it is important to analyze whether the

minimal loop time (3.2) is present in a more general system and what its dependence

on the crossing angle ε and the Lyapunov exponent λ is.
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3.2 Model system: Limaçon billiards

The goal of this chapter is to verify to which extent the specific structure of the

distribution P (ε, T ) given in Eq. (2.56) can be reproduced in a more general system

than the motion on a surface with constant negative curvature. As a model we choose

a two-dimensional billiard. Billiard systems are defined by a specific boundary

with a vanishing potential V (q) = 0 inside this boundary while it diverges outside.

Therefore, the classical motion of a particle in a billiard is determined by hard

wall reflections at the boundary and free motion between these reflections. Billiard

systems have been studied as models for classical and quantum chaos in detail (see

for example [Bäc98, Gas98] and references therein). They show a classical behavior

ranging from integrable to chaotic depending on the shape of the boundary. Typical

examples for integrable billiard systems are the rectangular or the circular billiard.

Some well studied chaotic billiards include the Sinai billiard [Sin63, Sin70], the

Bunimovich stadium billiard [Bun74, Bun79] and the cardioid billiard [Rob83,

BS94].

For the investigations in this chapter we choose the family of Limaçon billiards

introduced in [Rob83], see also [Rob84, BS94, Bäc98]. Their boundary shape is

defined by a conformal mapping z → w(z) of the circle z = reiθ in the complex

plane

w(z) =
1

a

(

z + bz2 + br2
)

= ̺(θ, r) exp [iθ] =
r

a
[1 + 2br cos θ] exp [iθ]

= u(θ, r) + iv(θ, r) =
r

a
[cos θ + br cos(2θ) + br] + i

r

a
[sin θ + br sin(2θ)] (3.3)

where 0 ≤ θ < 2π. The parameter r just defines the length scale in the system

while ̺(θ, r) is the actual distance of the boundary from the center of the billiard.

The parameter b describes the deformation of the boundary. The range of valid

values starts at b = 0 corresponding to the circular billiard, see Fig. 3.3(a), and ends

with b = 1/(2r) which gives the cardioid billiard, see Fig. 3.4(a). Thus the change

of this parameter produces an entire family of billiards whose classical dynamics

ranges from integrable and non-ergodic to completely chaotic. The normalization a

is chosen such that the area of the billiard is given in terms of ̺(θ, r) as

A =

2π
∫

0

dθ

̺(θ,r)
∫

0

dr′ r′ = r2π(1 + 2b2r2)

a2
= r2 (3.4)

for any value of the parameter b. Therefore the parameter a has to be chosen as

a =
√

π (1 + 2b2r2). This choice is convenient as setting r = 1 immediately gives

A = 1 for the area (3.4). In these units, the unit circle is obtained by taking b = 0
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β
s(  )θ

Figure 3.2: The description of the classical dynamics in terms of the Poincaré

surface of section defined through the boundary of the billiard is based on the coor-

dinates s(θ) and P(β). Here, s(θ) represents the position coordinate and is given by

the normalized arc length when going along the boundary. The associated momentum

coordinate is P which is determined by the angle β as P(β) = cos β.

and r =
√

π. The choice (3.4) for the parameter b (such that the area is independent

of b) ensures that the mean level spacing in a quantum mechanical treatment of the

billiard system does not change when tuning b. Furthermore one can expect that

the ergodic prefactor in the classical crossing angle distribution (2.56) also remains

the same no matter which billiard of the family is considered.

The normalized arc length s(θ) turns out to be an appropriate quantity for a

description of the dynamics in the Poincaré surface of section defined by the

boundary [BB97, Bäc98]. It can be calculated using the total arc length

S(θ, r) =

θ
∫

0

dθ′
∥

∥

∥

∥

dw(θ′, r)

dθ′

∥

∥

∥

∥

=
2r(1 + 2br)

a
E

(

θ

2
,

√
8br

1 + 2br

)

(3.5)

where E(ϕ, k) is the elliptic integral of the second kind [GR00]. In order to render

this coordinate position independent of the system under consideration we define

the normalized arc length s(θ) such that 0 < s(θ) < 1 for θ = 0 . . . 2π and for any

value of b :

s(θ) ≡ S(θ)

S(2π)
= E

(

θ

2
,

√
8br

1 + 2br

)/

E

(

π ,

√
8br

1 + 2br

)

. (3.6)

The mean free path l in the billiard is now easily obtained [Bäc98] from the area

(3.4) and the circumference S(2π) as1 l = πA/S(2π). The conjugated momentum

variable to s(θ) is proportional to the projection of the momentum on the tangent of

the boundary at the point of reflection, see Fig. 3.2. It is given by P = cos β where

1To simplify the notation we set r = 1 from now on.
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(a) Two classical paths
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  )
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0

1

θ
(b) Poincaré surface of section

Figure 3.3: Circular billiard in the integrable regime b = 0.0: (a) The two classical

trajectories (solid and dashed line) start off at point S given by (θ = 0.4, β = 1.0)

with a small initial deviation regarding their momentum. The path length is ten

bounces in either case. (b) The two trajectories of subfigure (a) were calculated for

200 reflections. Each point in the Poincaré surface of section [which is represented

by the (s = s(θ),P = cos β)-plane] corresponds to one reflection of the respective

trajectory at the boundary.

β is the angle between the trajectory and the tangent. Therefore, each coordinate

pair (s = s(θ),P = cos β) uniquely defines a position in the Poincaré surface of

section.

In order to illustrate the transition from integrability to chaos as the deformation

parameter b is changed from 0 to 0.5 we present three examples: b = 0 (completely

integrable), b = 0.5 (completely chaotic) and finally b = 0.2 (intermediate case).

For either case we study the motion of a particle in configuration space as well as

in phase space represented by the Poincaré surface of section. The first example

b = 0 yields the integrable circular billiard. A typical property of the dynamics in

integrable systems is that a small initial deviation between two paths grows rather

slowly, e.g. algebraically, with the length of the trajectory. As can be seen in

Fig. 3.3(a) two trajectories starting off at the same point S with a slightly different

direction remain close together for the shown ten reflections. The underlying regular

character of the motion becomes even more obvious in the Poincaré surface of

section, Fig. 3.3(b), where the coordinates s = s(θ) and P = cos β are plotted for

successive reflections. As the angular momentum is conserved due to the rotational

symmetry of the system all reflection angles remain the same no matter where the

reflection occurs. Hence the motion in the Poincaré surface of section is restricted

to a line corresponding to this fixed reflection angle. This immediately implies that
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  )

(b) Poincaré surface of section

Figure 3.4: Cardioid billiard in the chaotic regime with b = 0.5: (a) The two

classical trajectories (solid and dashed line) start off with a small initial deviation

with respect to the momentum at point S given by (θ = 0.4, β = 1.0). The path

length is ten bounces in either case. Due to the chaotic dynamics of the system

they end up at two entirely different points E1 and E2. (b) The Poincaré surface

of section is uniformly filled by the points of intersection belonging to the classical

paths. The two trajectories of subfigure (a) were calculated for 200 reflections.

the system is not ergodic at all.

The billiard resulting in the case b = 0.5 is the so-called cardioid. It has been

shown to be ergodic and mixing [Sza92, Mar93]. If the geometry of the two tra-

jectories with the same initial conditions as in Fig. 3.3(a) is considered one finds

a completely different picture as compared to the integrable case. As shown in

Fig. 3.4(a) the two trajectories follow each other for the first few bounces but then

the deviation between the two paths becomes of the order of the system size. This

example clearly shows that the same small initial deviation grows much faster than

in the circular billiard because of the chaotic character of the system. The growth

is exponential (as described in Section 2.1) after 5 . . . 10 reflections already. The

difference between the integrable and chaotic dynamics is even more evident in the

Poincaré surface of section, Fig. 3.4(b). Either trajectory spreads throughout the

entire phase space which is already uniformly filled after a not too long time — in

this example 200 reflections. This is a consequence of the ergodic property of the

cardioid billiard.

As the third example we present an intermediate case given by b = 0.2. The

two trajectories in configuration space, see Fig. 3.5(a), look rather similar to the

integrable case. The motion still seems quite regular and the initial deviation does
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Figure 3.5: Billiard (b = 0.2) with mixed phase space: (a) The two classical trajec-

tories (solid and dashed line) start off with a small initial deviation at point S given

by (θ = 0.4, β = 1.0). The path length is ten bounces in either case. Similarly to the

integrable case, Fig. 3.3(a), they stay rather close together for the length considered.

(b) The two trajectories of subfigure (a) were calculated for 200 reflections. The

resulting structure in the Poincaré surface of section can be clearly distinguished

from the integrable case, Fig. 3.3(b). One the other hand, the distribution of inter-

section points is still more structured and less uniform than in the completely chaotic

case, Fig. 3.4(b).

not grow as fast as in the chaotic case. However, when the Poincaré surface

of section, see Fig. 3.5(b), is considered more information about the dynamics is

revealed. Although the two paths stay close together for quite some time they

eventually deviate as one of the paths changes its orientation from counter-clockwise

to clockwise. This means that the reflection angles vary around a few preferred

values and are not restricted by the conservation of momentum as in the integrable

case. In the Poincaré surface of section this is reflected by a non-uniform density

of intersection points which reveals a system specific structure in the long-time limit.

There are islands of regular motion as well as regions corresponding to chaotic motion

in the phase space. Therefore, this example corresponds to a dynamical system with

a so-called mixed phase space.

A quantitative measure of the chaoticity of the system is the Lyapunov expo-

nent λ. As described in Section 2.1 it defines the time scale on which small initial

deviations typically grow in the long-time limit. Here we give the values2 for a few

specific parameters b:

2In all further considerations concerning the dynamics of a particle in a billiard we set |p| =

|v| = 1.
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Figure 3.6: A circular billiard with a rough boundary: (a) Example of two random

trajectories with small deviations in the initial conditions. They are starting at

S and ending at E1 and E2 respectively. (b) The Poincaré surface of section is

uniformly filled by the points of intersection belonging to either path. The trajectories

of subfigure (a) were calculated for 200 reflections.

b 0.50 0.48 0.46 0.44 0.42 0.40 0.38 0.36 0.34 0.32 0.30

λ 0.78 0.76 0.75 0.74 0.73 0.72 0.71 0.69 0.68 0.66 0.65

l 0.85 0.86 0.86 0.87 0.87 0.87 0.87 0.88 0.88 0.88 0.88

We conclude this section by presenting one more yet somewhat different model,

namely a circular billiard with a rough boundary, see Fig. 3.6(a). This boundary

randomizes the classical motion of the particle so that the mechanism which governs

the system dynamics is stochastic rather than deterministic. This implies that two

trajectories evolve completely independently from each other already after the first

reflection no matter how small the initial deviations are, Fig. 3.6(a). Therefore, this

system is ergodic as can be seen in the Poincaré surface of section, Fig. 3.6(b).

However, in clear contrast to the previous three examples this model does not rep-

resent a dynamical system and the theoretical methods summarized in Section 2.1

can in general not be applied. One expects that a model like this is well described

within the theory of disordered systems [SA93, SSA93, GM02a, GM02b].

In the following investigations we always restrict ourselves to dynamical systems

with a completely or almost completely chaotic phase space. This means that there

are no or at most very small islands of stability in the Poincaré surface of section.

For the family of billiard systems chosen that means that we consider either the

cardioid billiard itself or at least values close to b = 1/2. In the next section we

present numerical results for the crossing angle distribution P (ε, T ) for this specific
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billiard geometry which represents a dynamical non-uniformly hyperbolic system.

3.3 Crossing angle distribution in the cardioid

The purpose of this section is to present the results of detailed numerical studies on

the crossing angle distribution P (ε, T ) for the cardioid billiard. This crossing angle

distribution is a very important ingredient for the derivation of the semiclassical

form factor (2.54) in the configuration-space approach as presented in Section 2.5.

More precisely speaking, a detailed knowledge of the functional dependence of the

correction P (corr)(ε, T ) on the crossing angle ε, see Eq. (2.56) for the uniform system,

is necessary to obtain a non-vanishing result for K (2)(τ). Especially we study the

changes that occur in P (ε, T ) if a non-uniform hyperbolic system like the cardioid

billiard is considered instead of a uniform hyperbolic system as in Section 2.5 and 3.1.

Although one expects that this change does not affect the leading term P (lead)(ε, T )

as it is determined by the long-time ergodic behavior we first test this property for

the cardioid billiard. Then we investigate the correction P (corr)(ε, T ) finding that its

scaling with length T is the same as in Eq. (2.56) for uniform systems. We show

that this correction contains information about the deterministic dynamics of the

system. Furthermore we find that the dependence on the crossing angle ε is indeed

logarithmic. However, this is only the case if a certain class of loops is excluded. This

class is given by all almost self-retracing loops. Finally we determine the prefactor

of the logarithm in Eq. (2.56) as it is responsible for the numerical prefactor of the

τ 2 term in the final result K(2)(τ) = −2τ 2.

For the following numerical tests we use non-periodic trajectories of lengths be-

tween 50 and 500 reflections. As we are interested in the statistical properties of long

orbits we expect that these are correctly reflected in the properties of non-periodic

trajectories [SR01] which is also supported by the shadowing-theorem [ASY96]. In

principle one should also measure the length of the trajectories directly instead of

using the number of reflections. However, as the system is ergodic and the trajec-

tories are already rather long the deviations between the real lengths of all paths

with fixed number of reflections are small, i.e. indirectly proportional to the square

root of the length. As we eventually study the small correction P (corr)(ε, T ) on the

large background P (lead)(ε, T ) it is necessary to have very good statistics. Thus we

typically average over ensembles of half a million trajectories up to twenty million

trajectories with random initial conditions when calculating the crossing angle dis-

tribution. The number of crossings then scales with the length as T 2 and linearly

with the ensemble size. The trajectories have to be long enough, i.e. λT ≫ 1, to be

approximately ergodic and to ensure that the correction term P (corr)(ε, T ) is indeed

small compared to the leading term P (lead)(ε, T ).

First, we study the leading term P (lead)(ε, T ) in the crossing angle distribution
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Figure 3.7: Crossing angle distribution for the cardioid billiard (b = 0.5). All loops

(in particular the almost self-retracing ones) are still included. The four different

ensembles are characterized by the length of the trajectories: twenty million trajec-

tories with 50 reflections (dotted), ten million trajectories with 100 reflections (short

dashed), five million trajectories with 250 reflections (long dashed) and one mil-

lion trajectories with 500 reflections (dashed – dotted). In subfigure (a) the rescaled

crossing angle distribution p(ε, T ) of all four ensembles is compared to the long-time

ergodic prediction given by sin(ε)/2. Subfigure (b) shows a comparison of the rescaled

correction fall(ε) to the crossing angle distribution for the four different ensembles.

of the cardioid and show that it is given by the uniform result (2.56). For a better

comparison of different systems or loop lengths we introduce the rescaled distribution

p(ε, T ) ≡ π m2 A

T 2 |p|2 P (ε, T ) . (3.7)

According to (2.56) one expects the rescaled distribution to be p(ε, T ) ≃ sin(ε)/2

independently of the lengths of the trajectories. This expectation is nicely confirmed

as can be seen in Fig. 3.7(a). The result for the numerically determined crossing

angle distribution so far is therefore that it scales with T 2 and follows a sine function:

Pnum(ε, T ) ≃ T 2 |p|2
2π m2 A

sin ε . (3.8)

However, one can also immediately conclude from Fig. 3.7(a) that there are indeed

small corrections to this result. These corrections decrease with increasing length of

the trajectory. This confirms the assumption that the leading ergodic contribution

is indeed dominant in the long-time limit. In order to study the correction in more

detail we divide p(ε, T ) by sin(ε)/2 and rescale it once more by T . The result is

denoted by the function f(ε) so that

P (ε) = P (lead)(ε, T ) + P (corr)(ε, T ) =
T 2 |p|2
2π m2 A

sin ε

[

1 +
f(ε)

T

]

. (3.9)
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Figure 3.8: Crossing angle distribution for the billiard with random reflections. The

four different ensembles are defined by the length of the trajectories: two million

trajectories with 50 reflections (dotted), one million trajectories with 100 reflections

(short dashed), one million trajectories with 250 reflections (long dashed) and half

a million trajectories with 500 reflections (dashed-dotted). Subfigure (a) shows the

rescaled crossing angle distribution p(ε, T ) of all four ensembles compared to the

long-time ergodic prediction sin(ε)/2. In subfigure (b) the rescaled correction to the

crossing angle distribution frand(ε) is compared for the four different ensembles.

This form is adapted to the structure of the analytical prediction (2.56) and will be

used to characterize the numerical results by the introduced function f(ε). In terms

of the rescaled crossing angle distribution p(ε, T ) on thus finds

f(ε) ≡ T

[

2
p(ε, T )

sin ε
− 1

]

. (3.10)

Hence the main purpose of the following numerical studies is to confirm the structure

(3.9) and to specify the functional dependence of f(ε) on the crossing angle for

ε ≪ 1. More specifically, if non-uniform systems behave similarly to uniform systems

one should find that the expression on the right hand side in Eq. (3.10) is indeed

independent of the length T and diverges logarithmically for ε → 0.

As we have not yet excluded any kind of loops in the numerical simulations we

denote the corresponding function by fall(ε). The result for fall(ε) is presented in

Fig. 3.7(b) which clearly shows that fall(ε) does not depend on the length T anymore.

This confirms the correct scaling of the correction with the length of the trajectories

in the model (3.9). However, one can also immediately check that the correction

fall(ε) we found numerically does not have the logarithmic small ε behavior as for

the uniformly hyperbolic system, see Eq. (2.56).

Before proceeding with a detailed analysis of what exactly causes an increased

number of small crossing angles in fall(ε) we give the corresponding numerical result
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Figure 3.9: Number of crossings with given crossing angle ε and given loop length

tloop as a grey-scale density plot. The higher the number of crossings the darker the

corresponding regions are. For this plot we used two million trajectories with 100

reflections each. Crossing angles ε = π correspond to periodic orbits. As the periodic

orbits are unstable and isolated they form a discrete set. The first four are indicated

by P1 (tloop ≃ 2.4), P2 (tloop ≃ 3.0), P3 (tloop ≃ 4.3) and P4 (tloop ≃ 4.8). For

small crossing angles ε ≈ 0 we indicated four more regions by S1 (tloop ≃ 1.8), S2

(tloop ≃ 3.1), S3 (tloop ≃ 4.8) and S4 (tloop ≃ 5.6). The associated orbit and loop

geometries are shown in Fig. 3.10 and Fig. 3.11, respectively.

frand(ε) for the non-deterministic system with random reflections at the boundary,

see Fig. 3.6(a). The purpose of this analysis is to show that it makes an important

difference regarding the correction P (corr)(ε, T ) if a deterministic or a stochastic sys-

tem is considered. As the stochastic system is also ergodic one expects that the

leading term is given by Eq. (3.8) so that p(ε, T ) ≃ sin(ε)/2 for large T . This is

clearly confirmed by the numerical results shown in Fig. 3.8(a). Again, there are

small corrections to this leading term which decrease for increasing lengths of the

involved trajectories. Using once more the definition (3.10) we determine the correc-

tion frand(ε) for the stochastic system which is shown in Fig. 3.8(b). Although the

results for p(ε, T ) for the chaotic system, Fig. 3.7(a), and for the stochastic system,

Fig. 3.8(a), look rather similar the rescaled small corrections fall(ε) and frand(ε)

differ significantly from each other. The result so far is therefore twofold. First of

all, we have found that the crossing angle distribution does follow the general form

(3.9) for both the chaotic and the stochastic system. This means that the leading

contribution is only related to ergodicity but not to the deterministic character of

the system. Second, we found that this leading contribution is corrected by small

deviations that are proportional to the inverse of the length T . The dependence



48 3 Crossing angle distribution in billiard systems

(a) P1 (b) P2 (c) P3 (d) P4

Figure 3.10: Geometries of the four periodic orbits indicated in Fig. 3.9. If these

orbits are slightly deformed their periodicity breaks down and a crossing with crossing

angle ε . π appears. The subfigures (a) to (d) correspond to the cases P1 to P4 in

Fig. 3.9.

of the correction P (corr)(ε, T ) on the crossing angle ε is significantly different if the

chaotic cardioid is compared to the randomized billiard, i.e. fall(ε) 6= frand(ε). This

implies that the dynamical properties are indeed of relevance for f(ε).

As explained in Section 3.1, the proposed logarithmic dependence of f(ε) on the

crossing angle in chaotic systems is due to a lack of short loops with small crossing

angles. Fig. 3.7(b) indicates that this argument does not seem to apply to the non-

uniform cardioid billiard. As it turns out there is indeed a large class of loops with

small crossing angles ε and short loop lengths tloop ∼ l. This means that for this

class the argument of a minimal loop time being a function of ε, see Eq. (3.2), does

not hold. It is possible to form loops with arbitrary small crossing angles in the

cardioid whose lengths do not increase logarithmically as ε → 0. In order to identify

and characterize this class of loops we calculate numerically the number of crossing

angles ε with given loop length tloop. The numerical result of this approach for the

cardioid is presented in Fig. 3.9 as a grey-scale plot. In this plot a higher number

of crossings with given angle ε and given loop length tloop is indicated by darker

points. The plot has to be understood as follows. Large crossing angles ε . π

characterize loops that are very close to periodic orbits. The periodic orbits in the

chaotic cardioid form a discrete set as they are isolated and can therefore not be

continuously deformed into each other. We have labeled the first few of them by P1

to P4 in Fig. 3.9. The corresponding orbit geometries are shown in Fig. 3.10. As

the geometries of these periodic orbits are deformed the associated crossing angles

become smaller than π meaning that the periodic orbits start to form loops. For

smaller ε one finds that the geometry of certain loops seems to be related to the

original periodic orbits via continuous deformations as they are connected by non-

interrupted black lines in Fig. 3.9. The loop lengths either increase or decrease as the
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(a) S1 (b) S2 (c) S3 (d) S4

Figure 3.11: Examples for the geometries of the four types of short loops indicated

by S1 to S4 in Fig. 3.9. The small circles mark the considered crossings. The

subfigures (a) to (d) represent the cases S1 to S4 in Fig. 3.9.

crossing angle ε becomes smaller. On the other hand also new loops seem to appear

when going towards smaller crossing angles ε possibly due to bifurcations or related

processes. However it also appears that certain types of loops can be deformed so

that the corresponding crossing angles approach zero while the loop lengths do not

change significantly. This implies that many short loops with tloop ∼ l and crossing

angles ε ≈ 0 exist. Fig. 3.9 suggests that there are different types of these short

loops with small crossing angles: the first type with lengths tloop ≃ 1.8 . . . 3.1 is

represented by S1 and S2. Then follows the next class with loop lengths up to

tloop ≃ 4.8 indicated by S3 and so on.

As only the small ε behavior of P (ε, T ) is relevant for the calculation of the form

factor (2.54) in the configuration space approach we investigate the short loops with

small crossing angles in more detail. It turns out that all the classes S1, S2, . . . are

based on almost self-retracing loops as shown in Fig. 3.11. Their common feature is

that a trajectory hits the boundary almost perpendicular in the middle of the loop.

Due to the focusing nature of the billiard two trajectories that start off the boundary

with angles β1,2 close to π/2 cross each other after one reflection and the crossing

angle ε is of the same order as the difference β2−β1, see Fig. 3.12(a). In other words,

two almost parallel trajectories starting off perpendicular to the boundary can form

short loops with arbitrary small crossing angles ε while the length of the loops

remains almost constant. The difference between loops associated to the first class,

see for example Fig. 3.11(a) and Fig. 3.11(b), is only in the way they are positioned

within the billiard. If any of these loops is extended by two more segments after

the first crossing one obtains geometries as the one shown in Fig. 3.11(c) which is

characteristic for the second class. This basically means that two almost parallel

trajectories starting off perpendicular to the boundary can form a whole family of

small crossings. The associated loop lengths do not increase logarithmically with ε
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Figure 3.12: Excluding almost self-retracing loops: (a) An almost self-retracing loop

gives rise to a whole family of crossings with arbitrary small crossing angles. It is

characterized by two trajectories starting almost perpendicular at the same position

M on the boundary (β1 ≈ β2 ≈ π/2). As their initial deviation is small they will

stay close together for the first few reflections implying small differences ∆θi ≪ 1 of

the position on the boundary. The average of all ∆θi is then used to identify almost

self-retracing loops by means of the criterion Eq. (3.11). Subfigure (b) shows the

same type of grey-scale plot as Fig. 3.9 however the almost self-retracing loops are

excluded by applying the exclusion criterion (3.11) with ccutoff = 0.3.

as the crossing angles become smaller, see Fig. 3.11(d) for a further example. The

result of the analysis given above is therefore that the set of all almost self-retracing

loops causes an increased number of small crossing angles as compared to the result

(2.56) for the uniform system. The reason for this lies in the geometry of the cardioid

billiard as it has a focusing boundary.

As we prove in Chapter 4 it turns out that one cannot find a partner orbit for

a crossing that is associated to an almost self-retracing loop. Before explaining this

effect in more detail we first want to present the same type of numerical results as

in Fig. 3.7 and Fig. 3.9 if the class of self-retracing loops is excluded. The idea how

to decide whether a loop is almost self-retracing is the following. Starting in the

middle M of the loop we follow the two almost parallel parts until they reach the

crossing C that is considered, see Fig. 3.12(a). Each time the two trajectories are

reflected we determine their closeness on the boundary by calculating the difference

∆θi of the angles θ as specified in Fig. 3.2. The criterion for the loop being counted
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Figure 3.13: Crossing angle distribution for the cardioid billiard (b = 0.5) exclud-

ing the almost self-retracing loops. The four different ensembles are the same as in

Fig. 3.7: twenty million trajectories with 50 reflections (dotted), ten million trajecto-

ries with 100 reflections (short dashed), five million trajectories with 250 reflections

(long dashed) and one million trajectories with 500 reflections (dashed – dotted).

In subfigure (a) the rescaled crossing angle distribution p(ε, T ) of all four ensem-

bles is compared to the long-time ergodic prediction sin(ε)/2. Subfigure (b) shows

the rescaled correction f(ε) to the crossing angle distribution for the four different

ensembles.

as self-retracing is then given in the form

1

n

n
∑

i=1

∆θi < ccutoff (3.11)

where 2n + 1 is the number of reflections with the boundary during the loop, see

Fig. 3.12(a). The cut-off ccutoff is a small but finite number. As we show in the next

paragraphs the main conclusions concerning the crossing angle distribution P (ε, T )

are independent of this cut-off if the relevant small angle limit ε ≪ 1 is considered.

The results we presented so far, i.e. Fig. 3.7, thus correspond to ccutoff = 0. The

first result of the numerical analysis excluding the almost self-retracing loops is

presented in Fig. 3.12(b). In this figure we again plotted the loop length distribution

as a function of the crossing angle as in Fig. 3.9. However this time the almost

self-retracing loops where neglected by employing the criterion (3.11) and choosing

ccutoff = 0.3. Having excluded this class of loops one can indeed not find short loops

with small crossing angles anymore. This is a clear indication that this class of loops

formed by the almost self-retracing trajectories is the only reason for the appearance

of short loops with arbitrarily small crossing angles.

Having identified the class of almost self-retracing loops as the reason for the

appearance of many short loops with small crossing angles we now proceed by pre-
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Figure 3.14: Verification of the valid range for the cut-off parameter ccutoff entering

the criterion (3.11): Subfigure (a) shows the correction f(ε), Eq. (3.10), for different

values of ccutoff . In subfigure (b) we plotted the dependence of the numerically fitted

prefactor λfit on the range of ε values used for the fit, i.e. 0.08 < ε < εfit,max. For

either plot we considered an ensemble contained five million trajectories with 100

reflections each.

senting the numerical results for the crossing angle distribution if exactly this class

of loops is excluded. By applying this procedure one has to replace the crossing

angle distribution in Fig. 3.7 by the result shown in Fig. 3.13. As one can see in

Fig. 3.13 the leading ergodic term given by p(ε, T ) as well as the length scaling

of the correction fit again perfectly to the proposed form (3.9). However, in clear

contrast to fall(ε) the modified result f(ε), Fig. 3.13(b) obtained by the exclusion

of the self-retracing loops shows a logarithmic dependence on the crossing angle for

small ε, see also Fig. 3.15(a).

In order to verify that our numerical method of excluding the self-retracing loops

is indeed consistent and independent of the cut-off parameter we calculate f(ε) for

different values ccutoff ranging from ccutoff = 0.1 to ccutoff = 0.5. The result is

presented in Fig. 3.14(a) where we have included the case ccutoff = 0 for comparison.

We thus find that the small ε dependence of the function f(ε) is not changed if

different values of ccutoff > 0 are used. Only the size of the ε range showing the

logarithmic dependence changes with ccutoff . As an example, one can read off this

range for ccutoff = 0.3 from Fig. 3.14(a) to be 0 < ε . 0.6.

As we found that the correction P (corr)(ε, T ) to the crossing angle distribution

in the cardioid does indeed show a logarithmic dependence on ε the next step is

to determine the numerical prefactor and check whether it is determined by the

Lyapunov exponent. This means, in order to verify whether our model (3.9) can

be casted into the form (2.56) obtained for the uniformly hyperbolic system we write
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the function f(ε) as

f(ε) =
4

λfit

ln

[

ε

cfit

]

(3.12)

and determine λfit from the numerical data. As we described in Section 2.5 the

second parameter cfit does not play a role in the semiclassical evaluation of the

spectral form factor. Therefore, it is sufficient to consider λfit. In Fig. 3.14(b) we

show the resulting values for λfit as a function of the upper limit εfit,max of the

ε interval used to fit the logarithm. Furthermore we checked again whether the

resulting prefactor in Eq. (3.12) depends on the artificially introduced cut-off ccutoff .

The results in Fig. 3.14(b) can be understood as follows. For a given value of

ccutoff = 0.1 . . . 0.3 the obtained prefactor λfit does not depend on the size of the fit

interval if the involved crossing angles are not too big. We find that the logarithmic

dependence approximately breaks down at crossing angles εfit,max ≃ 2ccutoff . This

means that one should not use a cut-off parameter which is too small as in this

case the range of ε values that can be used for the fit (3.12) is also very small. On

the other hand, one must not choose the cut-off parameter too large as this also

changes the final result for the prefactor λfit, see Fig. 3.14(b). Hence, we draw the

following conclusions. The exclusion of almost self-retracing orbits by means of the

criterion (3.11) yields a crossing angle distribution in accordance with the proposed

structure (3.9). The small correction P (corr)(ε, T ) is given by the function f(ε) which

depends logarithmically on ε, see Eq. (3.12). Using the procedure described above

to exclude almost self-retracing orbits one can determine the logarithmic prefactor

λfit in a consistent and numerically stable way. Here, the optimal parameter range

for the cut-off is ccutoff ≈ 0.1 . . . 0.3. The range of crossing angles that are used to

fit Eq. (3.12) has to be adapted accordingly so that εfit,max . 2ccutoff . In this range

of parameters one obtains values for the prefactor λfit that are independent of ccutoff

and εfit,max, see Fig. 3.14(b).

In the last step we repeat the numerical calculations for different values of the

deformation parameter b. In this way we check whether the prefactor λfit is indeed

determined by the Lyapunov exponent λ of the system that is presented in Sec-

tion 3.2. First of all we find that the model (3.9) including the specific form (3.12)

for the function f(ε) perfectly describe the numerical results for different shapes of

the billiard, see Fig. 3.15(a). We then determined the corresponding prefactor λfit

for many different billiard shapes. They are compared to the Lyapunov exponents

in Fig. 3.15(b). Although our numerical method allows only for a certain precision

in the determination of λfit (indicated by the error bars in Fig. 3.15(b)) we never-

theless find a clear indication that the numerical results λfit overestimate the system

specific Lyapunov exponents λ. As can be clearly seen in the inset of Fig. 3.15(b)

the ratio of λ and λfit is always slightly smaller than 1. This effect appears to be

most pronounced for the cardioid (b = 0.5) itself. With decreasing deformation

parameter b one expects that at some point small stability islands appear in the
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Figure 3.15: Crossing angle distribution for different values of the deformation pa-

rameter b. In subfigure (a) we present the numerically determined correction f(ε)

compared to the fit according to Eq. (3.12). The values of b range from b = 0.50 (cir-

cles) over b = 0.45 (squares) and b = 0.40 (diamonds) to b = 0.30 (crosses). Subfig-

ure (b) shows the prefactor λfit (circles) as obtained in accordance with Eq. (3.12) for

different values of b. The corresponding Lyapunov exponents as given in Section 3.2

are included for comparison (stars). The inset shows the ratio λ/λfit as a function

of b. For the numerical calculations we used ensembles of 20 million trajectories

with 100 reflections. The almost self-retracing orbits were excluded (ccutoff = 0.3).

phase space [Bäc98]. This can explain why the numerical evaluation of λfit becomes

more unstable and erroneous for the smaller values of b, i.e. b . 0.4. It is worth

noting that an increased ensemble size does not bring the calculated λfit closer to

the expected value λ.

The results of our numerical investigations can be summarized as follows. The

crossing angle distribution of non-uniformly hyperbolic billiards — in our studies

the chaotic members of the family of Limaçon billiards — follows the form (3.9).

For small crossing angles ε it includes a logarithmic correction with respect to ε,

see Eq. (3.12). These results are thus qualitatively analogous to the crossing angle

distribution of a uniformly hyperbolic billiard, see Eq. (2.56). We can therefore

conclude that the logarithmic correction to the crossing angle distribution for small

ε does not rely on a uniform phase space. However, due to the focusing nature of

the cardioid billiard one has to exclude a certain class of loops namely the almost

self-retracing loops to find this result. We show in the next chapter why this type of

loops does not yield a partner orbit and thus does not contribute to the semiclassical

evaluation of the form factor K(τ). The almost self-retracing loops contain a whole

family of crossings, see Fig. 3.11(d), and all these crossings have to be neglected.

The reason is that all of these crossings can be related to each other be means of

the stability matrix. In this way one can show that if one of the crossings within
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Figure 3.16: Example for a family of successive small crossings in the cardioid

billiard.

a family does not have a partner then neither do all the other crossings. A similar

argument can actually be applied to successive small crossings within a single family

that do not form a self-retracing loop, see Fig. 3.16. Also for this case we show

that the crossings are related to each other via the linearized equations of motion.

This implies that there is just one partner orbit for the whole set of crossings.

As a consequence one would need a refined formulation of the configuration-space

approach where not single crossings but only families of crossings are counted for the

calculation of the spectral form factor. However, in the next chapter we proceed in

a different way be developing a phase-space approach which resolves these problems

concerning the almost self-retracing loops and the families of crossings in a rather

straightforward and elegant manner. In due course we then explain how exactly the

logarithmic prefactor depends on the properties of the phase space of the system.
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CHAPTER 4

Phase-space approach for

two-dimensional systems

In this chapter we present a phase-space generalization of the confi-

guration-space approach which was developed for uniformly hyperbolic

systems [SR01, Sie02]. First we will show how the relation between a

periodic orbit γ and its partner orbits γp can be described in phase space.

In particular, we will explain in detail how the concept of self-crossings

can be replaced by a method based on ’encounter regions’ to be defined in

phase space. Then we will derive the action difference of the orbit pair

(γ, γp) in terms of local phase-space properties instead of the crossing

angle ε used in [SR01, Sie02]. We show that the semiclassical weights

and the Maslov indices for the orbit γ and its partners γp are equal.

Finally we provide a new method to count the partner orbits γp for a

given periodic orbit γ which is based on considerations regarding the

flow in phase space. We show how one can use this new framework to

compute the off-diagonal contribution K (2)(τ) of the spectral form factor

in non-uniformly hyperbolic systems.

4.1 Correlated orbits and the ’encounter region’

The purpose of the following section is to provide the main ideas how the confi-

guration-space approach [SR01] is reformulated in terms of phase-space methods

[TR03]. Especially we will show that the relevant objects to specify the partner
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Figure 4.1: (a) Periodic orbit γ (solid line) with self-crossing in configuration

space and corresponding partner orbit γp (dashed line) which avoids the crossing.

(b) Sketch of a correlated orbit pair in phase space (shown is a projection of the four-

dimensional space). The original periodic orbit γ, the time-reversed orbit γ i, and

the partner orbit γp are represented by the solid, dashed and dotted line, respectively.

Due to time-reversal symmetry each ’encounter region’ appears twice – first at time t1

and again at t2 = t1 + tloop. The Poincaré surfaces of section (PSS) defined by the

perpendicular coordinates (δq⊥, δp⊥) at x
γ
t1 and x

γ
t2 are indicated in the ’encounter

region’.

orbits of a given orbit are so-called ’encounter regions’ in phase space instead of

crossings in configuration space. The approach we propose is canonically invariant.

It provides a natural way to describe non-uniform systems as considered in Chapter 3

as well as more than two-dimensional systems to be described in Section 5.1.

The theory formulated in the framework of the configuration space, Section 2.5,

is based on the small parameter ε, the crossing angle. Therefore we first identify

the relevant quantity in phase space that replaces the crossing angle ε. Consider a

periodic orbit having a self-crossing with a small crossing angle ε, see Fig. 4.1(a).

The orbit enters the crossing twice: at time t1 and then again at t2. The lengths of

the two loops are then given by tloop = t2 − t1 and t′loop = Tγ − tloop. Because of the

small crossing angle ε ≪ 1 the two momenta pt1 and pt2 point in almost exactly

opposite directions, i.e. |pt1 + pt2| ≈ pε ≪ p. Thus a crossing with a small crossing

angle means that the orbit γ comes close to its time-reversed version γ i at the time

t1 and again at time t2 if considered in phase space, see Fig. 4.1(b). The phase-space

coordinates x
γ,i
t of the time-reversed orbit γi are given in terms of the original orbit

x
γ
t = (qγ

t ,p
γ
t ) as

x
γ,i
t = (qγ,i

t ,pγ,i
t ) = (qγ

Tγ−t , −p
γ
Tγ−t) = T x

γ
Tγ−t. (4.1)
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The time-reversal transformation T implies for the local stable and unstable direc-

tions introduced in Section 2.1 the relation

~e s,u(xγ
t1) = F ~eu,s(xγ,i

Tγ−t1
) = F ~eu,s(T x

γ
t1) with F ≡

(

1 0

0 −1

)

. (4.2)

In order to quantify how close the two orbits γ and γ i are we introduce a vector

δ~y pointing from the original orbit γ to the time-reversed orbit γ i:

δ~y(xγ
t1 , tloop) = δ~y(xγ

t1 , t2 − t1) ≡ T x
γ
t2 − x

γ
t1 = x

γ,i
Tγ−t2

− x
γ
t1 , (4.3)

see Fig. 4.2(a). The time t2 is chosen such that this vector δ~y lies in the Poincaré

surface of section at x
γ
t1 . The additional parameter tloop indicates that the vector

δ~y corresponds to an intersection of γi with the Poincaré surface of section at

x
γ
t1 after a certain loop time. Although, strictly speaking, the part of the periodic

orbit γ between t1 and t2 = t1 + tloop does not form a loop in phase space, see

Fig. 4.1(b), we will still use this terminology as it is based on the intuitive confi-

guration-space picture, see Fig. 4.1(a). In principle, definition (4.3) would yield a

different δ~y if the Poincaré surface of section were defined at x
γ,i
Tγ−t2

instead of x
γ
t1

because of a different local coordinate system. But since the two points are close to

each other the relation (4.3) between x
γ
t1 , x

γ,i
Tγ−t2

and δ~y is correct up to higher-order

corrections in δ~y for either choice of the position of the Poincaré surface of section.

The orbit γ enters the crossing after the right loop R once more. That means that

the orbit γ and the time-reversed γi are once more close to each other in phase

space, see Fig. 4.1(b), with a difference vector δ~y ′. Formally this can be written

as δ~y ′ = x
γ,i
Tγ−t1

− x
γ
t2 , see Fig. 4.2(b). However, the two difference vectors δ~y and

δ~y ′ are not independent of each other. In the case of a crossing where δ~y represents

the crossing angle this is immediately clear since the crossing angle ε is the same

no matter whether one considers the first passing of the crossing at t1 or the second

one at t2. This connection between δ~y and δ~y ′ is due to the time reversal symmetry

expressed in Eq. (4.1) and can be written as δ~y ′ = Fδ~y. Again, the relations given

above are correct if higher order terms in δ~y can be neglected.

To have a better understanding what it means when the two orbits γ and γ i are

coming close to each other we decompose the vector δ~y according to Eq. (2.15) into

its components with respect to the local stable and unstable directions ~e s,u(x):

δ~y(x) = u~e u(x) + s~e s(x) with s =
(~eu)T Σ δ~y

(~eu)T Σ~e s
and u =

(~e s)T Σ δ~y

(~e s)T Σ~eu
. (4.4)

The equations for the components s and u follow directly from Eq. (2.16). In terms

of these components the two orbits are considered as being close if s, u ≪ 1. It will

again – as for the crossing angle ε – turn out that it is sufficient to consider only the

case s, u ≪ 1 as long as the conditions for a semiclassical treatment are fulfilled.
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Figure 4.2: (a) Poincaré surface of section shortly after the crossing at t1.

The difference in position space is almost zero, i.e. δq⊥ ≈ 0, while the difference

in momentum space is given by the crossing angle, i.e. δp⊥ ≈ εp, see Fig. 4.1.

(b) Poincaré surface of section shortly before the reentry through the crossing at

t2. The difference in position space is almost zero again, i.e. δq⊥ ≈ 0, while the

difference in momentum space is given by the crossing angle, i.e. δp⊥ ≈ −εp.

It is important to realize that the choice of the time t1 and the corresponding

δ~y = δ~y(xγ
t1 , tloop) is not unique. One could have chosen a different t̄1 = t1 + ∆t

slightly before or after the original t1 and the two orbits would still be in the vicinity

of each other, see Fig. 4.3(a). However, we will prove later on in this section that

such a shift of the Poincaré surface of section does not alter the partner orbit.

Therefore a partner orbit is not associated with a single point in phase space (as it

was the case in the configuration space formulation, Section 2.5) but with an entire

region. This ’encounter region’ is defined by all vectors δ~y∆t(x
γ
t1 , tloop) that can be

connected to each other within the linear approximation as ∆t is varied. To give a

more specific definition of an ’encounter region’ consider a small δ~y = δ~y0(x
γ
t1 , tloop).

If the Poincaré surface of section is shifted along the orbit by a small ∆t forward

or backward in time this vector changes to

δ~̄y = δ~y∆t(x
γ
t1 , tloop) = δ~y0(x

γ
t1+∆t, tloop − 2∆t) ,

see Fig. 4.3(a). As long as ∆t is not too large the components of the vector

δ~y∆t(x
γ
t1 , tloop) will still be small and the linear approximation (2.3) is still valid.

However, there is a certain ∆tu forward in time and ∆ts backward in time for

which the linear approximation δ~y±∆tu,s(x) ≃ M(±∆tu,s,x)δ~y0(x) breaks down.

These critical times ∆ts,u defining the start and the end of the ’encounter region’

can be determined by an implicit equation for the stable and unstable components

of any vector δ~y0(x). Let us denote the time dependent stable component of δ~y∆t(x)
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as s(∆t; δ~y0,x) and similarly for u(∆t; δ~y0,x). Then the implicit equations for ∆ts,u

read

|s(−∆ts; δ~y0,x)| = cs(x) and |u(∆tu; δ~y0,x)| = cu(x) . (4.5)

Here, the cs,u(x) describe the maximum values s and u can reach before the linear

approximation breaks down. They are solely defined by the classical dynamics of

the system and can, in principle, depend on the position x in phase space. In

general, they might also depend on δ~y0 itself. However, as we consider only small

δ~y0 one can take the limiting value lim
δ~y0→0

cs,u(x, δ~y0) = cs,u(x). Even more, it will

turn out that the final result for the spectral form factor K (2)(τ) does not depend

on cs,u(x) at all in the semiclassical limit. The Eqs. (4.5) implicitly determine the

times ∆ts,u = ∆ts,u(s, u;x) as functions of the coefficients s and u and the position

in phase space x. The possible values for ∆t thus range from −∆ts to ∆tu. This

defines the length of the ’encounter region’

ten(s, u;x) = ∆ts(s, u;x) + ∆tu(s, u;x) (4.6)

as a function of x and δ~y = s~e s + u~eu. The definitions (4.6) and (4.5) ensure that

the length ten can be determined at any point within a given ’encounter region’ and

always yields the same value.

To summarize, we have to replace the scalar parameter of the crossing angle

ε by a vector δ~y lying in the Poincaré surface of section defined by the local

perpendicular coordinates. A small crossing angle ε ≪ 1 then corresponds to the

situation where the original orbit γ comes close to its time-reversed orbit γ i implying

that the components s and u of the vector δ~y, Eq. (4.4), are small, i.e. s, u ≪ 1.

The partner orbit has to be associated with an entire region in phase space – the

’encounter region’ – instead of a singular event in configuration space like a crossing.

In the next paragraphs we will show how the geometry of the partner orbit can be

found quantitatively and that the concept of using ’encounter regions’ instead of

self-crossings is indeed consistent.

As a next step we demonstrate how the geometry of the partner orbit γp can be

determined quantitatively. The characteristic feature of the partner orbit in the con-

figuration-space formulation is that it avoids the crossing and therefore traverses one

of the loops in a different direction, e.g. the left loop L as in Fig. 4.1(a). Translated

into the phase space picture this means that the partner orbit γp has to follow the

original orbit γ during the right loop R between t1 and t2. Then it switches to the

time-reversed orbit γi and follows that one between t2 and t1 + Tγ, see Fig. 4.1(b).

Hence, the phase-space coordinates of the partner orbit are given by

x
γ,p
t ≃

{

x
γ
t for t1 ≤ t ≤ t2 (part R)

T x
γ
t1+t2−t = x

γ,i
Tγ−t1−t2+t for t2 ≤ t ≤ Tγ + t1 (part L)

. (4.7)

To explicitly construct the partner orbit we analyze the linearized equations of mo-

tion around γ in part R and around γi in section L. This linearization is possible if
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Figure 4.3: (a) Enlarged schematic drawing of the ’encounter region’ shown in

Fig. 4.1(b). If the Poincaré surface of section (PSS) used to construct the partner

orbit according to Eq. (4.8) is shifted from x
γ
t1 to x

γ
t1+∆t the vector δ~y changes to δ~̄y.

However, the solution (4.9) is invariant under this shift and yields the same partner

orbit γp in either case. (b) Geometry of the partner orbit γp (dotted line) according

to Eq. (4.8) if the right loop R is short so that the original path γ (solid line) stays

close to the time-reversed path γi during the entire loop between the times t1 and t2.

The two indicated ’encounter regions’ at t1 and t2 should not be treated separately

because of the shortness of loop R, i.e. tloop = t2 − t1 < 2∆tu(s, u;xγ
t1).

the vector δ~y is not too long meaning that its components are small, i.e. s, u ≪ 1.

We show that a nontrivial solution to these linearized equations of motion repre-

senting the partner orbit γp exists under certain conditions. The distance between

γ and the partner orbit γp at the beginning of the first loop R is denoted by δ~xR,i,

see Fig. 4.2(a). This vector lies in the Poincaré surface of section defined at the

phase space position x = x
γ
t1 before the loop R. Having passed loop R after a time

tloop = t2−t1 this distance has changed to δ~xR,e, see Fig. 4.2(b). For a small δ~xR,i the

final δ~xR,e can be found by means of the stability matrix R = M(tloop,x
γ
t1). Before

and after the other part of the orbit the difference between the time-reversed path

γi and the partner γp is denoted by δ~xLi,i and δ~xLi,e, respectively. Here, Li indicates

that one has to follow the time-reversed loop Li. Its stability matrix Li = F L−1 F

is determined by the inverse of the stability matrix L of the loop L. In terms of the

matrices R and Li this gives the following set of equations

δ~xR,e = R δ~xR,i δ~xR,i − δ~xLi,e = δ~y

δ~xLi,e = Li δ~xLi,i δ~xR,e − δ~xLi,i = Fδ~y . (4.8)

The two vector equations on the left side just determine the two single pieces of
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the partner orbit γp during R and Li while the equations on the right make sure

that the two pieces fit together in the ’encounter region’, see Fig. 4.2. This set of

equations is the generalization of the relations (2.52) to the phase-space picture. It

is correct up to first order in δ~y neglecting higher order corrections beyond the linear

approximation.

The solution to Eqs. (4.8) can be found by carrying the vectors δ~x once around

the entire orbit by applying the relations (4.8) in the appropriate order. For a given

vector δ~y the geometry of the partner is then uniquely defined by the solution

δ~xR,i =
[

1 − Li R
]−1 [

1 − Li F
]

δ~y δ~xR,e = F
[

1 − LRi
]−1

[1 − LF ] δ~y

δ~xLi,i =
[

1 − R Li
]−1

[R F − 1] F δ~y δ~xLi,e = F
[

1 − Ri L
]−1 [

RiF − 1
]

F δ~y .

(4.9)

However, it is important to realize that the solution (4.9) to Eqs. (4.8) is valid only

if the loops L and R are long enough. Let us consider the part R as an example.

Then a long loop length means that it must not be possible to relate the vector δ~y

in the Poincaré surface of section before R to the vector δ~y ′ = Fδ~y after R within

the linear approximation. For a certain time t′ with t1 < t′ < t2 = t1 + tloop the

linearization δ~yt′(x
γ
t1 , tloop) ≃ M(t′,xγ

t1)δ~y0(x
γ
t1 , tloop) must break down. This implies

that there must be two separate ’encounter regions’ at xt1 and xt2 so that the two

vectors δ~y and δ~y ′ do not belong to the same ’encounter region’, see Fig. 4.1(b). If

this is not the case, i.e. if R δ~y = F δ~y, then the solution (4.9) for the equations

(4.8) has to be replaced by δ~xR,i = δ~y, δ~xR,e = Fδ~y, δ~xLi,i = 0 and δ~xLi,e = 0. But

this means that the constructed partner γp exactly coincides with the time-reversed

orbit γi.

This different mathematical result for a short loop R can be understood intu-

itively and is demonstrated in Fig. 4.3(b). If the loop R is short in the sense that

one can treat δ~y between t1 and t2 in the linear approximation then this implies that

the original orbit γ and the time-reversed γ i stay close together between t1 and t2.

On the other hand, the partner orbit γp has to switch from γi to γ at t1 and back to

γi at t2. But since γ and γi follow each other during R the partner orbit is also close

to γi for this part. Thus the partner orbit γp coincides with the time-reversed orbit

γi, see Fig. 4.3(b), because all periodic orbits are isolated and unstable. A similar

argument of course holds true for the left loop L, i.e. if Liδ~y ′ = Fδ~y ′. When cal-

culating the form factor (2.38) one has to make sure that these orbits with γp = γi

or γp = γ are not included into the calculation of the off-diagonal terms in K (2)(τ)

because they were already accounted for in the diagonal approximation (2.43).

The precise quantitative formulation for which loop lengths tloop = t2 − t1 and

t′loop = T + t1 − t2 the above solution (4.9) is not valid can be expressed as follows.

Depending on the considered vector δ~y = s~e s+u~eu it must be t2 > t1+2∆tu(s, u;x)

and similarly for the other loop L. Therefore we find the condition 2∆tu < tloop <

Tγ − 2∆ts under which a new partner orbit γp different from γ and γi exists. We
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will show that it is exactly this dynamics related restriction which causes the small

correction in the crossing angle distribution (2.56) and thus yields the universal

result for the form factor K (2)(τ).

So far we have considered the case where a periodic orbit γ comes close to its

time-reversed version γi at a certain time t1 and then again at time t2. We have

shown that if tloop and t′loop are large enough then there is a partner orbit γp that can

be described in terms of deviations δ~xR,i . . . between γp and γ or γi, see Eqs. (4.9).

However, one could also have chosen a slightly later time t̄1 = t1+∆t. Because of the

deterministic dynamics the two orbits γ and γi would still be close together but now

with a different coordinate difference δ~̄y. As we will show in the following one obtains

exactly the same partner orbit for the new δ~̄y as for the original δ~y. Mathematically

this means that Eqs. (4.8) and their solution (4.9) are invariant under a shift of the

Poincaré surface of section, see Fig. 4.3(a), as long as one determines δ~y within

the same ’encounter region’. Since the time shift ∆t is assumed to be sufficiently

small the new vector δ~̄y can be expressed in terms of the previous one δ~y within the

linear approximation by the stability matrix M = M(∆t,xt1), i.e. δ~̄y = Mδ~y, see

Fig. 4.3(a). Similarly all vectors in the previous Poincaré surface of section at x
γ
t2

can be mapped to the new one at x
γ
t2−∆t via another stability matrix N−1. The new

vectors and matrices occurring in Eqs. (4.8) and (4.9) can therefore be obtained via

the transformations

R → R̄ = N−1 R M−1 L → L̄ = M LN

δ~y → δ~̄y = M δ~y δ~y ′ → δ~̄y ′ = N−1 δ~y ′

δ~xR,i → δ~̄xR,i = M δ~xR,i δ~xR,e → δ~̄xR,e = N−1δ~xR,e . . . . (4.10)

Furthermore time-reversal symmetry, e.g. expressed as δ~y ′ = Fδ~y, implies M = N i.

The Eqs. (4.10) are again correct up to linear order in the coefficients of δ~y.

It can easily be seen that the structure of the relations (4.8) defining the partner

orbit γp does not change if they are rewritten in terms of δ~̄y, δ~̄xR,i, . . . by means of

Eqs. (4.10). This also implies that the solution (4.9) does not change by applying

the transformation (4.10) and thus yields the same partner orbit for δ~̄y. Therefore

one finds only one partner orbit for each ’encounter region’ no matter whether δ~y

or δ~̄y = Mδ~y is chosen within the ’encounter region’. This fact makes clear that

in the configuration-space picture a family of successive small crossings, if present,

gives just one partner. On the other hand it is also possible that there is no crossing

at all but still a partner can be constructed. This implies that the original orbit

γ and the partner orbit γp are treated equivalently in the proposed phase-space

approach. Hence, the correct way of counting the partner orbits is not to count the

self-crossings of a periodic orbit but to determine the number of ’encounter regions’.

In the case of the uniformly hyperbolic system each ’encounter region’ contains

exactly one crossing which is the reason why the crossing angle distribution can be

directly used to calculate the spectral form factor.
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Finally we want to further simplify the solution (4.9) and give an intuitive inter-

pretation of it. Consider once more the situation where a periodic orbit γ comes close

to its time-reversed version γi so that the loop times are long, i.e. tloop, t
′
loop ∼ TH .

Since the partner orbit γp has to follow γ during the entire long loop R the initial

deviation δ~xR,i has to lie very close the local stable direction ~e s(xγ
t1), see Fig. 4.2(a).

On the other hand, the deviation δ~xLi,e between γp and γi is located close to the

unstable manifold ~e u(xγ,i
Tγ−t2

) of γi at x
γ,i
Tγ−t2

. This can be seen by propagating

δ~xLi,e backwards in time. Therefore, the position of γp in the Poincaré surface

of section at x
γ
t1 must be very close to the intersection of the stable manifold of

γ with the unstable manifold of γi, see Fig. 4.2(a). Hence, to first order in the

small quantities u and s one can rewrite the solution (4.9) as δ~xR,i = sR,i ~e
s(xγ

t1),

δ~xLi,e = uLi,e ~eu(xγ,i
Tγ−t2

) = uLi,e ~eu(xγ
t1) and similarly for δ~xR,e and δ~xLi,i. Together

with Eqs. (4.8) and (4.2) these approximations can be used to give a simplified

version of the solution (4.9) for long loop lengths

δ~xR,i = s ~e s(xγ
t1) δ~xR,e = s ~eu(xγ

t2)

δ~xLi,i = −u ~e s(xγ
t2) δ~xLi,e = −u ~eu(xγ

t1) (4.11)

describing the partner γp in terms of the vector δ~y = s~e s + u~eu, see Fig. 4.2.

This solution quantitatively determines the partner geometry that we proposed in

Eq. (4.7). So far, we have neglected the fact that there is another partner orbit γp,i

in addition to γp, namely it time reversed version. In the spirit of Eq. (4.11) the

geometry of γp,i is given by

δ~xR,i = u ~eu(xγ
t1) δ~xR,e = u ~e s(xγ

t2)

δ~xLi,i = −s ~eu(xγ
t2) δ~xLi,e = −s ~e s(xγ

t1), (4.12)

see Fig. 4.2(a). Thus the time-reversed partner γp,i follows the original orbit γ in part

L and then switches to γi in loop R. However, all four orbit pairs (γ, γp), (γ, γp,i),

(γi, γp) and (γi, γp,i) share the same action difference because of their symmetry.

The great advantage of the long loop approximations (4.11) and (4.12) is that they

are completely independent of the matrix elements of the stability matrices. The

expressions for the four δ~x in Eqs. (4.11) and (4.12) depend only on the components

s and u of the distance vector δ~y = s~e s + u~eu and local phase space properties,

namely the local stable and unstable directions ~e (u,s)(x).

In this section we have shown that the crossing angle ε defined in configuration

space has to be replaced by the vector δ~y in phase space. We have generalized

the linearized equations of motion (2.52) allowing for a quantitative description

of the partner orbit. We have introduced the concept of an ’encounter region’ in

phase space replacing the crossing in configuration space. Furthermore, we have

proved that there is exactly one partner per ’encounter region’ if the associated

loop lengths are large enough. The condition for the loop lengths can be written
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as 2∆tu < tloop < Tγ − 2∆ts where ts,u are functions of δ~y. One has to keep in

mind that there is always the time-reversed version of an ’encounter region’ which

yields the time-reversed version of the partner orbit. In the following section we will

calculate the action difference of the orbit pair (γ, γp) in terms of local phase-space

properties.

4.2 Action difference

The aim of this section is to present a generalized expression for the action difference

(2.53) valid also for non-uniform hyperbolic systems. The resulting action difference

Sγp,γ ≡ Sγp − Sγ should be a function of the distance vector δ~y as this vector now

replaces the small parameter ε appearing in the configuration-space approach. Thus

one expects the action difference to be a function of second order in the components

of δ~y. In order to calculate the action of the partner orbit γp defined by Eq. (4.9)

we first expand the action [Sie] of the original orbits γ and γi in terms of the small

deviations1 δ~xR,i = (δ~qR,i, δ~pR,i), δ~xR,e = (δ~qR,e, δ~pR,e), . . . introduced in Eqs. (4.8).

Then we use the solution in the form (4.11) to rewrite the action difference in terms

of the components of δ~y = s~e s + u~eu. The following derivation is based on the

assumption that s and u are indeed small parameters so that the action difference

between γ and γp can be expanded in these quantities.

In general, the action S of any classical path can be considered as a function of

the initial and the final coordinates q if the energy of the particle is fixed [LL90].

Using the definition

S(qt2 ,qt1 , E) =

∫

path
(qt1

→qt2
)

dq p(q, E) (4.13)

where the integration follows the classical path from qt1 to qt2 one can show the

equality of the action of a path xt and its time-reversed version xi
t, see e.g. Eq. (4.1).

This allows to split the periodic orbit γ into the two parts R and L, see Fig. 4.4.

For the right loop R one can calculate the action difference between γ and γp

because these two orbits follow each other closely in this part. The action difference

accumulated in the second section L is determined by considering the deviations of

γp from γi. The exact point where to split the orbit is not uniquely defined. However,

in order to write the action difference in terms of the perpendicular deviations (4.9)

we have chosen the Poincaré surface of section at x
γ
t1 where the orbit γ is in the

middle of the ’encounter region’, see Fig. 4.4. This Poincaré surface of section is

exactly the one presented in Fig. 4.2(a). It is important to take the same Poincaré

1For two-dimensional systems (f = 2) the space of perpendicular coordinates is also two-

dimensional implying that δ~q and δ~p are just scalars. However, in order to keep the derivation as

general as possible we use the vector notation.
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Figure 4.4: In order to evaluate the action difference between the original orbit

γ (solid line) and the partner orbit γp (dotted line) the whole trajectory is split in

two parts. The first part is loop R starting at time t1 and ending at t2. The rest of

the orbit defines loop L. The definition of the two parts is not unique. For technical

reasons we have chosen the intersections of the orbit or its time-reverse with the

Poincaré surface of section at x
γ
t1. This Poincaré surface of section is the same

as shown in more detail in Fig. 4.2(a). Here, we sketch its position in configuration

space.

surface of section as a reference after the traversal of R because otherwise parts of

the orbit are neglected or their contributions enter twice.

As the geometric deviations of the partner orbit γp with respect to the original

orbit γ are known in terms of the parameter δ~y, Eqs. (4.9), we can evaluate its

action in terms of the original orbit γ by expanding (4.13):

∆S
(1)
R =

∂SR

∂qt2

∆qt2 +
∂SR

∂qt1

∆qt1 = (pt2)
T ∆qt2 − (pt1)

T ∆qt1

∆S
(2)
R =

1

2

[

∆qT
t2

∂2SR

∂qt2 ∂qT
t2

∆qt2 + ∆qT
t2

∂2SR

∂qt2 ∂qT
t1

∆qt1

+ ∆qT
t1

∂2SR

∂qt1 ∂qT
t2

∆qt2 + ∆qT
t1

∂2SR

∂qt1 ∂qT
t1

∆qt1

]

=
1

2

[

(∆qt2)
T ∆pt2 − (∆qt1)

T ∆pt1

]

. (4.14)

Here, ∆S(1) denotes the first-order action difference between γ and γp while ∆S(2)

is of second order in the small initial and final deviations (∆q, ∆p). The original

orbit is given by the phase-space coordinates xt ≡ (qt,pt) while the partner orbit

is described by x
p
t ≡ (qp

t ,p
p
t ). The coordinate difference in the beginning and in

the end is defined as ∆qt = q
p
t − qt and similarly for the difference in momentum.

Along the same lines we can express the action difference in the other part L as

∆S
(1)
L =

(

pi
T−t2

)T
∆qi

T−t2
−

(

pi
T−t1

)T
∆qi

T−t1

∆S
(2)
L =

1

2

[

(

∆qi
T−t2

)T
∆pi

T−t2
−

(

∆qi
T−t1

)T
∆pi

T−t1

]

(4.15)
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with xi
t ≡ (qi

t,p
i
t) = (qT−t,−pT−t) being the coordinates of the time-reversed tra-

jectory. The difference ∆qi
t = qi

t − q
p
t is now to be taken between the orbits γi and

γp and equivalently for ∆pi
t.

Since we have chosen the Poincaré surface of section defined by the perpendic-

ular coordinates at x
γ
t1 we can rewrite Eqs. (4.14) and (4.15) in terms of the vector

δ~y = (δ~yq, δ~yp) and the four vectors δ~x... = (δ~q..., δ~p...) introduced in Eqs. (4.8), see

also Fig. 4.2(a). These vectors lie in the Poincaré surface of section perpendicular

to the flow through xt1 . The result for the action differences (4.14) and (4.15) then

reads

∆S
(1)
R = (δ~yp)

T δ~qR,e − 0 , ∆S
(2)
R =

1

2

[

(δ~pR,e)
T δ~qR,e − (δ~pR,i)

T δ~qR,i

]

and

∆S
(1)
L = (δ~yp)

T δ~qLi,e − 0 , ∆S
(2)
L =

1

2

[

(

δ~pLi,e

)T
δ~qLi,e −

(

δ~pLi,i

)T
δ~qLi,i

]

.

(4.16)

As one now realizes the two contributions ∆S(1) and ∆S(2) are of the same order of

magnitude. Intuitively this is clear since for example the momentum pt2 entering

∆S
(1)
R in Eq. (4.14) is almost perpendicular to the difference in positions ∆qt2 yield-

ing a small value for the scalar product (pt2)
T · ∆qt2 between the two vectors, see

Fig. 4.4. Therefore, one has to keep the second-order contribution ∆S(2) in addition

to the first-order terms ∆S(1).

The total action difference in terms of the four vectors δ~x... describing the partner

γp can now be calculated by summing all terms in (4.16) and reads

Sγp,γ = ∆S
(1)
R + ∆S

(1)
L + ∆S

(2)
R + ∆S

(2)
L =

1

2

[

δ~xT
R,e Σ δ~xLi,i + δ~xT

Li,e Σ δ~xR,i

]

(4.17)

where the vector δ~y was eliminated by using Eqs. (4.8) and Σ is the matrix defined

in Eq. (2.2). As shown in Section 4.1 partner orbits exist only for long loops which

allows to apply the approximations (4.11) and (4.12). These relations connect the

solution for the geometric deviations of γp from γ with the local phase-space prop-

erties and the components of the distance vector δ~y = s~e s + u~eu. Hence the action

difference (4.17) can also be rewritten in terms of the components s and u of δ~y in

the basis of the local stable and unstable directions ~e s,u(x):

Sγ,γp ≡ Sγ − Sγp = S(δ~y) = Scl s u . (4.18)

This is the central result of this section and provides the generalization of expression

(2.53). It can be applied to either orbit pair (γ, γp), (γ, γp,i), (γi, γp) and (γi, γp,i).

The classical action Scl enters because the length of ~e s,u was defined on the basis

of this quantity, see Eq. (2.16). As can be seen in Eq. (4.18) the final result for

the action difference is given solely in terms of the components of the displacement

vector δ~y = s~e s+u~eu but does not contain any specific information about the loops,

such as the matrix elements of the stability matrices R and L, anymore. Only local
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phase space properties, namely the local stable and unstable manifolds, enter via

the components s and u of a given δ~y.

As we pointed out in Section 2.3, only those orbit pairs having a small action

difference Sγ,γp ∼ ~ contribute significantly in the semiclassical evaluation of the

spectral form factor (2.38). This means that we indeed have to include only the

cases where s, u ∼
√

~/Scl ≪ 1 meaning that the orbit γ comes very close to its

time-reversed version γi in phase space. Thus the restriction to s, u ≪ 1 in all

previous considerations is justified in the semiclassical limit and our approach is

self-consistent.

The intuitive interpretation of Eq. (4.18) is rather straightforward. The action

difference is given by the area enclosed by the four intersection points of γ, γ i,

γp and γp,i with the Poincaré surface of section at x
γ
t1 , see Fig. 4.2(a). Now

we will argue that the evaluation of the action difference resulting in Eq. (4.18)

is also consistent with the concept of the ’encounter region’ we introduced earlier.

In particular, the derived action difference (4.18) does not depend on the position

within an ’encounter region’ used for its calculation. If the Poincaré surface of

section at a slightly different time t̄1 = t1 + ∆t is considered then the enclosed area

does not change because the volume in phase space is conserved. Formally, this is

most easily seen in Eq. (4.17). One could map the Poincaré surface of section at

xt1 to xt1+∆t by applying the corresponding stability matrix M(∆t,xt1). However,

due to the symplectic property MT ΣM = Σ the symplectic product between any

two vectors is conserved, see Section 2.1. As the action difference contains only

symplectic products it must also be invariant under this shift from xt1 to xt1+∆t.

Therefore, it is clear that one can choose any position t̄1 within an ’encounter region’

to calculate the action difference between γ and γp.

In the previous two sections we have shown that if a periodic orbit γ comes close

to its time-reversed version γi in phase space then a partner orbit γp exists if the loop

times are large enough, i.e. 2∆tu < tloop < Tγ − 2∆ts. The vector δ~y = s~e s + u~eu

describes quantitatively how close the two orbits γ and γ i are. The geometric

deviations of the partner orbit γp from the original orbit γ are given by Eqs. (4.11)

and the action difference between the two follows from Eq. (4.18). An important

conceptual difference between the configuration-space approach, Section 2.5, and

the proposed phase-space approach is that the crossings are replaced by ’encounter

regions’. These ’encounter regions’ are not localized in phase space as crossings are.

They extend over a time ten given by Eq. (4.6). In the next section we will argue

why the Maslov indices of the orbits γ and γp cancel and why their semiclassical

weights are approximately equal. This finally allows to calculate the contribution of

the orbit pairs (γ, γp) to the spectral form factor (2.38) in Section 4.4.
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4.3 Maslov index and weight of the partner orbit

The purpose of this section is to first show that the semiclassical weights wγ and

wγp for the periodic orbits entering the expression for the form factor (2.38) are

approximately equal. This can most easily be done by relating the partner orbit γp

to the original orbit γ in part R and to γi in part L. Then we will demonstrate

that the Maslov indices µγ and µγp introduced in Eq. (2.36) cancel each other in

the calculation of the semiclassical form factor (2.38) if the orbits pairs (γ, γp) are

considered. We will show that µγ = µγp by using the geometrical interpretation of

the Maslov indices as winding numbers of the stable or unstable manifolds. This

interpretation was introduced for two-dimensional systems in [CRL90] to show that

the Maslov index of a periodic orbit entering Gutzwiller’s trace formula (2.33)

is canonically invariant. The approach was then extended to systems with f degrees

of freedom in [Rob91] and some practical methods of calculation where suggested in

[EW91]. Especially useful for the considerations to follow is the proof [FR97] that

the Maslov index of a periodic orbit γ equals that one of its time-reversed version

γi, i.e. µγ = µγi .

Before we investigate the Maslov indices in more detail let us argue why the

weights of γ and γp are approximately equal, i.e. wγ ≃ wγp . The reason is that

the geometric deviations between the orbits γ and γp are very small. As only small

action differences |Sγ,γp | ∼ ~ contribute significantly to K (2)(τ) the components

of the distance vector δ~y = s~e s + u~eu are also very small, i.e. s, u ∼
√

~/Scl,

see Eq. (4.18). This implies that the geometric deviations δ~x... between γ and γp,

Eq. (4.11), are also on the order of
√

~/Scl. Hence the difference between the loop

lengths Tγ and Tγp yields a correction to the form factor (2.38) which is small in the

semiclassical limit ~ → 0. A similar argument holds for the weights wγ which are

also geometry related classical quantities. Quantitatively this can be seen as follows.

For any smooth function f(x) defined in phase space one finds the following relation

using (4.7)
Tγ,p
∫

0

dt f(xγ,p
t ) ≃

t2
∫

t1

dt f(xγ
t ) +

Tγ+t1
∫

t2

dt f(T x
γ
t1+t2−t) (4.19)

with small corrections on the order of |si|, |ui| ∼
√

~/Scl. The times t1 and t2 are

related to the loop length via t2 = t1 + tloop. This means that the integral over any

function f(x) along the partner orbit γp is approximately given by integrals along

parts of γ and γi. The corrections in Eq. (4.19) are primarily due to the deviations

of the partner orbit γp from the original orbit γ or its time-reversed version γ i

within the encounter region. There, the deviations between γp and γ or γi are most

pronounced, see Fig. 4.1(b), but still they are of first order in δ~y meaning that they

are small. Obviously, Eq. (4.19) yields Tγ ≃ Tγp for f(x) = 1. Similarly we can

apply (4.19) to the local growth rate, i.e. f(x) = χ(x), which results into λγ ≃ λγ,p,
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es

q

γ
p

Figure 4.5: The Maslov index of a periodic orbit γ is given as the winding

number of the local stable (or unstable) direction when going once around the orbit.

In this figure we sketch an example where the winding number is equal to one.

see Eq. (2.9). Hence one can conclude that the Lyapunov exponent of the partner

orbit has to be very similar to that of the original orbit.

Finally we can also identify f(x) with the local change in the winding number of

the stable or unstable manifolds. According to [Rob91, FR97] the Maslov index

µγ entering Gutzwiller’s trace formula (2.35) can be obtained by considering the

winding number wnγ [~e s,u(xt)] of the local stable or unstable direction when going

along the periodic orbit γ, see Fig. 4.5. For two-dimensional systems (f = 2) the

vectors ~e s,u associated with the stable and unstable directions can be represented

by complex numbers, e.g. ~e s,u = (qs,u, ps,u) → qs,u + ips,u. The winding number

wnγ [~e s,u(xt)] can then be determined by considering the change of the argument of

this complex number. Thus the Maslov index µγ is given by

µγ = wn [~e s,u(xγ
t )]

Tγ

0 ≡ 1

2π

Tγ
∫

0

dt
d

dt
arg [~e s,u(xγ

t )] . (4.20)

One can choose either the stable or the unstable local direction in Eq. (4.20) as a

basis for the calculation of the Maslov index. Either case yields the same result.

The reason is that the manifolds never cross or lie on top of each other so that

~e s 6= ~eu is always fulfilled. Formally this is expressed in the relation ~e sΣ~eu 6= 0,

see Eq. (2.16). Hence, the winding numbers based on the stable and the unstable

manifolds must be the same, i.e. wn [~e s]Tγ

0 = wn [~eu]Tγ

0 .

Furthermore, one can show that the Maslov index of a periodic orbit γ is the

same as for its time-reversed version γi, i.e. µγ = µγi , [FR97]. To see this one has
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to apply Eq. (4.2) to the definition (4.20) which then yields

µγi = wn
[

~e s,u(xγ,i
t )

]Tγ

0
=

1

2π

Tγ
∫

0

dt
d

dt
arg

[

~e s,u(xγ,i
t )

]

=
1

2π

Tγ
∫

0

dt
d

dt
arg

[

F ~eu,s(xγ
Tγ−t)

]

= wn [~eu,s(xγ
t )]

Tγ

0 = µγ . (4.21)

In the second line of Eq. (4.21) the variable transformation t → Tγ−t was performed.

As formally expressed in Eq. (4.21) the equality µγ = µγi is due to the fact that

not only the orientation of the orbit γ is changed due to time reversal but also the

manifolds have to be transformed according to Eq. (4.2). These two effects exactly

compensate each other if the trajectory is periodic. Finally, the definition (4.20)

ensures that the Maslov index can be interpreted as an additive function of a local

quantity implying wn [~e s,u]T0 = wn [~e s,u]t
′

0 + wn [~e s,u]Tt′ for any time t′.

The following proof of µγ = µγp uses the assumption that the local stable and

unstable directions are continuous functions with respect to their positions in phase

space, Eq. (2.19). In order to evaluate the Maslov index µγp we again split the

original periodic orbit γ into the two parts R and L, see Fig. 4.1(b) and Fig. 4.4.

The first loop R goes from t1 to t2 while the second part L starts at t2 and ends at

Tγ + t1. The Maslov index µγp of the partner orbit is then evaluated separately

for either part by relating it to µγ and µγi via the continuity relation (2.19). This

yields

µγp = wn [~e s(xγ,p
t )]t2t1 + wn [~e s(xγ,p

t )]Tγ+t1
t2

≃ 1

2π

t2
∫

t1

dt
d

dt
arg [~e s(xγ

t )] +
1

2π

2Tγ−t2
∫

Tγ−t1

dt
d

dt
arg

[

~e s(xγ,i
t )

]

= wn [~e s(xγ
t )]

t2
t1

+
1

2π

Tγ−t2
∫

−t1

dt
d

dt
arg

[

Feu(xγ
Tγ−t)

]

= wn [~e s(xγ
t )]

t2
t1

+ wn [~eu(xγ
t )]

Tγ+t1
t2

(4.22)

if the local stable direction ~e s(xγ,p
t ) is used as a basis for the determination of the

winding number. The derivation above has to be understood as follows. During the

first loop R we can express the contribution to the total winding number of γp via

the corresponding contribution of γ since the two paths follow each other closely. It

is important to note that the total difference of these two contributions between t1

and t2 is at most 1/2 since the continuity relation is assumed to be true at all points

along the path. A similar argument holds for the second loop so that the error is

O(δ~y) but does not scale with the loop times tloop and t′loop. Therefore, the second
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line in Eq. (4.22) represents only an approximation of µγp but with small corrections

O(δ~y) only.

On the other hand one can also use the unstable direction ~e u(xγ,p
t ) to determine

the winding number. Performing a similar calculation as in Eq. (4.22) results in

µγp = wn [~eu(xγ,p
t )]t2t1 +wn [~eu(xγ,p

t )]Tγ+t1
t2

= wn [~eu(xγ
t )]

t2
t1

+wn [~e s(xγ
t )]

Tγ+t1
t2

. (4.23)

Therefore, together with (4.22) we find that the two Maslov indices µγ and µγp

must be approximately equal with an error O(δ~y):

µγp =
1

2

(

wn [~e s(xγ,p
t )]Tγ

0 + wn [~eu(xγ,p
t )]Tγ

0

)

=
1

2

(

wn [~e s(xγ
t )]

Tγ

0 + wn [~eu(xγ
t )]

Tγ

0

)

+ O(δ~y) ≃ µγ . (4.24)

Although above derivation (4.22, 4.23, 4.24) only shows the approximate equality of

µγ and µγp we can now conclude that the two Maslov indices have to be exactly

equal. The reason is that the winding number multiplied by two must be an integer

number for periodic orbits. Therefore, the smallest non-zero difference between

two Maslov indices is at least one half. Hence one arrives at the conclusion that

the difference µγ − µγp , being at most O(δ~y) according to (4.24), is exactly zero.

This proves that for an orbit pair (γ, γp) in a continuous hyperbolic system the

Maslov indices are equal, i.e. µγ = µγp . This is important for the calculation of

the semiclassical form factor (2.38) since then the only phase factor entering the

exponential is due to the action difference (4.18).

In this section we have shown that the weights and periods of the orbits γ and

γp are approximately equal, i.e. wγ ≃ wγp and Tγ ≃ Tγ,p, while the Maslov indices

are exactly equal, i.e. µγ = µγ,p. In the next section we will present a new method

of how the partner orbits γp can be counted and how their contribution to the form

factor is evaluated. This is the final step in the generalization of the configuration-

space approach reviewed in Section 2.5 towards a canonically invariant formulation

based on phase-space concepts.

4.4 Counting the partner orbits and calculation

of the form factor

In the previous sections of this chapter we have shown that among all orbit pairs

(γ, γ′) entering the semiclassical form factor (2.38) there are certain pairs (γ, γp) that

have a small action difference. We showed that the criterion for the existence of such

pairs can be expressed by employing a vector δ~y which describes how close the orbit

γ comes to its time-reversed version γi in phase space. We derived the geometry of

the partner orbit γp, Eq. (4.11), and its action difference Sγ,γp , Eq. (4.18). In the
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last section we then showed the equality of the Maslov indices of the two orbits,

i.e. µγ = µγp . The goal of this section is to perform the summations over these

pairs (γ, γp) of orbits in the semiclassical form factor (2.38). We will show that

their contribution amounts to K (2)(τ) = −2τ 2 and is thus universal as it was for the

uniform hyperbolic system, Section 2.5.

To compute the contribution K (2)(τ) of the orbit pairs (γ, γp) to K(τ) = K(1)(τ)+

K(2)(τ) + . . . we rearrange the double sum over periodic orbits in the semiclassical

expression for the form factor (2.38) in the following way. First we rewrite K (2)(τ)

as a sum over periodic orbits γ and a second sum over all the partners γp associ-

ated with each of the orbits. This procedure is based on the assumption that the

dominant off-diagonal contribution to K (2)(τ) is due to the systematic correlations

of actions of the considered orbit pairs (γ, γp). Other random correlations are ne-

glected since they would disappear if the system is slightly changed. Therefore they

cannot be responsible for universal contributions to the form factor. As opposed

to the approach in configuration space, Section 2.5, we then sort the terms in the

sums with respect to their action differences Sγp,γ . The action difference is the cor-

rect small parameter for the phase-space approach replacing the crossing angle ε,

e.g. in Eq. (2.54). It characterizes the orbit pairs and their associated contribution

exp(iSγ,γp/~) to the semiclassical form factor uniquely. Furthermore, the action dif-

ference Sγ,γp unlike the crossing angle ε is independent of the choice of coordinates

and thus canonically invariant. For the spectral form factor we then find

K(2)(τ) =
1

TH

〈

∑

γ

∞
∑

n=0

|wγ|2 δ∆τ (τ TH − Tγ) Nγ(Sn) exp

[

i
Sn

~

]

〉

∆E

= τ

〈 Smax(E)
∫

−Smax(E)

dS

〈

dNγ(S, T )

dS

〉

γ,τTH

exp

[

i
S

~

]

〉

∆E

. (4.25)

In the first step we formally introduced the number of partner orbits Nγ(Sn) of a

given periodic γ as a function of the action difference Sn. Furthermore we used

the approximation Tγ ≈ Tγp and wγ ≈ wγp . The major effect in the double sum

over periodic orbits comes from changes in the rapidly oscillating exponential, i.e.

the action difference S in Eq. (4.25), since the exponent effectively enters in units

of ~. Therefore, the leading correction to the form factor can be evaluated by

considering only the effect of the phase difference between γ and γp neglecting any

corrections coming from pre-exponential factors. This corresponds to a saddle point

approximation. In the second step in Eq. (4.25) we replaced the discrete sum over

action differences Sn by a continuous integral and the number of partners Nγ(Sn)

correspondingly by a partner density per action difference dNγ/dS. The maximum

action difference among the orbit pairs (γ, γp) is denoted by Smax. The replacement

of the sum by an integral is reasonable because of the huge number of partners that
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periodic orbitγ

t1PSS at xγ PSS at xγt2

Figure 4.6: The Poincaré surface of section (PSS) is considered as it moves

following the phase space flow along the orbit. Neighboring trajectories can then be

represented as points {δ~yi} within the Poincaré surface of section. As a function

of time these points change their positions in the Poincaré surface of section and

thus define a flow in this 2f − 2 dimensional hypersurface.

can be expected for large orbit lengths Tγ ≈ τTH . The other sum over periodic

orbits together with the weights wγ and the δ-function can be expressed using the

average over periodic orbits 〈. . . 〉γ,T of given length Tγ ≈ T = τTH as defined in

Eq. (2.41). The evaluation of the leading off-diagonal correction to the form factor

is thus reduced to the calculation of the density of partners per action difference

averaged over all periodic orbits. The major contribution to the integral in Eq. (4.25)

is due to the small |S| ∼ ~ behavior of this density in the semiclassical limit.

This also implies that the precise knowledge of the largest possible action difference

Smax among the orbit pairs (γ, γp) is not important for the further calculation of

K(2)(τ). In the following paragraphs we propose a new method how to count the

partner orbits and determine 〈dNγ/dS〉γ which eventually allows to evaluate K (2)(τ),

Eq. (4.25).

The basic idea for the computation of the density of partners per action difference

dNγ/dS is to consider the dynamical flow within the Poincaré surface of section as

it is moved along an orbit, see Fig. 4.6. Each time the time-reversed orbit γi comes

close to the original periodic orbit γ it intersects the Poincaré surface of section.

The set of all intersection points is denoted by {δ~yi} where each member can be

associated to a different loop time tloop,i. As one moves the Poincaré surface of

section along the orbit the whole set of intersection points close to the origin changes

its position according to the linearized equations of motion (2.3) and thus defines

a flow, see Fig. 4.7(a). Because of the requirement that the action difference (4.18)

is small the stable and unstable components of all relevant δ~yi must also be small

at a certain time (roughly speaking in the middle of the ’encounter region’). But

this is only possible if the vectors {δ~yi} lie close to the local stable direction in the
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Figure 4.7: (a) The dynamical flow within the Poincaré surface of section in

the vicinity of an unstable hyperbolic periodic orbit can be described by hyperbolas.

In the long-time limit the stable component of any point in the Poincaré surface

of section decreases exponentially while the unstable component increases. (b) If the

Poincaré surface of section is shifted once around the periodic orbit each point

δ~yi with a positive coefficient u crosses the line u = uc exactly once from left to

right. In principle the flow in the Poincaré surface of section could also reverse

its direction on short time scales. This can imply that a point having already passed

the u = uc line comes back and crosses the line in the opposite direction from right

to left. However, the hyperbolic long-time behavior of the flow ensures that there is

an overall exponential growth of the unstable component u so that the point would

have to pass the line a third time compensating the second passing from the wrong

side. A similar argument also holds for the u = −uc line.

beginning, then move towards the origin of the Poincaré surface of section and

finally end up close to the local unstable direction. To be more specific, as a function

of time all points {δ~yi} corresponding to partner orbits move on hyperbolas which

converge towards the local stable and unstable directions. This can be most easily

seen by decomposing any vector δ~y in the Poincaré surface of section into its stable

and unstable components, i.e. δ~y = s~e s + u~eu = δ~y s + δ~y u, see Eq. (2.15). Due

to the symplectic nature of the dynamics the symplectic product between any two

vectors has to be conserved. This implies (δ~ys)
T Σδ~yu = −Scl u s = const because of

Eq. (2.16). Hence the stable component s of δ~y can be written as a function of the

unstable component u, i.e. s ∝ 1/u, or vice versa, see Fig. 4.7(b). The flow which

is represented in Fig. 4.7 is then obtained by assigning different values to const.

In this flow based picture the number of partners γp is given by the number of
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points {δ~yi}p crossing a certain line u = ±uc in the Poincaré surface of section

while the surface is shifted once around the entire periodic orbit. The parameter uc

therefore fixes the position within an ’encounter region’ that is used to identify and

count it. This means that one has to evaluate the flux through the lines u = ±uc

between t = 0 . . . Tγ , see Fig. 4.7(b). It is clear that the final result for the number

of partners should not depend on the specific value of uc as long as it is chosen

small enough for the linear approximation to hold. Let us denote the density of

points {δ~yi}p in the u-s-plane, Fig. 4.7(b), each corresponding to a partner orbit,

by ̺(s, u;x). The number of intersection points crossing the lines u = ±uc is then

determined by this density ̺(u, s;xt) and the velocity u̇(u, s;xt) of each point δ~yi into

the unstable direction. Therefore the total density of partners per action difference

can be written as

〈

dNγ(S, T )

dS

〉

γ,T

=
1

Scl

〈 Tγ
∫

0

dt



̺

(

uc,
S

Scluc
;xγ

t

) u̇
(

uc, S
Scluc ;x

γ
t

)

uc
+

̺

(

−uc,
S

−Scluc
;xγ

t

) u̇
(

−uc, S
−Scluc ;x

γ
t

)

−uc





〉

γ,T

.

(4.26)

Here, we used the fact that for fixed u = ±uc the action difference S = Sγ,γp ,

Eq. (4.18) is uniquely determined by the component s = S/(Sclu
c). This allows to

perform a variable transformation s → S which then gives a factor 1/(Sclu
c). The

two terms in the integral in Eq. (4.26) represent the u = +uc and the u = −uc line,

respectively. The products ̺(. . . ) u̇(. . . ) characterize the flux through these lines.

In order to proceed with the calculation of the number of partners (4.26) we have to

determine the density ̺(s, u;xγ
t ) of intersection points {δ~yi}p lying in the Poincaré

surface of section at x
γ
t . As explained in detail in Section 4.1, an intersection point

δ~yi corresponds to a partner orbit if and only if the associated loop lengths are larger

then the minimal times ∆ts,u, see Eqs. (4.5, 4.6). The density of points {δ~yi}p is

therefore given as

̺(s, u;xt) =

T−2∆ts
∫

2∆tu

dtloop δ
([

xt − T xt+tloop

]

u
− u

)

δ
([

xt − T xt+tloop

]

s
− s

)

×

δ
(

[

xt − T xt+tloop

]

‖

)

(4.27)

where tloop represents all possible loop lengths. The indices s and u in [x]s,u denote

the perpendicular stable or unstable component of a phase space vector x, respec-

tively. The last δ-function ensures that T xt+tloop
lies in the Poincaré surface of

section at xt as the difference of the parallel components has to vanish. The func-

tional dependence of the times ∆ts,u = ∆ts,u(s, u;x) on s, u is determined by the
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implicit condition (4.5). The choice for the limits of the integration in Eq. (4.27)

excludes the short loop times. Hence only those intersection points {δ~yi}p that can

be associated with a partner orbit are counted. Therefore, if almost self-retracing

loops exist they are excluded as they do not yield a partner orbit.

We continue with the derivation of the density of partners per action difference

by rewriting Eq. (4.26) in terms of the local growth rate χ(x) as

〈

dNγ(S, T )

dS

〉

γ,T

=
1

Scl

T
∫

0

dt

[

̺

(

uc,
S

Scluc
;xt

)

+ ̺

(

−uc,
S

−Scluc
;xt

)]

χ(xt) .

(4.28)

This result can be found by using the equations of motion for the component u,

Eq. (2.18), and applying of the sum rule for periodic orbits (2.42). The integration

now goes along any ergodic path of length T = τTH . Hence the density of partners

per action averaged over all periodic orbits is reduced to a time average over the

density ̺(s, u;xt) of intersection points δ~yi in the Poincaré surface of section

multiplied with the local growth rate χ(xt).

As the path length T = τTH is large in the semiclassical limit one can use the

ergodic property 〈f(x0)〉t = 〈f(x)〉x of the system to determine the density ̺(s, u;x),

Eq. (4.27):

̺(s, u;x0) = (T − 2ten(s, u;x0))×
〈

δ ([x0 − Fx]u − u) δ ([x0 − Fx]s − s) δ
(

[x0 − Fx]‖

)〉

x

= Scl

(

T

Ω(E)
+

−2 ten(s, u;x0)

Ω(E)

)

≡ ̺lead + ̺corr(s, u;x0) (4.29)

This ergodic approximation yielding a uniform density is justified for the following

reason. In the semiclassical limit only small action differences |S| = Scl |u s| ∼ ~ are

relevant or correspondingly s, u ∼
√

~/Scl. Since the constants cs,u(x) introduced

in the definition for ∆ts,u, Eq. (4.5), are based only on classical quantities they

do not scale with ~ when performing the limit ~ → 0. Therefore these constants

are large compared to quantum mechanical scales, i.e. cs,u(x) ≫
√

~/Scl ∼ s, u.

This implies large times λ ∆ts,u ≫ 1 and thus one can apply the long-time limit

cu = |u(∆tu)| ≈ |u(0)| exp(λ ∆tu) which follows from the equations of motion (2.18)

and the definition of the Lyapunov exponent (2.7). Therefore, the points xt and

T xt+tloop
are basically uncorrelated. Hence one can assume the density to be uniform

and given by Scl/Ω(E) where the factor Scl is due to the coordinate transformation

(s, u) → (δq⊥, δp⊥) in Eq. (4.29). The prefactor T − 2ten stems from the fact that

parts of the orbit have to be excluded as they cannot yield a partner orbit. The

density ̺(s, u;x) can thus be written as a sum of two terms ̺lead and ̺corr. The first

contribution ̺lead represents the leading ergodic properties of the system. The second
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term ̺corr is a small correction due to the deterministic character of the motion of

the particle. It depends not only on the coordinates s and u in the Poincaré

surface of section but also on the position x in phase space. If the result (4.29)

is inserted in the expression (4.28) for the density of partners per action difference

one immediately realizes that 〈dN/dS〉γ is indeed independent of the specific value

assigned to uc.

However, in order to actually compute the time integral in Eq. (4.28) one still

needs to find the asymptotic expression for ten(s, u;x), Eq. (4.6). Using a similar

argument for ∆ts as the one given above for ∆tu we find for the length ten(s, u;x)

of an ’encounter region’ the following asymptotic result

λ ten(s, u;x) ≈ ln

[

cu(x) cs(x)

|u| |s|

]

= ln

[

cu(x) cs(x)
Scl

|S|

]

= λ ten(S;x) (4.30)

in the limit of small action differences S ∼ ~, see Eq. (4.18). This result is consistent

with the requirement that the length ten(s, u,x) of a given ’encounter region’ is

constant within this region. It does not depend on s or u separately but only on

their product s u as this quantity is a constant of motion. Furthermore, Eq. (4.30)

implies a weak dependence of ten(s, u;x) on the actual position x in phase space

if the limit S ∼ ~ → 0 is considered. The reason is that cs,u(x) are defined on a

purely classical basis independently of the semiclassical limit. As we will show in

Section 5.1 it is not even of crucial importance to explicitly calculate the asymptotic

form of ten as in Eq. (4.30). However, the approach chosen in this chapter is the most

straightforward extension of the configuration-space approach towards a phase-space

formulation. It also makes clear that time scales on the order of the Ehrenfest

time2 TE must not be neglected although they are much smaller than the orbits

lengths given by the Heisenberg time TH , i.e. ten ∼ TE ≪ TH ∼ Tγ .

The asymptotic expression (4.30) for the time ten together with result (4.29) for

the density ̺(s, u;x) allows for a determination of the density of partner orbits per

action difference (4.28) as follows:

〈

dNγ(S, T )

dS

〉

γ,T

=

〈

dN lead
γ (S, T )

dS

〉

γ,T

+

〈

dN corr
γ (S, T )

dS

〉

γ,T

(4.31)

where
〈

dN lead
γ (S, T )

dS

〉

γ,T

=
2T

Ω(E)

T
∫

0

dt χ(xt) ≃
2λT 2

Ω(E)
(4.32)

2The Ehrenfest time TE is given by the time it takes for two trajectories with an initial

distance ∼ 1/kF to separate so that the final distance is of the order of the system size l, i.e.

TE ∼ λ−1 ln kF l. Here, λ denotes the Lyapunov exponent and kF is the Fermi wave number.
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and

〈

dN corr
γ (S, T )

dS

〉

γ,T

=
4

Ω(E)

T
∫

0

dt
χ(xt)

λ

(

ln
|S|
Scl

− ln cs(xt)c
u(xt)

)

≃ 4T

Ω(E)
ln

|S|
Scl

.

(4.33)

The first contribution (4.32) is the dominating one (∼ ~
−2) and describes the ergodic

properties of the system. It is corrected by (4.33) involving the logarithm of |S|
which is due to the underlying dynamics. This logarithmic correction is therefore

of the order of ∼ ~
−1 ln ~. We neglected all smaller terms ∼ ~

−1 in Eqs. (4.32) and

(4.33). In principle one could argue that only the first term (4.32) is relevant in

the semiclassical limit. However, as we show in the next paragraph, this term does

not contribute to the spectral form factor K (2)(τ). Therefore, one has to keep the

small correction (4.33). This set of Eqs. (4.31 - 4.33) is the first major result of this

section. It provides the phase-space generalization of the crossing angle distribution

P (ε, T ), Eq. (2.56).

In the last step we now determine the contribution of 〈dNγ/dS〉γ,T to the spectral

form factor (4.25). Inserting only the first term (4.32) into Eq. (4.25) while neglecting

the correction (4.33) gives

K(2,lead)(τ) = τ 2 2λT

π

〈

sin
Smax(E)

~

〉

∆E

= 0 . (4.34)

Thus the leading term in the density of partners per action difference yields a van-

ishing contribution to the spectral form factor. This is due to the energy average

performed with respect to the rapidly oscillating sine function which suppresses the

prefactor. This prefactor is of the order of ~
−1 and would give a non-universal con-

tribution to the spectral form factor K(τ) as it contains the Lyapunov exponent

of the system. However, because of the vanishing contribution (4.34) of the leading

order term in 〈dNγ/dS〉γ one has to evaluate the correction due to (4.33) as well

since it turns out that its contribution remains finite for ~ → 0. The final result for

the form factor thus reads

K(2)(τ) = K(2, lead)(τ) + K(2, corr)(τ)

= 0 − 8τ 2

〈

~TH

Ω(E)

Smax(E)
~

∫

0

dx
sin x

x

〉

∆E

= −2τ 2 (4.35)

in the limit ~ → 0. It is important to note that the contribution from the correc-

tion (4.33) to the form factor does not vanish in the semiclassical limit although

〈dN lead
γ /dS〉γ ≫ 〈dN corr

γ /dS〉γ. This shows that one has to carefully perform the

~ → 0 limit.

In this chapter we have shown that the method of evaluating off-diagonal terms

in the semiclassical spectral form factor (2.38) proposed in [SR01, Sie02] can be
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extended to non-uniformly hyperbolic systems. To this end we developed a new

approach based on phase-space concepts. We showed that the relevant objects which

allow to find the orbit pairs (γ, γp) are ’encounter regions’ in phase space rather than

crossings in configuration space. These ’encounter regions’ are characterized by a

small distance δ~y between a periodic orbit γ and its time-reversed version γ i. We

determined the geometry, Eq. (4.11), and the action of the partner orbit γp with

respect to the original orbit γ, Eq. (4.18), in terms of local phase space properties.

Finally we showed that the crossing angle distribution has to be replaced by a density

of partners per action difference, Eq. (4.31). Combining all these results we were

able to evaluate the off-diagonal terms in the double sum of periodic orbits in the

spectral form factor, Eq. (4.35). It turns out that the result coincides with the τ 2

order appearing in the universal random-matrix theory prediction (2.28). In order

to find this result one has to include dynamical properties of the system. This means

for example that one must not neglect the fact that two close trajectories stay close

to each other for a certain time. This is due to the deterministic equations of motion

underlying the system dynamics. In the next chapter we will study some extensions

and applications of this new approach.
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CHAPTER 5

Extensions and applications of the

phase-space approach

In this chapter, we first demonstrate how the phase-space approach for

the semiclassical calculation of the spectral form factor K(τ) in two-

dimensional systems can be extended to higher-dimensional systems.

We show that all the different time scales given by the whole set of

Lyapunov exponents do not affect the final result for the spectral form

factor which again coincides with the universal random-matrix theory

prediction. Furthermore we study the transition from a system with

strict time-reversal symmetry towards a system where this symmetry

is broken. This corresponds to the GUE – GOE transition in random-

matrix theory. Finally we apply our technique to investigate matrix

element fluctuations. We derive a relation between the spectral form

factor and the generalized form factor and evaluate the semiclassical ap-

proximation.

5.1 Higher-dimensional systems

In this section we extend the proposed technique for evaluating off-diagonal contri-

butions of the spectral form factor K(τ) to systems with f ≥ 2 degrees of freedom

[TSMR04]. Since the determination of the partner geometry for f = 2, as described

in Section 4.1, and the evaluation of the action difference Sγ,γp , see Section 4.2,

was already formulated in a rather general framework we just briefly summarize the
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corresponding results for f > 2. The main focus will be on the statistics of the

number of partner orbits. As we showed in Section 4.4, the number of partners in

the case f = 2 is determined by the phase-space flow, i.e. the local growth rate χ(x),

see Eq. (4.28). In systems with more than two degrees of freedom the Poincaré

surface of section is a 2f − 2 dimensional hypersurface in the 2f dimensional phase

space. Hence, according to Eq. (2.8), there are f − 1 fluctuating local growth rates

{χi(x)}. Their phase-space average yields a set of f −1 Lyapunov exponents {λi}.
However, we prove that all these different time scales exactly cancel and thus do not

appear in the final result for K(τ). In this context it is important to realize that a

direct extension of the original configuration-space approach based on crossings, see

Section 2.5, to systems with more than two degrees of freedom is not possible.

Before we present the extension of the phase space approach to the case f > 2 let

us make a few remarks concerning semiclassical approximations in systems with more

than two degrees of freedom. Traditionally, it has been believed that Gutzwiller’s

trace formula is a good approximation for the density of states in systems with f = 2

only. The reason is that the mean density of states d̄(E) = (2π~)−fΩ(E) increases

like ∼ ~
−f in the semiclassical limit. On the other hand, Gutzwiller argued

that the errors for the semiclassical approximations leading to the trace formula

are ∼ ~
2 [Gut90]. Therefore one would expect that f = 2 represents an upper

critical dimension for the applicability of the trace formula. This issue is thoroughly

discussed in [PS98, PS00]. It is shown that the traditional argument mentioned

above is too simple and that the semiclassical accuracy measured in units of the

mean level spacing depends only weakly on the dimensionality f . More specifically

it was argued that the traditional error estimate ∼ ~
2−f has to be replaced (in a

’pessimistic’ version, [PS98]) by a maximum error bound ∼ ln ~ which is independent

of f . These theoretical arguments were substantiated by numerical studies on the

three dimensional Sinai billiard in [Pri95, PS98, PS00]. Further numerical studies

on a three dimensional billiard are presented in [Pro97]. The spectral statistics was

shown to follow random-matrix theory with small deviations.

In the following we give a semiclassical derivation of the spectral form factor,

Eq. (2.38) with Aγ = Bγ = 1, on the grounds of Gutzwiller’s trace formula for

f ≥ 2. In order to go beyond the diagonal approximation one has — in analogy to

the case f = 2 — to identify orbit pairs which are characterized by a small action

difference on the order of ~. Such an orbit pair (γ, γp) can be found if a periodic

orbit γ comes close to its time-reversed version γ i at a certain point x
γ
t1 in phase

space, see Section 4.1. The distance between γ and γi can be quantified by the small

vector δ~y. This vector lies in the 2f − 2 dimensional Poincaré surface of section

defined by the perpendicular coordinates (δq⊥, δp⊥) at x
γ
t1 . It points from x

γ
t1 to

T x
γ
t2 and is formally given by Eq. (4.3) independently of the dimensionality f . As

described in Section 2.1 this vector can be decomposed into its stable and unstable
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components

δ~y(xγ
t1 , tloop) =

f−1
∑

i=1

si(x
γ
t1 , tloop)~e s

i (xγ
t1) + ui(x

γ
t1 , tloop)~eu

i (xγ
t1) (5.1)

where tloop ≡ t2 − t1. Relation (5.1) replaces Eq. (4.4). The coefficients si can be

calculated explicitly using

si =
det

(

~e s
1 , . . . , ~e s

i−1, δ~y,~e s
i+1, . . . , ~e

s
f−1, ~e

u
1 , . . . , ~eu

f−1

)

det
(

~e s
1 , . . . , ~e s

f−1, ~e
u
1 , . . . , ~eu

f−1

) (5.2)

and similarly for ui.

We say that the vector δ~y is small if its components {si, ui} are small, i.e.

si, ui ≪ 1. If one moves from x
γ
t1 to x

γ
t1+∆t along the orbit γ, this displacement

vector changes to δ~y∆t(x
γ
t1 , tloop) = δ~y(xγ

t1+∆t, tloop − 2∆t). For a short enough time

∆t all the components si(∆t; δ~y0,xt1) and ui(∆t; δ~y0,xt1) remain small since it takes

a certain time until the orbits γ and γi have deviated from each other again. This

is a consequence of the deterministic dynamics of the system and makes clear that

two orbits being close in phase space is not a local property. In analogy to the

two-dimensional systems we therefore define the ’encounter region’ as the set of all

points x
γ
t1+∆t such that each stable and unstable component of the displacement

vector δ~y∆t(x
γ
t1 , tloop) is smaller than a certain threshold value cs

i . 1 and cu
i . 1,

respectively, see Fig. 5.1(b). These values {cs
i , c

u
i } are chosen in a way that the

displacement vectors δ~y∆t(x
γ
t1 , tloop) are given by the linearized equations of mo-

tion δ~y∆t(x
γ
t1 , tloop) ≃ M(∆t,xγ

t1) δ~y(xγ
t1 , tloop) as long as x

γ
t1+∆t stays within the

’encounter region’, while the linear approximation breaks down outside of it. There-

fore, the numbers {cs
i , c

u
i } are purely classically defined quantities which characterize

the breakdown of the linear approximation applied to the displacement vector δ~y.

As explained in Section 4.1 the values of {cs
i , c

u
i } can weakly depend on the position

x in phase space or the displacement vector δ~y itself, but this dependence does not

affect the final result for the spectral form factor in the semiclassical limit.

From the definition of the ’encounter region’ one concludes that the range of

values for ∆t such that x
γ
∆t lies within an ’encounter region’ is given by −∆ts ≤

∆t ≤ ∆tu, where the times ∆ts,u are defined by the implicit equations

∆ts = min
i=1,...,(f−1)

{∆ti : |si(−∆ti; δ~y0,x)| = cs
i} and

∆tu = min
i=1,...,(f−1)

{∆ti : |ui(∆ti; δ~y0,x)| = cu
i } . (5.3)

This means that ∆ts,u are such that the displacement δ~y∆ts,u is just about to leave

the hypercuboid

V = {(si, ui) : |si| ≤ cs
i , |ui| ≤ cu

i } (5.4)
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that defines the ’encounter region’. The implicit Eqs. (5.3) replace the Eqs. (4.5)

obtained in the case f = 2. They determine the times ∆ts = ∆ts({si, ui};x) and

∆tu = ∆tu({si, ui};x) as functions of all the components {si, ui} of the vector δ~y

and the point x in phase space. The time duration of the encounter region

ten({si, ui};x) = ∆tu({si, ui};x) + ∆ts({si, ui};x) (5.5)

is thus a classical object defined locally in phase space. It depends on the components

{si, ui} of δ~y and is clearly invariant within a given ’encounter region’.

A partner orbit γp can be assigned to each ’encounter region’ which arise if the

time-reversed orbit γi comes close to γ itself. Equivalently to the f = 2 case its

qualitative geometry is given by Eq. (4.7), see also Fig. 4.1(b). Quantitatively one

can find the geometry of γp by solving the linearized equations of motion (4.8). The

structure of these equations is formally independent of the dimensionality f . The

partner orbit γp is then given by the 2f −2 dimensional vectors δ~x that describe the

deviations of γp from the orbits γ and γi. For a system with f degrees of freedom

the matrices R, Li and F are 2f − 2 dimensional. The general result (4.9) can be

further simplified if the corresponding loop times tloop and T − tloop are large. For a

system with f degrees of freedom one finds the solution

δ~xR,i = δ~y s =

f−1
∑

i=1

si ~e s
i (xγ

t1) δ~xR,e =

f−1
∑

i=1

si ~eu
i (xγ

t2)

δ~xLi,i = −
f−1
∑

i=1

ui ~e s
i (xγ

t2) δ~xLi,e = −δ~y u = −
f−1
∑

i=1

ui ~eu
i (xγ

t1) (5.6)

in terms of the components of the displacement vector δ~y = δ~ys+δ~yu. The Eqs. (5.6)

provide the necessary extension of Eqs. (4.11) for an arbitrary number of degrees of

freedom f . As we argued in some detail in Section 4.1 the solution (5.6) is not valid

for vectors δ~y(xγ
t1 , tloop) with tloop being smaller than 2∆tu({si, ui};x) or T − tloop

being smaller than 2∆ts({si, ui};x), respectively. In this case of short loop times

the solution (5.6) has to be replaced by δ~xR,i = δ~y, δ~xR,e = Fδ~y, δ~xLi,i = 0 and

δ~xLi,e = 0 yielding just the time-reversed orbit γi instead of a separate partner orbit

γp.

For the evaluation of the semiclassical expression (2.38) for the form factor one

needs the action difference Sγ,γp for the orbit pair (γ, γp) characterized by Eqs. (5.6).

As we did not restrict the derivation of the action difference in Section 4.2 to two-

dimensional systems the result (4.17) is also valid for f > 2. Together with Eqs. (5.6)

we thus find

Sγ,γp ≡ Sγ − Sγp = S(δ~y) = (δ~yu)T Σ δ~ys =

f−1
∑

j=1

Scl sj uj ≡
f−1
∑

j=1

Sj (5.7)
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which is the necessary extension of Eq. (4.18). As in the special case f = 2 we again

find that the result (5.7) is invariant under a small displacement of δ~y within a given

’encounter region’ because of the conservation of the symplectic product under the

dynamics. Since only small action differences Sγ,γp ∼ ~ contribute significantly to

the semiclassical form factor (2.38) the restriction of the considerations above to

small components |si|, |ui| ∼
√

~/Scl ≪ 1 is justified.

Besides the action difference Sγ,γp which enters the semiclassical form factor

(2.38) there are also the weights wγ and wγp that include for example the Maslov

indices µγ and µγp , respectively. These weights are equal for an orbit pair (γ, γp) if

small corrections of first order in ui and si are neglected, i.e. wγ = wγp +O({si, ui}).
The proof follows the same lines as for two-dimensional systems, see Section 4.3. We

apply relation (4.19) to the functions f(x) = 1 and f(x) = χi(x) yielding Tγ ≃ Tγp

and λγ
i ≃ λγp

i , respectively. Since the association of the Maslov index with a

winding number is independent of the number of degrees of freedom f [Rob91] one

further finds µγ = µγp . As the weight wγ is uniquely determined by the length of the

orbit Tγ, its Lyapunov exponents {λγ
i } and the Maslov index µγ one can conclude

that wγ ≃ wγp . In the spirit of a stationary-phase approximation we therefore keep

only the action difference Sγ,γp in the phase while neglecting small differences in the

pre-exponential factors in (2.38).

In the following we show how the described partner orbits γp determine the

next-to-leading order result for the spectral form factor in systems with more than

two degrees of freedom. We assume that the dominant terms beyond the diagonal

approximation in Eq. (2.38) are due to the systematic action correlations of the

orbit pairs (γ, γp) specified above. Thus the double sum over periodic orbits can be

formulated as a single sum over orbits γ and a sum over all the partners γp for each

orbit while all other terms are neglected. All partners γp of a given orbit γ are then

characterized by the set of action differences {Sj} defined in Eq. (5.7). These are

the appropriate parameters to categorize the partner orbits as the {Sj} depend only

on the orbit pair (γ, γp) but not on the position within the ’encounter region’ used

to identify the orbit pair. Therefore, expression (2.38) can be rewritten as

K(2)(τ) = τ

〈 S
(j)
max(E)
∫

−S
(j)
max(E)

dS1 . . . dSf−1

〈

df−1Nγ({Sj})
dS1 . . . dSf−1

〉

γ,τTH

exp

(

i

f−1
∑

j=1

Sj

~

)〉

∆E
(5.8)

which yields Eq. (4.25) in the special case f = 2. The density of partners γp for

a given orbit γ with respect to the set of action differences {Sj} is denoted by

df−1Nγ({Sj})/dS1 . . . dSf−1. This quantity is the crucial ingredient and we will

show how it can be calculated in systems with an arbitrary number of degrees of

freedom. In contrast to the two-dimensional systems with f = 2 the derivation

is significantly more involved because of the higher number of stable and unstable
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c k
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u
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V+k

(a) ’Encounter region’ in PSS

γ i

’encounter region’

γ

(b) ’Encounter region’ in phase space

Figure 5.1: (a) Schematic drawing of a projection of the Poincaré surface of

section (PSS). The flow of intersection points (black filled circles) is represented by

the thin arrows. There are two ways to count the intersection points. Either the flux

through the uk = cu
k surface ∂V+k (dotted line) is considered, as in Eq. (5.10), or one

counts the number of points in the volume V of the ’encounter region’ (dashed area)

normalized by the time each point spends in it, as in Eq. (5.11). In subfigure (b) we

show a sketch of the ’encounter region’ in phase space corresponding to the lowest of

the three pieces of γi (dashed lines).

manifolds and Lyapunov exponents.

The basic idea is once more that one considers the dynamics within the Poin-

caré surface of section defined by the coordinates perpendicular to the flow, see

Fig. 5.1(a), as its position is shifted following the phase space flow along the orbit

γ, see Fig. 4.6. In order to count how many partner orbits exist with a given set

of action differences {Sj} one has to determine the flux of intersection points δ~y

through the surface of the hypercuboid V. According to Eq. (5.4) the k-th part of

the total surface of the hypercuboid is defined by the set of points

∂V±k = {si, ui : |si| < cs
i ; uk = ±cu

k ; |ui6=k| < cu
i } and ∂V =

f−1
⋃

k=1

(∂V+k ∪ ∂V−k) .

(5.9)

This defines a 2f − 3 dimensional hypersurface ∂V in the 2f − 2 dimensional

Poincaré surface of section. If the Poincaré surface of section is moved along x
γ
t

with 0 < t < Tγ each intersection point of γi with this Poincaré surface of section

is counted exactly once if one measures the flux through the hypersurface ∂V at the
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end of the ’encounter region’, see Fig. 5.1(a). This can be expressed as

df−1Nγ({Sj})
dS1 . . . dSf−1

= 2

Tγ
∫

0

dt

f−1
∑

k=1

{cs,u
i }

∫

{−cs,u
i }

df−1si df−1ui δ(uk − cu
k) ̺({si, ui};xγ

t ) ×

u̇k({si, ui};xγ
t )

(

f−1
∏

j=1

δ(Sclsjuj − Sj)

)

. (5.10)

Here, the integration
∫

dukδ(uk − cu
k) is just inserted for formal reasons to fix the

kth component uk as to integrate only over the kth part ∂V+k of the hypersurface

enclosing the ’encounter region’. The limits of the integrations over {si, ui} are

given by the corresponding constants {cs
i , c

u
i } according to Eq. (5.9). The velocity

of the flow perpendicular to the kth hypersurface is just given by Eq. (2.18), i.e.

u̇k({si, ui};xγ
t ) = χk(x

γ
t ) uk, and thus depends on uk and on the position x

γ
t in

phase space via the local growth rate χk(x) only. The density ̺({si, ui};xγ
t ) entering

Eq. (5.10) is the density of valid intersection points within the Poincaré surface

of section, each corresponding to a partner orbit. The flux of intersection points

δ~y(xγ
t1 , tloop) through the surface ∂Vk of the hypercuboid V is therefore given by

̺({si, ui};xγ
t ) u̇k({si, ui};xγ

t ). In Eq. (5.10) only the uk = +cu
k hypersurface ∂V+k is

considered while the uk = −cu
k hypersurface ∂V−k is accounted for by a factor of two.

The multiple product of δ-functions restricts the actions to the values {Sj}. The

expression (5.10) can be understood as a surface integral over ∂V and it reproduces

Eq. (4.26) in the case f = 2 where ∂V is just a line, see Fig. 5.1(a).

Before explicitly calculating the density of partners per action difference we first

given an alternative version of Eq. (5.10). Using the fact that the number of points

in phase space is conserved we transform the integrals over the hypersurface ∂V
in Eq. (5.10) into an integration over the entire volume of the hypercuboid V, see

Fig. 5.1(a). This transformation actually links the approach outlined in Section 4.4

to the method used in [HMBH03]. The density of partners (5.10) with respect to

the action differences {Sj} can thus be rewritten as

df−1Nγ({Sj})
dS1 . . . dSf−1

=

Tγ
∫

0

dt

{cs,u
i }

∫

{−cs,u
i }

df−1si d
f−1ui

̺({si, ui};xγ
t )

ten({si, ui};xγ
t )

(

f−1
∏

j=1

δ(Sclsjuj − Sj)

)

.

(5.11)

Here, every intersection point is counted as long as it remains within the hypercuboid

defined by the ’encounter region’. Therefore, one has to include the additional factor

of 1/ten which per definition (5.3) and (5.5) is the time each single intersection point

spends within the ’encounter region’. Since all the intersection points that are in the

’encounter region’ leave this region through the hypersurface ∂V used in Eq. (5.10)

the volume integral in Eq. (5.11) does indeed give the number of intersection points
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for given {Sj}. In contrast to Eq. (5.10) the second expression (5.11) is a volume

integral over the total hypercuboid V.

We prove the equality between (5.10) and (5.11) in more detail in Appendix A.

The reason for introducing the two different expressions (5.10) and (5.11) is mainly

a technical one. We apply either (5.10) or (5.11) depending on which one can be

calculated easier. It turns out that this allows for a great simplification of the

derivations to follow.

For the further evaluation of Eqs. (5.10) and (5.11) we first calculate the ergodic

result for the density ̺({si, ui};x) of intersection points in the Poincaré surface

of section which represent the partner orbits. This density is defined for any point

x = x0 in phase space as

̺({si, ui};x) =

Tγ−2∆ts
∫

2∆tu

dtloop

f−1
∏

i=1

δ
(

[x − T xtloop
]u,i − ui

)

δ
(

[x − T xtloop
]s,i − si

)

×

δ
(

[x − T xtloop
]‖

)

(5.12)

where the limits of the time integration are chosen such that the short loop lengths

are excluded as they either do not occur at all or do not give partner orbits. As in

the corresponding expression (4.27) the indices s, u in [x]s,u denote the stable and

unstable component of the perpendicular coordinates of x, respectively.

To proceed we determine the weighted average over periodic orbits (2.41) of

the number of partners (5.10) or (5.11) by applying the sum rule (2.42). This is

the quantity which enters the spectral form factor (5.8). We find that the ergodic

approximation to the density of intersection points (5.12) is determined by a leading

contribution and a small correction. This ergodic approximation is justified for the

following reasons. First, only small arguments |si|, |ui| ∼
√

~/Scl ≪ 1 play a role

in the semiclassical calculation of the form factor. Therefore, the cutoff-times ∆tu,s,

Eq. (5.3), are large so that classical correlations between xt and T xt+tloop
can be

neglected since 2∆tu ≤ tloop ≤ T − 2∆ts. This means that the leading contribution

to the density is uniform and can be expressed as Sf−1
cl /Ω(E) times the length of

the trajectory if long paths with T ∼ TH → ∞ are considered. The factor Sf−1
cl

comes from a coordinate transformation ({si, ui}) → (δq⊥, δp⊥) in Eq. (5.12). As

certain parts of the path are excluded in Eq. (5.12) the effective length entering the

density yields a factor T − 2ten. Hence, in the semiclassical limit ̺({si, ui};x0) can

be approximated by

̺({si, ui};x) = ̺lead + ̺corr({si, ui};x) ≃ Sf−1
cl

(

T

Ω(E)
− 2ten({si, ui};x)

Ω(E)

)

. (5.13)

Except for the different prefactor Sf−1
cl this result has the same structure as the one

obtained for f = 2, see Eq. (4.29).
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If only the leading term of the density (5.13) is considered in the form factor (5.8)

one finds that the result vanishes. This can be seen as follows. First we calculate

the density of partners averaged over periodic orbits. In principle, one could either

evaluate expression (5.10) or expression (5.11). However, as the leading term ̺lead

does neither depend on the coordinates x nor on {si, ui} its contribution to the

density of partners can be most easily calculated by means of (5.10). It yields

〈

df−1N lead
γ ({Sj})

dS1 . . . dSf−1

〉

γ,τTH

≃ 2f−1 τ 2 TH

Ω(E)

f−1
∑

k=1

λkTH

f−1
∏

j 6=k

ln
Sclc

s
jc

u
j

|Sj|
. (5.14)

Here we used the fact that the time average of the local growth rate along an

ergodic path can be obtained by the phase-space average 〈χk(x)〉x = λk. Setting

f = 2 in Eq. (5.14) immediately reproduces the result (4.32) obtained in Section 4.4.

If Eq. (5.14) is inserted in the form factor (5.8) one obtains K(2,lead)(τ) = 0 in

the same manner as in Eq. (4.34). Therefore, one indeed has to include the small

correction ̺corr given in Eq. (5.13) when evaluating the density of partners per action

differences.

As we have shown, the leading term ̺lead does not contribute to the spectral form

factor. Hence, we can restrict the following calculations to the contribution of ̺corr.

However, it turns out that in this case it is technically favorable to use expression

(5.11) instead of Eq. (5.10) for the density of partners. The reason is that the time

ten({si, ui};x) depends in a subtle way on combinations of the {si, ui} . This fact is

a major difficulty when dealing with higher-dimensional systems (f > 2). Inserting

̺corr from Eq. (5.13) in Eq. (5.11) one finds

〈

df−1N corr
γ ({Sj})

dS1 . . . dSf−1

〉

γ,τTH

≃ − 2f τTH

Ω(E)

f−1
∏

j=1

ln
Sclc

s
jc

u
j

|Sj|
(5.15)

since the two appearances of ten in Eqs. (5.11) and (5.13) mutually cancel. Again

one can immediately check that the special case f = 2 as given in Eq. (4.33) is

correctly reproduced.

The result (5.14) together with Eq. (5.15) gives the correct asymptotic form for

the averaged density of partners, Eq. (5.10) or Eq. (5.11), in the semiclassical limit

~ → 0 where the relevant {Sj} are small. In comparison to the leading part (5.14)

the second contribution (5.15) is of the order of ~
f−1 ln ~ ≪ 1. Although only the

sum of Eq. (5.14) and (5.15) enters in the calculation of the form factor (5.8) the

smaller correction (5.15) must not be neglected. The reason for it lies in the fact

that the ergodic part (5.14) gives a vanishing contribution to the form factor (5.8)

because of the energy average. Therefore only the contribution Eq. (5.15) determines
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the final result. It can be obtained by inserting Eq. (5.15) into (5.8) and yields

K(2)(τ) = −2τ 2

〈

TH

Ω(E)

f−1
∏

j=1











−2

S
(j)
max(E)
∫

−S
(j)
max(E)

dSj exp

(

i
Sj

~

)

ln
|Sj|

Sclcs
jc

u
j











〉

∆E

≃ −2τ 2 .

(5.16)

Hence we find for f > 2 the same contribution coming from the off-diagonal terms

in the double sum over periodic orbits in Eq. (2.38) as for systems with two degrees

of freedom.

In this section we have shown how to extend the approach presented in Chapter 4

to hyperbolic systems with an arbitrary number of degrees of freedom. We proved

that the semiclassical evaluation of K (2)(τ) gives the universal random-matrix theory

result. Especially we demonstrated that no information about the set of Lyapunov

exponents {λi} or the constants {cs
i , c

u
i } defining the ’encounter region’ enters the

final result.

5.2 GOE – GUE transition

In this section we study the change in the energy level statistics if a small magnetic

field B is applied so that the time-reversal symmetry is broken [TR03]. As we only

want to outline the major mechanism we restrict the following considerations to

the two-dimensional uniformly hyperbolic system. The intuitively most transparent

derivation can be given within the framework of the configuration space approach

summarized in Section 2.5. Let us furthermore assume that the applied magnetic

field is weak, constant and perpendicular to the system. In this context, ’weak’ has

to be understood in a sense that the classical geometry of the orbits is only very

slightly changed while the acquired additional phases due to the magnetic flux can

be large compared to ~. Therefore we only consider the effect of the magnetic field

with respect to a change in the exponential occurring in the spectral form factor

(2.38) while the remaining pre-factors are treated as being unaffected by the B-field.

This again is in the spirit of a stationary phase approximation.

In the following paragraphs, we show that the semiclassical form factor can be

written in the same manner as the result (2.30) of the parametric random-matrix

theory. This allows for a physical interpretation of the transition parameter λtrans in

Eq. (2.30). The crossover between the universality classes as time-reversal symme-

try is broken has been originally semiclassically obtained in [BGdAS95] within the

diagonal approximation. Before we present a dynamical evaluation of this transi-

tion for the first off-diagonal correction we briefly summarize the necessary steps for

the diagonal approximation. In this case only the orbit pairs (γ, γ) and (γ, γ i) are

included into the double sum over periodic orbits (2.38). The applied magnetic field

induces no additional action difference for the pair (γ, γ) as these two orbits encircle
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Figure 5.2: Schematic drawing of a periodic orbit in configuration space that

encloses three areas which are traversed with different orientations with respect to

the direction of the magnetic field B. Therefore, the total effective area is given by

Aγ = A1 −A2 + A3.

the same area with the same orientation. However, for the other pair (γ, γ i) an ad-

ditional action difference Sγ,γi arises. Denoting the sum of oriented areas enclosed

by γ as Aγ, see Fig. 5.2, the action difference is given by

Sγ,γi

~
=

S(Aγ,B)

~
=

2πAγ B

ϕ0

(5.17)

with the flux quantum ϕ0 = 2π~/(2e). Hence, the diagonal approximation to the

spectral form factor reads

K(1)(τ) = τ

〈

1 + exp

[

i
Sγ,γi

~

]〉

γ,τTH

, (5.18)

where the first term in the sum corresponds to the pairs (γ, γ) and the second term

to the pairs (γ, γi). The average over periodic orbits is calculated using the sum rule

by replacing
∑

γ →
∫

dTγ exp[λTγ ]/Tγ and |wγ|2 → T 2
γ exp[−λTγ ]. As the action

difference Sγ,γi , see Eq. (5.17), is proportional to the sum A of enclosed oriented

areas the spectral form factor (5.18) depends on the distribution PA(A, T ) of these

areas among all orbits of a given length T = τTH . This distribution PA(A, T ) is

approximately Gaussian [Ric00] and can thus be written as

PA(A, T ) = (2πβT )−1/2 exp

[

− A2

2βT

]

(5.19)

with β being a system specific parameter.

In terms of this area distribution the relation (5.18) for the diagonal approxima-

tion can be reexpressed as

K(1)(τ) = τ



1 +
1

τTH

τTH
∫

0

dTγ Tγ δ(τTH − Tγ)

∞
∫

−∞

dAPA(A, Tγ) exp

[

2πi
AB

ϕ0

]





(5.20)

where we have included an additional integration over the oriented area A. Evalu-

ating this integral then directly leads to the result

K(1)(τ) = τ

(

1 + exp

[

−τTH

tB

])

(5.21)
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S(    )AR
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Figure 5.3: The four different loop configurations that correspond to a single

crossing are sketched. The orbit γ and its partner γp are represented by the solid and

dashed line, respectively. The relative sign of the action difference S(ε) is indicated

for each configuration. As γ and γp traverse either loop R or loop L in opposite

direction there is an additional phase determined by the enclosed areas S(AR) or

S(AL).

where tB ≡ ϕ2
0/(2π

2B2β).

As a next step we apply the same procedure to the off-diagonal correction terms

studied throughout this thesis. In the configuration space approach, see Section 2.5,

these terms are associated with self-crossings that have a small crossing angle ε ≪ 1.

Therefore, the statistics of partner orbits γp is given by the statistics P (ε, T ) of

crossing angles, see Eq. (2.55) and Eq. (3.1). The action difference due to the

different geometries of γ and γp can also be related to the crossing angle ε, see

Eq. (2.53). Additionally, we have to include the B-field induced action difference

S(A(L,R),B) = 2πA(L,R)B/ϕ0 depending on which loop is traversed in what direc-

tion. The four possible cases are shown in Fig. 5.3. The off-diagonal contributions

to the spectral form factor can then be written similarly to Eq. (2.54) as

K(2)(τ) =
2|p|2

π m2A
τ ℜ

π
∫

0

dε sin ε exp

[

i
S(ε)

~

]

T−Tmin(ε)
∫

Tmin(ε)

dtloop (T − tloop) ×





∞
∫

−∞

dAR PA (AR, tloop − Tmin(ε)) exp

[

i
S(AR)

~

]

+

∞
∫

−∞

dAL PA (AL, T − tloop − Tmin(ε)) exp

[

i
S(AL)

~

]





(5.22)

where expression (3.1) for the crossing angle distribution P (ε, T ) has already been

inserted and the sum rule (2.42) was applied. The minimal loop time is given by

Eq. (3.2) as Tmin(ε) = −2λ−1 ln(cε). The crossing angles ε categorize the partner

orbits. The number of partners with given ε is then written as an integral over all
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possible loop times tloop. This integral starts at the minimal loop time Tmin(ε) and

extends to T − Tmin(ε). For a given loop time tloop one has also to integrate over

the area distribution PA. Since the two orbits γ and γp follow each other closely

within the ’encounter region’ that surrounds the crossing the magnetic flux does

not cause an action difference until they leave this region. Hence, the loop times

entering the area distribution PA in Eq. (5.22) are reduced by Tmin(ε). The integral

over AR thus yields the contribution of the upper left configuration in Fig. 5.3 while

the integral over AL corresponds to the upper right configuration in the same figure.

The geometries shown in the second row of Fig. 5.3 are accounted for by taking twice

the real part in Eq. (5.22). A straightforward evaluation of the integrals then gives

the result for K(2)(τ) which can be combined with result (5.21) for the diagonal

approximation to give the semiclassical spectral form factor

K(τ) ≈ τ

(

1 + (1 − 2τ) exp

[

−τTH

tB

])

for τ ≪ 1 . (5.23)

This result coincides with the form factor of the parametric random-matrix theory

(2.30) in the short time limit. The transition parameter λtrans can now be easily iden-

tified by comparing Eq. (2.30) with Eq. (5.23). It is given by λ2
trans = 4βTHB2/ϕ2

0.

Thus we find that the semiclassical treatment based on the inclusion of off-diagonal

orbit pairs also shows the expected random-matrix theory behavior if time-reversal

symmetry is broken, for example, by a magnetic field.

5.3 Matrix element fluctuations

As a further extension of the theory developed by Sieber and Richter we study the

generalized form factor (2.27) with operators â, b̂ 6= 1̂ for a system with strict time-

reversal symmetry [TSMR04]. In this case, the additional quantities Aγ and Bγ as

defined in Eq. (2.36) appear in the semiclassical expression (2.38) for Kab(τ). In par-

ticular, we focus on the case where the phase-space average of the Wigner functions

a(x) and b(x) vanishes. To this end we first present a quantum mechanically exact

relation between Kab(τ) and K11(τ). Then we review the semiclassical evaluation

of Kab(τ) within the diagonal approximation for vanishing 〈a(x)〉x = 〈b(x)〉x = 0

and extend it to momentum dependent Wigner functions. Finally we calculate the

contribution of the orbit pairs (γ, γp) and thus go beyond the diagonal approxima-

tion.

The generalized form factor is directly related to the spectral form factor which

can be concluded from the definitions (2.23), (2.26) and (2.27). Consider an operator
ˆ̃a that is obtained by shifting the original operator â by the mean value 〈a(x)〉x, i.e.
ˆ̃a = â − 〈a(x)〉x1̂, and similarly for b̂. This implies that the phase-space averages

of the Wigner functions of ˆ̃a and ˆ̃b are vanishing. In terms of these new operators
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one then finds

Kab(τ) − 〈a(x)〉x 〈b(x)〉x K(τ) = 〈a(x)〉x K1b̃(τ) + 〈b(x)〉x Kã1(τ) + Kãb̃(τ) (5.24)

with K(τ) = K11(τ). This relation is quantum mechanically exact. The diagonal

approximation (2.43) already suggests that the three terms on the right hand side

of Eq. (5.24) must vanish to leading order in ~ in the semiclassical limit. Indeed,

the application of Shnirelman’s theorem (2.44) yields

Kab(τ) ≈ 〈a(x)〉x 〈b(x)〉x K(τ) + O(~) . (5.25)

This result relies on the fact that the set of eigenstates where Shnirelman’s theorem

is not applicable is of measure zero in the semiclassical limit. Relation (5.24) implies

that the leading term vanishes for 〈a(x)〉x = 0 or 〈b(x)〉x = 0. As we will show in this

section, the correction is of the order of 1/TH ∼ ~
f−1 in this case and involves the

classical correlation function Cab(t), see Eq. (2.46). The evaluation of this correction

corresponds to the determination of Kãb̃(τ) in Eq. (5.24).

The semiclassical evaluation of Eq. (2.38) based on the diagonal approximation

was already discussed in [EM95, EFK+95, Eck97, EFV00]. However, the results

given there were restricted to operators â and b̂ with associated Wigner functions

that are independent of the momentum p. Here we review the derivation and include

the case of p-dependent operators as well. The contribution of the orbit pairs (γ, γ)

and (γ, γi) in Eq. (2.38) is given by Eq. (2.40) and can be rewritten as

K
(1)
ab (τ) =

2

TH

〈

1

Tγ

Tγ
∫

0

dt

Tγ
∫

0

dt′ a(xγ
t ) bs(x

γ
t+t′)

〉

γ,τTH

(5.26)

where bs(x) is the symmetrized Wigner function defined by

bs(x) ≡ b(x) + b(T x)

2
. (5.27)

The application of the sum rule (2.42) together with 〈bs(x)〉x = 〈b(x)〉x gives the

result (2.43) in accordance with Eq. (5.25) derived on the basis of Shnirelman’s

theorem. This can be seen most easily by rewriting Eq. (5.26) in terms of the clas-

sical correlation function (2.46) between a(x0) and b(xt). As the systems under

consideration are strongly chaotic all classical correlation functions decay exponen-

tially fast in the long-time limit [Gas98]. Hence, only the leading term proportional

to 〈a(x)〉x〈b(x)〉x remains in the semiclassical limit while the contribution due to

the classical correlations is of lower order, i.e. ∼ 1/TH .

Let us now consider the case where the operators â and b̂ are chosen such that

〈a(x)〉x = 〈b(x)〉x = 0 meaning ˆ̃a = â and ˆ̃b = b̂. In this case the leading semiclassical

approximation vanishes and one has to study the next order corrections which are
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now given by the third term on the right hand side in Eq. (5.24). To leading

semiclassical order Eq. (5.26) can be written in terms of the classical correlation

function Cs
ãb̃

(t) ≡ Cã b̃s
(t) since 〈a(x)〉x〈b(x)〉x = 0:

K
(1)

ãb̃
(τ) ≃ 2

TH

τTH
∫

0

dt Cs
ãb̃

(t) ≃ 2

TH

∞
∫

0

dt Cs
ãb̃

(t) . (5.28)

Due to the chaoticity of the system the classical correlation function Cs
ãb̃

(t) is rapidly,

i.e. exponentially, decaying so that the integral in Eq. (5.28) can be extended to

infinity. The result (5.28) is of order 1/TH . It is worth to note that Eq. (5.28)

is completely symmetric with respect to the appearance of the operators â and b̂

because Ca bs(t) = Casb(t) = Cs
ab(t). If a(x) and b(x) are functions of the position q

only then Eq. (5.28) coincides with the result presented in [EM95, EFK+95]. This

can be seen by noting that bs(q) = b(q) and thus Cs
ab(t) = Cab(t). Furthermore,

our derivation does not rely on the fact that the quantities Aγ and Bγ defined in

Eq. (2.36) follow a Gaussian distribution, as assumed in [EM95, EFK+95].

Since the main purpose of this section is to study the contribution of the off-

diagonal orbit pairs to the form factor we now consider an extension of the theory

for K
(2)
11 (τ) developed in Chapter 4 and in Section 5.1 to K

(2)
ab (τ). The starting point

is an expression similar to Eq. (5.8). When including the additional quantities Aγ

for the orbit γ and Bγp for the partner orbit γp one can make use of the relation

Bγp + Bγp,i ≃ Bγ + Bγi =
2

Tγ

Tγ
∫

0

dt bs(x
γ
t ) . (5.29)

The validity of Eq. (5.29) can be seen by using relation (4.19) and noting that

together with γp also its time-reversed version γp,i is a partner orbit of γ. The

difference between the two partner orbits γp and γp,i is only that the role of the two

parts L and R is interchanged. Therefore, the two partner orbits γp and γp,i together

pass almost exactly the same phase space points as the two original orbits γ and γ i

do. This property of the partner orbits leads to relation (5.29) which considerably

simplifies the forthcoming calculations. Applying Eq. (5.29) to Eq. (2.38) one finds

the generalization of Eq. (5.8) in the form

K
(2)
ab (τ) = τ

〈 S
(j)
max(E)
∫

−S
(j)
max(E)

dS1 . . . dSf−1 exp

(

i

f−1
∑

j=1

Sj

~

)

× (5.30)

〈

1

Tγ

df−1Nγ({Sj})
dS1 . . . dSf−1

Tγ
∫

0

dt′a(xγ
t′)

1

Tγ

Tγ
∫

0

dt′′ bs(x
γ
t′+t′′)

〉

γ,τTH

〉

∆E

.
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In analogy to the calculation presented in Section 5.1 we use Eq. (5.10) for the

number of partners and shift the integration variable t′ to t′ + t which is possible

since the orbits γ are periodic. Then we apply the sum rule (2.42) to evaluate the

leading contribution due to ̺lead, see Eq. (5.13), in Eq. (5.30) which yields

〈

1

Tγ

df−1N lead
γ ({Sj})

dS1 . . . dSf−1

Tγ
∫

0

dt′a(xγ
t′)

1

Tγ

Tγ
∫

0

dt′′ bs(x
γ
t′+t′′)

〉

γ,τTH

≃ (5.31)

2f−1

Ω(E)

f−1
∑

k=1

〈

χk(x)

τTH
∫

0

dt a(xt)

τTH
∫

0

dt′ bs(xt+t′)

〉

x

f−1
∏

j 6=k

ln
Scls

c
ju

c
j

|Sj|
.

This result reproduces Eq. (5.14) for a(x) = bs(x) = 1. For observables with a(x) 6=
0 and b(x) 6= 0 the leading term for TH → ∞ is given by replacing

〈χk(x)a(xt)bs(xt+t′)〉x → λk 〈a(x)〉
x
〈b(x)〉

x

which is justified because of the rapid decay of all classical correlation functions

in chaotic systems [Gas98]. Hence Eq. (5.31) inserted in Eq. (5.30) just gives

K
(2,lead)
ab (τ) = 0 as it was for â = b̂ = 1, see Section 5.1.

In analogy to the procedure for the diagonal approximation we again study the

case of vanishing mean values 〈ã(x)〉x = 〈b̃(x)〉x = 0. In this case the leading term

∼ λk〈ã(x)〉x〈b̃(x)〉x gives a vanishing contribution and the next order correction is

obtained by substituting

〈

χk(x)

T
∫

0

dt′ ã(xt)b̃s(xt+t′)

〉

x

→ λk

T
∫

0

dt′ Cs
ãb̃

(t′)

in result (5.31). Thus, also in this case we again find K
(2,lead)

ãb̃
(τ) = 0 if Eq. (5.31) is

inserted in Eq. (5.30).

As the contribution of ̺lead to K
(2)
ab (τ) vanishes we now derive the corresponding

results for the small correction ̺corr given by Eq. (5.13). Following the lines in

Section 5.1 we first evaluate the periodic orbit average 〈. . . 〉γ,τTH
in Eq. (5.30) by

using Eq. (5.11). Since the encounter time ten occurring in the density (5.13) exactly

cancels with that in Eq. (5.11) we find

〈

1

Tγ

df−1N corr
γ ({Sj})

dS1 . . . dSf−1

Tγ
∫

0

dt′a(xγ
t′)

1

Tγ

Tγ
∫

0

dt′′ bs(x
γ
t′+t′′)

〉

γ,τTH

≃ (5.32)

− 2f

Ω(E)

1

τTH

τTH
∫

0

dt 〈a(x) bs(xt)〉x
f−1
∏

j

ln
Scls

c
ju

c
j

|Sj|
.
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Again we distinguish the two cases where the phase space averages of a(x) and

b(x) are either non-vanishing or vanishing. In the first case the leading order term

is given by substituting

〈a(x) bs(xt)〉x → 〈a(x)〉
x
〈bs(x)〉

x
= 〈a(x)〉

x
〈b(x)〉

x

in Eq. (5.32) because the correction T−1
∫ T

0
dt Cs

ab(t) due to classical correlations

is of order ∼ 1/TH for rapidly decaying Cs
ab(t). Therefore, the first off-diagonal

contribution to the form factor is then given by

K
(2)
ab (τ) ≃ −2 〈a(x)〉

x
〈b(x)〉

x
τ 2

in accordance with the result (5.25) obtained by applying Shnirelman’s theorem.

On the other hand, in the case of vanishing mean values 〈ã(x)〉x = 〈b̃(x)〉x = 0 the

leading contribution is determined by the classical correlation function Cs
ab(t) via the

substitution
〈

ã(x) b̃s(xt)
〉

x

→ Cs
ãb̃

(t)

in Eq. (5.32). Hence, inserting Eq. (5.32) in the expression (5.30) yields the following

result for the form factor

K
(2)

ãb̃
(τ) ≃ −2τ

1

TH

∞
∫

0

dt Cs
ãb̃

(t) . (5.33)

Together with the diagonal approximation (5.28) we thus find

Kãb̃(τ) ≃
(

K(τ) + O(τ 3)
) 1

τTH

∞
∫

0

dt Cs
ãb̃

(t) for τ ≪ 1 (5.34)

in the semiclassical limit TH ∼ ~
1−f → ∞. This is the central result of this section.

It provides an extension of the earlier results in [EM95, EFK+95, Eck97, EFV00] in

a compact form. In particular it includes the case of two different operators â and b̂

whose Wigner functions can be momentum-dependent. It goes beyond the diagonal

approximation and does not rely on the assumption of Gaussian fluctuations for the

quantities Aγ and Bγ which enter the semiclassical expression of the form factor. If

the result (5.34) could be shown to be correct for any value of τ , the variance of the

diagonal matrix elements ânn could be uniquely related to the classical correlation

function Caa(t) as described in Section 2.4. Our approach is a first step into this

direction. It shows that the constant off-set (5.28) due to the diagonal approximation

and the first correction due to off-diagonal orbit pairs depend in exactly the same

way on the classical correlation function Cab(t).

Repeating the same calculation as presented above for the other two contribu-

tions K1b̃(τ) and Kã1(τ) one finds that the leading terms in ~ vanish. This is in

accordance with (5.24) and Shnirelman’s theorem. However, our method cannot

be applied to determine the first non-vanishing corrections in these cases as they

also depend on the higher-order corrections to the sum rule (2.42).
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CHAPTER 6

Conclusions and outlook

6.1 Conclusions

In this thesis we have studied the statistical properties of the energy spectra of closed

quantum systems with a chaotic classical counterpart. Following a conjecture by

Bohigas, Giannoni and Schmit (BGS) the spectral statistics of chaotic systems

is universal and can be described by the random-matrix theory predictions. This

is similar to the situation when disordered systems are considered. The major

difference between chaotic and disordered systems is that in the first case the classical

motion is deterministic while it is a random walk in the second case. Although a

great variety of experiments and numerical simulations supports the BGS-conjecture

a formal proof is still lacking. Recently, a significant step towards such a proof was

proposed by Sieber and Richter who analyzed a spectral two-point correlation

function using semiclassical techniques. In particular they considered the spectral

form factor K(τ) expressed by means of Gutzwiller’s trace formula and showed

how correlations in the actions of classical periodic orbits determine the next-to-

leading order of K(τ). The central idea in their approach was to identify orbit pairs

with a small action difference and to develop a statistical method for counting these

pairs. The derivation was restricted to a very specific kind of system, namely the

two-dimensional uniformly hyperbolic system. Furthermore, it was formulated in

the framework of the configuration space. In this configuration-space approach each

orbit pair is then associated to a crossing with small crossing angle. Hence, the

number of orbit pairs is directly determined by the distribution of self-crossings.

This approach together with the necessary methods concerning chaotic systems and
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semiclassical approximations is briefly summarized in Chapter 2.

The purpose of this thesis is to present extensions and generalizations of the con-

figuration-space approach by Sieber and Richter into various directions. First of

all, we investigated the crossing angle distribution for a non-uniformly hyperbolic

billiard system. Our numerical analysis is based on the family of Limaçon billiards

which includes the cardioid as a limiting case. Our results in Chapter 3 show that the

qualitative form of the crossing angle distribution is the same as for the uniformly

hyperbolic system. However, this is only the case if a very specific type of crossings

(namely those corresponding to almost self-retracing loops with short loop lengths)

is excluded. Furthermore we found that in a focusing billiard like the cardioid the

crossings with small crossing angles always occur in families.

We then proceeded by developing a canonically invariant phase-space approach

for non-uniformly hyperbolic two-dimensional systems which is presented in Chap-

ter 4. In particular we showed that crossings in configuration space are not necessar-

ily the relevant objects for the identification of correlated orbit pairs in the general

case. Instead, we proposed the concept of ’encounter regions’ that are defined as

those parts in phase space where a periodic orbit comes close to its time-reversed

version. Due to the deterministic dynamics of the system these ’encounter regions’

are non-local objects in phase space with a finite length. This is in contrast to the

approach based on the crossings as these are local in phase space. An important

consequence is that an ’encounter region’ may contain many crossings but never-

theless only one partner orbit is associated to the entire region. The crossing angle

being the small parameter in the configuration space approach has to be replaced

by a displacement vector in phase space. In terms of this displacement vector which

points from the orbit to its time-reversed version we determine the geometry and

the action of the partner orbit. This leads to the result that correlations in the

classical actions in hyperbolic chaotic systems are caused by ’encounter regions’

in phase space where an orbit and its time-reversed version come close together.

These results are the foundations for an extension of the theory to non-uniformly

hyperbolic systems. We presented arguments showing that the Maslov indices

that occur in these systems are equal for the periodic orbit and its partner. As a

last step we developed a phase-space method to determine the number of partner

orbits which effectively replaces the crossing angle distribution in the derivation of

the form factor. All these results were then combined in order to determine the

next-to-leading order contribution for the spectral form factor of a two-dimensional

non-uniformly hyperbolic system. As a final result, we proved that also for these

systems the next-to-leading order correction for the spectral form factor is universal

and coincides with random-matrix theory.

The character of the different time scales involved in chaotic systems becomes

clear in our derivation. The length of the involved orbits is on the order of the

Heisenberg time TH . The dynamics of the systems introduces another important
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time on the scale of the Ehrenfest time TE. This time enters via the lengths of

the ’encounter regions’ ten that are of the order of TE. While the Heisenberg time

is proportional to some power of the parameter Scl/~ the Ehrenfest time depends

logarithmically on it. Hence, the semiclassical limit ~ → 0 implies that these two

time scales are much bigger than the time scales fixed by the classical system like

the inverse Lyapunov exponent λ−1 or the mean free flight time. The hierarchy of

time scales in the semiclassical limit is thus given by λTH ≫ λTE ≫ 1. However, it

turns out that times of the scale TE play a crucial role in our derivation although

they are much smaller than the lengths of the periodic orbits which is ∼ TH . In fact,

neglecting the finite size of the ’encounter region’ leads to a vanishing contribution

of the correlated orbit pairs to the form factor. This means that the deterministic

character of the dynamics is reflected in a subtle way in the spectral statistics.

The extension of the configuration-space approach to the phase-space approach

is essential if the theory is to be applied to systems with more than two degrees

of freedom. In this case the occurrence of real crossings in configuration space is

extremely unlikely. Such a generalization to higher-dimensional systems based on

the phase space formulation is presented in Section 5.1. The most important result

concerns the statistics of partner orbits as it is much more involved if the system has

more than two degrees of freedom. By combining two different techniques — one

associated with a volume integration while the other is based on a surface integral —

we showed that the final result is once more given by the universal random-matrix

theory prediction. In particular, we proved that all further time scales defined by

the different Lyapunov exponents do not affect this result.

In order to provide another test for the method based on correlated orbit pairs

we have investigated the effect of a weak magnetic field applied to the system. In the

language of the random-matrix theory this mimics the transition from the Gaussian

orthogonal ensemble (GOE) valid for systems with time-reversal symmetry to the

Gaussian unitary ensemble (GUE) applicable to systems that lack this symmetry.

In Section 5.2 we derived the contribution of the off-diagonal orbit pairs to the

spectral form factor of a two-dimensional uniformly hyperbolic system. Our result

provides a physical interpretation of the transition parameter introduced in the

random-matrix theory. This transition parameter turned out to be proportional to

the magnetic field and, furthermore, contains a system specific constant.

Finally we presented an application of our method to the fluctuations of quan-

tum mechanical matrix elements. These fluctuations can be described by a classical

correlation function. The way in which this classical correlation function enters the

generalized form factor turns out to be exactly the same for the diagonal approxi-

mation and the contributions of the first off-diagonal orbit pairs. We showed that

these classical correlations give rise to a contribution that is proportional to the

inverse Heisenberg time in either case.
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6.2 Open questions and outlook

The most obvious open question is of course whether the approach based on orbit

pairs with correlated actions can be developed further so that also higher-order cor-

rections of K(τ) beyond the first off-diagonal contribution ∼ τ 2 can be calculated.

In the intuitive picture of the configuration space approach that would mean to

identify orbit pairs on the basis of not just one but multiple self-crossings. Several

attempts into this direction were performed in the last few months, e.g. the calcu-

lation of the third order terms ∼ τ 3 for quantum graphs [BSW02a, Ber03] and, very

recently, for chaotic Hamiltonian systems [MHB+04]. These results indicate that

a proof of the conjecture by Bohigas, Giannoni and Schmit might be indeed

found by means of semiclassical techniques. However, it is clear that a derivation

of the spectral form factor K(τ) based on a series expansion in τ provides only one

part of the entire picture because this expansion converges only for 0 ≤ τ ≤ 1/2.

Therefore, it is also necessary to develop a theory that describes the large τ behavior

of the spectral form factor.

Besides these more fundamental questions there is a wide field for the application

of the semiclassical methods described in this thesis. The basic idea is the following.

The spectral form factor is a product of two densities of states which in turn are given

by traces over single particle Green’s functions. In principle, it should be possible

to transfer the techniques based on periodic orbits (which are associated with the

spectral properties of closed systems in the semiclassical limit) to non-periodic orbits

that determine various physical properties of open systems. Basically, the procedure

of evaluating semiclassical expressions containing double sums over periodic orbits

should be extensible to the evaluation of double or multiple sums over open paths.

These double or multiple sums over open paths occur if the semiclassical expressions

for products of Green’s functions are considered. Therefore, one might be able

to solve various open questions concerning the electronic transport through open

ballistic systems for example on the basis of Landauer’s theory which relates the

conductance of a system to the scattering matrix. As many transport problems

like shot noise or universal conductance fluctuations can be formulated in terms of

products of single particle Green’s functions a semiclassical treatment going beyond

the diagonal approximation seems now in reach. A similar method might also be

applicable to the semiclassical evaluation of linear response functions. First steps

into this direction were performed in [RS02] where the weak localization corrections

are studied and in [Las03, SPG03] where an analysis of relevant pairs of open paths

to the problem of shot noise is given. Therefore, further research into this direction

seems promising to overcome the limitations of the semiclassical methods to the

diagonal approximation.



APPENDIX A

Conversion between volume and

surface integral

In this appendix we prove the equality of the two different approaches for counting

the partner orbits that we used in Section 5.1. In particular we show that Eq. (5.10)

and Eq. (5.11) are equal. The general structure of this equality is of the type

T
∫

0

dt

∫

V

d2f−2z
̺(~z, t)

tV(~z, t)
=

T
∫

0

dt

∫

∂Vout

d ~A ̺(~z, t)~v(~z, t) . (A.1)

Here, ~z is a vector in a 2f − 2 dimensional space. It abbreviates the coordinates

({si, ui}) used in Section 5.1. The surface of any volume V in the vector space is

denoted by ∂V. In relation (A.1), ∂Vout stands for that part of the total surface

through which the flow leaves V in the long-time limit. More precisely speaking, the

total flux between time 0 and T through any piece of ∂Vout must be positive. Further,

we assume periodicity so that ̺(~z, t) = ̺(~z, t + T ) and ~v(~z, t) = ~v(~z, t + T ) with

̺(~z, t) being a density field made up of single points and ~v(~z, t) being a velocity field.

As the relation (A.1) is applied to the motion of points in phase space the current

is conserved meaning that the total number of points is constant, i.e. ˙̺(~zt, t) = 0.

Hence the density is constant along the flow, i.e. ̺(~z, 0) = ̺(~zt, t). The time tV(~z, t)

is defined as the total time a point spends in the volume V if it starts at time t at

position ~z and moves until time t + T .

Let us first consider the case where the total density ̺(~z, t) is given by a single
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point starting at ~z0, i.e. ̺~z0(~z, t) = δ(~z − ~zt). Then the time tV is given as

tV(~z, t) =

t+T
∫

t

dt′ ΘV(~zt′) =

T
∫

0

dt′
∫

V

d2f−2z′ ̺~z0(~z
′, t′) = tV(~z0, 0) (A.2)

where ΘV(~z) is one if ~z ∈ V and zero otherwise. In Eq. (A.2) we made use of the

periodicity of the motion. We then obtain for the left hand side of Eq. (A.1)

T
∫

0

dt

∫

V

d2f−2z
̺~z0(~z, t)

tV(~z, t)
=

T
∫

0

dt
1

tV(~z0, 0)

∫

V

d2f−2z δ(~z − ~zt)

=
1

tV(~z0, 0)

T
∫

0

dt

∫

V

d2f−2z ̺~z0(~z, t) = 1 .

Thus we find that if the single point density is replaced by ̺(~z, t) =
∑

{~z0}
̺~z0(~z, t)

which represents an arbitrary number n of points given by their initial conditions

then the left hand side of Eq. (A.1) just gives the total number of particles n that

pass V during one period. But this is exactly what the right hand side of Eq. (A.1)

gives. It just measures the outgoing flux through the surface of V between time 0

and T which also yields the total number of particles n because the particle number

in conserved. Finally we also note that the density ̺(~z, t) is not restricted to a sum

of δ-functions. Each of these δ-functions can also be multiplied with any function

g(~z, t) that is constant when following the flow, i.e. g(~z0, 0) = g(~zt, t). In the context

of Section 5.1, g could for example be any function of the action difference as in

Eq. (5.10) and Eq. (5.11). If all local unstable growth rates χk(x) are non-negative

one can directly identify tV = ten and thus the equality (A.1) means that Eq. (5.10)

exactly equals Eq. (5.11). On the other hand, if these local unstable growth rates

assume negative values in certain areas of the phase space then this implies that the

unstable components of a displacement vector can also decrease on short time scales.

This would lead to a multiple entry of the same point into the ’encounter region’. In

this case the relation (A.1) means Eq. (5.11) is asymptotically equal to Eq. (5.10)

as the length ten becomes large so that |tV − ten| ≪ ten or similarly tV ≃ ten.
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Curvature. Birkhäuser Boston Inc., 1985.

[BHH02] P.A. Braun, F. Haake, and S. Heusler. Action correlation of orbits

through non-conventional time reversal. J. Phys. A: Math. Gen. 35

1381, 2002.

[BHMH02] P.A. Braun, S. Heusler, S. Müller, and F. Haake. Statistics of self-

crossings and avoided crossings of periodic orbits in the hadamard-

gutzwiller model. Eur. Phys. J. B 30, 189, 2002.

[BJS93] H.U. Baranger, R.A. Jalabert, and A.D. Stone. Quantum-chaotic scat-

tering effects in semiconductor microstructures. Chaos 3, 665, 1993.

[BK96] E.B. Bogomolny and J.P. Keating. Gutzwiller’s trace formula and spec-

tral statistics: Beyond the diagonal approximation. Phys. Rev. Lett. 77,

1472, 1996.

[Bog88] E.B. Bogomolny. Smoothed wave functions of chaotic quantum systems.

Physica D 31, 169, 1988.

[Bog00] E.B. Bogomolny. Spectral statistics and periodic orbits. Proc. Intl.

School Phys. E. Fermi: Course CXLIII: New Directions in Quantum

Chaos, 2000.

[Boh89] O. Bohigas. Random matrix theories and chaotic dynamics. In Chaos

and Quantum physics (Les Houches, Session LII), 87, 1989.

[BR99] E.B. Bogomolny and D.C. Rouben. Semiclassical description of reso-

nant tunneling. Eur. Phys. J. B 9, 695, 1999.

[BS94] H. Bruus and D. Stone. Quantum chaos in a deformable billiard: Ap-

plications to quantum dots. Phys. Rev. B 50, 18275, 1994.
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