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Abstract

A sensor array consisting of discrete thick-film sensors based on various semiconductor metal oxides (SMO) has been designed and

fabricated for flue gas analysis purposes. The selection of the sensitive materials for the array has been accomplished as a result of extensive

studies of gas-sensitive properties of SMO. The thick-film sensors, prototypes and the array’s components, were fabricated on the basis of

commercial sensor platforms. A drop-coating technique was used for metal oxide paste deposition followed by in situ drying and annealing of

the deposited films in air by platinum heaters integrated into the platforms. We show the results obtained with a variety of thick-film metal

oxide species and examine their sensitivities at different fixed operating temperatures (200–400 8C). The feasibility of the electronic system

consisted of SnO2, ZnO, WO3, CuO, and In2O3 sensors to discriminate and recognize various gaseous constituents of a combustion gas is

demonstrated. Principal component analysis along with several classification schemes were used to identify nitrogen oxides, ammonia, sulfur

dioxide, and other gaseous pollutants.
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1. Introduction

An electronic sensor system is highly desirable to provide

on-line monitoring of the chemical composition of gas

emitted from combustion facilities, in order to minimize

air pollutions, and maintain the concentrations of dangerous

gaseous species within the limits stipulated by regulations.

Semiconductor metal oxide (SMO) gas sensors are consid-

ered as one of basic technologies for identification and

measuring the concentrations of gas in combustion atmo-

sphere [1]. These microelectronic devices offer a wide

variety of advantages over traditional analytical instruments

such as low cost, short response time, easy manufacturing,

and small size. Despite these qualities SMO gas sensors

suffer a lack of selectivity. The metal oxides investigated to

date are non-selective, i.e. they are sensitive simultaneously

to wide range of reducing and oxidizing gases. Some

methods to improve SMO selectivity e.g. optimization of

operating temperature, bulk/surface doping, use of molecu-

lar filters have been successfully employed during the last

decades. The implementation of an array of SMO sensors

combined with appropriate pattern recognition and classi-

fication tools is one of the more promising approaches to

compensate for this drawback.

The first report of a sensor array was presented by Persaud

and Dodd in the early 1980s [2]. They demonstrated that a

cluster of non-selective sensors could be used to discrimi-

nate between simple odors through pattern recognition

schemes. Since that time, considerable efforts have been

made to study sensor arrays for the detection of gases in a

large variety of technological fields such as environmental

monitoring, food and drink analysis, medical appliances,

and industrial control systems [3–5]. It has been shown by

many research teams that a sensor matrix based on several

technologies or several SMO materials could provide a

specific and unique response patterns (chemical fingerprints)

for different individual chemical species or mixtures of

species. Various pattern recognition techniques have been

proposed to analyze sensor array data. Commonly used

schemes are principal component analysis (PCA), cluster

analysis, artificial neural networks, and specific algorithms

based on fuzzy logic [6]. As regards to the requirements

imposed on the individual sensors that make up the arrays,

they have to be reliable, stable, repeatable and reversible (i.e.

being able to recover back to the baseline) in order to avoid

retraining of the analytical system.

The authors of this paper have recently studied the

gas-sensitive electrical properties of thick- and thin-film
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prototype sensors based on WO3 [7–9]. An array of two

WO3 Au-doped thin-film sensors was developed for flue gas

analysis [9]. It was shown using PCA on the sensor array

data that there was good discrimination between the test

gases. In particular, the array selectively and repeatedly

detected NH3 and NOx.

The aim of the present study is to investigate the viability

of SMO thick-film gas sensors prepared using cheap com-

mercial sensor platforms and a very simple drop-coating

technique accompanied with in situ annealing of the depos-

ited films by the heaters integrated into the platforms. To

gain insight to the feasibility of this sensor design modifica-

tion, a large variety of semiconductor metal oxides tradi-

tionally employed in gas-sensors have been tested at

different operating temperatures in gas flows containing

CH4, CO, NO, NO2, NH3, SO2, or H2S. A further objective

of this study is to analyze the ability of an array consisting of

five selected metal oxide sensors to identify the gases under

tests by means of pattern recognition and classification

techniques.

2. Experimental

2.1. Fabrication of thick-film sensor arrays

Porous metal oxide thick films approximately 50 mm thick

were fabricated using a drop-coating technique and an in situ

impact annealing method. The films were deposited onto

commercial UST sensor platforms (UST Umweltsensortech-

nik GmbH) that consisted of 3 mm � 3 mm alumina sub-

strates suspended by platinum leads in TO-8 cases (Fig. 1).

The substrates were equipped with integrated platinum hea-

ters and electrodes to the sensitive film. To form the film, a

drop of metal oxide paste was applied onto the electrodes.

Pastes were prepared by mixing oxide powders with a glass

frit and an organic binder. Nanosized powders of SnO2

and ZnO (Nanophase Technologies Corporation), a sol–gel

powder of WO3 (LASST, University of Maine), and micro-

dispersed powders of CuO and In2O3 (Aldrich) were used as

base materials. After the thick-film deposition the samples

(sensors) were put into a test gas chamber and in situ dried

and annealed using the integrated platinum heaters in airflow

of 100 cm3 min�1. The drying was at 150 8C for 15 min, and

annealing at 600 8C for 15 min. Prior to the start of each test

the sensors were preheated for 60 min at the testing tem-

perature to allow the SMO films to thermally stabilize.

2.2. Gas system and electrical sensing testing

The experimental setup used for electrical testing of the

thick-film sensor array is shown in Fig. 2. It consists of the

test chamber, a gas delivery system based on the Environics

2000 computerized multi-component gas mixer, a mass flow

controller unit, 10-channel multiplexer, 10-channel heater

unit, an electrometer for measuring the sensors’ resistance,

power supplies, and a computer interface for all instrumental

equipment. The sensors were operated at 200, 300, or 400 8C
by heating the integrated platinum heater with a dc voltage

controlled by feedback circuitry described in detail else-

where [10]. The custom LabVIEW-based software was used

for the on-line control of the test setup and measurement of

sensors’ resistance and temperature. The data recorded from

the sensor array was real-time visualized on screen and

stored for further processing, analysis and classification.

The target gases used were CH4, CO, NO, NO2, NH3,

SO2, and H2S. Dry air was used as the purge and a carrier

gas. Flows containing target gases and the purge were

alternately switched to the test chamber with a fixed flow

rate of 100 cm3 min�1.

To determine the sensitivity we use the resistance at the

instants immediately before the start and the end of a gas hit

(Ri and Rf, respectively). Sensitivity is then defined as

S ¼ Rmax=Rmin, where Rmax/Rmin was calculated as Ri/Rf

for reducing gases and Rf/Ri for oxidizing gases. The results

and analysis described further are in two stages. In the first

Fig. 1. An UST sensor platform suspended by leads to a TO-8 case. The dime (18 mm diameter) shows the relative size of the sensor and case.
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stage the sensitivities were used to determine the operating

temperature that produced the strongest reactions between

the films and gas, hence providing the most information rich

responses. For the second stage a fresh batch of sensors was

used to eliminate any permanent effects caused by possible

overheating. The data was then analyzed via principle

component analysis and classification methods.

3. Results and discussion

3.1. Gas sensitivity of the individual sensors

Five materials frequently used for sensors, i.e. SnO2, ZnO,

WO3, In2O3 and CuO, were carefully examined relative to

critical sensing parameters. These include response magni-

tude (sensitivity), repeatability, selectivity, and stability. In

order to determine an optimal operating temperature of the

sensor array, the thick films were studied successively at

200, 300, and 400 8C. The gas-hit sequence used for these

tests is shown in Fig. 3. The concentration of the delivered

gases were 25 ppm, except for CH4, which was 30 ppm as to

maintain constant flow rates in the system. Each gas expo-

sure was 3 min long, followed by 12 min of air purge. The

sequence was repeated six times to assess the short-term

repeatability of the sensors’ responses. Table 1 summarizes

the maximum sensitivities obtained for this stage of the

tests. As seen, all types of the sensors under investigation

responded to all target gases, i.e. they are non-selective in

principle. Four n-type semiconductors (i.e. SnO2, ZnO,

WO3, and In2O3) showed a drastic increase of resistance

towards NO and NO2 exposures and a decrease towards CH4

and H2S exposures. On the contrary, CuO based sensors (p-

type semiconductor) showed a decrease of resistance for NO

and NO2 and an increase for H2S. The sensitivity of the CuO

sensors was very low even to these active gases. A typical

value of CuO sensor response towards 25 ppm of H2S was

approximately 1.2 at 300 and 400 8C. For other gases the

magnitudes of the CuO responses were 1.1 (towards NO2 at

300 8C) or lower. The n-type semiconductors were more

active towards the target gases. Along with the general high

sensitivity of NOx and H2S as mentioned above, some of

Fig. 2. Block diagram of the experimental testing system.

Fig. 3. Gas exposure sequence used at each temperature for determining

the optimal operating temperature.

128 A.A. Tomchenko et al. / Sensors and Actuators B 93 (2003) 126–134



these materials had a significant response to other gases of

interest.

As can be seen from the table, some of the materials

demonstrated maximum sensitivity towards particular gases

at 200 8C. Nevertheless, the temperature of 300 8C was

chosen as the work temperature for the sensors included

in the sensor array. The choice was a compromise between

the sharp sensitivity drop observed at temperatures above

300 8C, and the sensors’ speed of response that only became

adequate at 300 8C. As an example, the comparison of the

normalized sensors’ responses to NO2 at 200 and 400 8C is

given in Fig. 4. The figure shows that the In2O3, WO3, and

SnO2 sensors demonstrated high sensitivity and very slow

recovery towards NO2 at 200 8C (Fig. 4a). On the contrary,

the same sensors heated to 400 8C had remarkable recovery

after NO2 hits (about 3 min, see Fig. 4b) but were substan-

tially less sensitive towards this gas. Taking into account that

the same tendency was observed for other sensor materials

and other gases of interest the temperature of 300 8C has

been selected as operating temperature of the investigated

sensor array.

3.2. Analysis of response kinetics

For the second stage, a new batch of sensors were pre-

pared and only operated at 300 8C. The sensors were tested

Table 1

Maximum sensitivities observed during the experiments on sensors’ operating temperatures

Sensor Temperature ( 8C) Sensitivity (S)

CH4 CO NO NO2 NH3 SO2 H2S

SnO2 200 �1.18a 1.40 9.39 4.59 �1.72 1.23 �38.85

300 �1.30 1.08 2.48 6.13 �1.33 1.13 �14.73

400 �1.27 �1.09 1.09 1.95 �1.20 �1.03 �6.69

ZnO 200 1.04 3.00 3.53 1.11 �1.10 1.08 �16.90

300 �1.25 1.56 9.40 11.00 1.20 1.50 �21.67

400 �1.24 1.01 1.59 5.12 1.08 1.04 �13.16

WO3 200 �1.10 1.20 8.92 3.73 �1.42 1.3 �34.11

300 �1.16 1.03 2.56 4.53 �1.04 1.07 �28.18

400 �1.14 1.01 1.18 3.11 1.11 1.02 �14.02

In2O3 200 �1.04 1.56 17.00 6.66 �1.99 1.53 �43.08

300 �1.04 1.06 1.85 3.42 1.22 1.03 �6.98

400 �1.02 1.02 1.09 1.40 1.08 �1.01 �2.60

CuO 200 1.01 1.01 �1.03 �1.03 1.02 �1.01 1.16

300 1.03 1.01 �1.03 �1.09 1.04 1.01 1.18

400 1.02 1.01 �1.01 �1.04 1.07 1.01 1.24

a Minus means that the sensor’s resistance decreased during the gas hit. If the resistance increased, the corresponding sensitivity is shown as a positive

number.

Fig. 4. Normalised response of SMO sensors to NO2 at: (a) �200 and (b) �400 8C.
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Fig. 5. Baseline normalised responses for all of the sensor–gas combinations. The sensors operated at 300 8C.
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over a week, which included five trials, each trial consisting

of nine iterations of preheating and the same gas sequence.

The sequence of CH4–CO–NO–NO2–NH3–SO2–H2S (Fig. 3)

was used for three trials, H2S–NO2–CO–CH4–SO2–NH3–

H2S for one trial, and different randomized sequences for

each of the iterations in the last trial. This was to assess any

effects the gas sequence had on the characteristics of sensors’

responses.

The typical responses for all of the sensor–gas combina-

tions are shown in Fig. 5. The responses have been normal-

ized to the baseline resistance prior to the gas hit. The

marked switching events (i.e. on and off) differ from those

observed in the response and are due to the latency of the gas

delivery system. This is the time the gas takes to travel from

the Environics 2000 to the test chamber (see Fig. 2). This has

been taken into account when deriving the features. Even

only after observing 3 min of the recovery we can see the

responses are quite reversible.

In many papers, the sensors are characterized by their

sensitivity [11–14]. However, this captures very little infor-

mation about the reaction kinetics between the SMO film

and gas. It is also strongly influenced by the concentration of

the gas. If the concentrations are high and the response

saturates (i.e. the reaction reaches equilibrium), or if com-

putational ability is severely limited, it may suffice. To

maximize the selectivity we need to extract as much infor-

mation as possible from the responses during, and after a hit

of gas. Therefore, we use a feature that consists of inter-

polating N points (or gradients) during the hit, and another N

points for the first 7.2 min (60% of the recovery period) after

the hit.

The characteristics of the response are mainly determined

by the type of gas and its concentration, given other operat-

ing parameters are constant. The magnitude of the response

is primarily controlled by the concentration. Although this

also affects the shape of the response, it is minimal compared

to influence of the type of gas. Since we wish to identify

the gas by their types, and not their concentrations, we have

only focused on the shape of the response. The features

(in log space) were linearly transformed so the start of the hit

was 0 or 1 and the end of the hit was 1 or 0, depending on

whether the reaction was oxidizing or reducing. This takes

care of baseline normalization and completely eliminates

any concentration related sensitivity information. If we wish

to determine the concentration, we can reclassify the data

using different features with the knowledge of what the

analyte is.

Fig. 6 shows the point features for SnO2 and In2O3. For

clarity only a couple of the gases have been shown. The data

is from three iterations from each trial. The features show

good repeatability throughout all the trials. This is important

for classification, where we want features that maximize

the interclass separation whilst minimizing the intraclass

variance.

The main drawback of this strategy is the high dimen-

sional feature space that results. However, employing the

commonly used principle component analysis (PCA) to the

features greatly reduces this problem.

The PCA algorithm is a popular technique for reducing

the dimensionality of data. It is achieved by linearly trans-

forming the data so that correlations between variables are

minimized. Even though the PCA itself is lossless, we can

remove variables that provide little information about the

data to either reduce the dimensionality to an absolute value,

or retain a certain percentage of information. To visualize the

data we have used PCA to reduce the number of dimensions

to three, which allows the data to be conveniently plotted.

This representation is useful because it still retains almost all

of the characteristics of the full feature space.

Fig. 7 shows the PCA of the data from three trials with

different gas sequences (i.e. from one of the trials based on

the sequence of CH4–CO–NO–NO2–NH3–SO2–H2S, from

Fig. 6. Extracted features of several gases from SnO2 and In2O3 sensors operating at 300 8C.
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the trial based on the sequence of H2S–NO2–CO–CH4–SO2–

NH3–H2S, and from the trial consisting of nine iterations

with different randomized gas sequences). This PCA shows

there is no noticeable discrimination of the data based on the

sequence order. It also shows good discrimination between

different gases, which means that there is good reproduci-

bility independent of the immediate history of the sensor.

From Fig. 7 we observe that the data clusters into three

main groups, (CH4), (CO, H2S, NH3) and (NO2, SO2). NO2

and SO2 are well separated from the others since they have

the only positive responses (see SnO2 in Fig. 5). The CH4 is

separate from (CO, H2S, NH3) as it has a strong reaction,

which causes the resistance to drop quickly. The remaining

group (CO, H2S, NH3) are the slower reacting negative

shaped responses. When we look at Fig. 5, the magnitudes

of H2S and CO (which are both in the same PCA cluster) are

vastly different. The reason they cluster together is they have

a similar shape once we ignore the magnitude differences,

thus the extracted point features are similar. If we wish to

additionally utilize magnitude information, we can use the

gradients features. This will easily separate H2S from CO

and NH3.

The type of behavior shown in Fig. 7 lends itself to

hierarchical classification. Instead of classifying all the

gases at once, we first classify them as belonging to one

of the aforementioned groups; we then reclassify using only

the features of the chosen group to train the classifier. When

this is done with the data present in Fig. 7 each gas is easily

separated. However, this technique was not implemented

automatically for this data.

Though PCA is a powerful tool for discriminating

between responses, it does not make a decision as to the

identity of the gas—it is merely a clustering technique. To do

this, several classification methods have been investigated

[15,16]. If computational power is not a limiting factor the

full feature space can be used as the input feature, otherwise

the PCA transformed data can be used. The classification

schemes investigated are briefly described further.

� Distance measures: One of the simplest schemes is to

assign the unknown feature to the class of the training

feature that most closely matches the test feature. In

feature space this translates to the training point that is

geometrically closest to the test point. This is referred to

as template matching or the nearest neighbor. More

generally we can use the k nearest neighbors (k-NN)

and assign the class with the majority of the k neighbors.

Furthermore, we can utilize all the training points by

using Shepard’s method, which weights them according

to their distance from the test point. The class with the

highest total weight is the one that is selected. For both of

these methods there are a number of distance and weight-

ing functions.

� Bayesian methods: If we know in advance the probability

density function (PDF) of the classes, we can use Bayes

optimal decision rule to find the optimal boundary. The

boundary is formed where the PDFs of adjacent classes in

feature space are equal. In practice it is rare that we know

the distribution in advance. However, if we assume a

particular distribution, usually Gaussian, we can estimate

the parameters from the training data and hence determine

the boundaries. This is referred to as Bayes plug-in rule.

� Support vector classifier (SVC): The SVC is a non-para-

meterized method (in terms of PDF) for defining optimal

separating hyperplane between two classes. By using a

nonlinear kernel function we effectively warp the hyper-

plane to shape it to the data. A cost function is employed

to control the trade-off between generalization and

over-fitting. As the SVC is only a two-class classifier,

multiclass problems are divided into several two-class

problems. A boundary is found for each class against the

others, we then use the class with the highest confidence.

We are currently investigating polynomial (degree 2 and

3), and radial basis function kernels.

� Neural networks (NN): These are very commonly used to

analyze sensor array data [12,13,17], possibly due to their

high level of abstraction. The architecture that has proved

most fruitful is the feedforward backpropagation using a

Bayesian regularization process for training. This mini-

mizes the sum of the mean square error (MSE) and mean

square weights (MSW). The inclusion of the MSW in the

objective function reduces the networks ability to learn,

thus avoids over-fitting when there are too many neurons

in the hidden layer. This eliminates much of the trial and

error in finding the optimal number of neurons to include

in the hidden layer.

When using the classifiers, the hold-out method was

employed. We set 75% of the available data (randomly

selected) for training and the remaining 25% as the unknown

data to be classified. This means that the data to be classified

has never been seen by the classifier. The results of the

Fig. 7. PCA of three trials. The data is the point features of SnO2 sensor

operating at 300 8C.
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individual classifiers are then combined using the median

function to make a final decision [18,19]. Almost all of the

data from the five trials was used, which gave a total of 378

features per each sensor type. Though a couple of bad

iterations were excluded, there still remained some bad

features that were clearly different from the others of the

same class. The point features were directly fed into the

classifiers, whereas the gradient and PCA transformed fea-

tures were standardized to a zero mean and unity variance

for each dimension. The standardization was not necessary

for the point features due to the transforms used to generate

them.

Table 2 shows the results of the classifiers using individual

and combined features averaged from three runs. For the hit

and recovery times used, some of the individual sensors

were selective enough to identify the gasses with a high

degree of accuracy. It is likely that many of the errors were

due to bad features. For the individual sensors, SnO2 clearly

outperformed the others with almost 100% classification

rate. Generally, PCA transformed features did not classify as

well as the full features. This implies that the small amount

of information that was discarded is important [20]. Possibly

retaining more PCs, 5–6 for example, would give more

comparable results to the full features.

The bottom four rows of Table 2 show the classification

results when the principle components of the individual

sensors are combined. From the In2O3/SnO2 results, we

see that the poor selectivity of In2O3 actually degrades

the performance of the (individual) SnO2 sensor. However,

when combining the features of sensors that both have poor

selectivity the performance can be improved. This is parti-

cularly noticeable with the CuO/ZnO/In2O3 combination

where we have a 4–10% improvement in classification

compared to the individual sensors. The results could be

further improved by combining different types of features

from different sensors.

4. Conclusions

A sensor array of five thick-film SMO sensors has been

fabricated using cheap commercial sensor platforms and a

drop-coating technique accompanied with in situ annealing

of the deposited films by the heaters incorporated into the

platforms. Five different SMO materials, namely, SnO2,

ZnO, WO3, In2O3 and CuO, were carefully examined rela-

tive to sensitivity towards CH4, CO, NO, NO2, NH3, SO2,

and H2S. The sensors included in the array demonstrated

their functional performance as sensing devices. They were

reliable, stable, and reversible relative to the gases of inter-

est. The optimal operating temperature of the sensor array

has been determined as a result of extensive SMO tests

accomplished at different operating temperatures.

The feasibility of the sensor array to discriminate and

recognize various gaseous constituents of a combustion gas

has been demonstrated in the paper. Principal component

analysis along with several classification schemes were used

to identify nitrogen oxides, ammonia, sulfur dioxide, and

other gaseous pollutants. To further improve classification

results, a hierarchical technique could be employed. The

clustering shown in the PCA plots suggest that this method

would work well. The disadvantage is that we need to know

the hierarchical groups beforehand, unless some type of

unsupervised clustering method can be used.

In the future, we plan to expand the testing to a continuous

range of concentrations. In this stage the strength of using a

sensor array should become clear. To determine the con-

centration, an extra classification layer will be added that

reclassifies the gas in terms of its concentration, once its

identity is know. The features used to train these classifiers

will be different since the magnitude information now

becomes important.
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