
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

145,000 180M

TOP 1%154

5,900



Chapter

Semiconductor Device Modeling
and Simulation for Electronic
Circuit Design
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Partha Sarathi Paul, Md Razuan Hossain and Syed K. Islam

Abstract

This chapter covers different methods of semiconductor device modeling for
electronic circuit simulation. It presents a discussion on physics-based analytical
modeling approach to predict device operation at specific conditions such as applied
bias (e.g., voltages and currents); environment (e.g., temperature, noise); and
physical characteristics (e.g., geometry, doping levels). However, formulation of
device model involves trade-off between accuracy and computational speed and for
most practical operation such as for SPICE-based circuit simulator, empirical
modeling approach is often preferred. Thus, this chapter also covers empirical
modeling approaches to predict device operation by implementing mathematically
fitted equations. In addition, it includes numerical device modeling approaches,
which involve numerical device simulation using different types of commercial
computer-based tools. Numerical models are used as virtual environment for device
optimization under different conditions and the results can be used to validate the
simulation models for other operating conditions.

Keywords: device modeling, physics-based model, empirical modeling, TCAD
device simulation, SPICE model

1. Introduction

Researchers are devoting their time and efforts on the development of efficient
and high-speed device models as the requirement for faster, smaller circuits and
systems are becoming more and more stringent. These models take into account
semiconductor devices such as MOSFETs and analyze the device features through
rigorous testing and optimization of the device characteristics. The device models
are developed employing various mathematical calculations and simulation pro-
cesses before being adopted into practical circuit and system-level simulation steps.
This book chapter takes a deeper dive into different types of semiconductor device
modeling and simulation techniques by leveraging their full potential.

To understand the characteristics of a device, analytical modeling is performed
under various environmental and operating conditions by varying the device
parameters. Physics-based analytical models are developed by analyzing the behav-
iors of a device based on the fundamental physics by solving rigorous mathematical
equations governing the underlying device physics. This enables selection of
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optimal device features and predictability of the device operation under various
conditions to simulate its performance in electronic circuits and systems. Although
this type of modeling provides accurate results, the calculation scheme is not fast
enough for higher level analysis tools including circuit simulators such as SPICE.
For fast calculation of device characteristics, empirical models are commonly used.
Empirical modeling is a computer-based modeling scheme involving experimental
data. Unlike analytical modeling approach, this specific technique depends on sim-
ulation of device behavior by implementing mathematically fitted equations. This
results in a trade-off between the accuracy of device models and the computational
speed. Empirical modeling of a device plays a leading role in circuit simulation using
tools such as SPICE, which is a general-purpose analog electronic circuit simulator.
It has the capability to analyze and predict the device behavior in a circuit design by
solving a combination of theoretical and empirical models. However, to explore full
potential of a device in implementing efficient circuits, researchers are dedicating
much time in implementing numerical models using commercial device simulators
such as technology computer-aided design (TCAD) tools. Numerical modeling
optimizes the characteristics of a device by simulating the device in virtual envi-
ronment. This type of modeling of a device involves solutions to a set of coupled
partial differential equations. The core concept of this type of modeling involves
analyzing various mathematical techniques to provide a realistic solution for
predictability and operation of the device. Creating virtual environment under
different conditions to simulate various device features and characteristics enables
researchers to achieve a grasp on the functionality of a certain device and its
characteristics in circuit environment.

2. Physics-based and empirical compact modeling for circuit simulation

2.1 Physics-based models

Physics-based models are developed by simplifying coupled nonlinear partial
differential equations that describe the physics of the semiconductor devices. These
models need to be robust, accurate, and computationally efficient and are often
preferred in analog and RF circuit design. Although modern industry standard
models often have some empirical fitting parameters, their core is usually physics-
based and most parameters have some physical significance. Since these models try
to capture the essence of underlying physics, they usually have better scalability and
predictive power compared to their empirical counterparts.

2.1.1 Types of physics-based models

Physics-based compact models can be divided into several subcategories. The
most widely used models in industry are BSIM3 [1] and BSIM4 [2]. These models
are threshold-based, source-referenced, characterized by inversion charge propor-
tional to overdrive voltage, and use interpolation between strong and weak inver-
sion. In addition, some empirical fitting parameters are used in these models to
cover wide bias, geometry, and temperature ranges.

Surface potential-based models such as PSP [3] and HiSIM [4] have recently
emerged as other important physics-based compact modeling paradigms. PSP was
developed as a collaboration between Gildenblat et al. and Philips corporation and is
characterized by both inversion charge and drain current being computed from the
surface potential φs. This is a symmetric and body-referenced model whose core
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idea rests upon the symmetric linearization of surface potential, which provides an
efficient solution for surface potential with 10 pV accuracy.

Another approach is known as inversion charge-based model such as EKV
named after its founders (Enz-Krmmencher-Vittoz) [5] and ACM (Advanced
Compact model) [6]. EKV was originally developed at CSEM and EPFL at Switzer-
land and has found use in low-power and RF integrated circuit (IC) design due to
some of the shortcomings of BSIM-based models in these applications. It is a body-
referenced and symmetric model based on channel charge linearization. There is
also a companion model for hand analysis.

In addition to these popular choices, there are other models such as, analytical
model for ballistic field-effect transistors [7], MIT Virtual Source model [8] etc.
Although these models are not used in industry, they involve a relatively small set of
parameters with strong physical significance and can provide useful insight into the
underlying physical phenomena of nanoscale transistors.

2.1.2 Brief overview of previous works

A number of works have been performed over the years on physics-based
modeling of transistors. Gummel in [9] developed a model based on finite differ-
ence method for solving model equations to provide information about internal
parameters such as potential and electric field distribution along with the terminal
characteristics. This approach was modified in [10] using a new discretization
technique for ensuring convergence. Building upon Scharfetter-Gummel algorithm,
Slotboom [11] proposed a new model using two new artificial variables for lineari-
zation of differential equations facilitating implementation in computer-aided
design (CAD) programs.

Early pioneers of device modeling include Pao and Sah who came up with the
classic double integral drain current expression and explored different characteris-
tics of transistor action [12, 13]. However, these formulas are computation intensive
and CAD implementation requires a simplified model. Brews in [14] proposed a
charge sheet model that assumes the inversion layer to be a conducting plane of zero
thickness.

As the transistors kept getting smaller, the significance of subthreshold leakage
conduction became apparent and the authors in [15] explored basic charge equation
to derive a model that covers conduction mechanism from subthreshold to strong
inversion. A one-dimensional model reported in [16] incorporates the dependence
of subthreshold conduction on drain voltage, substrate bias, and temperature. The
effect of terminal voltages on subthreshold conduction was captured in another
model proposed by Taylor [17], which also explored the potential adverse two-
dimensional effects on drain conductance. Later, Taylor unified the existing short-
and long-channel models into an analytical model in [18]. Moreover, with the
increasing use of MOSFETs in the domain of analog circuit design, there has been a
growing need for a better small signal CAD models. Liu et al. presented a first-order
and a second-order large-signal MOSFET models and derived corresponding small-
signal models where the parameters are associated with bias condition and process
technology [19].

Several researchers have explored the effect of electric field, doping density, and
temperature on carrier mobility. Arora et al. developed an analytical expression of
carrier mobilities in silicon as a function of doping concentration and temperature
based on experimental data and modified Brooks-Herring theory of mobility [20].
Masetti et al. explored the dependence of carrier mobility on dopant concentration
in silicon [21]. Later, Reggiani et al. proposed a unified model that combines mobil-
ity dependence on multiple factors such as doping, temperature, and electric field
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[22]. Another major contribution was the development of a universal expression for
carrier generation and recombination, which was independently reported by Hall
[23] and Shockley-Read [24] in 1952. Carrier lifetime is the most important param-
eter affecting the rate of generation-recombination and its dependence on temper-
ature and electric field was analyzed by Schenk in [25].

The first-generation CAD models refer to the three built-in models (Level 1, 2,
and 3) in the SPICE2 program [26]. Sheu et al. developed CSIM (Compact Short-
channel IGFET Model) [27] and later improved and converted it into its now-
famous successor called “Berkeley Short-channel IGFET Model” (BSIM) [28]. This
was the beginning of the second generation of SPICE models. Technical consider-
ations underlying the evolution of these models will be explored in greater detail in
Section 2.5.

2.2 Empirical model

Empirical modeling is an alternative to physics-based modeling, which is used
for rapid and accurate circuit simulation. The basic methodology is to take experi-
mental or simulated device data as input and then create a model capable of accu-
rately reproducing the complex nonlinear behavior of the semiconductor devices
under different operating conditions using some sort of special functions such as
Black-Box model or table look-up models. Usually, these methods are flexible and
can be applied to different types of transistors [29].

2.2.1 Types of empirical models

The most commonly used empirical models utilize look-up table and quadratic
or higher order polynomials for interpolation between data points. The data can be
obtained from TCAD simulations or experimental results. Some simulators inter-
nally use table look-up methods for faster simulation. Currently, there are some
mixed-device circuit simulators, which can generate table look-up models from
TCAD simulations for carrying out circuit simulation. These methods can have
some serious drawbacks such as wiggles in I-V characteristics, nonphysical negative
resistances, limited applicability in exponentially varying regions of operation
resulting from the use of low-order polynomial interpolation, inability to accom-
modate changes in temperature and geometry, limited capability for modeling
statistical variation and noise, and lack of predictive capabilities for future
technologies.

Another method involves using special functions such as hyperbolic tangent in
an ingenious way to match the shape of experimental data. Parameters tend to be
fitting coefficients but they may have some sort of first-order physical significance.
A different approach, known as Black-Box modeling, leverages sophisticated
numerical packages that take arbitrary sets of data and automatically generate some
form of mathematical model that best fits the supplied data. This approach has
mostly been confined to complex interconnect structures and system-level model-
ing. The boundary between physics-based and empirical models has gradually
become fuzzier in recent years since most modern industry standard physics-based
models now have some empirical content.

2.2.2 Brief overview of previous works

The table look-up method was implemented for digital circuit simulation in the
timing simulator MOTIS [30], which was used to obtain timing information on the
propagation of signals through circuits. Rofougaran et al. reported a FET model
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consisting of a main look-up table, along with a coarse 3-D sub-table for including
substrate effects and another table for interpolating between different channel
lengths [31]. This was used to resolve some of the limitations faced by analytical
models in capturing short-channel effects. Another table-based method was used in
[32] to address the requirements of analog circuit design, which demands greater
accuracy in reproducing small-signal parameters, large-signal nonlinearities, sub-
threshold conduction, body effects, and bias-dependent capacitances.

Meijer proposed an n-dimensional model with first-order continuity in [33]
where each table model could replicate the DC I-V characteristics of two basic
physical device models, namely, the Ebers-Moll model for bipolar transistor and the
GLASMOST model for MOSFET with higher accuracy and faster simulation time
compared to physics-based compact models. Bourenkov et al. implemented inge-
niously combined exponential and polynomial interpolation into a blending func-
tion to accurately evaluate drain current in the moderate inversion region [34].
The user can choose among several available interpolation schemes based on speed,
memory, and accuracy requirement and the scheme worked well for DC, transient,
and AC analyses. Root et al. used table data to develop non-quasi-static FET models
for RF simulation [35]. In these models, the characteristics of GaAs FET devices
were determined by state functions, which define nonlinear relationships for the
three-terminal lumped elements. An array of s-parameters, measured over a wide
range of terminal biases, is used to determine state functions, which dictate the
characteristics of GaAs devices.

Yanilmaz et al. extended Bernstein approximation technique to
multidimensional variation diminishing interpolation and modeled DC I-V and Q-V
characteristics of a MOSFET [36]. An important attribute of this model is the
preservation of continuity and monotonicity, which are important for convergence
in Newton-Raphson algorithm commonly used in most modern circuit simulators.
Similarly, the authors in [37] have used Lagrange interpolation and Bernstein
approximation techniques for modeling multi-gate SOI transistors. Shima et al.
employed monotonic piecewise cubic interpolation on stored table data obtained
from a 2-D TCAD simulator to evaluate operating points of MOS transistors [38].
Authors in [39] used a tableau-style quadratic spline formulation that ensured the
continuity of the model function and its derivative and proposed a new data-
compression method for efficient storage of coefficients. The authors in [40] have
used multidimensional linear and cubic spline interpolation methods for modeling
SOI four-gate transistor (G4FET).

2.3 CAD model for SPICE

2.3.1 Criteria for a good SPICE model

A comprehensive list of attributes of a good CAD model for circuit simulation
can be found in [41]. In this section, a brief discussion on the most salient features
of an excellent compact model is presented. To design analog and mixed analog/
digital circuits effectively, CAD models have to meet some basic requirements
based on I-V characteristics, charges, leakage currents etc.; should provide contin-
uous results that must have physical sense; should meet the requirement for intrin-
sic and extrinsic effects; and should provide accurate prediction for temperature
range of interests etc. In addition, the model must have criteria for any combination
of channel length and width values from the minimum specified upward bound and
should provide a flag when it is used outside the limit of validity. Finally, and
perhaps most importantly, a compact model must be computationally efficient,
sufficiently accurate, and numerically robust.
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2.3.2 Model formulation

The model developers need to satisfy certain criteria beyond model simulation.
The general considerations include choice of parameters [42], choice of references
[43], choice of modeling expressions [44], out of range behavior [42], charge versus
capacitance formulation [45], and non-quasi-static analysis [46]. Furthermore,
there are two important points, namely the choice of smoothing function and the
judicious use of conditionals, which are the topics of the following discussion.

Smoothing function is an important tool to build a single expression by combin-
ing several expressions. Sometimes it is hard to model a device with general
expressions for different regions of operation. The resultant single expression from
smoothing function can be used for all the regions. However, the smoothing func-
tions reveal particular expression in particular regions while maintaining continuity
at boundaries between regions.

For example, the traditional MOSFET drain current, IDS with an abrupt transi-
tion from non-saturation to saturation operation at a drain-source voltage, V0

DS can
be written as shown in the following equation [42],

IDS ¼
W

L
μC0

ox VGS � VTHð Þ � α

2
VDS,eff

h i

(1)

where, VDS,eff ¼
VDS,

V 0
DS,

(

VDS ≤V 0
DS

VDS >V 0
DS

where μ is the mobility, W and L are the channel width and length respectively,
C’ox is the oxide capacitance, VTH is the threshold voltage, VGS is the gate-source
voltage, and α is a fitting parameter. Now, rather than using two conditional terms
for VDS,eff , the equation can be simplified and converted into a single expression

using smoothing function. The following equations are based on [47, 48],

VDS,eff ¼ V 0
DS � 0:5 ∗ V 0

DS � VDS � δþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V 0
DS � VDS � δ

� �2 þ 4δV 0
DS

q

� �

(2)

and

VDS,eff ¼
VDS

1þ VDSj j
V 0

DS

h iA
� �1=A

(3)

Here δ and A are fitting parameters. Figure 1 shows how these functions make
the transition region smooth and conserve higher order continuity. Similarly, other
functions are used for smooth transition between weak- and strong-inversion [49].

Sometimes, it is hard to maintain perfectly smooth model without using any
conditionals. For efficiency, conditional models are used to include or exclude block
models that are turned on or off by using different model parameters [47]. For
example, let us consider the following common limiting function:

y ¼ 1

A
ln 1þ exp Axð Þ½ � (4)

This function asymptotically approaches zero for large negative x and
approaches x for large positive x. But it may cause a numeric overflow for
large positive x, which can be solved using the following equivalent conditional
equation:
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y ¼
1

A
ln 1þ exp Axð Þ½ �, x≤0

xþ 1

A
ln 1þ exp �Axð Þ½ �, x>0

8

>

<

>

:

(5)

2.3.3 Evolution of different generations of CAD models for SPICE

The “Simulation Program with Integrated Circuit Emphasis” (SPICE) was
developed in the Electronics Research Laboratory at the University of California,
Berkeley in 1973 [50]. However, the real popularity of SPICE comes after the release
of SPICE 2 in 1975, which included three first-generation MOSFET models for the
first time [51]. The first-generation compact models for MOSFET include Level 1,
Level 2, and Level 3 models. The second-generation models are BSIM, BSIM2, and
HSPICE Level 28. The third-generation models include Level 7, Level 48, BSIM3,
and other advanced models. The following section presents the chronological pro-
gression from the Level 1 model to Level 3 and finally to BSIM models.

Level 1 model: This first SPICE model for MOS transistor, published in 1968, is
often referred to as the Shichman-Hodges model [52]. It is the simplest compact
model that is only accurate for long-channel (more than �10 μm) MOSFETs with
uniform doping. This threshold voltage-based model assumes that, when the gate-
to-source voltage, VGS, is greater than or equal to the threshold voltage, VTH, then
the carrier concentration at the surface under the gate oxide gets inverted in polar-
ity with respect to the substrate. The threshold voltage, VTH as expressed in Eq. (6),
is a function of the body effect parameter, γ, the potential difference between the
source and the substrate, VBS, and the bulk potential, 2ϕp [53]. In Eq. (6), VT0

represents the threshold voltage when VBS = 0.

VTH ¼ VTO þ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ϕp � VBS

q

�
ffiffiffiffiffiffiffiffi

2ϕp

q� �

(6)

In this model, the MOSFET operation is divided into three regions. When VGS <

VTH, the drain-to-source current, IDS, is zero. This is called the cutoff region. When
VGS > VTH, the MOSFET is turned on. In this state, if the drain-to-source voltage,

Figure 1.
Illustration of two smoothing functions for ensuring higher order continuity of the model as shown in Eq. (1-3).
(Here, V 0

DS =1V, δ =0.1 V, A=2).
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VDS < VGS � VTH, the device is said to be in the linear region and if VDS > VGS �
VTH, then the device is operating in the saturation region. The drain current, IDS in
linear and saturation regions is expressed in Eqs. (7) and (8), respectively [53],

IDS ¼ KP
W

L� 2Xjl
VGS � VTH � VDS

2

	 


VDS 1þ λVDSð Þ (7)

IDS ¼
KP

2

W

L� 2Xjl
VGS � VTHð Þ2 1þ λVDSð Þ (8)

In Eqs. (7) and (8), the term, Xjl, refers to the lateral diffusion in source and
drain regions, W is the channel width, and KP is the conduction parameter. The
effective channel length is then given by (L�Xjl), where, L is the actual channel
length. The term (1+λVDS) introduces an empirical correction of the conductance in
the saturation region, where λ represents the channel length modulation parameter.
These five parameters, KP, VT0, γ, λ, and 2ϕp, characterize the model and can be
directly specified in SPICE simulation or can be calculated from physical device
parameters including substrate doping, substrate permittivity, gate oxide capaci-
tance, and thickness.

Level 2 model: The Level 1 model does not include the effect of channel dimen-
sions on the threshold voltage. However, the experimental data show that when the
channel length is small enough to be comparable with the source and the drain
depletion regions, then the relationship between the channel dimension and the
threshold voltage is no longer negligible. John E. Meyer addressed this effect along
with some other second-order effects to provide a more accurate model for smaller
sized devices, which is considered as the Level 2 model [54]. The threshold voltage
VTH is modified in this model, as shown in Eq. (9), by introducing a change in the
body effect parameter, γ, as shown in Eq. (10) [53],

VTH ¼ VFB þ 2ϕp þ γ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ϕp � VBS

q

þ ϵsδπ

4C0
oxW

2ϕp � VBS

� �

(9)

γ0 ¼ γ 1� X j

2Leff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2WS

X j

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2WD

X j

s

� 2

 !" #

(10)

where VFB represents the flat-band voltage (the amount of applied gate voltage
when the channel region and the substrate have the same amount of carrier concen-
tration of the same polarity), εs is the substrate permittivity, δ is the width-effect
parameter, C’ox is the oxide capacitance, Xj represents the doping depth in the source
and the drain regions,WS andWD are the depletion widths at the source and the drain
regions, respectively.WS andWD both are functions of the substrate bias and the bulk
potential. Level 1 model also assumes that the fixed charge in the depleted channel
region is independent of the channel-to-substrate voltage. This assumption becomes
erroneous for large VDS, as a result of the significant difference of the depletion
widths between the drain and the source regions. Taking this effect into account, the
drain current, IDS expression in the linear region is modified, as presented in Eq. (11),
which gives current values close to those of the Level 1 model for smaller VDS.

IDS ¼
KP

1� λVDSð Þ
W

L� 2Xjl

� � VGS � VFB � 2ϕp �
VDS

2

	 


VDS

�

� 2

3
γ VDS � VBS þ 2ϕp

� �1:5
� �VBS þ 2ϕp

� �1:5
� ��

(11)
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The drain voltage in the saturation region is expressed in Eq. (12). The drain
current in the saturation region is obtained from Eq. (11) at VDS = VD,sat. A signif-
icant modification from Level 1 is the variation of the drain current with γ even if
VBS = 0. The drain-to-source voltage at saturation can be expressed as,

VD,sat ¼ VGS � VFB � 2ϕp þ γ2 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2

γ2
VGS � VFBð Þ

s
" #

(12)

The Level 2 model offers other modifications including nonzero drain current in
the weak-inversion region when VGS < VTH, and voltage-dependence of KP,
reflecting the change of the carrier mobility with the gate and the drain voltages.

Level 3 model: The basic equations of the Level 3 model were proposed by Dang
in 1979 [55]. This model can successfully predict the characteristic of a device with a
channel length down to 2 μm. In the linear region, the drain current expression of
Level 2 is simplified in this model by using the Taylor series expansion, as expressed
in Eq. (13),

IDS ¼ β VGS � VTH � 1þ FB

2
VDS

	 


VDS; FB ¼ γFS

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ϕp � VBS
p þ Fn (13)

The short-channel effect influences the empirical parameters, FS and β, while the
narrow channel influences another fitting parameter Fn. Level 3 uses a hypothesis,
similar to Level 2, in formulating the threshold voltage. The threshold voltage
proposed in Level 3 is presented in Eq. (14). However, the influence of the differ-
ence in the depletion width between the source and the drain regions, at higher VDS,
is now empirically expressed with the parameter, σ.

VTH ¼ VFB þ 2ϕp � σVDS þ γFS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ϕp � VBS

q

þ Fn 2ϕp � VBS

� �

(14)

This model handles the gate voltage dependence of the surface mobility, μs, and
the drain-to-source electric field dependence of the effective mobility, μeff, in a
simpler way, as expressed in Eq. (15), by using the mobility modulation parameter, θ.

μs ¼
μ

1þ θ VGS � VTHð Þ ; μeff ¼
μs

1þ μs VDS=vmaxLeff

� � (15)

In Eq. (15), the term vmax is the velocity limit reached by the carrier when VDS =
VD,sat. The Level 3 version of the saturation voltage VD,sat is presented in Eq. (16).

VD,sat ¼
VGS � VTH

1þ FB
þ
vmaxLeff

μs
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VGS � VTH

1þ FB

	 
2

þ
vmax Leff

μs

	 
2
s

(16)

BSIM1 model: To bring higher accuracy in modeling shorter channel devices
(down to 1 μm), the Berkeley Short Channel IGFET Model 1 (BSIM1) was intro-
duced in 1987 [28]. Similar to Level 2 and Level 3 models, this model incorporates
both the strong- and weak-inversion components of the drain current. However,
unlike the previous models, BSIM1 used numerical approximation for modeling the
dependence of the drain current on the substrate bias to speed up the simulation
process. An automated parameter extraction program was designed to extract the
model parameters. BSIM1 incorporates an improved formulation of short-channel
effects to deal with short-channel devices. To enhance the scalability of the model,
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several fitting parameters are introduced for each of the model parameters. How-
ever, this model offers no significant improvement in scalability and due to a large
number of fitting parameters, it has failed to gain popularity among circuit
designers.

BSIM2 model: BSIM2 was developed in 1990 for submicron devices by improv-
ing some aspects of BSIM1 including model continuity, output conductance, and
subthreshold current [56]. It employs cubic spline to achieve smoother transition
between weak- and strong-inversion and between linear and saturation regions.
BSIM2 uses more parameters for improved accuracy but the model has not solved
the issue regarding the difficult parameter extraction process. The user still cannot
get a set of parameters that are valid for a range of device sizes and has to deal with
many sets of model parameters, each covering a limited range of device geometries.

BSIM3 model: BSIM3 was developed in 1994 from a coherent quasi-two-
dimensional analysis of the MOSFET by addressing these issues of previous models
[49]. To ensure good scalability, this model explicitly considers the effect of device
size and process variation. The second version, BSIM3v2, was released with better
accuracy and scalability than the previous version. However, this second version
still suffers from the discontinuity, such as negative conductance and glitches in
transconductance over drain current versus gate voltage plot at the boundary of
weak- and strong-inversion regions. The third version, BSIM3v3.0, was introduced
to eliminate all the shortcomings of the previous versions [57]. The significant
distinction of BSIM3v3.0 is the introduction of the single-equation approach and
prediction-ability that enabled statistical analysis [58]. The improvement of this
third version of BSIM3 continued to three consecutive subversions, from
BSIM3v3.0 to BSIM3v3.2 to incorporate significant developments including the
introduction of a new charge-capacitance model considering the quantization
effect, improved threshold model, substrate current model, and non-quasi-static
model [59].

BSIM4 model: BSIM 4 was released in 2000 to support sub 130-nmm CMOS
technologies and the growth of high-speed analog, mixed-signal, and RF integrated
circuits [60]. A significant addition is a holistic noise model for the channel thermal
noise and induced gate noise [61]. An intrinsic input resistance model is used to
obtain accuracy at high-frequency operation. It also introduces a charge layer
thickness model incorporating novel quantum effects [62]. Moreover, it includes
the first model that takes into account the drain leakage current resulting from
direct-tunneling [63]. Other improvements include pocket implant effect, layout-
dependent factors including mechanical stress and well-proximity and enabled
modeling of high-k metal-gate stacks and non-silicon materials.

BSIM-bulk model: There have been recent efforts to combine the best features
of BSIM4 and EKV models. This has resulted in the newest addition to the Bulk
MOSFET model from BSIM group and is named BSIM-bulk (formerly known as
BSIM6). In contrast to its threshold voltage-based predecessors, BSIM-bulk is a
charge-based and body-referenced model, which passes the symmetry test for DC
and AC, correctly predicts harmonic slope, and exhibits accurate results for RF and
analog simulations [64]. In addition, bulk charge effect has been modeled analyti-
cally to improve the model accuracy for transconductance and output conductance
[65]. There is also a new NQS (non-quasi-static) model effective up to the millime-
ter wave regime.

2.4 Modeling of novel transistors and emerging devices

To continue the advancement of semiconductor industry beyond the imminent
demise of Moore’s Law, researchers all around the world have been exploring new
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technologies and consequently, a multitude of novel devices have emerged in recent
years. This book chapter has been focused mainly on the development of compact
models for bulk MOSFET. These models have been modified and extended for
several novel transistors. For example, for SOI (silicon-on-insulator) devices, PSP-
based model [66] and BSIM-based model [67, 68] have been reported. From the
BSIM group, BSIM-IMG model for independent multi-gate MOSFET operation [69]
and BSIM-CMG for common multi-gate transistor, that is, FinFET have been
developed [70].

In addition to different nanoscale transistors, the lessons learned during devel-
opment of different generations of compact models have also been successfully used
to model many emerging devices such as metal-oxide-based resistive random-
access memory (RRAM) devices [71, 72], insulator-metal-transition devices [73],
biomolecular memristors [74] and memcapacitors [75] etc.

3. Device simulation

For any newly developed semiconductor device, different parameters need to be
optimized before the device model can be adopted for practical circuit applications.
However, with rapid development of new device and process technologies, optimi-
zation of semiconductor manufacturing processes guided by experimental approach
becomes very time-consuming and expensive. As an alternative, device simulation
can allow optimization of the device parameters in a virtual environment in a fast
and cost-effective way to verify the device models for a newly developed semicon-
ductor technology. In general, the tools used for numerical device simulation
include three major components: (i) simulation of the fabrication process, (ii)
simulation of the device characteristics, and (iii) simulation of the device for circuit
applications. Figure 2 shows the basic hierarchy of process, device and circuit

Figure 2.
Hierarchy of process, device, and circuit simulation.
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simulation. Process simulation is closely coupled to the original device simulation
because the behavior of the fabricated device is significantly related to the overall
processing steps. Process simulation is implemented by mimicking the original
device fabrication steps that include several lithography steps as well as ion
implantation, diffusion, annealing, and oxidation steps. This simulation is based on
the measurement of doping profile using secondary ion mass spectroscopy (SIMS),
topography provided by transmission electron microscopy (TEM), the process rec-
ipe, and the lithography masks. Simulation of the device characteristics is based on
the overall geometry of the device coupled with the simulated profile from the
process simulation. This part of the simulation mainly focuses on the device output
and transfer current-voltage (I-V) characteristics, capacitance-voltage (C-V) char-
acteristics, or frequency response. The compact model intended to be used for the
circuit simulation can be developed based on the output of the process and device
simulation data optimized using different device parameters in TCAD tools.

3.1 Formulation of device simulation models

Semiconductor device simulation usually follows two different approaches such as
semiclassical approach and quantum mechanical formulations. In the semiclassical
approach, Boltzmann transport equation is used to model the carrier transport in the
semiconductor devices by developing the drift-diffusion model along with the energy
transport model. The solution of Boltzmann transport equation is usually obtained
from doping profile of the device structure. The electrostatic potential, which
depends on the dopant profile, is obtained from the Poisson’s equation. In order to
incorporate quantummechanical transport phenomena in the modern device models,
Boltzmann transport equation is coupled with Schrödinger equation and Wigner
function [76, 77]. Device simulation using the classical approach is discussed in next
section, which is then followed by a discussion of the quantum mechanical approach.

3.1.1 Device simulation using semiclassical approach

In the semiclassical approach, the Boltzmann transport equations to describe the
transport of electron and holes in a device can be written as,

∂f

∂t
þ v:∇rf �

qE

ℏ
∙ ∇kf ¼ Q fð Þ (17)

where f(r,k,t) stands for carrier distribution, which is a function of space, r,
momentum, k, and time, t; v is the velocity; and E is the electric field. Q(f) denotes
the collision operator as a function of the carrier distribution that takes into account
different scattering phenomena of the particle in the presence of impurities, pho-
non, interfaces, and scattering from other sources. However, solving the equation in
this form can be computationally intense and thus usual practice is to solve it by
applying approximate methods. One such method is called method of moments,
which yields a set of differential equations as a function of time and space after
multiplying a weight function with each term [78, 79]. The definition of the
moments of the distribution function is written as,

Φh i ¼ 1

4π3

ð

Φf r, k, tð Þd3k (18)

The drift-diffusion model can be obtained, by applying the method of moment
in the Boltzmann transport equation. For the derivation of the drift-diffusion
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model, the first two moments such as Φ0 = 1 and Φ1 = ℏk of the distribution function
are multiplied and integrated over k space. The integral of the collision operator Q
can be approximated by applying macroscopic relaxation time (RTA) along with
further simplification using the relationship of parabolic dispersion. Using this
method, the following set of differential equations for the drift-diffusion model can
be obtained,

∇:Jn ¼ qRþ q
∂n

∂t
(19)

∇:Jp ¼ �qR� q
∂p

∂t
(20)

Jn ¼ qnμnEþ qDn∇n (21)

Jp ¼ qpμpE� qDp∇p (22)

where J is the current density, R is the net recombination rate, n and p are the
concentration of electron and hole, respectively, μ is the mobility, E is the electric
field, and D is the diffusion coefficient. These set of equations for the drift-diffusion
model combined with the Poisson’s equation build the basic platform for the semi-
conductor device simulation. The charge transport in the semiconductor device
with respect to the electrostatic potential is obtained by using the Poisson’s equation
as given by,

∇ ∙ εs∇φð Þ ¼ q n� p�ND �NAð Þ (23)

where φ is the electrostatic potential, εs is the dielectric permittivity, and ND and
NA are the doping concentration of donor and acceptor atoms, respectively.

3.1.2 Device simulation using quantum mechanical approach

The basic simulation model using the semiclassical approach does not consider
the quantum mechanical properties present in the semiconductor device. However,
with the continuous reduction of the device size and due to the dual wave-particle
nature of electron, quantum mechanical effects in the semiconductor devices have
become significant and thus need to be incorporated in the model. There have been
several procedures developed to formulate the quantum mechanical transport in
modern electronic devices. Figure 3 shows a flow chart representing the relation-
ships among the relevant formulation of quantum models including Schrödinger
equation, transfer-matrix, density matrix, Green’s functions, Wigner function, and
path integral approaches [80].

One of the most common ways to incorporate the quantum mechanical effect
with the already developed semiclassical model involves coupling of Boltzmann
transport equation with Schrödinger equation inside a self-consistent Schrödinger-
Poisson loop. In this approach, the carrier concentration and the electrostatic
potential are obtained by using Schrödinger equation and Poisson equation, respec-
tively, in several iterations until a self-consistent solution is obtained. Boltzmann
transport equations are then solved using the derived carrier concentration [81].

Another approach involves using the Wigner function along with Boltzmann
transport equation to derive Boltzmann-Wigner equation [82],

∂f

∂t
þ v:∇rf �

q

ℏ

X

∞

α¼0

�1ð Þ2α
4α 2nþ 1ð Þ!∇

2nþ1
r V rð Þ ∙ ∇2nþ1

k f ¼ ∂f

∂t

	 


C

(24)
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where V denotes an external potential. This equation can be reduced to the
classical Boltzmann equation by considering the term α = 0. On the other hand,
considering α = 1 results in the density-gradient model as given by [83, 84]

∂f

∂t
þ ℏ ∙ k

m ∗
∇rf �

1

ℏ
∇r V rð Þ � ℏ

2

12m ∗
∇

2
r ln nð Þ

	 


∇kf ¼
∂f

∂t

	 


C

(25)

wherem* is the effective mass of the carrier. By using this equation, the quantum
drift-diffusion model can be obtained in a similar way by applying the method of
moments described in the previous section [85].

n ¼ Nc exp
E f � Ec � Λ

kBT

	 


(26)

Jn ¼ �μnkBT∇n� μnn∇ Ec � kBT lnNc þ Λð Þ (27)

Λ ¼ � γℏ2

12m ∗
∇

2 ln nþ 1

2
∇ ln nð Þ2

	 


¼ � γℏ2

6m ∗

∇2 ffiffiffi

n
p
ffiffiffi

n
p (28)

where γ and Λ are used as correction factors, Ef and Ec are the Fermi level and the
conduction energy band respectively, kB is the Boltzmann constant, and T is the
temperature. The implementation of the density-gradient model represents local
quantum effect, which is in many cases more convenient to implement in a numer-
ical device simulator than Schrödinger-Poisson equation that depends on nonlocal
quantities [86–90]. This is due to the fact that for most numerical simulations, the
overall device structure is divided into infinitesimal meshes and the electrical prop-
erties are then numerically calculated considering propagation along the meshes.
However, there have been some studies that show that although this approach is
suitable to model the carrier concentration of the inversion layer of the MOSFET,
it fails to model the tunneling currents, which represent other important quantum
mechanical effects present in modern devices [85]. Application of nonequilibrium
Green’s function is another approach to formulate quantum system that has non-
vanishing boundary conditions for Schrödinger equations. However, the solution of
the Green’s function quantum transport equation is very complex and several
assumptions and approximations are applied to simplify the derivation [91, 92] and
the carrier concentration can be calculated as,

Figure 3.
Flow chart illustrating the formulation of the quantum mechanical transport.
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D ¼ m ∗ kBT

2π2ℏ2

ð

A Eð Þ ln 1þ exp
E f � Ec

kBT

	 
	 


dE (29)

3.2 TCAD device simulation

The numerical models described in the previous section are very computation-
ally intensive and iterative in nature. For this reason, device simulation is usually
performed using technology computer-aided design (TCAD) tools, which can pro-
vide excellent predicting capability of the device properties allowing virtual
prototyping and optimization [93–95]. Most of the modern TCAD packages consist
of several tools to implement device processing, device design, parameter extrac-
tion, device and circuit simulation, and data visualization as shown in Figure 4.
Several of these tools can be combined together based on designer preference in
order to study the impact of any single step on the overall system performance.
Among these, the process simulation tool creates a virtual environment to emulate
the original fabrication and processing recipes that allow the process engineer to
study each processing step on the device characteristics and thus facilitate fine
tuning of their recipe to optimize the device performance. Electrical, thermal, and
optical properties of semiconductor devices are analyzed using another dedicated
tool for device simulation. Most TCAD device simulation tools implement finite
element methods and some of them have the capability to extract SPICE model
parameters for implementation in circuit applications. Physical equations and
material properties are incorporated for better prediction while considering the
convergence speed. The simulated data are stored in a standard format, which can
be represented by the visualization tools for further analysis.

4. Conclusion

In the era of rapid development of device technology and electronic circuit
design, semiconductor device modeling plays a vital role. To build sophisticated
electronic circuits, one needs to take a deeper dive into understanding the features
and the characteristics of the device through various modeling techniques. In this
chapter, different approaches of device modeling for electronic circuit design have
been discussed. To understand the behavior of any type of device, the first and

Figure 4.
Principle tools inside TCAD device simulation suites with input and output files.
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foremost approach is to understand the underlying physics for the device operation.
Physics-based analytical models provide accurate description of a device formula-
tion using mathematical equations with different operating parameters. However,
with the development of more complicated device structure, this type of technique
is becoming more complex and computationally inefficient. To achieve a computa-
tionally efficient process, empirically fitted parameters are introduced in the origi-
nal physics-based equations. In order to predict the device behavior in a circuit
application, SPICE simulation with efficient, accurate, and robust device model
becomes essential. With continuous research breakthroughs and introduction of
new physical phenomena, compact device models have evolved from the first-
generation Level 1 model to more sophisticated BSIM models. The newly developed
device models include a number of device parameters not only to describe the
fundamental device characteristics but to include other secondary phenomena that
have become significant with continuous device scaling and modification. In addi-
tion to the development of efficient device models for wide range of circuit appli-
cations, it is also important for device simulation to optimize the fabrication
parameters, prior to actual processing. This is to keep pace with the rapid develop-
ment of newly emerging devices. This book chapter attempts to provide a brief
overview of different aspects and methods for device modeling and simulation for
electronic circuit design.
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