SEMICONDUCTOR QUANTUM OPTICS

MACKILLO KIRA Philipps-Universität Marburg

STEPHAN W. KOCH

Philipps-Universität Marburg

Contents

Pre	eface	page X1
1	Central concepts in classical mechanics	1
	1.1 Classical description	1
	1.2 Statistical description of particles	13
	Exercises	23
	Further reading	25
2	Central concepts in classical electromagnetism	26
	2.1 Classical description of electromagnetic fields	26
	2.2 Particle aspects of electromagnetic waves	32
	2.3 Generalized wave and Helmholtz equations	38
	Exercises	45
	Further reading	46
3	Central concepts in quantum mechanics	48
	3.1 Schrödinger equation	49
	3.2 Expectation values in quantum mechanics	54
	Exercises	63
	Further reading	64
4	Central concepts in stationary quantum theory	65
	4.1 Stationary Schrödinger equation	65
	4.2 One-dimensional Schrödinger equation	67
	4.3 Classification of stationary eigenstates	71
	4.4 Generic classification of energy eigenstates	82
	Exercises	84
	Further reading	85
5	Central concepts in measurement theory	86
	5.1 Hermitian operators	86
	5.2 Eigenvalue problems	87
	5.3 Born's theorem	93

.

	Exercises	98
	Further reading	99
6	Wigner's phase-space representation	101
	6.1 Wigner function	101
	6.2 Wigner-function dynamics	111
	6.3 Density matrix	115
	6.4 Feasibility of quantum-dynamical computations	116
	Exercises	118
	Further reading	119
7	Hamiltonian formulation of classical electrodynamics	121
	7.1 Basic concepts	122
	7.2 Hamiltonian for classical electrodynamics	124
	7.3 Hamilton equations for light-matter system	129
	7.4 Generalized system Hamiltonian	136
	Exercises	139
	Further reading	140
8	System Hamiltonian of classical electrodynamics	141
	8.1 Elimination of the scalar potential	141
	8.2 Coulomb and Lorentz gauge	143
	8.3 Transversal and longitudinal fields	148
	8.4 Mode expansion of the electromagnetic field	153
	Exercises	159
	Further reading	160
9	System Hamiltonian in the generalized Coulomb gauge	162
	9.1 Separation of electronic and ionic motion	162
	9.2 Inclusion of the ionic polarizability	165
	9.3 Generalized Coulomb potential	170
	9.4 Generalized light-mode functions	177
	Exercises	190
	Further reading	191
10	Quantization of light and matter	193
	10.1 Canonical quantization	193
	10.2 Second quantization of light	198
	10.3 Eigenstates of quantized modes	203
	10.4 Elementary properties of Fock states	211
	Exercises	216
	Further reading	217
11	Quasiparticles in semiconductors	
	11.1 Second-quantization formalism	218

vi

	Contents	vii
	11.2 System Hamiltonian of solidsExercisesFurther reading	229 236 238
12	 Band structure of solids 12.1 Electrons in the periodic lattice potential 12.2 Systems with reduced effective dimensionality Exercises Further reading 	240 240 246 251 252
13	Interactions in semiconductors 13.1 Many-body Hamiltonian 13.2 Light-matter interaction 13.3 Phonon-carrier interaction 13.4 Coulomb interaction 13.5 Complete system Hamiltonian in different dimensions Exercises Further reading	253 253 254 264 267 269 276 277
14	 Generic quantum dynamics 14.1 Dynamics of elementary operators 14.2 Formal properties of light 14.3 Formal properties of general operators Exercises Further reading 	279 279 288 295 300 302
15	 Cluster-expansion representation of the quantum dynamics 15.1 Singlet factorization 15.2 Cluster expansion 15.3 Quantum dynamics of expectation values 15.4 Quantum dynamics of correlations 15.5 Scattering in terms of correlations Exercises Further reading 	304 305 310 315 316 318 321 322
16	Simple many-body systems16.1Single pair state16.2Hydrogen-like eigenstates16.3Optical dipoleExercisesFurther reading	324 324 328 335 342 343
17	Hierarchy problem for dipole systems17.1Quantum dynamics in the $\hat{\mathbf{A}} \cdot \hat{\mathbf{p}}$ picture17.2Light-matter coupling	345 345 351

	17.3 Dipole emission 17.4 Quantum dynamics in the $\hat{\mathbf{E}} \cdot \hat{\mathbf{x}}$ picture Exercises Further reading	351 356 361 363			
18	Two-level approximation for optical transitions 18.1 Classical optics in atomic systems 18.2 Two-level system solutions Exercises Further reading				
19	 Self-consistent extension of the two-level approach 19.1 Spatial coupling between light and two-level system 19.2 Maxwell-optical Bloch equations 19.3 Optical Bloch equations with radiative coupling Exercises Further reading 				
20	 Dissipative extension of the two-level approach 20.1 Spin representation of optical excitations 20.2 Dynamics of Pauli spin matrices 20.3 Phenomenological dephasing 20.4 Coupling between reservoir and two-level system Exercises Further reading 	405 405 406 408 412 418 418			
21	Quantum-optical extension of the two-level approach 21.1 Quantum-optical system Hamiltonian 21.2 Jaynes–Cummings model Exercises Further reading	420 420 427 436 437			
22	 Quantum dynamics of two-level system 22.1 Formal quantum dynamics 22.2 Quantum Rabi flopping 22.3 Coherent states 22.4 Quantum-optical response to superposition states Exercises Further reading 	438 438 441 445 449 454 456			
23	Spectroscopy and quantum-optical correlations23.1Quantum-optical spectroscopy23.2Quantum-statistical representations23.3Thermal state23.4Cluster-expansion dynamics	457 457 459 464 467			

Contents

viii

		Contents	ix
	23.5	Quantum optics at the singlet-doublet level	473
	Exerc	vises	476
	Furth	478	
24	General aspects of semiconductor optics		480
	24.1	480	
	24.2	Operator dynamics of solids in optical regime	486
	24.3	Cluster-expansion dynamics	490
	24.4	Relevant singlets and doublets	491
	24.5	Dynamics of singlets	492
	Exercises		496
	Further reading		497
25	Intro	luctory semiconductor optics	499
	25.1	Optical Bloch equations	499
	25.2	Linear response	502
	25.3	Coherent vs. incoherent quantities	507
	25.4	Temporal aspects in semiconductor excitations	512
	Exerc	518	
	Further reading		519
26	Maxy	521	
	26.1	Semiconductor Bloch equations	521
	26.2	Excitonic states	526
	26.3	Semiconductor Bloch equations in the exciton basis	529
	26.4	Linear optical response	532
	26.5	Excitation-induced dephasing	541
	Exercises		547
	Further reading		548
27	Cohe	rent vs. incoherent excitons	550
	27.1	General singlet excitations	550
	27.2	Incoherent excitons	556
	27.3	Electron-hole correlations in the exciton basis	563
	Exerc	568	
	Further reading		570
28	Semi	conductor luminescence equations	572
	28.1	Incoherent photon emission	572
	28.2	Dynamics of photon-assisted correlations	577
	28.3	Analytic investigation of the semiconductor luminescence	582
	28.4	Excitonic signatures in the semiconductor luminescence	588
	Exercises		590
	Further reading		591

x		Contents	
29	Many	y-body aspects of excitonic luminescence	593
	29.1	Origin of excitonic plasma luminescence	593
	29.2	Excitonic plasma luminescence	597
	29.3	Direct detection of excitons	602
	Exerc	cises	604
	Furth	er reading	606
30	Adva	nced semiconductor quantum optics	608
	30.1	General singlet-doublet dynamics	609
	30.2	Advanced quantum optics in the incoherent regime	614
	30.3	Advanced quantum optics in the coherent regime	616
	Exercises		
	Further reading		622
App	pendix	Conservation laws for the transfer matrix	627
	A.1	Wronskian-induced constraints	627
	A.2	Current-induced constraints	628
	A.3	Explicit conservation laws	630
Further reading			632
	Index	¢	633