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ASMA EL AYYADI† AND ANSGAR JÜNGEL†

Abstract. A coupled quantum drift-diffusion Schrödinger-Poisson model for stationary resonant
tunneling simulations in one space dimension is proposed. In the ballistic quantum zone with the
resonant quantum barriers, the Schrödinger equation is solved. Near the contacts, where collisional
effects are assumed to be important, the quantum drift-diffusion model is employed. The quantum
drift-diffusion model have been derived by a quantum moment method from a collisional Wigner
equation by Degond et al. The derivation yields an O(~4) approximation of the Wigner function
which is used as the “alimentation function” in the mixed-state formula for the electron and current
densities at the interface. The coupling of the two models is realized by assuming the continuity
of the electron and current densities at the interface points. Current-voltage characteristics of a
one-dimensional tunneling diode are numerically computed. The results are compared to those from
the three models: quantum drift-diffusion equations, Schrödinger-Poisson system, and the coupled
drift-diffusion Schrödinger-Poisson equations.
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1. Introduction. Quantum effects in modern semiconductor devices are becom-
ing of increasing importance in VLSI design. Devices which are based on quantum
effects, like resonant tunneling diodes, can be used in logic applications [19] and are
expected to improve the system performance of multi-GHz circuits in wireless com-
munication systems [27]. Resonant tunneling diodes can be modeled by the Wigner
equation [23] or the mixed-state Schrödinger equation [26]. However, the numeri-
cal computation of these equations is very expensive, even in one space dimension.
Therefore, macroscopic quantum equations like quantum hydrodynamic or quantum
drift-diffusion models have been devised [1, 15], whose numerical solution is much
cheaper than solving microscopic models [18, 20, 22]. On the other hand, quantum
diffusion models do not always give sufficiently physical accurate solutions [7].

In order to meet both demands (physical accuracy and numerical efficiency), cou-
pled microscopic-macroscopic models can be employed. In these models, a microscopic
quantum description is used in regions with dominant quantum effects and a macro-
scopic (fluid-type) model is employed in subregions in which collisional effects are
expected to be dominant. In the case of a resonant tunneling diode, it has been pro-
posed in [10] to use the stationary mixed-state Schrödinger equation in the (ballistic)
channel region and the stationary drift-diffusion equations in the diffusion zones near
the contacts. This approach has two advantages. First, the spatial domain in which
the Schrödinger equation is solved can be reduced, thus also reducing the computa-
tional effort. Secondly, as the diffusion zone is assumed to be collision dominated, a
diffusion approximation of the Wigner equation leads naturally to a coupling strategy
between the quantum and classical equations.
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Similar coupling approaches have been proposed in the literature. A coupled
kinetic-quantum model has been introduced in [4]. More precisely, a Boltzmann
equation is solved in the classical zone and the stationary Schrödinger equation is
computed in the quantum zone. At the interface between the classical and quantum
zones, the boundary conditions for the Boltzmann equation depend on the reflection
and transmission coefficients of the Schrödinger solution. The distribution function
solving the Boltzmann equation is used as an “alimentation function” in the definition
of the electron density in the quantum region. A time-dependent classical-quantum
coupling strategy has been studied in [5]. Replacing the Boltzmann equation and
the boundary conditions by the drift-diffusion model with interface conditions from a
diffusion approximation leads to the already mentioned approach of [10]. The coupled
drift-diffusion Schrödinger model has been recently extended to include collisions via
a Pauli master equation [2]. A model in which a classical transport is assumed in the
direction parallel to the electron gas and a quantum description in the transversal
direction is analyzed in [6]. In [14] the quantum drift-diffusion model is used in
the parallel direction instead of a classical transport description. For other coupling
models we refer to, e.g., [3, 8].

In this paper we propose a slightly different approach compared to [10]. Instead
of choosing a classical collision operator in the Boltzmann equation (from which the
drift-diffusion model is derived) we start from the Wigner equation with a BGK
collision operator. In [11] it has been shown that a diffusion approximation of the
Wigner-BGK model leads to the so-called quantum drift-diffusion model (also called
density-gradient model [1]),

∂n

∂t
− 1

e
divJ = 0, J = µn (Uth∇n − n∇(V + Q[n])) ,

where the variables are the electron density n(x, t), the current density J(x, t), and
the electrostatic potential V (x, t); the physical constants are the elementary charge
e, the electron mobility µn = eτ/m, the effective electron mass m, the momentum
relaxation time τ , and the thermal voltage Uth. The expression

Q[n] =
~

2

6em

∆
√

n√
n

denotes the quantum Bohm potential, where ~ is the reduced Planck constant. The
fourth-order parabolic quantum drift-diffusion model has been analyzed and numeri-
cally solved in [22].

More precisely, we use the quantum drift-diffusion model in the diffusion region
and the mixed-state Schrödinger equation in the ballistic zone. We restrict our-
selves to the spatial one-dimensional stationary case in order to avoid complicate
topological conditions on the device geometry. The advantage of our approach is
that no (artificial) separation of the quantum and classical zones is necessary since a
quantum description is employed in the whole device. The coupled model is solved
self-consistently with the Poisson equation.

The coupling of the models is realized through connection conditions relating the
macroscopic variables, namely the electron density and the current density, at the
interface boundary points. We suppose that the particle and current densities are
continuous across the interface. The current density computed from the Schrödinger
equation depends on the statistics (or “alimentation function”) used in the mixed-
state formula. At the interface we assume that the statistics of the incoming particles
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equals the O(~4) approximation of the so-called quantum Maxwellian which is related
to the quantum drift-diffusion model. This yields nonlinear boundary conditions for
the macroscopic electron density and its derivatives.

The coupled model is numerically implemented using a finite-difference discretiza-
tion and tested against a test case for a one-dimensional resonant tunneling diode
taken from [26]. The numerical results show negative differential resistance in the
current-voltage characteristic at room temperature, whereas the quantum drift-diffu-
sion model in the whole domain is not able to reproduce these effects at room tem-
perature (with the physical effective electron mass). Furthermore, hysteresis in the
current-voltage curve can be observed in computations from our coupled model but
not from the quantum drift-diffusion model. Compared to the numerical solution
of the Schrödinger-Poisson system in the whole domain, the numerical effort of the
coupled model is significantly reduced with comparable numerical solutions.

The paper is organized as follows. In the next section, the Schrödinger equation
with open boundary conditions is presented and a sketch of the derivation of the
quantum drift-diffusion model following [11] is given. Furthermore, the coupling of
the two models is explained. Section 3 is concerned with the numerical discretization
of the equations and the iteration procedure. Finally, some numerical results for a
one-dimensional resonant tunneling diode are presented in section 4.

2. Presentation of the models. The semiconductor is assumed to occupy the
interval Ω = (0, L) in which the ballistic quantum zone Ωs = (x1, x2) is sandwiched
between two quantum diffusion regions Ωq = (0, x1) ∪ (x2, L), and 0 < x1 < x2 < L.

2.1. The Schrödinger model. We consider the Schrödinger equation in the
interval (a, b), where a = 0, b = L or a = x1, b = x2. In the first case we solve the
Schrödinger equation in the whole semiconductor domain, in the latter case only in
the ballistic quantum zone.

Let the electrostatic potential V (x) be given and let Ṽ = V + Vext be the sum of
electrostatic and external potential (Vext models, for instance, the double barriers).
We solve the Schrödinger equation

−~

2

d

dx

(
1

m

dψp

dx

)
− eṼ (x)ψp = Epψp, x ∈ (a, b), p ∈ R, (2.1)

where ~ = h/2π is the reduced Planck constant, m the (generally position-dependent)
effective mass of the electrons, e the elementary charge, and Ep is the total energy of
the corresponding scattering state ψp, given by

Ep =

{
p2/2m − eṼ (a) : p > 0

p2/2m − eṼ (b) : p < 0.

Here, p = ~k is the crystal momentum and k the wave vector. We use the Lent-Kirkner
boundary conditions for (2.1) [16, 24]

~ψ′

p(a) + ipψp(a) = 2ip, ~ψ′

p(b) = ip+(p)ψb(b) if p > 0, (2.2)

~ψ′

p(b) − ipψp(b) = −2ip, ~ψ′

p(a) = −ip−(p)ψp(a) if p < 0, (2.3)

where

p±(p) =

√
p2 ± 2em(Ṽ (b) − Ṽ (a)). (2.4)
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These boundary conditions can be derived by solving the above Schrödinger equa-
tion in R, extending the potential by the definitions Ṽ (x) = Ṽ (a) for x < a and

Ṽ (x) = Ṽ (b) for x > b. Then the solutions are plane waves in the intervals (−∞, a)
and (b,∞), i.e. for p > 0 [10]:

ψp(x) = eip(x−a)/~ + r(p)e−ip(x−a)/~ (x < a), (2.5)

ψp(x) = t(p)eip+(p)(x−b)/~ (x > b),

and for p < 0:

ψp(x) = e−ip(x−b)/~ + r(p)eip(x−b)/~ (x > b),

ψp(x) = t(p)e−ip−(p)(x−a)/~ (x < a). (2.6)

The incoming wave is thus assumed to have amplitude one. The reflection and trans-
mission amplitudes r(p) and t(p) are uniquely determined from the solution (see [10, p.
226]). By eliminating the unknowns r(p) and t(p), the boundary conditions (2.2)-(2.3)
are obtained.

From the amplitudes r(p) and t(p) the reflection and transmission coefficients can
be computed:

R(p) = |r(p)|2, T (p) =
Re(p±(p))

|p| |t(p)|2 if ± p > 0,

where “Re” denotes the real part of a complex number. It holds R(p) + T (p) = 1 for
all p ∈ R and T (p) = T (−p+(p)) for all p > 0 (reciprocity property).

We have to introduce some macroscopic quantities. The electron density ns(x) is
defined by

ns(x) =

∫

R

g(p)|ψp|2dp, (2.7)

where g(p) is the statistics of the left reservoir if p > 0 and of the right reservoir if
p < 0 (also called “alimentation function”), and the current density is given by

Js(x) =
e~

m

∫

R

g(p)Im(ψp(x)ψ′

p(x))dp, (2.8)

where “Im” denotes the imaginary part of a complex number. In one space dimension
the expression for the current density can be reformulated. Indeed, using (2.2)-(2.3)
and (2.5)-(2.6), we obtain

~ Im(ψp(a)ψ′

p(a)) = Im(ip(1 − |r(p)|)2) = pT (p) for p > 0,

~ Im(ψp(a)ψ′

p(a)) = −Im(ip−(p)|t(p)|2) = pT (p) for p < −p0,

and ~ Im(ψp(a)ψ′
p(a)) = 0 if −p0 < p ≤ 0, where p0 = Re

√
2em(Ṽ (b) − Ṽ (a)).

Therefore, since Js(x) is constant,

Js(x) = Js(a) =
e

m

∫ ∞

0

g(p)T (p)pdp +
e

m

∫ −p0

−∞

g(p)T (p)pdp

=
e

m

∫ ∞

0

g(p)T (p)pdp +
e

m

∫ 0

∞

g(−p+)T (−p+)pdp

=
e

m

∫ ∞

0

(g(p) − g(−p+))T (p)pdp, (2.9)
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where we have used the substitution p 7→ −p+(p) and the reciprocity property of
T (p).

The choice of the alimentation function g(p) depends on the choice of a and b. If
a = 0 and b = L, it is taken to be the Fermi-Dirac distribution:

g(p) =
mkBT0

2π2~3
ln

{
1 + exp

[
1

kBT0

(
− p2

2m
+ EF

)]}
,

where kB is the Boltzmann constant, T0 the lattice temperature, and EF the Fermi
energy computed from the charge-neutrality condition at the left or right reservoir
boundary. This formula holds if the system is macroscopically large in its transversal
dimensions (see [17, Ch. 9] or [25, Ch. 1.5.2.1]). In the case a = x1 and b = x2 we
choose g(p) as an approximation of the so-called quantum Maxwellian (see (2.16) and
(2.11) below).

2.2. The quantum drift-diffusion model. In order to explain the coupling
with the quantum drift-diffusion equations we need to review its derivation from a
Wigner-BGK model as performed by Degond et al. [11, 12]. We start from the
collisional Wigner equation in one space dimension

wt +
p

m
wx +

e

m
θ[Ṽ ] = Q(w), x, p ∈ R, t > 0, (2.10)

where wt, wx denote the partial derivatives of w with respect to t and x, respectively,
and θ[Ṽ ] is a pseudo-differential operator given by

(θ[Ṽ ]w)(x, p, t) =
i

2π~

∫

R2

[
Ṽ

(
x +

~

2m
η

)
− Ṽ

(
x − ~

2m
η

)]

× w(x, p′, t)eiη(p−p′)/mdp′dη.

(We do not indicate here the time-dependency of Ṽ .) The collision operator is assumed
to be of BGK type, i.e.

Q(w) =
1

τ
(M [w] − w),

where τ is the relaxation time and M [w] is the so-called quantum Maxwellian defined
as minimizer of the quantum entropy, subject to the constraint of a given particle
density [13]. In order to make this precise we introduce first the so-called relative
quantum entropy.

Let W−1 be the inverse Wigner transform (or Weyl quantization):

(W−1[w])φ(x) =
1

2π~

∫

R2

w

(
x + y

2
, p, t

)
φ(y)eip(x−y)/~dpdy for suitable φ(x).

The relative quantum entropy for the density matrix ρ = W−1[w] is defined as follows:

S(ρ) =
1

2π~

∫

R2

w

(
Ln(w) − 1 +

H

kBT0

)
dxdp,

where H = |p|2/2m− eṼ (x) is the classical Hamiltonian, Ln(w) := W [ln(W−1[w])] is
called the “quantum logarithm”, and ln(f) is the usual operator logarithm. We wish
to find, for given n(x), the minimizer of

S(ρ∗) = min

{
S(ρ) :

1

2π~

∫

R

W [ρ]dp = n(x) ∀x

}
.
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The solution (if it exists) is ρa = W−1[wa], where wa = Exp(a(x) − H/kBT0) and
Exp(f) := W [exp(W−1[f ])] is called the “quantum exponential”. The function a(x)
is such that

∫
wa(x, p)dp/2π~ = n(x). We call wa a quantum Maxwellian. In other

words, for given w(x, p), we define M [w] as the quantum Maxwellian

M [w] = Exp

(
b(x) − |p|2

2mkBT0

)

such that
∫

(M [w] − w)dp = 0 and b(x) = a(x) − eṼ (x)/kBT0. We assume that the
integral constraint fixes the function b(x) in a unique way [11].

The quantum drift-diffusion model is derived from (2.10) in the diffusion limit.
For this, we introduce the scaling t → t/δ and Q(w) → Q(w)/δ which yields

δ2wδ
t + δ

( p

m
wδ

x +
e

m
θ[Ṽ ]

)
= Q(wδ).

As δ → 0, the formal limit w0 = limδ→0 wδ satisfies Q(w0) = 0, hence w0 = M [w0] =
Exp(b0(x) − |p|2/2mkBT0) for some function b0(x), and n(x) =

∫
w0(x, p)dp/2π~. In

[11] has been shown by a Chapman-Enskog expansion method that n satisfies the
equation

nt −
1

e
Jx = 0, J =

τekBT0

m
nb0,x − τe2

m
nVx,

and n and b0 are related by

n =

∫

R

Exp

(
b0(x) − |p|2

2mkBT0

)
dp

2π~

(see [12, Lemma 6.5]). Furthermore, we can expand w0 = Exp(b0−|p|2/2mkBT0) and
thus n and J in terms of ~.

Lemma 2.1. The following (formal) expansion holds for all x, p ∈ R up to order
O(~4):

w0(x, p) = A0e
−p2/2mkBT0n

[
1 +

~
2

12mkBT0

(
1 − p2

mkBT0

) (
(
√

n)xx√
n

− (
√

n)2x
n

)]
,

(2.11)

where A0 =
√

2π~2/mkBT0.
Notice that (

√
n)xx/

√
n − (

√
n)2x/n = (log n)xx but the formulation in (2.11) is

more convenient later.
Proof. We use Lemma 5.6 of [11] to obtain

w0(x, p) = exp

(
b0 −

p2

2mkBT0

)
− ~

2

8mkBT0
exp

(
b0 −

p2

2mkBT0

)

×
[(

−1 +
p2

3mkBT0

)
b0,xx − 1

3
b2
0,x

]
+ O(~4). (2.12)

This gives

n(x) =

∫

R

w0(x, p)
dp

2π~
= n0(x) +

~
2

24mkBT0
n0(x)(2b0,xx + b2

0,x) + O(~4),
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where n0 := exp(b0)/A0. Consequently, n = n0 + O(~2) and we can solve the above
equation for n0:

n0 = n − ~
2

24mkBT0
n(2b0,xx + b2

0,x) + O(~4).

Inserting this expression into (2.12) yields, after some computations,

w0 = A0e
−p2/2mkBT0n

[
1 +

~
2

24mkBT0

(
1 − p2

mkBT0

)
b0,xx

]
+ O(~4).

Since

b0,xx = 2
(
√

n)xx√
n

− n2
x

2n2
+ O(~2) = 2

(
√

n)xx√
n

− 2
(
√

n)2x
n

+ O(~2)

(see [11, sec. 5.3]), we conclude the assertion.

In [11] it is shown that we can expand n = nq + O(~4), J = Jq + O(~4), and nq,
Jq satisfy the so-called quantum drift-diffusion equations

nq,t −
1

e
Jq,x = 0, Jq =

τekBT0

m
nq,x − τe2

m
nq(Ṽ + Q[nq])x, (2.13)

where

Q[nq] =
~

2

6em

(
√

nq)xx√
nq

is the so-called Bohm potential.

We can rewrite (2.13) by introducing the function ρ =
√

nq and the quantum
quasi-Fermi potential

F = Uth lnnq − Ṽ − Q[nq]

(with the thermal voltage Uth = kBT0/e). Then the stationary version of (2.13)
becomes

(ρ2Fx)x = 0, F = Uth ln ρ2 − Ṽ − ~
2

6em

ρxx

ρ
. (2.14)

The current density equals Jq = (τe2/m)ρ2Fx = eµnρ2Fx.

In order to specify boundary conditions for (2.14) we need to distinguish the two
cases for the choice of a and b. Let first a = 0 and b = L. Then, following [22], we
assume that the total space charge vanishes and that no quantum effects occur at the
boundary (in the sense (

√
nq)xx = 0). Thus

nq(0) = nD(0), nq(L) = nD(L), F (0) = 0, F (L) = −Va, (2.15)

where Va denotes the applied voltage. The case a = x1 and b = x2 is studied in the
next subsection.
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2.3. The coupled model. Let a = x1 and b = x2. We solve the Schrödinger
equation (2.1) in (a, b) with boundary conditions (2.2)-(2.3) and the quantum drift-
diffusion model (2.14) in the intervals (0, x1) and (x2, L).

In order to compute the electron and current densities ns and Js, respectively
(see (2.7) and (2.8)), we need to specify the alimentation function g(p). We choose
g(p) as the O(~4) approximation (2.11) of the quantum Maxwellian (see Lemma 2.1):

g(p) = w0(a, p) if p > 0, g(p) = w0(b, p) if p < 0. (2.16)

Although in general, w0 does not need to be a nonnegative function, we observed
in the numerical simulations that w0(a, p) and w0(b, p) are always positive. Another
idea could be to choose the classical Maxwellian instead of the (approximation of
the) quantum Maxwellian w0 in (2.16). However, this choice did not lead to a con-
verging algorithm (see section 3 for details on the discretization and the iterative
procedure). A possible explanation could be that the use of the classical Maxwellian
is not consistent with the use of the quantum drift-diffusion model.

The coupling of both models is realized through connection conditions relating
the macroscopic unknowns (the electron density and the current density) at the two
interface points x1 and x2. We assume that at the interface, the particle density and
the current density is continuous, i.e.

nq(x1) = ns(x1), nq(x2) = ns(x2), Jq(x1) = Js(x1), Jq(x2) = Js(x2).

Thus, the quantum drift-diffusion model is solved in (0, x1) with the four boundary
conditions

nq(0) = nD(0), F (0) = 0, nq(x1) = ns(x1), Jq(x1) = Js(x1). (2.17)

In the interval (x2, L) we impose the boundary conditions

nq(x2) = ns(x2), Jq(x2) = Js(x2), nq(L) = nD(L), F (L) = −Va. (2.18)

The interface conditions for the current densities can be written in a form which
is more convenient for the numerical computations. For this, we remark that we have
from (2.16) and (2.9)

Js(x1) =

∫ ∞

0

w0(a, p)T (p)pdp −
∫ ∞

0

w0(b,−p+(p))T (p)pdp

and Js is constant in [x1, x2]. Inserting the above formula into Jq(xj) = Js(xj)
(j = 1, 2), some elementary computations give, up to order O(~4),

Jq(x2) = Jq(x1) =
√

2πθA0

(
ns(x1) − e−δV/2θns(x2)

)
I1

+
√

2πθ
~

2A0

12
ns(x1)

(
ρxx

ρ
− ρ2

x

ρ2

)

x=x1

(θI1 − I2)

+
√

2πθ
~

2A0

12
ns(x2)

(
ρxx

ρ
− ρ2

x

ρ2

)

x=x2

e−δV/2θ((θ − δV )I1 − I2),

where ρ =
√

nq, θ = mkBT0, δV = 2em(V (x2) − V (x1)), and

I1 =
1√
2πθ

∫ ∞

0

pT (p)e−p2/2θdp, I2 =
1√
2πθ

∫ ∞

0

p3T (p)e−p2/2θdp.
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For the numerical computations we replace the Bohm potential term ρxx/ρ by the
expression (2.14) in order to avoid the computation of the second derivatives of ρ.
This gives two nonlinear boundary conditions for the quantum quasi-Fermi potential
F :

ns(xj)Fx(xj) = f(F (x1), F (x2), ρx(x1), ρx(x2)), j = 1, 2,

where

f(F (x1), F (x2), ρx(x1), ρx(x2)) =
√

2πθA0I1

(
ns(x1) − e−δV/2θns(x2)

)

+
em

2

√
2πθA0(θI1 − I2)ns(x1)

(
F (x1) − Uth lnns(x1) + Ṽ (x1) +

~
2

6em

ρ2
x(x1)

ns(x1)

)

+
em

2

√
2πθA0e

−δV/2θ((θ − δV )I1 − I2)ns(x2)

×
(

F (x2) − Uth lnns(x2) + Ṽ (x2) +
~

2

6em

ρ2
x(x2)

ns(x2)

)
.

Finally, the electric potential is self-consistently coupled through the Poisson
equation

d

dx

(
εs

dV

dx

)
= e(n − nD(x)), x ∈ (0, L),

where εs is the semiconductor permittivity and the particle density n(x) is given by

n(x) =

{
nq(x) : x ∈ (0, x1) ∪ (x2, L)
ns(x) : x ∈ (x1, x2).

(2.19)

3. Numerical discretization. We discretize the equations by introducing a
uniform mesh ξk = k4x, 4x > 0, k = 0, . . . ,K, and L = K4x.

The Schrödinger equation is solved by central finite differences as in [10]. For the
convenience of the reader we recall the discretization scheme. We assume that the
effective mass is constant in [x1, x2] since we wish to compare our results with those
from the literature, e.g. [7, 26]. Moreover, a space-dependent effective electron mass
leads to quite complicate quantum drift-diffusion models whose numerical solution is
delicate [28]. The Schrödinger equation (2.1) with boundary conditions (2.2) for p > 0
(the case p < 0 can be treated analogously) can be equivalently rewritten as

y′′ = −2m

~2
(Ep + eṼ )y in (x1, x2), y(x2) = 1, y′(x2) =

i

~
p+(p), (3.1)

where p+(p) is defined in (2.4) and y and ψp are related by

ψp(x) =
2ipy(x)

~y′(x1) + ipy(x1)
.

With the approximations yk ≈ y(ξk) and Ṽk ≈ Ṽ (ξk) = Vext(ξk) + V (ξk) the discrete
problem is

1

(4x)2
(yk+1 − 2yk + yk−1) = −2m

~2
(Ep + eṼk)yk.
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This problem is solved as in [10] by Stoermer’s method, i.e. writing

zk =
yk+1 − yk

4x
(k = 0, . . . ,K − 1), zK = y′(x2) −

m

~2
(Ep + eṼ (x2))y(x2)

and noticing that zK is known in view of (3.1), the iteration reads:

zk = zk+1 −
m

~2
4x(Ep + eṼk−1)yk−1,

yk = yk+1 −4xzk,

y′

0 = y′(x1) = z1 −
m

~2
4x(Ep + eṼ0)y0,

which allows to calculate zk and yk recursively. The algorithm is vectorized and
implemented in MATLAB.

The quantum drift-diffusion model (2.14) is approximated by central finite differ-
ences as in [22]. The proposed scheme has been proved to be positivity preserving,
i.e., the discrete electron density is positive (see [21, 22] for details). Let ρk and
Fk be approximations of ρ(ξk) and F (ξk), respectively. Then the discrete problem
corresponding to (2.14) is

1

(4x)2

(
ρ2

k+1/2Fk+1 − (ρk+1/2 + ρk−1/2)Fk + ρ2
k−1/2Fk−1

)
= 0, (3.2)

Fk = Uth ln ρ2
k − Ṽk − ~

2

6em(4x)2
ρk+1 − 2ρk + ρk−1

ρk
, (3.3)

where ρk±1/2 = (ρk + ρk±1)/2.
Finally, the discrete Poisson equation for Vk ≈ V (ξk) reads as follows:

εs

(4x)2
(Vk+1−2Vk+Vk−1) = e(nk−nD(ξk)) (k = 1, . . . ,K−1), V0 = 0, VK = U,

where we have assumed a constant semiconductor permittivity εs, and the electron
density is either given by (2.7) (discretized by a standard quadrature formulae) in the
interval [x1, x2] or by ρ2

k otherwise.
We describe now the iterative procedures for the various models. We use a fixed-

point strategy to solve the Schrödinger-Poisson system in (0, L) (i.e. a = 0 and b = L).
More precisely, we choose the electrostatic potential V (0) of the thermal equilibrium
state as an initial guess. This potential is the (discrete) solution of the Poisson equa-
tion in which the electron density is replaced by the Thomas-Fermi approximation:

εs
d2V

dx2
= e

(
NcF1/2

(
µ − Ṽ

kBT0

)
− nD(x)

)
in (0, L), V (0) = V (L) = 0.

Here, Nc = 2(mkBT0/2π~
2)3/2 is the effective density of states and F1/2 is the Fermi

integral of order 1/2 [17, Ch. 9]. The chemical potential µ is a constant in thermal
equilibrium and computed from the nonlinear equation nD(0) = n(0) = F1/2(µ/kBT0)
(where we assumed charge neutrality). With this initial potential we solve the dis-
crete Schrödinger problem to obtain the (discrete) scattering states which allow to
compute the discrete electron density from (2.7) and the discrete current density from
(2.8). Finally, the update of the electric potential can be computed from the Poisson
equation written in the Gummel formulation (see (3.8) in [10])

εs
d2V (j+1)

dx2
+ e(V (j+1) − V (j))n(j) = e(n(j) − nD(x)).
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The solution of the Schrödinger eigen value problem is the most costly part of
the iteration. Indeed, we use a uniform grid of 10,000 values for p with grid size
4p = 0.0005

√
mkBT0. An adaptive mesh size strategy has been proposed for the

Schrödinger-Poisson system in the whole domain in [7], but we observed that the
adaptive algorithm did not converge for the coupled model.

Another idea to reduce the computing time is to choose different mesh sizes 4xq

in the collisional zone and 4xs in the ballistic zone. However, it turned out in our
numerical experiments that the computing time is minimized when using the same
mesh size in both zones, i.e. 4x = 4xs = 4xq. We have used 4x = 0.25 nm (540
grid points).

The quantum drift-diffusion model in the whole interval (0, L) is solved by New-
ton’s method. The initial guess is chosen to be the potential in thermal equilibrium
with Va = 0 (see (2.15)). In thermal equilibrium the quantum quasi-Fermi potential
F is constant and, in view of the boundary conditions (2.15), the constant is zero.
Then the thermal equilibrium potential is computed by a fixed-point scheme, i.e., we
solve first the discrete equation

~
2

6em(4x)2
(ρk+1 − 2ρk + ρk−1) = ρk(Uth ln ρ2

k − Ṽk), ρ0 = nD(0), ρK = nD(L),

employing Newton’s method and then the linear Poisson equation with homogeneous
boundary conditions.

In the case a = x1 and b = x2 we use again a fixed-point-type iteration. More pre-
cisely, let an initial guess for the potential be given (namely, the thermal equilibrium
potential of the quantum drift-diffusion model). Then compute the scattering states
from the discrete Schrödinger equation. The electron and current densities are calcu-
lated according to (2.7) and (2.8) where the approximation (2.16) is employed. The
quantum drift-diffusion system is solved by Newton’s method according to (3.2)-(3.3)
using the boundary conditions (2.17) and (2.18), respectively. Finally, an update for
the electric potential is obtained through the solution of the Poisson equation using
the definition (2.19).

For all model we use the continuation method in the applied voltage, i.e., with the
solution for the applied voltage U as an initial guess, we solve the problem applying
the potential Va = U + 4U and use this solution again as initial guess for the next
applied voltage. For the computations of the next section, we choose 4U = 0.005V.

4. Numerical results. In this section we simulate a simple one-dimensional
resonant tunneling diode. We choose the same geometry and data as in [26] (essentially
taken from [23]). The tunneling diode consists of highly doped GaAs regions near the
contacts and a lightly doped middle region of 35 nm length (see Figure 4.1). The
middle region contains a quantum well of 5 nm length sandwiched between two 5 nm
AlGaAs barriers. The double barrier heterostructure is placed between two 10 nm
GaAs spacer layer with a doping of 5 · 1015 cm−3. These spacers are enclosed by two
layers of 50 nm length and with doping 1018 cm−3. The total length is thus 135 nm.
The double barrier height is 0.3 eV. The physical effect of the barriers is a shift in the
quasi-Fermi potential level which we model by an additional step function Vext added
to the electrostatic potential. The physical constants are chosen as in [26] and are
summarized in Table 4.1.

First we present the current-voltage characteristics of the above tunneling diode
for four different model equations: the Schrödinger-Poisson (SP) model in the whole
interval, the coupled drift-diffusion Schrödinger-Poisson (DD-SP) model of [10], the
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Fig. 4.1. Geometry of the resonant tunneling diode and external potential Vext modeling the
double barriers.

Parameter physical meaning numerical value
m electron mass 0.067 · 9.11 · 10−31 kg
T lattice temperature 300K
εs semiconductor permittivity 11.44 · 8.85 · 10−12 As/Vm
τ relaxation time 10−12 s
kB Boltzmann constant 1.36 · 10−23 J/K
~ reduced Boltzmann constant 1.055 · 10−34 Js

Table 4.1

Physical parameters and their numerical values.

coupled quantum drift-diffusion Schrödinger-Poisson (QDD-SP) model presented in
this paper, and the quantum drift-diffusion (QDD) model in the whole interval. We
refer to [2, 10] for a description of the DD-SP model and its numerical discretization.
Figure 4.2 displays the current-voltage curves for the first three models. In all these
models, a region of negative differential resistance (NDR), in which the current is
decreasing, can be observed. The valley current appears at approximately the same
voltage but the voltage at which the peak current is observed is slightly different in
the models. Moreover, the peak-to-valley ratio in the QDD-SP model is smaller than
in the SP model. This comes probably from the fact that there are no collisions
modeled in the SP system. In [2] a decrease of the peak-to-valley ratio has also been
observed in simulations from the collisional DD-SP model (compared to the ballistic
DD-SP model). The electron density and the electrostatic potential at applied voltage
Va = 0.25V are presented in Figures 4.3 and 4.4, respectively. The results obtained
here compare well with those of [2] and [26], where the coupled DD-SP model and the
SP model, respectively, were solved.

The current-voltage curve computed from the QDD model does not show any
NDR region (Figure 4.5). In fact, the QDD model is too diffusive, thus distroying
the quantum resonance behavior (at least at large temperatures). It is known that
a non-monotone behavior of the current-voltage characteristic from the QDD model
can be obtained by fitting the effective electron mass. Notice that the values for the
current density are overestimated compared to the other models.

For comparison, the current-voltage characteristics for the SP, QDD-SP, and DD-
SP models at T = 77K are displayed in Figure 4.6. The current-voltage curves of the
two coupled models differ significantly from the curve computed from the SP model.
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Fig. 4.2. Current-voltage characteristics for a resonant tunneling diode using the SP, QDD-SP,
and DD-SP models.
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Fig. 4.3. Electron densities at applied voltage Va = 0.25V from the SP, QDD-SP, and DD-SP
models.

This can be understood by the fact that at this low temperature, collisional effects are
expected to be less important such that the use of diffusion models is questionable.
However, the peak current from the QDD-SP model coincides with the peak current
from the SP model, whereas the DD-SP model overestimates the peak current.

In [10] it has been observed that the current-voltage values depend quite sen-
sitively on the position of the left interface point a = x1 but the influence of the
position of the right interface b = x2 is very small. This observation holds true also
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Fig. 4.4. Potential profiles at applied voltage Va = 0.25V from the SP, QDD-SP, and DD-SP
models.
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Fig. 4.5. Current-voltage characteristics for a resonant tunneling diode using the QDD model
for two different lattice temperatures.

for the QDD-SP model (Figures 4.7 and 4.8). When the left interface is too close to
the double barrier, the potential in the quantum region cannot reproduce the correct
quantum resonances. It is argued in [10] that the insensitivity of the choice of the
right interface position comes from the fact that the electrons crossing the double bar-
riers have high energy and can be described equally well by a classical or a quantum
model.

We have also investigated the effect of the relaxation time τ on the current-voltage
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Fig. 4.6. Current-voltage characteristics for a resonant tunneling diode using the SP, QDD-SP,
and DD-SP models at temperature T = 77K.
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Fig. 4.7. Influence of changes of the interface a = x1 on the current-voltage characteristics
using the QDD-SP model.

curve. Figure 4.9 shows that the results are insensitive of the choice of τ . This holds
true also in the ballistic DD-SP model of [10] (see Figure 4.10). In the collisional
DD-SP model of [2], however, the characteristic is very sensitive with respect to τ .
This seems to come from the collision events in the quantum region modeled by the
Pauli master equation. Notice that in the coupled DD-SP and QDD-SP models, no
collisions are taken into account in the microscopic quantum region.

It is well known that the current-voltage curve of a tunneling diode exhibits
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

2

4

6

8

10

12
x 10

7

Voltage [V]

C
ur

re
nt

 d
en

si
ty

 [A
m

−
2 ]

b=81nm
b=85nm
b=95nm

Fig. 4.8. Influence of changes of the interface b = x2 on the current-voltage characteristics
using the QDD-SP model.
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Fig. 4.9. Influence of the relaxation time on the current-voltage characteristic using the QDD-
SP model.

hysteresis probably resulting from storage effects of the charges in the quantum well
[23]. Hysteresis can be found in simulations from the Wigner-Poisson model [23] or
from the quantum hydrodynamic equations [9]. It cannot be observed in simulations
from the QDD model. However, employing the coupled QDD-SP model, the current-
voltage characteristic shows hysteresis (Figure 4.11). We notice that also with the
DD-SP model, hysteresis effects can be found (Figure 4.12).

Finally, Table 4.2 displays the CPU times (for a 2.4 GHz Pentium 4 processor)
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Fig. 4.10. Influence of the relaxation time on the current-voltage characteristic using the DD-
SP model.
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Fig. 4.11. Hysteresis in the current-voltage characteristic using the QDD-SP model.

needed to compute the current-voltage characteristic in various voltage ranges for the
SP, QDD-SP and DD-SP models. All algorithms are vectorized in the same way such
that the CPU times are comparable. The CPU time needed to calculate the current-
voltage curve with the QDD model is of the order of a few seconds only; however,
the numerical results are not satisfying. The QDD-SP model needs only about half
of the CPU time compared to the SP model. This shows that the coupled model
allows to reduce significantly the computing time compared to the full SP model.
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Fig. 4.12. Hysteresis in the current-voltage characteristic using the DD-SP model.

model [0 0.25eV] [0.25eV 0.3eV] [0.3eV 0.375eV] [0 0.375eV]
SP 5776 s 1255 s 1371 s 8402 s
QDD-SP 2305 s 570 s 629 s 3504 s
DD-SP 695 s 187 s 168 s 1050 s

Table 4.2

CPU times needed to compute the current-voltage characteristic in the indicated voltage ranges,
using different models.

The DD-SP model is even faster; the reduction factor is about 8 compared to the
SP model and about 3 compared to the QDD-SP model. The latter model is faster
since the current density in the drift-diffusion region can be computed by an analytic
expression [2, formulae (16)], whereas the current density of the QDD-SP model is
a result of the solution of the QDD model. However, the QDD-SP model has the
advantage that there is a quantum description in the whole semiconductor device,
avoiding any artificial separation of classical and quantum zones.
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Preprint, Université Paul Sabatier, Toulouse, France, 2003.
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