Semicontinuity Problems in the Calculus of Variations

EMILIO ACERBI & NICOLA FUSCO

Communicated by J. SERRIN

Introduction

Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a twice continuously differentiable function, and for $u \in W^{1,1}(a, b)$ set

$$F(u; a, b) = \int_a^b f(x, u(x), u'(x)) dx.$$

In a paper of Tonelli [17] it is proved that the functional F is lower semicontinuous (Isc) in the topology of $L^{\infty}(a, b)$ if and only if the function f is convex in the last variable. Later, several authors generalized this result: among the many theorems obtained, in which x is allowed to belong to \mathbb{R}^n and considerably less regularity on f is required, we recall particularly Theorem 12 of Serrin [15], in which for the first time differentiability conditions on f are dropped, and the following result due to Marcellini & Sbordone [11]:

If
$$f: \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$$
 satisfies:

- (i) f is measurable in x, and continuous in (s, ξ) , and
- (ii) $0 \le f(x, s, \xi) \le g(x, |s|, |\xi|)$,

where g is increasing in |s| and $|\xi|$, and is locally summable in x, then the functional

(0.1)
$$F(u, \Omega) = \int_{\Omega} f(x, u(x), Du(x)) dx$$

is sequentially weakly lower semicontinuous* on $W^{1,p}(\Omega)$, with $1 \le p \le +\infty$, if and only if f is convex in ξ .

(See also EKELAND and TEMAM [8] for the case in which f does not depend on u).

^{*} That is, $F(u, \Omega) \leq \liminf F(u_n, \Omega)$ whenever $u_n \to u$ in the weak topology of $W^{1,p}(\Omega)$. When $p = \infty$, weak convergence should be replaced by weak* convergence. In what follows we shall use the abbreviation $sw \ l \ sc$ for "sequential weak lower semi-continuity", or $sw * l \ sc$ when "weak" is replaced by "weak*".

On the other hand, if we allow the function u to be vector-valued, i.e. $u \in W^{1,p}(\Omega;\mathbb{R}^m)$, then the convexity hypothesis turns out to be sufficient, but too strong to be necessary, for F to be lsc: Morrey proved in [13] that, under strong regularity assumptions, F is sw*lsc on $W^{1,\infty}(\Omega;\mathbb{R}^m)$ if and only if f is quasiconvex, that is for every $s \in \mathbb{R}^m$ and for almost every $x \in \mathbb{R}^n$ the function $\xi \mapsto f(x, s, \xi)$ satisfies the condition

(0.2)
$$f(x, s, \xi) \cdot \text{meas}(\Omega) \leq \int_{\Omega} f(x, s, \xi + Dw(y)) dy$$

for every $\xi \in \mathbb{R}^{nm}$, for every bounded open set $\Omega \subset \mathbb{R}^n$, and for every $w \in C_0^{\infty}(\Omega; \mathbb{R}^m)$. Although it is technically not easy to handle, this condition arises in a natural way in many problems (especially in elastostatics); moreover, it is equivalent to convexity in ξ in the case m = 1.

The theorem of Morrey was extended by Meyers [12] to the semicontinuity (on $W^{k,p}(\Omega;\mathbb{R}^m)$) of functionals of the type

$$\int_{O} f(x, u(x), \ldots, D^{k}u(x)) dx,$$

always under strong continuity hypotheses.

In section II, by means of techniques basically relying on a recent theorem of Liu [10], which allows us to deduce semicontinuity on $W^{1,p}(\Omega;\mathbb{R}^m)$ from semicontinuity on $W^{1,\infty}(\Omega;\mathbb{R}^m)$, we prove the following main result (theorem [II.4]):

If
$$f: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^{nm} \to \mathbb{R}$$
 satisfies

- (i) f is measurable in x, continuous in (s, ξ) , and
- (ii) $0 \le f(x, s, \xi) \le a(x) + C(|s|^p + |\xi|^p)$,

where $p \ge 1$, a is a non-negative locally summable function, and C is a non-negative constant,

then the functional (0.1) is swlsc on $W^{1,p}(\Omega;\mathbb{R}^m)$ if and only if $\xi \mapsto f(x, s, \xi)$ is quasi-convex, for every s and almost every x.

Counterexamples valid even in the convex case show that these hypotheses are almost the minimal ones necessary to obtain a theorem of this kind.

As a particular case of our result, we deduce the weak semicontinuity on $W^{1,n}(\Omega;\mathbb{R}^n)$ of the functional

$$\int_{\Omega} b(x) \mid \det Du(x) \mid dx$$

(where b is non-negative, and bounded on bounded sets of \mathbb{R}^n). The integrand satisfies a stronger hypothesis than quasi-convexity (namely *polyconvexity*, a condition introduced and studied by BALL in [2], [3], [4], [5]), but the result does not seem to be previously known.

In the last section we prove a representation theorem for the greatest swlsc functional which is less than or equal to $\int_{\Omega} f(x, u(x), Du(x)) dx$, where f is not necessarily quasi-convex. We show that, under reasonable continuity assumptions

necessarily quasi-convex. We show that, under reasonable continuity assumptions on f, this functional has the form $\int_{\Omega} \phi(x, u(x)) Du(x) dx$, where ϕ is the greatest

quasi-convex function which is less than or equal to f. A similar result has been proved by DACOROGNA [6], if f is a polyconvex function.

We remark that, using more complicated notations as in [12], [5], our results can be extended to the case of functionals of the type (0.3). For other results and additional bibliography on quasi-convexity, see the many important papers by BALL, MEYERS, and MORREY.

I. Notation and Preliminary Lemmas

If $a \in \mathbb{R}^n$, then |a| is its euclidean norm; if ξ is an $m \times n$ matrix, $|\xi|$ is the norm of ξ when regarded as a vector in \mathbb{R}^{mn} . The Lebesgue measure of a measurable subset S of \mathbb{R}^n will be denoted by meas (S).

Let $\Omega \subset \mathbb{R}^n$ be an open set, $1 \leq p \leq +\infty$, $m \geq 1$; we define $L^p(\Omega; \mathbb{R}^m)$ to be the collection of all m-tuples $(f^{(1)}, \ldots, f^{(m)})$ of real functions in $L^p(\Omega)$. Analogously, we say that $u \in W^{1,p}(\Omega; \mathbb{R}^m)$ if u belongs to $L^p(\Omega; \mathbb{R}^m)$ together with its distribution derivatives $\frac{\partial u^{(i)}}{\partial x_j}$, $1 \leq i \leq m$, $1 \leq j \leq n$. The $m \times n$ matrix of these derivatives will be denoted by the symbol Du; $W^{1,p}(\Omega; \mathbb{R}^m)$ becomes a Banach space if it is endowed with the norm

$$||u||_{W^{1,p}(\Omega;\mathbb{R}^m)} = |||u|||_{L^p(\Omega)} p + |||Du|||_{L^p(\Omega)},$$

where

$$|u|(x) = |u(x)|, \quad |Du|(x) = |Du(x)|.$$

Finally, $u \in C_0^1(\Omega; \mathbb{R}^m)$ if each $u^{(i)}$ is a C^1 function on Ω with compact support, while $W_0^{1,p}(\Omega; \mathbb{R}^m)$ is the closure of $C_0^1(\Omega; \mathbb{R}^m)$ in the topology of $W^{1,p}(\Omega; \mathbb{R}^m)$.

Definition [I.1]. $f: \mathbb{R}^{nm} \to \mathbb{R}$ is weakly quasi-convex if for every $\tilde{\xi} \in \mathbb{R}^{nm}$, $\tilde{\eta} \in \mathbb{R}^m$ and $\tilde{\lambda} \in \mathbb{R}^n$ the functions

$$\lambda \mapsto f(\tilde{\xi} + \lambda \otimes \tilde{\eta}), \quad \eta \mapsto f(\tilde{\xi} + \tilde{\lambda} \otimes \eta)$$

are convex, where $(\lambda \otimes \eta)_{ii} = \lambda_i \eta_i$.

Definition [I.2]. A continuous function $f: \mathbb{R}^{nm} \to \mathbb{R}$ is quasi-convex if for every $\tilde{\xi} \in \mathbb{R}^{nm}$, for every open subset Ω of \mathbb{R}^n , and every function $z \in C_0^1(\Omega; \mathbb{R}^m)$ we have

(I.1)
$$\operatorname{meas}(\Omega) \cdot f(\tilde{\xi}) \leq \int_{0}^{\infty} f(\tilde{\xi} + Dz(x)) dx.$$

In what follows, if f is a real function defined in $\mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^{nm}$, we will say that f is quasi convex in ξ if there exists a set $I \subset \mathbb{R}^n$, with meas (I) = 0, such that for every $\tilde{x} \in \mathbb{R}^n \setminus I$ and $\tilde{s} \in \mathbb{R}^m$ the function $\xi \mapsto f(\tilde{x}, \tilde{s}, \xi)$ is quasiconvex.

To prove that a function f is quasi-convex, note that it is enough to verify (I.1) for one open set Ω , and for every $z \in C_0^{\infty}(\Omega; \mathbb{R}^m)$; moreover if f is quasi-convex then (I 1) holds for every $z \in W_0^{1,\infty}(\Omega; \mathbb{R}^m)$.

Quasi-convexity implies weak quasi-convexity, which in turn implies that the function locally satisfies a Lipschitz condition. If m=1 or n=1, then quasi-convexity is equivalent to convexity; in general, a function $f \in C^2(\mathbb{R}^{nm})$ is weakly quasi-convex if and only if for every $\xi \in \mathbb{R}^{mn}$, $\lambda \in \mathbb{R}^n$, $\eta \in \mathbb{R}^m$ there holds

$$\sum_{i,j=1}^{n} \sum_{h,k=1}^{m} \frac{\partial^{2} f}{\partial \xi_{ih} \partial \xi_{jk}} (\xi) \lambda_{i} \lambda_{j} \eta_{h} \eta_{k} \geq 0$$

(Legendre-Hadamard condition).

The proofs of the previous remarks may be found in [2], [12], [14]. The following result ([12], Lemma 1) will be useful to disengage Definition [I.1] from the boundary condition on z.

Lemma [I.3]. Let $f: \mathbb{R}^{nm} \to \mathbb{R}$ be quasi-convex. For every bounded open set $\Omega \subset \mathbb{R}^n$ and every sequence $(z_k) \subset W^{1,\infty}(\Omega; \mathbb{R}^m)$ which is weakly* convergent to zero, we have

meas
$$(\Omega) \cdot f(\xi) \leq \liminf_{k \to \infty} \int_{\Omega} f(\xi + Dz(x)) dx$$

for every $\xi \in \mathbb{R}^{nm}$.

Definition [I.4]. $f: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^{nm} \to \mathbb{R}$ is a Carathéodory function if the following conditions are satisfied:

for every $(s, \xi) \in \mathbb{R}^m \times \mathbb{R}^{nm}$, $x \mapsto f(x, s, \xi)$ is measurable; for almost all $x \in \mathbb{R}^n$, $(s, \xi) \mapsto f(x, s, \xi)$ is continuous.

The following result of SCORZA-DRAGONI ([8], page 235) characterizes the class of Carathéodory functions.

Lemma [I.5]. A mapping $f: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^{nm} \to \mathbb{R}$ is a Carathéodory function if and only if for every compact set $K \subset \mathbb{R}^n$ and $\varepsilon > 0$ there exists a compact set $K_{\varepsilon} \subset K$, with meas $(K \setminus K_{\varepsilon}) < \varepsilon$, such that the restriction of f to $K_{\varepsilon} \times \mathbb{R}^m \times \mathbb{R}^{nm}$ is continuous.

The next lemma may be found in [7].

Lemma [I.6]. Let $G \subset \mathbb{R}^n$ be measurable, with meas $(G) < \infty$. Assume (M_k) is a sequence of measurable subsets of G such that, for some $\varepsilon > 0$, the following estimate holds:

meas
$$(M_k) \ge \varepsilon$$
 for all $k \in \mathbb{N}$.

Then a subsequence (M_{k_h}) can be selected such that $\bigcap_{h\in N} M_{k_h} \neq \emptyset$.

Lemma [I.7]. Let (ϕ_k) be a bounded sequence in $L^1(\mathbb{R}^n)$. Then to each $\varepsilon > 0$ there exists a triple $(A_{\varepsilon}, \delta, S)$, where A_{ε} is measurable and meas $(A_{\varepsilon}) < \varepsilon$, $\delta > 0$,

and S is an infinite subset of \mathbb{N} , such that for all $k \in S$

$$\int\limits_{R} |\phi_k(x)| \ dx < \varepsilon$$

whenever B and A, are disjoint and meas $(B) < \delta$.

Proof. We reason by contradiction. Hence we suppose that there exists a $\varepsilon > 0$ such that, for every $(A_{\varepsilon}, \delta, S)$ as in the statement of the theorem, we may choose a measurable set B, with $B \cap A_{\varepsilon} = \emptyset$ and meas $(B) < \delta$, and an index $k \in S$ such that

$$\int\limits_{R} |\phi_k(x)| \ dx \ge \varepsilon.$$

This implies that for every set A, with meas $(A) < \varepsilon$, and every infinite set $S \subset \mathbb{N}$, there exists both a set C, with $C \cap A = \emptyset$ and meas $(A \cup C) < \varepsilon$, and an infinite subset T of S such that

$$\int_{C} |\phi_k(x)| \ dx \ge \varepsilon \quad \text{ for } \quad \text{all } k \in T.$$

This will be proved later; now we show that we are led to a contradiction.

Set $A = \emptyset$, $S = \mathbb{N}$, and let C_1 and T_1 be as above. Starting from $A = C_1$ and $S = T_1$, we pass to C_2 and T_2 , where $C_1 \cap C_2 = \emptyset$ and

$$\int_{C_1 \cup C_2} |\phi_k(x)| \ dx = \int_{C_1} |\phi_k(x)| \ dx + \int_{C_2} |\phi_k(x)| \ dx \ge 2\varepsilon$$

for all $k \in T_2$. Since meas $(C_1 \cup C_2) < \varepsilon$, we may set $A = C_1 \cup C_2$, $S = T_2$, and continue with the same argument. If

$$N > \varepsilon^{-1} \sup_{k \in \mathbb{N}} \|\phi_k\|_{L^1(\mathbb{R}^n)}$$
,

then after N iterations we obtain the contradiction.

We return to the interrupted proof: let A and S be as stated, set $S_1 = S$ and take $\delta_1 < (\varepsilon - \text{meas}(A))/2$. There exist a set B_1 disjoint from A, with meas $(B_1) < \delta_1$, and an index $k_1 \in S_1$, such that

$$\int_{B_1} |\phi_{k_1}(x)| \ dx \ge \varepsilon.$$

Applying induction, put

$$\delta_n = \frac{1}{2} \, \delta_{n-1}, \, S_n = \{ k \in S_{n-1} : k > k_{n-1} \},\,$$

and set

$$C = \bigcup_{h \in \mathbb{N}} B_h, T = \{k_h : h \in \mathbb{N}\},$$

then C and T satisfy our requirements: $C \cap A = \emptyset$, meas $(C) + \text{meas } (A) < \varepsilon$, $T \subset S$ is infinite, and

$$\int\limits_C |\phi_k(x)| \ dx \ge \varepsilon$$

for all $k \in T$. This completes the proof.

If r > 0 and $x \in \mathbb{R}^n$, set $B_r(x) = \{y \in \mathbb{R}^n : |y - x| < r\}$, and meas $(B_r(x)) = \omega_n r^n$.

Definition [I.8]. Let $u \in C_0^{\infty}(\mathbb{R}^n)$. We define

$$(M^*u)(x) = (Mu)(x) + \sum_{i=1}^n (MD_iu)(x),$$

where we set

$$(Mf)(x) = \sup_{r>0} \frac{1}{\omega_n r^n} \int_{B_r(x)} |f(y)| dy$$

for every locally summable f.

Lemma [I.9]. If $u \in C_0^{\infty}(\mathbb{R}^n)$ then $M^*u \in C^0(\mathbb{R}^n)$ and

$$|u(x)| + \sum_{i=1}^{n} |D_i u(x)| \le (M^* u)(x)$$

for all $x \in \mathbb{R}^n$. Moreover (see [16]) if p > 1 then

$$||M^*u||_{L^{p}(\mathbb{R}^n)} \le c(n, p) ||u||_{W^{1,p}(\mathbb{R}^n)}$$

and if p = 1 then

$$\operatorname{meas}\left\{x \in \mathbb{R}^n : (M^*u) \ge \lambda\right\} \le \frac{c(n)}{\lambda} \|u\|_{W^{1,1}(\mathbb{R}^n)}$$

for all $\lambda > 0$.

Lemma [I.10]. Let $u \in C_0^{\infty}(\mathbb{R}^n)$, and put

$$U(x, y) = \frac{|u(y) - u(x) - \sum_{i=1}^{n} D_i u(x) (y_i - x_i)|}{|y - x|}.$$

Then for every $x \in \mathbb{R}^n$ and r > 0

$$\int_{B_r(x)} U(x, y) dy \leq 2\omega_n r^n (M^* u) (x).$$

The proof is contained in [10], Lemma 2. By modifying another demonstration of [10], we are also able to prove

Lemma [I.11]. Let $u \in C_0^{\infty}(\mathbb{R}^n)$ and $\lambda > 0$, and set

$$H^{\lambda} = \{x \in \mathbb{R}^n : (M^*u)(x) < \lambda\}.$$

Then for every $x, y \in H^{\lambda}$ we have

$$\frac{|u(y)-u(x)|}{|y-x|} \leq c(n) \lambda.$$

Proof. Let c'(n) be such that for every $x, y \in \mathbb{R}^n$ with |x - y| = r, we have

(I.2)
$$\operatorname{meas} (B_r(x) \cap B_r(y)) > \frac{2}{c'(n)} \omega_n r^n.$$

For $\delta > 0$ set

$$W_r(x, \delta) = \{ y \in B_r(x) \colon U(x, y) < \delta \},$$

whence by Lemma [I.10]

$$\operatorname{meas}\left(B_{r}(x)\setminus W_{r}(x,\delta)\right) \leq \frac{2}{\delta}\,\omega_{n}r^{n}(M^{*}u)\,(x).$$

If $z \in H^{\lambda}$, then

(I.3)
$$\operatorname{meas} (B_r(z) \setminus W_r(z, 2c'(n)\lambda)) \leq \frac{2\omega_n r^n}{2c'(n)\lambda} (M^*u)(z) < \frac{\omega_n r^n}{c'(n)}.$$

Let $x, y \in H^{\lambda}$ with r = |x - y|. By (I.2) and (I.3)

$$W_r(x, 2c'(n)\lambda) \cap W_r(y, 2c'(n)\lambda) \neq \emptyset.$$

Choose \tilde{z} in this intersection, so that $|\tilde{z} - x| < r$, $|\tilde{z} - y| < r$. Then

$$\frac{|u(y)-u(x)|}{|y-x|} \leq U(y,\tilde{z}) + \sum_{i=1}^{n} [|D_i u(x)| + |D_i u(y)|]$$

$$\leq (4c'(n)+2) \lambda,$$

as required.

Lemma [I.12]. Let X be a metric space, E a subspace of X, and k a positive real number. Then any k-Lipschitz mapping from E into \mathbb{R} can be extended by a k-Lipschitz mapping from X into \mathbb{R} .

For the proof see [8], page 298. We conclude this preliminary section by defining

$$G^{\nu} = \{2^{-\nu}(x+Y) : x \in \mathbb{Z}^n\}, \quad \nu \in \mathbb{N},$$

where $Y = (0, 1)^n = \{ y \in \mathbb{R}^n : 0 < y_i < 1 \text{ for } 1 \le i \le n \}.$

II. Semicontinuity Theorems

If f is a real function defined on $\mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^{nm}$, and if the left hand side of (II.1) makes sense, then we define (for every measurable set $S \subset \mathbb{R}^n$)

(II.1)
$$\int_{S} f(x, u(x), Du(x)) dx = F(u, S).$$

Theorem [II.1]. Let $f: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^{nm} \to \mathbb{R}$ satisfy:

- (II.2) f is a Carathéodory function;
- (II.3) f is quasi-convex in ξ ;
- (II.4) $0 \le f(x, s, \xi) \le a(x) + b(s, \xi)$ for every $x \in \mathbb{R}^n$, $s \in \mathbb{R}^m$, and $\xi \in \mathbb{R}^{nm}$, where a is a non-negative locally summable function on \mathbb{R}^n , and $b \ge 0$ is locally bounded on $\mathbb{R}^m \times \mathbb{R}^{nm}$.

Then for every open set Ω in \mathbb{R}^n the functional $u \mapsto F(u, \Omega)$ is sw*lsc on $W^{1,\infty}(\Omega;\mathbb{R}^m)$.

Proof. Let us suppose first that $\Omega = (0, 1)^n$. Fix $u \in W^{1,\infty}(\Omega; \mathbb{R}^m)$ and $(z_k) \subset W^{1,\infty}(\Omega; \mathbb{R}^m)$ with $z^k \to 0$ (weak * convergence) in $W^{1,\infty}(\Omega; \mathbb{R}^m)$; we must prove that

$$F(u, \Omega) \leq \liminf_{k \to \infty} F(u + z_k, \Omega).$$

Without loss of generality we may suppose $a(x) < +\infty$ for every x. Put

$$\lambda = \|u\|_{W^{1,\infty}(\Omega;\mathbb{R}^m)} + \sup_{k \in \mathbb{N}} \|z_k\|_{W^{1,\infty}(\Omega;\mathbb{R}^m)}$$

$$M = \sup \{b(s, \xi) : |s| \le \lambda, |\xi| \le \lambda\}.$$

Now take $\varepsilon > 0$, and let $\alpha \ge 1$ be so large that if

$$E = \{x \in \Omega \colon a(x) \leq \alpha\} \setminus I$$

then

meas
$$(\Omega \setminus E) < \frac{\varepsilon}{M}$$
, $\int_{\Omega \setminus E} a(x) dx < \varepsilon$.

By Lemma [I.5] there exists a compact set $K \subset \Omega$ such that f is continuous on $K \times \mathbb{R}^m \times \mathbb{R}^{nm}$ and

$$\operatorname{meas} (\Omega \setminus K) < \frac{\varepsilon}{\alpha + M}.$$

If we neglect sets of measure zero, then for all $v \in \mathbb{N}$ we can write

$$\Omega = \bigcup_{h=1}^{2^{n\nu}} Q_h^{\nu}$$

with $Q_h^{\nu} \in G^{\nu}$. The range $1 \le h \le 2^{n\nu}$ will be assumed henceforth, and we shall also write \sum_{h} and \bigcup_{h} when h ranges from 1 to $2^{n\nu}$. Define

$$(u)_h^{\nu} = 2^{-n\nu} \int_{Q_h^{\nu}} u(y) \, dy, \quad (u)^{\nu}(x) = \sum_h (u)_h^{\nu} \chi_{Q_h^{\nu}}(x)$$

$$(Du)_h^{\nu} = 2^{-n\nu} \int_{Q_h^{\nu}} Du(y) \, dy, \quad (Du)^{\nu}(x) = \sum_{h} (Du)_h^{\nu} \chi_{Q_h^{\nu}}(x).$$

Note that

$$\|(u)^{\nu}\|_{L^{\infty}(\Omega;\mathbb{R}^{m})}+\|(Du)^{\nu}\|_{L^{\infty}(\Omega;\mathbb{R}^{nm})}\leq\|u\|_{W^{1,\infty}(\Omega;\mathbb{R}^{m})},$$

and that the sequences $((u)^r)$ and $((Du)^r)$ converge pointwise a.e. to u and Du respectively.

For every ν and h fix $x_h^{\nu} \in Q_h^{\nu} \cap K \cap E$, if this set is not empty. Then

$$F(u+z_k,\Omega) \geq F(u+z_k,K \cap E) = a_k + b_k^{\nu} + c_k^{\nu} + d^{\nu} + e,$$

where we put

$$a_{k} = \int_{K \cap E} [f(x, (u + z_{k})(x), (Du + Dz_{k})(x)) - f(x, u(x), (Du + Dz_{k})(x))] dx;$$

$$b_{k}^{v} = \sum_{h} \int_{Q_{h}^{v} \cap K \cap E} [f(x, u(x), (Du + Dz_{k})(x)) - f(x_{h}^{v}, (u)_{h}^{v}, (Du)_{h}^{v} + Dz_{k}(x))] dx;$$

$$c_{k}^{v} = \sum_{h} \int_{Q_{h}^{v} \cap K \cap E} [f(x_{h}^{v}, (u)_{h}^{v}, (Du)_{h}^{v} + Dz_{k}(x)) - f(x_{h}^{v}, (u)_{h}^{v}, (Du)_{h}^{v})] dx;$$

$$d^{v} = \sum_{h} \int_{Q_{h}^{v} \cap K \cap E} [f(x_{h}^{v}, (u)_{h}^{v}, (Du)_{h}^{v}) - f(x, u(x), Du(x))] dx.$$

By the uniform continuity of f on the bounded sets of $K \times \mathbb{R}^n \times \mathbb{R}^{nm}$ we have $\lim_{k \to \infty} a_k = 0$. Similarly the uniform continuity of f and the pointwise convergence of $((u)^r)$ and $((Du)^r)$ imply that

$$\lim_{v \to \infty} d^v = 0$$
, $\lim_{v \to \infty} b_k^v = 0$ uniformly with respect to k .

Hence we may suppose that ν is large enough to ensure that $|b_k^{\nu}| + |d^{\nu}| < \varepsilon$ for all k.

Now note that

$$\left| \sum_{h} \int_{Q_{h}^{\nu} \setminus (K \cap E)} [f(x_{h}^{\nu}, (u)_{h}^{\nu}, (Du)_{h}^{\nu} + Dz_{k}(x)) - f(x_{h}^{\nu}, (u)_{h}^{\nu}, (Du)_{h}^{\nu})] dx \right|$$

$$\leq 2 \sum_{h} \int_{Q_{h}^{\nu} \setminus (K \cap E)} [a(x_{h}^{\nu}) + M] dx$$

$$\leq 2 \left[(\alpha + M) \operatorname{meas} (\Omega \setminus K) + M \operatorname{meas} (\Omega \setminus E) + \int_{\Omega \setminus E} \alpha dx \right]$$

$$\leq 4\varepsilon + 2 \int_{\Omega \setminus E} a(x) dx \leq 6\varepsilon.$$

Applying Lemma [I.3] to each Q_h^{ν} , we find that

$$\liminf_{k\to\infty} c_k^{\nu} \ge -6\varepsilon.$$

Finally,

$$e = F(u, K \cap E) \ge F(u, \Omega) - 3\varepsilon$$
.

As $k \to \infty$, the foregoing estimates yield

$$\liminf_{k\to\infty} F(u+z_k,\Omega) \geq F(u,\Omega) - 10\varepsilon,$$

Since ε was arbitrary, this proves our result for the special choice of Ω noted at the beginning.

It is easy to see that the same argument applies to every hypercube Ω with edges parallel to the coordinate axes; the assertion for a generic Ω follows from the fact that the supremum of a family of lsc functions is lsc. This completes the proof.

A slight modification of the proof yields the same theorem even if f satisfies (II.2) and (II.3), and |f| satisfies (II.4) (see [12], [9]). Note that if f is defined on $\Omega \times \mathbb{R}^m \times \{\xi \in \mathbb{R}^{nm} : |\xi| < r\}$ for some r > 0 and the hypotheses of theorem [II.1] hold, then the functional $u \mapsto F(u, \Omega)$ is sw*lsc on the space of functions $u \in W^{1,\infty}(\Omega;\mathbb{R}^m)$ such that $\|Du\|_{L^\infty(\Omega;\mathbb{R}^{nm})} < r$.

The inverse to theorem [II.1] is given by

Theorem [II.2]. Let $f: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^{nm} \to \mathbb{R}$ satisfy (II.2) and (II.4). Assume the functional $u \mapsto F(u, \Omega)$ to be sw*lsc on $W^{1,\infty}(\Omega; \mathbb{R}^m)$ for every open set $\Omega \subset \mathbb{R}^n$. Then f is quasi-convex in ξ .

Proof. We have to show that, if we fix an open set $\Omega \subset \mathbb{R}^n$, then there exists a set $I \subset \Omega$, with meas (I) = 0, such that $\xi \mapsto f(x, s, \xi)$ is quasi-convex for every $x \in \Omega \setminus I$ and $s \in \mathbb{R}^m$. To this end, we will use only the fact that $u \mapsto F(u, \Omega)$ is lsc for that particular Ω .

By Lemma [I.5] we can choose a nondecreasing sequence (K_i) of compact sets, with meas $(\Omega \setminus K_i) < \frac{1}{i}$, such that f is continuous on each $K_i \times \mathbb{R}^m \times \mathbb{R}^{nm}$.

Define I in the following way: $x \in \Omega \setminus I$ if the following conditions are satisfied:

(II.5)
$$x \in \bigcup_{i \in \mathbb{N}} K_i;$$
$$a(x) < +\infty;$$

x is a Lebesgue point for χ_{K_i} , for every i;*

x is a Lebesgue point for $a \cdot \chi_{\Omega \setminus K_i}$, for every i.

Fix $\tilde{x} \in \Omega \setminus I$, $\tilde{s} \in \mathbb{R}^m$, $\tilde{\xi} \in \mathbb{R}^{nm}$, where clearly we may suppose $\tilde{x} = 0$, and also set $u(x) = \tilde{s} + \tilde{\xi} \cdot x$, where $\tilde{\xi}$ is regarded as an $m \times n$ matrix. Let $z \in C_0^{\infty}(Y; \mathbb{R}^m)$, and put

$$\lambda = \|u\|_{W^{1,\infty}(\Omega;\mathbb{R}^m)} + \|z\|_{W^{1,\infty}(\nu;\mathbb{R}^m)}.$$

Define z periodically on \mathbb{R}^n , setting z(x) = z(x+y) for every $y \in \mathbb{Z}^n$. Let \tilde{k} be so large that $2^{-\tilde{k}}Y \subset \Omega$; for $k \ge \tilde{k}$ and $v \in \mathbb{N}$ define

$$z_k^{\nu}(x) = \begin{cases} 2^{-k\nu} z (2^{k\nu} x) & \text{if } x \in 2^{-k} Y \\ 0 & \text{otherwise,} \end{cases}$$

^{*} This means that $\lim_{r\to 0} [\text{meas}(B_r(x))]^{-1} \int_{B_r(x)} \chi_{K_i}(y) dy = 1.$

so that $\|z_k^r\|_{W^{1,\infty}(\Omega;\mathbb{R}^m)} \leq \lambda$. For every k, $z_k^r \to 0$ (weak*) in $W^{1,\infty}(\Omega;\mathbb{R}^m)$ as $v \to +\infty$, hence $z_k^r \to 0$ strongly in $L^{\infty}(\Omega;\mathbb{R}^m)$. Also for fixed k if we neglect sets of measure 0, then

$$2^{-k}Y=\bigcup_{h}Q_{h}^{k\nu}$$

with $Q_h^{k\nu} \in G^{k\nu}$ for $1 \le h \le 2^{n\nu}$. We denote by x_h^{ν} the corner of $Q_h^{k\nu}$ nearest to the origin, so that $Q_h^{k\nu} = x_h^{\nu} + 2^{-k\nu}Y$.

By (II.5), we may suppose that $0 \in K_i$ for all *i*. Choose $\varepsilon > 0$. Then there exists \tilde{i} such that for $i \ge \tilde{i}$ we have

$$\int_{\Omega\setminus K_i} [a(x)+M] dx < \varepsilon,$$

where

$$M = \sup \{b(s, \xi) \colon |s| + |\xi| \le 2\lambda\}.$$

Let $\tilde{f_i}$ be a continuous function on $\mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^{nm}$, coinciding with f on $K_i \times \{(s, \xi) : |s| + |\xi| \le 2\lambda\} = K_i \times B_{2\lambda}$. We may also suppose that $\tilde{f_i}$ satisfies $0 \le \tilde{f_i} \le \max_{K_i \times B_{2\lambda}} f$. Choose a function $\psi \in C_0^0(\Omega)$ so that

$$0 \leq \psi(x) \leq 1 \text{ for all } x \in \Omega,$$

$$\psi(x) = 1 \text{ for all } x \in K_i,$$

$$\int_{\Omega \setminus K_i} \psi(x) \, dx < \varepsilon / \max_{K_i \times B_{2\lambda}} f.$$

The function $f_i = \psi \tilde{f_i}$ is another continuous extension of f outside $K_i \times B_{2i}$. We can split the functional $F(u + z_k^{\nu}, 2^{-k}Y)$ as follows:

$$F(u + z_k^{\nu}, 2^{-k}Y) = a^{\nu} + b^{\nu} + c^{\nu},$$

where we set

$$a^{v} = \int_{2^{-k}Y} [f(x, (u + z_{k}^{v})(x), (Du + Dz_{k}^{v})(x))] dx;$$

$$-f_{i}(x, (u + z_{k}^{v})(x), (Du + Dz_{k}^{v})(x))] dx;$$

$$b^{v} = \sum_{h} \int_{Q_{h}^{kv}} [f_{i}(x, (u + z_{k}^{v})(x), (Du + Dz_{k}^{v})(x))] dx;$$

$$-f_{i}(x_{h}^{v}, u(x_{h}^{v}), Du(x_{h}^{v}) + Dz_{k}^{v}(x))] dx;$$

$$c^{v} = \sum_{h} \int_{Q_{h}^{kv}} f_{i}(x_{h}^{v}, u(x_{h}^{v}), Du(x_{h}^{v}) + Dz(2^{kv}x)) dx$$

$$= \sum_{h} 2^{-nkv} \int_{Y} f_{i}(x_{h}^{v}, u(x_{h}^{v}), Du(x_{h}^{v}) + Dz(y)) dy.$$

Our choice of f_i yields $|a^r| < 2\varepsilon$ for every v and $i \ge \tilde{i}$. Moreover since $u \in C^1(\overline{\Omega}; \mathbb{R}^m)$ and f_i is uniformly continuous, we have $\lim_{v \to \infty} b^v = 0$. Finally c^v has

the form of a Cauchy sum, over the cube $2^{-k}Y$, of the continuous function

$$x \mapsto \int_{Y} f_i(x, u(x), Du(x) + Dz(y)) dy.$$

Hence it is convergent as $v \to \infty$, with

$$\lim_{v\to\infty}c^v=\int_{2^{-k}Y}\left[\int_Y f_i(x,u(x),Du(x)+Dz(y))\,dy\right]dx.$$

Combining the above three lines we have

$$\limsup_{v\to\infty} F(u+z_k^v,2^{-k}Y) \leq 2\varepsilon + \int_{2^{-k}Y} \left[\int_Y f_i(x,u(x),Du(x)+Dz(y)) dy \right] dx.$$

Let ψ tend to χ_{K_i} . Since $f = f_i$ on $K_i \times B_{2\lambda}$, it follows from the dominated convergence theorem that

$$\limsup_{v\to\infty} F(u+z_k^v,2^{-k}Y) \leq 2\varepsilon + \int_{K_i\cap 2^{-k}Y} \left[\int_Y f(x,u(x),Du(x)+Dz(y)) dy \right] dx.$$

By the semicontinuity of $u\mapsto F(u,\Omega)$ and the fact that $z_k^v\equiv 0$ on $\Omega\setminus 2^{-k}Y$

$$F(u, \Omega) = F(u, 2^{-k}Y) + F(u, \Omega \setminus 2^{-k}Y)$$

$$\leq \liminf_{\substack{v \to \infty \\ v \to \infty}} [F(u + z_k^v, 2^{-k}Y) + F(u, \Omega \setminus 2^{-k}Y)].$$

Hence for $i \geq \tilde{i}$

$$F(u, 2^{-k}Y) \leq 2\varepsilon + \iint_{2^{-k}Y \times Y} \chi_{K_i}(x) f(x, u(x), Du(x) + Dz(y)) dx dy.$$

Letting $i \to +\infty$, and using the fact that ε is arbitrary, we get

$$F(u, 2^{-k}Y) \leq \int_{2^{-k}X} \left[\int_{Y} f(x, u(x), Du(x) + Dz(y)) dy \right] dx,$$

so that

$$2^{nk} \int_{2^{-k}Y} \left[f(x, u(x), Du(x)) - \int_{Y} f(x, x, u(x), Du(x) + Dz(y)) \, dy \right] dx \le 0.$$

Call $\mu(x; u, z)$ the integrand in the square brackets; our hypotheses on the set I, and the continuity of f on $K_{\tilde{i}} \times B_{2\lambda}$, then yield

$$\lim_{k \to \infty} 2^{nk} \int_{2^{-k}Y \cap K_{\tilde{i}}} \mu(x; u, z) dx$$

$$= \lim_{k \to \infty} \left(2^{nk} \int_{2^{-k}Y} \chi_{K_{\tilde{i}}}(x) dx \right) \left(\left[\text{meas } (2^{-k}Y \cap K_{\tilde{i}}) \right]^{-1} \int_{2^{-k}Y \cap K_{\tilde{i}}} \mu(x; u, z) dx \right)$$

$$= f(0, \tilde{s}, \tilde{\xi}) - \int_{Y} f(0, \tilde{s}, \tilde{\xi} + Dz(y)) dy.$$

On the other hand the integral of μ on $2^{-k}Y \setminus K_{\tilde{i}}$ is small because

$$\left| 2^{nk} \int_{2^{-k}Y \setminus K_{\tilde{i}}} \mu(x; u, z) \, dx \right| \leq 2^{nk} \int_{2^{-k}Y \setminus K_{\tilde{i}}} [a(x) + M] \, dx$$

$$= 2^{nk} \int_{2^{-k}Y} [a(x) + M] \chi_{\Omega \setminus K_{\tilde{i}}}(x) \, dx,$$

which tends to zero as $k \to \infty$. These estimates show that (I.1) is satisfied on the open set Y, hence on every open set $\Omega \subset \mathbb{R}^n$. \square

Note that the proof remains almost unchanged if we suppose that (II.2) holds, that |f| satisfies (II.4), and that the functional $u \mapsto F(u, \Omega)$ is sw*lsc on each Dirichlet class $\tilde{u} + W_0^{1,\infty}(\Omega; \mathbb{R}^m)$, with \tilde{u} a polynomial of degree one.

Remark [II.3]. Let f satisfy (II.2) and (II.4). Assume that the functional $u \mapsto F(u, \Omega)$ is sw^*lsc on the space of functions u in $W^{1,\infty}(\Omega; \mathbb{R}^m)$ such that $\|Du\|_{L^\infty(\Omega; \mathbb{R}^{nm})} < r$ (where r > 0). Then there exists a set $I \subset \Omega$, with meas (I) = 0, such that for every $\tilde{x} \in \Omega \setminus I$, $\tilde{s} \in \mathbb{R}^m$, and $\tilde{\xi} \in B_r(0) \subset \mathbb{R}^{nm}$, and for every $z \in W_0^{1,\infty}(\Omega; \mathbb{R}^m)$ such that $\|\tilde{\xi} + Dz\|_{L^\infty(\Omega; \mathbb{R}^{nm})} < r$, we have

meas
$$(\Omega) \cdot f(\tilde{x}, \tilde{s}, \tilde{\xi}) \leq \int_{\Omega} f(\tilde{x}, \tilde{s}, \tilde{\xi} + Dz(x)) dx$$
.

Theorems [II.1] and [II.2] generalize results contained in [12], [9]. Our next theorem deals with semicontinuity in $W^{1,p}$, $p \ge 1$.

Theorem [II.4]. Let $1 \le p < +\infty$, and assume that $f: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^{nm} \to \mathbb{R}$ satisfies (II.2), (II.3) and

(II.6) $0 \le f(x, s, \xi) \le a(x) + C(|s|^p + |\xi|^p)$ for every $x \in \mathbb{R}^n$, $s \in \mathbb{R}^m$, $\xi \in \mathbb{R}^{nm}$, where C is a non-negative constant and a is a non-negative locally summable function on \mathbb{R}^n .

Then for every open set $\Omega \subset \mathbb{R}^n$ the functional $u \mapsto F(u, \Omega)$ is swlsc on $W^{1,p}(\Omega; \mathbb{R}^m)$.

Proof. As in theorem [II.1] we may confine ourselves to a particular set Ω , say a ball. Take $u \in W^{1,p}(\Omega; \mathbb{R}^m)$ and $(z_k) \subset W^{1,p}(\Omega; \mathbb{R}^m)$ with $z_k \to 0$ (weakly) in $W^{1,p}(\Omega; \mathbb{R}^m)$. We may suppose

$$\liminf_{k\to\infty} F(u+z_k,\Omega) = \lim_{k\to\infty} F(u+z_k,\Omega).$$

This will allow us to select subsequences without altering $\liminf_{k\to\infty} F(u+z_k,\Omega)$; hence we need not indicate subsequences, denoting all of them with the same index k.

By an extension theorem ([1], Theorem 4.26) we may assume each z_k to be defined on \mathbb{R}^n , with $\|z_k\|_{W^{1,p}(\mathbb{R}^n;\mathbb{R}^m)}$ bounded uniformly with respect to k. Since $C_0^{\infty}(\mathbb{R}^n;\mathbb{R}^m)$ is dense in $W^{1,p}(\mathbb{R}^n;\mathbb{R}^m)$ and $u \mapsto F(u,\Omega)$ is continuous in the strong topology of $W^{1,p}(\Omega;\mathbb{R}^m)$, there exists a sequence $(w_k) \subset C_0^{\infty}(\mathbb{R}^n;\mathbb{R}^m)$ such that

$$\|w_k - z_k\|_{W^{1,p}(\mathbb{R}^n;\mathbb{R}^m)} < \frac{1}{k}, \quad |F(u + w_k, \Omega) - F(u + z_k, \Omega)| < \frac{1}{k}.$$

Hence we may assume the sequence (z_k) to be in $C_0^{\infty}(\mathbb{R}^n; \mathbb{R}^m)$, and to be bounded in $W^{1,p}(\mathbb{R}^n; \mathbb{R}^m)$.

Let $\eta: \mathbb{R}^+ \to \mathbb{R}^+$ be a continuous increasing function, with $\eta(0) = 0$, such that for every measurable set $B \subset \Omega$

$$\int_{\mathbb{R}} [a(x) + C(|u(x)|^p + |Du(x)|^p)] dx < \eta(\text{meas } (B)).$$

Fix $\varepsilon > 0$, and apply Lemma [I.7] to each of the m sequences $((M^*z_k^{(i)})^p)$, $1 \le i \le m$. This gives a subsequence (z_k) , a set $A_{\varepsilon} \subset \Omega$, with meas $(A_{\varepsilon}) < \varepsilon$, and a real number $\delta > 0$ such that

$$\int\limits_{B} \left[\left(M^* z_k^{(i)} \right) (x) \right]^p \, dx < \varepsilon$$

for all k, for $1 \le i \le m$, and for every $B \subset \Omega \setminus A_{\varepsilon}$ with meas $(B) < \delta$. By Lemma [I.9] we may take $\lambda > 0$ so large that for all i, k

(II.7)
$$\operatorname{meas} \{x \in \mathbb{R}^n : (M^* z_k^{(i)})(x) \ge \lambda\} < \min(\varepsilon, \delta).$$

For all i, k set

$$H_{i,k}^{\lambda} = \{x \in \mathbb{R}^n : (M^*z_k^{(i)})(x) < \lambda\}, \quad H_k^{\lambda} = \bigcap_{i=1}^m H_{i,k}^{\lambda}.$$

Lemma [I.11] ensures that, for all $x, y \in H_k^{\lambda}$ and $1 \le i \le m$,

$$\frac{|z_k^{(i)}(y)-z_k^{(i)}(x)|}{|y-x|} \leq c(n) \lambda.$$

Let $g_k^{(i)}$ be a Lipschitz function extending $z_k^{(i)}$ outside H_k^{λ} , with Lipschitz constant not greater than c(n) λ (Lemma [I.12]). Since H_k^{λ} is an open set we have

$$g_k^{(i)}(x) = z_k^{(i)}(x), \quad Dg_k^{(i)}(x) = Dz_k^{(i)}(x)$$

for all $x \in H_k^{\lambda}$, and

$$\|Dg_k^{(i)}\|_{L^{\infty}(\mathbb{R}^n)} \leq c(n) \lambda.$$

We may also assume

$$\|g_k^{(i)}\|_{L^{\infty}(\mathbb{R}^n)} \leq \|z_k^{(i)}\|_{L^{\infty}(H_k^{\lambda})} \leq \lambda.$$

We may suppose that, at least for a subsequence,

$$g_k^{(i)} \rightharpoonup v^{(i)}$$
 (weak*) in W^{1,\infty}(\O)

for $1 \le i \le m$. Put $(g_k^{(1)}, ..., g_k^{(m)}) = g_k$, $(v^{(1)}, ..., v^{(m)}) = v$; we have

$$F(u+z_k,\Omega) \ge F(u+g_k,(\Omega \setminus A_{\varepsilon}) \cap H_k^{\lambda})$$

$$= F(u+g_k,\Omega \setminus A_{\varepsilon}) - F(u+g_k,(\Omega \setminus A_{\varepsilon}) \setminus H_k^{\lambda}).$$

Since

meas
$$[(\Omega \setminus A_{\varepsilon}) \setminus H_k^{\lambda}] \leq \sum_{i=1}^m \text{meas } [(\Omega \setminus A_{\varepsilon}) \setminus H_{i,k}^{\lambda}] < m \text{ min } (\varepsilon, \delta)$$

by (II.6) and by our choice of A_{ε} we obtain

$$F(u + g_k, (\Omega \setminus A_{\varepsilon}) \setminus H_k^{\lambda}) \leq 2^{p-1} \{ \eta(m\varepsilon) + c(n, \Omega) \lambda^p \text{ meas } [(\Omega \setminus A_{\varepsilon}) \setminus H_k^{\lambda}] \}$$

$$\leq 2^{p-1} \{ \eta(m\varepsilon) + c(n, \Omega) \sum_{i=1}^m \int\limits_{(\Omega \setminus A_{\varepsilon}) \setminus H_k^{\lambda_i}} [(M^* z_k^{(i)})(x)]^p dx \}$$

$$= 2 - (\eta(ne) + o(n, 2)) \underbrace{\Delta}_{i=1} \underbrace{\Omega(A_e) \setminus H_{i,k}^{\lambda}}_{i,k}$$

$$\leq 2^{p-1} \{ \eta(m\varepsilon) + mc(n, \Omega) \varepsilon \} = O(\varepsilon).$$

Thus

$$F(u+z_k,\Omega) \geq F(u+g_k,\Omega \setminus A_{\varepsilon}) - O(\varepsilon).$$

Choose an open set $\Omega' \subset \Omega$ containing $\Omega \setminus A_{\varepsilon}$ and such that

$$|F(u+g_k,\Omega')-F(u+g_k,\Omega\setminus A_{\varepsilon})|<\varepsilon$$

(this is possible since the functions g_k are uniformly bounded in $W^{1,\infty}(\Omega;\mathbb{R}^m)$). Applying Theorem [II.1] to the functional

$$\Gamma(w, S) = \int_{S} \gamma(x, w(x), Dw(x) dx),$$

where

$$\gamma(x, s, \xi) = f(x, u(x) + s, Du(x) + \xi),$$

we are led to

$$\lim_{k \to \infty} F(u + z_k, \Omega) \ge \liminf_{k \to \infty} F(u + g_k, \Omega') - \varepsilon - O(\varepsilon)$$

$$\ge F(u + v, \Omega') - \varepsilon - O(\varepsilon).$$

At least for a subsequence we may suppose that $z_k(x) \to 0$ for almost all $x \in \Omega$. Set

$$G = \{x \in \Omega \colon v(x) \neq 0\}$$

and

$$\tilde{G} = G \cap \{x \in \Omega : z_k(x) \to 0\},$$

so that meas $(G) = \text{meas } (\tilde{G})$. Since the functions g_k are continuous and converge to v in L^{∞} , we have

$$g_k(x) \rightarrow v(x)$$

for all $x \in \Omega$, hence for all $x \in G$. If we now suppose

meas
$$(G) > (m+1) \varepsilon$$

we obtain a contradiction. Indeed by (II.7)

meas
$$(\tilde{G} \cap H_k^{\lambda}) > \varepsilon$$
 for all k ,

and by Lemma [I.6], for a subsequence,

$$\left(igwedge_{h \in \mathbb{N}} H_{k_h}^{\lambda} \right) \cap \tilde{G} \neq \emptyset.$$

If \tilde{x} belongs to this set, then

$$v(\tilde{x}) = \lim_{h \to \infty} g_{k_h}(\tilde{x}) = \lim_{h \to \infty} z_{k_h}(\tilde{x}) = 0,$$

contrary to the definition of G.

We may thus write, by the positivity of f,

$$\lim_{k\to\infty} F(u+z_k,\Omega) \ge F(u,\Omega'\setminus G) - O(\varepsilon) - \varepsilon$$

$$\ge F(u,\Omega) - O(\varepsilon) - \varepsilon - \eta[(m+2)\,\varepsilon],$$

which concludes the proof since ε is arbitrary.

In this proof the role played by the hypothesis $f \ge 0$ is fundamental. Indeed if (II.6) is changed to

$$|f(x, s, \xi)| \le a(x) + C(|s|^p + |\xi|^p),$$

and (II.2), (II.3) are satisfied, then Theorem [II.4] is false, at least for n > 2, but one can prove that for all $\varepsilon > 0$ the funtional $u \mapsto F(u, \Omega)$ is swlsc on $W^{1,p+\varepsilon}(\Omega; \mathbb{R}^m)$ (see [9]).

Since semicontinuity on $W^{1,p}$ implies semicontinuity on $W^{1,\infty}$, we may summarize the results of this section as follows:

Statement [II.5]. Let $f: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^{nm} \to \mathbb{R}$ be a Carathéodory function which satisfies (II.6) for some $p \geq 1$ [or alternately satisfies (II.4)]. Then the functional $u \mapsto F(u, \Omega)$ is swlsc on $W^{1,p}(\Omega; \mathbb{R}^m)$ [or is sw*lsc on $W^{1,\infty}(\Omega; \mathbb{R}^m)$] if and only if f is quasi-convex in ξ .

III. A Representation Theorem

In this section, given a functional of the type (II.1) with f not necessarily quasi-convex in ξ , we deal with the problem of finding its lsc envelope on $W^{1,p}(\Omega;\mathbb{R})$, i.e. the greatest functional less than or equal to F which is swlsc on $W^{1,p}(\Omega;\mathbb{R}^m)$. As a consequence of statement [II.5], it will suffice to treat the case $p = +\infty$.

Let $f: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^{nm} \to \mathbb{R}$ be a Carathéodory function satisfying (II.4). For every r > 0 and for every Ω bounded open set of \mathbb{R}^n , if $u \in W^{1,\infty}(\Omega; \mathbb{R}^m)$ with $\|Du\|_{L^{\infty}(\Omega; \mathbb{R}^{nm})} \leq r$, we define

$$F(r, u, \Omega) = \inf \{ \liminf_{k \to \infty} F(u_k, \Omega) \colon u_k \to u \text{ (weak*)} \quad \text{in } W^{1,\infty}(\Omega; \mathbb{R}^m)$$

$$\text{and} \quad \|Du_k\|_{L^{\infty}(\Omega; \mathbb{R}^{nm})} \leq r \}$$

$$F_0(r, u, \Omega) = \inf \{ \liminf_{k \to \infty} F(u_k, \Omega) \colon (u_k - u) \to 0 \text{ (weak*)} \quad \text{in } W_0^{1,\infty}(\Omega; \mathbb{R}^m)$$

$$\text{and} \quad \|Du_k\|_{L^{\infty}(\Omega; \mathbb{R}^{nm})} \leq r \},$$

where $F(u, \Omega)$ is defined by (II.1). The argument employed in [11], Lemmas 3.3 and 4.5, leads us to the following results.

Lemma [III.1]. If f satisfies the foregoing hypotheses, then for every r > 0 and every $u \in W^{1,\infty}(\Omega;\mathbb{R}^m)$ with $\|Du\|_{L^{\infty}(\Omega;\mathbb{R}^{nm})} < r$ there exists a function $h_u \in L^1(\Omega)$ such that

$$F(r, u, \Omega') = F_0(r, u, \Omega') = \int_{\Omega'} h_u(x) dx$$

for every open set $\Omega' \subset \Omega$.

Lemma [III.2]. Let $u_1, u_2 \in W^{1,\infty}(\Omega; \mathbb{R}^m)$, with $\|Du_i\|_{L^{\infty}(\Omega; \mathbb{R}^{nm})} < r$ and $\|u_i\|_{L^{\infty}(\Omega; \mathbb{R}^m)} < d$, i = 1, 2. Then for every open set $\Omega' \subset \Omega$ we have

$$|F(r, u_1, \Omega') - F(r, u_2, \Omega')| \leq \int_{\Omega'} \omega(x, d, 3r, ||u_1 - u_2||_{W^{1,\infty}(\Omega;\mathbb{R}^m)}) dx,$$

where

$$\omega(x, d, r, \delta) = \sup \{ |f(x, s_1, \xi_1) - f(x, s_2, \xi_2)| : |s_i| < d, |\xi_i| < r \text{ for } i = 1, 2,$$
and $|s_1 - s_2| + |\xi_1 - \xi_2| < \delta \}.$

We now use these results to prove

Lemma [III.3]. To each r > 0 there exists a Carathéodory function ϕ_r defined on $\Omega \times \mathbb{R}^m \times \{\xi \in \mathbb{R}^{nm} : |\xi| < r\}$ such that for every $u \in W^{1,\infty}(\Omega;\mathbb{R}^m)$ with $\|Du\|_{L^{\infty}(\Omega;\mathbb{R}^{nm})} < r$ we have

$$\phi_r(x, u(x), Du(x)) = h_u(x)$$
 for almost every $x \in \Omega$.

Proof. Let \mathscr{A}_r be the class of all affine functions on \mathbb{R}^n with rational coefficients and with gradient less than r in norm. Also let L be the set of the points in \mathbb{R}^n which are Lebesgue points for every function h_u , with $u \in \mathscr{A}_r$. For $x \in L$, $s \in \mathbb{Q}^m$, $\xi \in \mathbb{Q}^{nm}$, with $|\xi| < r$, put

$$\phi_r(x, s, \xi) = h_r(x),$$

where $u \in \mathscr{A}_r$, u(x) = s, $Du = \xi$. Lemma [III.2] implies that ϕ_r is continuous in (s, ξ) for almost every $x \in L$. Since $L \times \mathbb{Q}^m \times \mathbb{Q}^{nm}$ is dense in $L \times \mathbb{R}^m \times \mathbb{R}^{nm}$, we may therefore extend the definition of ϕ_r to $\Omega \times \mathbb{R}^m \times \{\xi \in \mathbb{R}^{nm} : |\xi| < r\}$, obtaining

$$|\phi_r(x, s_1, \xi_1) - \phi_r(x, s_2, \xi_2)| \le \omega(x, d, 3r, \delta)$$

or almost every $x \in \Omega$ and for $|s_i| < d$, $|\xi_i| < r$ (i = 1, 2), whenever $|s_1 - s_2| + |\xi_1 - \xi_2| < \delta$. This inequality yields

$$h_u(x) = \phi_r(x, u(x), Du(x))$$

for every $u \in W^{1,\infty}(\Omega; \mathbb{R}^m)$ with $\|Du\|_{L^{\infty}(\Omega; \mathbb{R}^{nm})} < r$ and for almost every $x \in \Omega$.

It remains to be proved that for all (s, ξ) the function $x \mapsto \phi_r(x, s, \xi)$ is measurable. Let $s_1 \in \mathbb{R}$ and let u be affine with $u(0) = s_1$, $Du = \xi$. For almost every $x \in \Omega$ we have

$$\phi_r(x, s_1 + \xi \cdot x, \xi) = h_u(x),$$

hence this function is measurable. If ψ is a simple function, i.e. $\psi(x) = \sum_{i=1}^{k} s_i \chi_{E_i}(x)$, with each E_i measurable and $E_i \cap E_j = \emptyset$ if $i \neq j$, then

$$\phi_r(x, \psi(x) + \xi \cdot x, \xi) = \sum_{i=1}^k \phi_r(x, s_i + \xi \cdot x, \xi) \chi_{E_i}(x).$$

Therefore by an approximation argument we can prove that $x \mapsto \phi_r(x, \theta(x) + \xi \cdot x, \xi)$ is measurable, for $\theta \in L^1(\Omega)$. This happens in particular if $\theta(x) = s - \xi \cdot x$, and the proof is complete.

The above lemma, together with the semicontinuity of $F(r, u, \Omega)$ and Remark [II.3], implies

Remark [III.4]. For every $(x, s, \xi) \in \Omega \times \mathbb{R}^m \times \mathbb{R}^{nm}$ set

$$\phi(x, s, \xi) = \lim_{\substack{r \to \infty \\ r > |\xi|}} \phi_r(x, s, \xi) = \inf_{r > |\xi|} \phi_r(x, s, \xi).$$

The function ϕ is measurable in x, upper semi-continuous in s, continuous in ξ , and quasi-convex in ξ .

Let $\tilde{x} \in \Omega$, $\tilde{s} \in \mathbb{R}^m$. Lemma [III.3] implies that for all r > 0 there exists a function $g(\tilde{x},\tilde{s})$ such that

$$\int_{\Omega} g_r^{(\tilde{x},\tilde{s})}(Du(x)) dx = \inf \{ \liminf_{k \to \infty} \int_{\Omega} f(\tilde{x}, \tilde{s}, Du_k(x)) dx \colon u_k \to u \}$$

$$(\text{weak*}) \text{ in } W^{1,\infty}(\Omega; \mathbb{R}^m) \text{ and } \|Du_k\|_{L^{\infty}(\Omega; \mathbb{R}^{nm})} \leq r \}$$

$$\text{for all } u \in W^{1,\infty}(\Omega; \mathbb{R}^m) \text{ with } \|Du\|_{L^{\infty}(\Omega; \mathbb{R}^{nm})} < r.$$

Put

$$g^{(\tilde{x},\tilde{s})}(\xi) = \lim_{\substack{r \to \infty \\ r > |\xi|}} g_r^{(\tilde{x},\tilde{s})}(\xi).$$

Theorem [III.5]. For almost every $x \in \Omega$ and every $s \in \mathbb{R}^m$ the function $\xi \mapsto \phi(x, s, \xi)$ is the greatest quasi-convex function less than or equal to $\xi \mapsto f(x, s, \xi)$.

Proof. Let $K \subset \Omega$ be a compact set such that f is continuous on $K \times \mathbb{R}^m \times \mathbb{R}^{nm}$. For $x \in K$, $s \in \mathbb{R}^m$, set

$$g_r(x, s, \xi) = g_r^{(x,s)}(\xi).$$

By the uniform continuity of f on bounded subsets of $K \times \mathbb{R}^m \times \mathbb{R}^{nm}$, g_r is continuous on $K \times \mathbb{R}^m \times \{\xi \in \mathbb{R}^{nm} : |\xi| < r\}$. Since K is arbitrary, g_r is defined for almost every $x \in \Omega$, and every $s \in \mathbb{R}^m$, $\xi \in \mathbb{R}^{nm}$, with $|\xi| < r$. Moreover, Lemma [I.5] implies that g_r is a Carathéodory function, and it is quasi-convex in ξ since the same holds for all $g_r^{(x,s)}$. As we remarked after Theorem [II.1], the functional

$$G_r(u, \Omega) = \int_{\Omega} g_r(x, u(x), Du(x)) dx$$

is sw*lsc on $\{u \in W^{1,\infty}(\Omega;\mathbb{R}^m): \|Du\|_{L^{\infty}(\Omega;\mathbb{R}^{nm})} < r\}$.

If we set, for all x, s, ξ ,

$$g(x, s, \xi) = g^{(x,s)}(\xi),$$

then the functional

$$u \mapsto \int_{O} g(\tilde{x}, \tilde{s}, Du(x)) dx$$

is the lsc envelope on $W^{1,\infty}(\Omega;\mathbb{R}^m)$ of the functional

$$u \mapsto \int_{\Omega} f(\tilde{x}, \tilde{s}, Du(x)) dx.$$

Hence $\xi \mapsto g(\tilde{x}, \tilde{s}, \xi)$ is the greatest quasi-convex function not greater than $\xi \mapsto f(\tilde{x}, \tilde{s}, \xi)$. This implies $g \ge \phi$. For every r > 0, G_r is semicontinuous, hence $G_r(u, \Omega) \le F(r, u, \Omega)$, and $g_r \le \phi_r$, whence $g \le \phi$. \square

Note that the function ϕ does not necessarily represent the lsc envelope of $u \mapsto F(u, \Omega)$. Indeed, if ϕ is not a Carathéodory function, there is a counterexample even if f is convex in ξ (example 3.11 in [11]).

We give here some conditions which ensure that ϕ is a Carathéodory function.

Theorem [III.6]. If either of the conditions

(III.1)
$$f = f(x, \xi)$$
, or

(III.2) $|f(x, s_1, \xi) - f(x, s_2, \xi)| < \omega(x, |s_1 - s_2|) \beta(|\xi|),$ where $\omega : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^+$ is a Carathéodory function, $\omega(x, 0) = 0$, and β is increasing and non-negative,

is satisfied, then ϕ is a Carathéodory function.

Proof. If (III.1) holds, the result follows from Remark [III.4]. Next assume that (III.2) holds. We note (see [8], Corollary 2.4) that if $\psi: \mathbb{R}^q \to \mathbb{R}^+$ is a convex function and if we set $M = \max_{|y| \le R} \psi(y)$, then for all r < R and $y_1, y_2 \in B_r(0)$ there holds

$$|\psi(y_1) - \psi(y_2)| \leq \frac{M}{R-r} |y_1 - y_2|.$$

Since quasi-convexity implies weak quasi-convexity, this estimate shows that if $\psi: \mathbb{R}^{nm} \to \mathbb{R}^+$ is quasi-convex then for all r < R and $\xi_1, \xi_2 \in B_r(0)$ we have

$$|\psi(\xi_1)-\psi(\xi_2)| \leq \frac{M\sqrt{\min(m,n)}}{R-r}|\xi_1-\xi_2|,$$

where we have put $M = \max_{|\xi \le R|} \psi(\xi)$.

Note that ϕ almost everywhere satisfies the inequality

$$|\phi(x, s_1, \xi) - \phi(x, s_2, \xi)| < \omega(x, |s_1 - s_2|) \beta(|\xi|),$$

as one can see by proving the same estimate for the function g_r and then using the equality $g = \phi$.

Choose R > 0, and for all $x \in \Omega$ put

$$M(x) = a(x) + \sup \{b(s, \xi) \colon |s| \le R, |\xi| \le R\}$$

$$\ge \sup \{\phi(x, s, \xi) \colon |s| \le R, |\xi| \le R\}.$$

For almost all $x \in \Omega$ one has, for all r < R, $s_1, s_2 \in B_r(0) \subset \mathbb{R}^m$, and $\xi_1, \xi_2 \in B_r(0) \subset \mathbb{R}^{nm}$,

$$|\phi(x, s_1, \xi_1) - \phi(x, s_2, \xi_2)| \le \frac{M(x) \sqrt{\min(m, n)}}{R - r} |\xi_1 - \xi_2| + \omega(x, |s_1 - s_2|) \beta(R).$$

We summarize the results of section III as follows.

Statement [III.7]. Let $f: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^{nm} \to \mathbb{R}$ be a Carathéodory function which satisfies (II.6) for some $p \ge 1$ [or alternately satisfies (II.4)], and let either one of the conditions (III.1), (III.2) hold. Then the lsc envelope on $W^{1,p}(\Omega; \mathbb{R}^m)$ [on $W^{1,\infty}(\Omega; \mathbb{R}^m)$] of $u \mapsto F(u,\Omega)$ is the functional

$$u \mapsto \int\limits_{\Omega} \phi(x, u(x), Du(x)) dx,$$

where for almost all $x \in \Omega$ and for all $s \in \mathbb{R}^m$ the function

$$\xi \mapsto \phi(x, s, \xi)$$

is the greatest quasi-convex function which is less than or equal to $\xi \mapsto f(x, s, \xi)$.

This theorem provides an extension of the results of [6] to the case in which f depends on u as well as on x and ξ .

Note. This work was supported by the Italian government through the Consiglio Nazionale delle Ricerche.

References

- 1. ADAMS, R. A.: *Sobolev spaces, Academic Press, New York, 1975.
- Ball, J. M.: On the calculus of variations and sequentially weakly continuous maps, Ordinary and partial differential equations (Proc. Fourth Conf., Univ. Dundee, Dundee 1976), pp. 13-25. Lecture Notes in Math., Vol. 564, Springer, Berlin, Heidelberg, New York, 1976.
- 3. Ball, J. M.: Constitutive inequalities and existence theorems in nonlinear elastostatics, *Nonlinear analysis and mechanics: Heriot-Watt Symposium (Edinburgh*, 1976), *Vol. I*, pp. 187-241. *Res. Notes in Math.*, No. 17, *Pitman, London*, 1977.
- 4. Ball, J. M.: Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., Vol. 63 (1977), 337-403.
- 5. Ball, J. M.; Currie, J. C.; Olver, P. J.: Null lagrangians, weak continuity, and variational problems of any order, J. Funct. Anal., 41 (1981), 135-174.
- DACOROGNA, B.: A relaxation theorem and its application to the equilibrium of gases, Arch. Rational Mech. Anal., 77 (1981), 359-386.

- 7. EISEN, G.: A selection lemma for sequences of measurable sets, and lower semicontinuity of multiple integrals, *Manuscripta Math.*, 27 (1979), 73-79.
- 8. EKELAND, I.; TEMAM, R.: *Convex analysis and variational problems, *Nortt Holland*, *Amsterdam*, 1976.
- Fusco, N.: Quasi-convessità e semicontinuità per integrali multipli di ordine superiore, Ricerche Mat., 29 (1980), 307-323.
- 10. Liu, F.-C.: A Luzin type property of Sobolev functions, *Indiana Univ. Math. J.*, 26 (1977), 645-651.
- 11. Marcellini, P.; Sbordone, C.: Semicontinuity problems in the calculus of variations, *Nonlinear Anal.*, 4 (1980), 241-257.
- 12. MEYERS, N. G.: Quasi-convexity and lower semicontinuity of multiple variational integrals of any order. *Trans. Amer. Math. Soc.* 119 (1965), 125-149.
- 13. Morrey, C. B.: Quasi-convexity and the semicontinuity of multiple integrals. *Pacific J. Math.* 2 (1952), 25-53.
- 14. Morrey, C. B.: *Multiple integrals in the calculus of variations. Springer, Berlin, Heidelberg, New York 1966.
- 15. Serrin, J.: On the definition and properties of certain variational integrals. *Trans. Amer. Math. Soc.* 101 (1961), 139-167.
- 16. Stein, E. M.: *Singular integrals and differentiability properties of functions. *Princeton University Press, Princeton*, 1970.
- 17. Tonelli, L.: La semicontinuità nel calcolo delle variazioni, *Rend. Circ. Matem. Palermo* 44 (1920), 167-249.

Scuola Normale Superiore Pisa

and

Istituto di Matematica "R. Caccioppoli"
Università di Napoli

(Received September 15, 1981)