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Introduction 

Let f :  R a -+ R be a twice continuously differentiable function, and for 
u E Wl'l(a, b) set 

b 
F(u; a, b) ---- f f ( x ,  u(x), u'(x)) dx. 

a 

In a paper of TONELLX [17] it is proved that the functional Fis  lower semieontinuous 
(lsc) in the topology of  L~(a, b) if and only if the function f is convex in the last 
variable. Later, several authors generalized this result: among the many theorems 
obtained, in which x is allowed to belong to R" and considerably less regularity 
on f i s  required, we recall particularly Theorem 12 of SERRIN [15], in which for 
the first time differentiability conditions on f are dropped, and the following 
result due to MARCELLINI & SBORDONE [11]: 

I f  f :  R" •  • -+ R satisfies: 

(i) f is measurable in x, and continuous in (s, ~), and 

(ii) 0 <~f(x, s, ~) <= g(x, Is], [~]), 

where g is increasing in lsI and ]~[, and is locally summable in x, then the functional 

(0.1) r(u, ~2) = f f ( x ,  u(x), Du(x)) dx 

is sequentially weakly lower semicontinuous* on Wl'V(g2), with 1 <= p <= + oo, 
i f  and only i f  f is convex in ~. 

(See also EKELAND and TEMAM [8] for the ease in which f does not depend 
o n  u).  

* That is, F(u, g2) <= lim inf F(un, ~) whenever u n ~+ u in the weak topology of 
Wl,V(~2). When p = 0% weak convergence should be replaced by weak* convergence. 
In what follows we shall use the abbreviation sw 1 se for "sequential weak lower semi- 
continuity", or sw* l se when "weak" is replaced by "weak*". 
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On the other hand, if we allow the function u to be vector-valued, i.e. u E 
W1'P(g2;Rm), then the convexity hypothesis turns out to be sufficient, but too 
strong to be necessary, for F to be lsc: MOe, REY proved in [13] that, under strong 
regularity assumptions, F is sw* I sc on Wl'~176 m) if and only i f f  is quasi- 
convex, that is for every s E R  m and for almost every x E R  n the function 

~ f (x ,  s, 2) satisfies the condition 

(0.2) f (x ,  s, ~) . meas (s =< f f ( x ,  s, ~ + Dw(y)) dy 

for every ~ E R "m, for every bounded open set g2 ( R  n, and for every w E 
c o  . m C~ ( I 2 , R ) .  Although it is technically not easy to handle, this condition arises 

in a natural way in many problems (especially in elastostatics); moreover, it is 
equivalent to convexity in ~ in the case m = 1. 

The theorem of MORREY was extended by MEYERS [12] to the semicontinuity 
(on Wk,P(12; Rm)) of functionals of the type 

(0.3) f f(x, u(x) . . . . .  Dku(x)) dx, 
I2 

always under strong continuity hypotheses. 
In section II, by means of techniques basically relying on a recent theorem 

of Liu [10], which allows us to deduce semicontinuity on WI'P(12;R m) from 
semicontinuity on WI'~176 we prove the following main result (theorem 
[I1.4]): 

If  f:RnxRmxRnm---> R satisfies 

(i) f is measurable in x, continuous in (s, ~), and 

(ii) 0 <=f(x, s, ~) <= a(x) + C(lsl" + I~1"), 
where p ~ 1, a is a non-negative locally summable function, and C is a non- 
negative constant, 

then the functional (0.1) is swlsc on WI'P(g2;R m) i f  and only i f  ~--~ f (x ,  s, ~) is 
quasi-convex, for every s and almost every x. 

Counterexamples valid even in the convex case show that these hypotheses 
are almost the minimal ones necessary to obtain a theorem of this kind. 

As a particular case of our result, we deduce the weak semicontinuity on 
W1'"(~2; R')  of the functional 

f b(x) [ det Du(x) l dx 
O 

(where b is non-negative, and bounded on bounded sets of R"). The integrand 
satisfies a stronger hypothesis than quasi-convexity (namely polyconvexity, a 
condition introduced and studied by BALL in [2], [3], [4], [5]), but the result does 
not seem to be previously known. 

In the last section we prove a representation theorem for the greatest swlsc 
functional which is less than or equal to f f (x ,  u(x), Du(x))dx, where f is not 

o 
necessarily quasi-convex. We show that, under reasonable continuity assumptions 
on f ,  this functional has the form f 4~(x, u(x) Du(x)) dx, where 4' is the greatest 
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quasi-convex function which is less than or equal to f .  A similar result has been 
proved by DACOROGNA [6], if f is a polyconvex function. 

We remark that, using more complicated notations as in [12], [5], our results 
can be extended to the case of functionals of the type (0.3). For other results and 
additional bibliography on quasi-convexity, see the many important papers by 
BALL, MEYERS, and MORREY. 

I. Notation and Preliminary Lemmas 

If  a 6 R " ,  then In[ is its euclidean norm; i f~  is an m •  matrix, I~[ is the 
norm of ~ when regarded as a vector in p m,. The Lebesgue measure of a measurable 
subset S of R n will be denoted by meas (S). 

Let 12QR" be an open set, l ~ p = <  + ~ ,  r n ~  1; we defineLP(I2;R m) 
to be the collection of all m-tuples (fo), ...,f(m)) of real functions in LP(12). Ana- 
logously, we say that u E W~'P(12; R m) if u belongs to LP(12;R m) together with 

~u (i) 
its distribution derivatives --~xj ' 1 _< i--< m, 1 ~ j  < n. The m •  matrix of 

these derivatives will be denoted by the symbol Du; W1'~(12; R m) becomes a Ba- 
nach space if it is endowed with the norm 

II ul[wa,~r = Ill ulIIL~(~)P + I1[ DullILp(~), 
where 

I u l (x)  = I u(x)  l, I Dul (x) = [ Du(x) l. 

Finally, u E C~(12; R m) if each u (~ is a C ~ function on 12 with compact support, 
while W~'P(f2;R m) is the closure of Cg(g2;R m) in the topology of Wl'P(12;Rm). 

Definition lI.11, f :  R "m ~ R is weakly quasi-convex i f  for every "~ E anm, ~ 6 ~m 

and 2 E ~2~n the functions 

~ f ( ~  + z | ~), ~ f ( ~  + ~ |  

are convex, where (2 | r/) e = 2i%. 

Definition I1.21. A continuous function f :  R"'n---~ I~ is quasi-convex i f  for every 
6 R "m, for every open subset 12 of  R ' ,  and every function z 6 Co1(12;R m) we have 

(I.1) meas (12).f(~) =< f f ( g  + Dz(x)) dx. 
a 

In what follows, if f is a real function defined in R, n x ~ m x R  nm, w e  will 
say that f is quasi convex in ~ if there exists a set I Q R' ,  with meas (I) = 0, 
such that for every ~ E R" \ I and ~" E R m the function ~ ~--,f(~, ~, ~) is quasi- 
convex. 

To prove that a function f is quasi-convex, note that it is enough to verify 
(I.1) for one open set 12, and for every z6  C~(12;R,'~); moreover if f is quasi- 
convex then (I 1) holds for every z E W~'~(12;Rm). 
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Quasi-convexity implies weak quasi-convexity, which in turn implies that 
the function locally satisfies a Lipschitz condition. If  m = 1 or n = 1, then 
quasi-convexity is equivalent to convexity; in general, a function f E  C2(R ~m) 
is weakly quasi-convex if and only if for every ~ E R m~, ;t E R n, r/E ~m there 
holds 

n m e ~ f  
E (2) _-> o 

i , j  = 1 h,k = 1 

(Legendre-Hadamard condition). 
The proofs of the previous remarks may be found in [2], [12], [14]. The follow- 

ing result ([12], Lemma 1) will be useful to disengage Definition [I.1] from the 
boundary condition on z. 

Lemma 11.31. Let f :  R nm --+ R be quasi-convex. 
~2 C R" and every sequence (zk) C W1'~176 Rm) 
to zero, we have 

For every bounded open set 
which is weakly* convergent 

meas (32) .f(~) ~ lim inf f f ( ~  § Dz(x)) dx 
k-~oo 

for every ~ E R "m. 

Definition 11.41. f'. R" X]{ m X]~nm-+ ~ is a Carathdodory function i f  the following 
conditions are satisfied: 

for every (s, ~) E I { m  • Rnm, X ~--~ f (x ,  S, ~) is measurable; 

for almost all x E R", (s, ~)v-->f(x, s, 2) is continuous. 

The following result of  SCORZA-DRAGONI ([8], page 235) characterizes the 
class of Carath6odory functions. 

LemmalI.5].  A mapping f :Rn•215 is a Carathdodory function 
i f  and only i f  for every compact set K C Rn and e > 0 there exists a compact 
set K~ C K, with meas ( K \  K,) < e, such that the restriction o f f  to K~ •  m x R  "m 
is continuous. 

The next lemma may be found in [7]. 

Lemma 11.61. Let G C Rn be measurable, with meas (G) < oo. Assume (Mz,) is 
a sequence of  measurable subsets of  G such that, for some e > O, the following 
estimate holds: 

meas (Mk) ~ t for all k E Ig. 

Then a subsequence (Mkh) can be selected such that i~ M~ h 4: O. 
hEN 

Lemma 11.71. Let (~bk) be a bounded sequence in L~(Rn). Then to each e > 0 there 
exists a triple (A~, ~, S), where A8 is measurable and meas (A,) < e, d > 0, 
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and S is an infinite subset of N, such that for all k E S 

f [~k(x) I dx < e 
B 

whenever B and A~ are disjoint and meas (B) < 8. 

Proof. We reason by contradiction. Hence we suppose that there exists a e > 0 
such that, for every (A~, 8, S) as in the statement of the theorem, we may choose 
a measurable set B, with B ~ A t = 0  and m e a s ( B ) < 8 ,  and an index k C S  
such that 

f [~Ax) l dx > e. 
B 

This implies that for every set A, with meas ( A ) <  e, and every infinite set 
S Q N ,  there exists both a set C, with C A A = 0  and m e a s ( A k J C ) < e ,  
and an infinite subset T of S such that 

f 14,k(X)[ dx >= e for all k E T. 
c 

This will be proved later; now we show that we are led to a contradiction. 
Set A = 0 ,  S = N ,  and letC~ andT1 be as above. Starting from A = C 1  

and S = T 1 ,  we pass to Cz and T2, where C ~ / ~ C 2 = 0  and 

f 14k(X) l dx = f 14k(X) l dx + f I~k(x)[ dx > 2e 
C~k) C2 Ct C2 

for all kE/ '2 .  Since m e a s ( C 1 U C z ) < e ,  we may set A = C 1 L I C 2 ,  S = T  2, 
and continue with the same argument. I f  

g > e - 1  sup l[ ~b k IIL,(Rn) , 
kCN 

then after N iterations we obtain the contradiction. 
We return to the interrupted proof: let A and S be as stated, set St = S 

and take 8t < (e -- meas (A))/2. There exist a set B1 disjoint from A, with 
meas (B1) < 01, and an index kl E S~, such that 

f I~k,(x)[ dx >= e. 
BI 

Applying induction, put 

1 
8n = -~- 8,-1, S, = (kE S , - l :  k > k,-1}, 

and set 
c = U Sh, r = (kh : I, ~ ~), 

hEN 

then C and T satisfy our requirements: C ~ A = 0, meas (C) + meas (A) < e, 
T Q S is infinite, and 

f l4'k(X) l dx > e 
C 

for all k E T. This completes the proof. 
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If  r > 0 and xER"~ set B,(x) = (yER," :IY - x[ < r}, 
(.On rn. 

Definition 11.81. Let u E C~(R"). We define 

(M'u)  (x) = (Mu) (x) + 2 (MDiu) (x), 
i = 1  

where we set 

1 
(Mf )  (x) = sup ~ f [f(Y) l dy 

r > 0  (Dnr Br(x) 

for every locally summable f 

Lemma 11.91. I f  u E C~(P~") then M*u E C~ ") and 

for all x E lZ". 

and if  p ---- 1 

I u(x) l + ~ I Diu(x)[ ~ (M'u) (x) 
i=l 

Moreover (see [16]) / f p  > 1 then 

l[ M*u ]ILp(~,) <= c(n, p) [1 u ]1 rvl,p(R, ) 

then 

meas {xE R" : (M'u)  >= 2]} ~ ~ - I 1  ul[wl,l~rt, ) 

for all 2 > O. 

Lemma 11.101. Let U E Co~ and put  

and meas (B,(x)) 

U(x, y) - 

Then for every x E R" 

l u(y) - u(x) - ~ Diu(x ) (Yi -- Xi)[ 
i = I  

l y - x [  

and r > 0 

f U(x, y) dy <= 2c%r"(M*u) (x). 
Br(x) 

The proof  is contained in [10], Lemma 2. By modifying another  demonstrat ion 
of  [10], we are also able to prove 

Lemma 11.11]. Let u E C~(R") and 2 > O, and set 

H a = (x E B," : (M'u)  (x) < 2}. 

Then for every x, y E H a we have 

I u(Y) --  u(x)] < c(n) 2. 
l y - x l  = 
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Proof. Let c'(n) be such that for every x, y E R" with 

2 
meas (B~(x) A Br(y)) > C - ~  ~ 

6 > 0  set 

(i.2) 

For 

Wr(x, a) = {yE Br(x): U(x, y) < 6}, 

whence by Lemma [I.10] 

2 
meas (Br(x) \ W~(x, 6)) <= --~ co,r"(M*u) (x). 

If  z E H  A, then 

131 

I x - - y l = r ,  we have 

2~O n r n r nr  n 

(I.3) meas (B,(z) \ Wr(z, 2c'(n) 2)) ~ 2c'(n) 2 (M'u) (z) < c'(n-----)" 

Let x, y E H  ~ with r =  [x-yl .  By (I.2) and (I.3) 

Wr(x, 2c'(n) 2) f~ Wr(y, 2c'(n) 2) =t= 0. 

Choose ~ in this intersection, so that Ik - x[ < r, [~ - Y] < r. Then 

lu(y) u(x )  I < 
U(y, 5) + ~ [lDiu(x)[ § l Diu(y)[] 

I 

lY x[ = i=1 

(4c'(n) § 2)2, 

as required. 

Lemma [1.121. Let X be a metric space, E a subspace of X, and k a positive real 
number. Then any k-Lipschitz mapping from E into R can be extended by a k- 
Lipschitz mapping from X into R. 

For the proof see [8], page 298. We conclude this preliminary section by 
defining 

a" = {2-"(x § r )  : x E Z'}, v E N, 

where Y = ( 0 , 1 ) ' = ( y E R ' : 0 < y t <  1 for 1 ~ < i ~ n } .  

II. Semicontinuity Theorems 

If  f is a real function defined o n  F ~ n x F ~ m x F ~  nm, and if the left hand side of 
(II.1) makes sense, then we define (for every measurable set S ( R  n) 

(ILl) f f (x ,  u(x), Du(x)) dx = F(u, S). 
S 
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Theorem [II.11. Let f :  ~nxRmx~nm--m R satisfy: 

(11.2) f is a Carathdodory function; 

(11.3) f is quasi-convex in ~; 

(11.4) 0 ~ f (x ,  s, ~) <: a(x) § b(s, ~) for  every x E R", s E R m, and ~ E R"% 
where a is a non-negative locally summable function on R", and b >: 0 is 
locally bounded on ~2~m xRnm. 

Then for every open set 1"2 in R" the functional u ~-> F(u, g2) is sw*lsc on 
wl,oo(f f~  ; ~:~m). 

Proof. Let us suppose first that g2 = (0, 1)". Fix uE WI'~(~(~;~ :~m) and (zk) Q 
WI'~([2;R m) with z k ~ 0  (weak* convergence) in WI'~(g2;Rm); we must 
prove that 

F(u, O) <_ lira inf F(u + Zk, (2). 
k-+ ~ 

Without loss of generality we may suppose a(x) < § o0 for every x. Put 

2 = Ilullw,,~ow;Rm> § sup [[Zkl[wl,o~(~;Rm) 
kEN 

M ---- sup (b(s, ~): [ s[ _--< 2, [$[ ~ 2}. 

Now take e > 0 ,  and let ~ 1  be so large that if 

E : {x E [2: a(x) ~ o~} \ I 

then 

f a(x) dx < ~.  meas (/2 \ E) < ~ ,  u~e 

By Lemma [1.5] there exists a compact set K C / 2  such that f is continuous on 
K X R  m X~:~ nm and 

meas (/2 \ K) < 
~ + M "  

If we neglect sets of measure zero, then for all v E ~T we can write 

2 m, 

/2-----~J a~, 
h = l  

with Q~, E G v. The range 1 <_ h <-- 2 n~ will be assumed henceforth, and we shall 
also write ~ and ~J when h ranges from 1 to 2"L Define 

h h 

(u)~ : 2 -  "~ f uO') dy, (u) ~ (x) = ~ (u)~ ZQ~(X) 
Q~ h 

(Du),; = 2 - 'v f Du(y) dy, (Du) ~ (x) = ~, (Du)~ Za~(X ). 
Q~ k 
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Note that 

II (u)" [[Zo~(a;Rm) + 11 (Du) r IlLoo(t~;Rnm)~ 11 u [1 Wl,~<,~;~,n), 

and that the sequences ((u) r) and ((Du) ~) converge pointwise a.e. to u and Du 
respectively. 

For every ~, and h fix x~,6 Q~,{5 K A  E, if this set is not empty. Then 

F(u + Zk, ~'~) ~ F(U + Zk, K A E) = a k @ b~ + c~ + d r + e, 

where we put 

at, = f [f(x, (u + Zk) (X), (Du + DZk) (X)) -- f ( x ,  U(X), (Du + Dzk)(x))] dx; 
KfSE 

b~ = ~ f [f(x, u(x), (Du + Dzk) (x)) - - f (x] ,  (u)~, (DU)~h + Dzk(x)) l dx; 
h O~C~rC~E 

C"k = Z f [f(x~, (U)~, (Du)~ + DZk(X)) -- f(x~, (U)], (Du)~,)] dx; 
h QVh~K~ E 

dr = ~a f [f(x~, (u)~, (OU)~h) - - f ( x ,  U(X), Du(x))] dx. 
h OThAXA e 

By the uniform continuity o f f  on the bounded sets of K • 2 1 5  "m we have 
lim a~ ---- 0. Similarly the uniform continuity o f f  and the pointwise convergence 

k --)- oo  

of ((u)") and ((Du) ~) imply that 

}ijn d r =  0, 2im b~ ---- 0 uniformly with respect to k. 

Hence we may suppose that v is large enough to ensure that [b~,l + ld"l < e 
for all k. 

Now note that 

I Z f [f(xL (u)L (Du)Z + DZK(X)) -- f (xL (u)Z, (Du)Z)] dX 
O~h ~(gAg) 

2 2~ f [a(x~,) + M] dx 
h Q~d(ICC~E) 

"< 2 [(o~ + M)meas  (I2 \ K) + Mmeas (/2 \ E) + ~,ef~ 

<=4e+2 f a(x) dx<= 6e. 
t2 ~ E 

Applying Lemma [I.3] to each Q~,, we find that 

lim inf c~, >= --6~. 
k - + o o  

Finally, 

As k ---> oo, 

e = F(u, K A E) >= F(u, ~) -- 3e. 

the foregoing estimates yield 

l iminfF(u  + zk, I2) ~ F(u, g2) -- 10e, 
k---~ oo 
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Since e was arbitrary, this proves our result for the special choice of g2 noted at 
the beginning. 

It is easy to see that the same argument applies to every hypereube .Q with 
edges parallel to the coordinate axes; the assertion for a generic ~ follows from 
the fact that the supremum of a family of lsc functions is Ise. This completes the 
proof. 

A slight modification of the proof  yields the same theorem even i f f  satisfies 
(II.2) and (II.3), and [f[ satisfies (II.4) (see [12], [9]). Note that if f is defined on 
,.Q • • (~ E R nm: [ ~ I < F} for some r > 0 and the hypotheses of theorem [II.1] 
hold, then the functional u ~-~ F(u, s is sw*Isc on the space of  functions u E 
W1'~(f2;B m) such that HDU[lL~(a;rtnm) , (  r. 

The inverse to theorem [II.1] is given by 

Theorem llI.2]. Let f :  R" • • ~ ~ satisfy (II.2) and (II.4). Assume the 
functional u ~ F(u, ~ )  to be sw*lsc on W l '~(~ ; W n) for every open set .(2 Q R ~. 
Then f is quasi-convex in ~. 

Proof. We have to show that, if we fix an open set ~2 ( R n, then there exists a 
set I C  Q, with meas (I) = O, such that ~ + f ( x ,  s, ~) is quasi-convex for every 
x E (2 \ I and s E Bm. To this end, we will use only the fact that u ~-* F(u, s 
is lsc for that particular s 

By Lemma [I.5] we can choose a nondecreasing sequence (Ki) of compact 
1 

sets, with meas (s \ Ki) < -:-, such that f i s  continuous on each Ki•215 nm. 
l 

Define I in the following way: x E .(2 \ I if the following conditions are satis- 
fied: 

(H.5) xE U K,; 
iEN 

a(x) < q- ~x~; 

x is a Lebesgue point for Xr i, for every i ;* 

x is a Lebesgue point for a'za~: i ,  for every i. 

Fix ~ E Q \ / ,  s'E R m, ~ E Bnm, where clearly we may suppose :~ = 0, and 

also set u ( x ) = ~ ' + ~ . x ,  where ~ is regarded as an m x n  matrix. Let zE 
C~(y;Rm),  and put 

'~ = IIUl[wI,~(~,Rm~ + IIzlIwl,~(y;R~)" 

Define z periodically on R n, setting z(x) = z(x q- y) for every y E Z". Let ~: 

be so large that 2-~'YQ g2; for k :  > k and ~,E~T define 

2-k"z(2k"x) if X E 2 -k Y 
z~(x) 

I 0 otherwise, 

* Thismeans that lim [meas (B~(x))] -1 f ZKi(Y) dy = 1. 
r'-~O 

B r (x) 
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so that [l:kllwl.~(mRm ) < 2. For every k, z~ ~ 0 (weak*) in WI 'oo(~;R m) 

as v ~ + c~, hence z~, ~ 0 strongly in L~176 Also for fixed k if we neglect 
sets of measure 0, then 

2 - k y  = U Qk, 
h 

with Qk"EG k" for l < h < 2  " .  We denote by x~ the corner of  Qk" nearest 
to the origin, so that Qk, = x~, -4- 2-k"Y. 

By (II.5), we may suppose that 0 E K~ for all i. Choose e > 0. Then there 
~ ~ 

exists i such that for i > i we have 

f [a(x) 4- MI dx < e, 
t2\K i 

where 

M = sup {b(s, 2): I s[ -k I #l < 2~,}. 

Let f be a continuous function on R " •  "m, coinciding with f on 

Ki• {(s, ~): I s l -4- [ el < 22} = Ki X Bzx. We may also suppose that )~ satisfies 

0 < J] < max f Choose a function ~p E C~ so that 
= K i x B22 

0 < ~0(x) < 1 for all x E s 

~0(x) = 1 for all x E Ki, 

o Q(K �9 ~o(x) dx < e~ rimax• B2.~ f .  

The function f i  = ~p]~ is another continuous extension of f outside 
We can split the functional F(u Jr z~, 2 - k y )  as follows: 

F(U -]- Z~k, 2--ky) = a" q- b" q- c ~, 

where we set 

a ~ = f I f (x ,  (u + z D (x), (Du -4- DzD (x)) 
2 - - k y  

-- f ( x ,  (u -k zD (x), (Du + Dz D (x))] dx; 

b" = ~_~ f [fj(x, (u + z D (x), (Du -k DzD (x)) 
h Qh 

kv  

- f~(x~, u (xD,  Du(xD + Dz~(x))] dx; 

c ~ = ~ f k f ( x  ~, U(X~h), DU(X~) -t- Dz(2k'x)) dx 
h Qh 

= ~] 2 -"k" f f (x~,  u(x~), Du(xD -4- Dz(y)) dy. 
h Y 

Our choice of f i  yields [ a ~[ < 2e for every v and i > i. Moreover since u E 

C a ( ~ ; R  =) and/] / i s  uniformly continuous, we have lira b" = O. Finally c ~ has 
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the form of a Cauchy sum, over the cube 2-gY,  of the continuous function 

xe-* f fi(x, u(x), Du(x) + Dz(y)) dy. 
Y 

Hence it is convergent as ~,---> c,~, with 

lim c" ---- f [ f f(x, u(x), Du(x ) + Dz(y)) dy] dx. 
2 Y 

Combining the above three lines we have 

2 Y 

Let v 2 tend to ZK r Since f----fi  on K i • B2~, it follows from the dominated 
convergence theorem that 

lim+sup F(u + z~k, 2-ky) ~ 2e + f [ f f(x, u(x), Du(x) + Dz(y)) dy] dx. 
K i A 2 - - k y  [ Y  

By the semicontinuity of u ~-> F(u, ~2) and the fact that z~ ~- 0 on 12 \ 2 -~ Y 

F(u, t2) = F(u, 2-~Y) + F(u, ~ \ 2-kY) 

l iminf  [F(u + z~, 2-ky) Jr- F(u, ~ \ 2 - k y ) ] .  

Hence for i ~ i 

F(u, 2-ky) ~ 2e + f f gKi(x)f(x , u(x), Du(x) + Dz(y)) dx dy. 
2 - - k y x  y 

Letting i---> + c~, and using the fact that e is arbitrary, we get 

so that 

"(',, s [!i(>""(x)' + .zo.)) +} <,x. 
2 - - k y  

:.k f IS(x, u(x), . . (x))  - f s ( z ,  x, .(x), . . ( x )  + .z(y)) +1 ~x _< 0. 
2 - - k Y  [ Y . I  

Call #(x; u, z) the integrand in the square brackets; our hypotheses on the s e t / ,  
and the continuity of f on K 7 • B2~, then yield 

lim 2 "k f /~(x; u, z) dx 
k---> oo 

2 -- k yfhI~- 

= li-+m~ ( 2"k f2-~Y gKT(x)dx)( [meas(2-kYi~Ki-)]-' 

-= f (O,  ~', g) - -  f f ( o ,  $, ~ + Dz(y)) dy. 
Y 

f t4x; u, z) dx~ 
2 -- k y A  I~~ ] 
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On the other hand the integral of # on 2 k y \  K~- is small because 

12"~' f #(x; u' z) dxl ~ 2~k f [a(x) § M] 2-kY,x. i 

= 2 "k f [a(x) § M] Za~-(x) dx, 
2--kY 

which tends to zero as k - +  oo. These estimates show that (I.1) is satisfied on 
the open set Y, hence on every open set f2 C R,". [ ]  

Note that the proof remains almost unchanged if we suppose that (11.2) holds, 
that If[ satisfies (II.4), and that the functional u ~-+ F(u,/2) is sw*lsc on each 
Dirichlet class fi § W~'~(/2;Rm), with ~t a polynomial of degree one. 

Remark [II.3l. Let f satisfy (II.2) and (11.4). Assume that the functional u ~ F(u, [2) 
is sw*lsc on the space of  functions u in W1'~176 R m) such that IIDulILo%~;R.,.) < r 
(where r > 0). Then there exists a set I C f2, with meas (I) : 0, such that for 
every ~cE ~2\ I, ~ E R  m, and ~E B~(O) Q R  nm, and for every zE W~'~(s m) 

such that I[~ § DZ][Loo(O;R,,m ) < r, we have 

meas (12).f(~c, ~, ~) <= f f@, ~, ~ + Oz(x)) dx. 
D 

Theorems [II.1] and [II.2] generalize results contained in [12], [9]. Our next 
theorem deals with semicontinuity in W I'p, p ~ 1. 

Theorem[II.4]. Let 1 ~ p <  § and assume that f'RnxRmxRnm-+R 
satisfies (II.2), (11.3) and 

(II.6) 0 <=f(x, s, ~) <= a(x) + C(Isl ~ + 1~1 ~) for every x E R  n, s E R  m, ~ E R  "m, 
where C is a non-negative constant and a is a non-negative locally summable 

function on R n. 

Then for every open set ~2 C R  ~ the functional u ~ F(u, /2) is swlsc on WI"P(/2;Rm). 

Proof. As in theorem [II.1] we may confine ourselves to a particular set /2 ,  say 
a ball. Take uE WI'P(/2;R m) and (Ze)(  WI'P(/2;R m) with zk ~ 0 (weakly) 
in WI'p(/2; Rm). We may suppose 

lira inf F(u + z/,,/2) = lim F(u + zk,/2). 
k ~ o o  k ~ a o  

This will allow us to select subsequences without altering lim infF(u + z k,/2); 

hence we need not indicate subsequences, denoting all of them with the same 
index k. 

By an extension theorem ([1], Theorem 4.26) we may assume each z~ to be 
defined on R n, with [[ZkI[wI,p(Rn;Rm)bounded uniformly with respect to k. Since 
C~(P~ n; R m) is dense in W I'p(R n; R m) and u ~ F(u,/2) is continuous in the strong 
topology of WI'P(/2; R'"), there exists a sequence (w~)C C~(R"; R m) such that 

1 1 
I[Wk -- z~,[lwl,p(Rn;Rm) <-'K', tF(u + Wk, O) -- F(u § zk, t2)l <--K'. 
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Hence we may assume the sequence (zk) to be in C~(K"; Rm), and to be bounded 
in W I'p(R"; Rm). 

Let r/: R+ ~ R+ be a continuous increasing function, with V(0) = 0, such 
that for every measurable set B C $2 

f [a (x )  + C([ u(x)I" + IOu(x)lO] dx < ~(meas (B)). 
B 

Fix e > 0, and apply Lemma [I.7] to each of the m sequences ((M*z~))P), 
1 --< i _< m. This gives a subsequence (Zk), a set As Q/2, with meas (As) < e, 
and a real number 6 > 0 such that 

f [(M*z~ )) (x)] v dx < e 
B 

for a l l k ,  for l_< i - -<m,  and for every B Q ~ 2 \ A ,  with m e a s ( B ) < O .  By 
Lemma [1.9] we may take 2 > 0 so large that for all i, k 

(II.7) meas {x E R" : (M*z~)) (x) >= 2} < min (~, ~). 

For all i, k set 

Hi2,k = { x E a n :  (M*z(~))(x) < ~}, H~ = ~ HiI, k. 
i = 1  

Lemma [I.11] ensures that, for all x, yE  H~ and 1 <-- i --< m, 

I z ~ ) ( y )  - z~)(~)l 
c(n) 2. 

[ y - x l  

Let g~) be a Lipschitz function extending z~ ) outside H~,, with Lipschitz constant 
not greater than c(n)2 (Lemma [1.12]). Since H~, is an open set we have 

g(~)(x) = z(~)(x), Dg(~)(x) = Oz(~)(x) 

for all x E H~., and 

11Dg(~)IIL~o(R.) <: c(n) 2. 

We may also assume 

[Ig2)[I < II ~)11 Hi < 2. LOO(l~,n ) = Z LOO( ) = 

We may suppose that, at least for a subsequence, 

g~) ~ v (i) (weak*) in Wl'~176 

for 1 --< i --< m. Put (g~i), . . . ,  g~m)) = gk, (vO) . . . . .  Vr = V; we have 

F(u + zk, [2) >= F(u + gk, ([2 \ A,) ~% H~) 

= F(u + gk, [2 \ A,) -- F(u + gk, ([2 \ A,) \ H~). 

Since 

meas [([2 \ A,) \ H~] ~ 2 meas [([2 \ A.) \ H~,k] < m min (e, 6) 
i = 1  
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by (11.6) and by our choice of A~ we obtain 

F(u -k gk, (s \ A~) \ H~) <= 2P-l{~(me) -F c(n, .Q) 2 p meas [(g'2 \ A~) \ Hi] } 

2P-'{~/(me) g- c(n, .(2) ~ f 
i = 1  (O\Ae)\H~, k 

=< 2 p l{~7(me ) + mc(n, O) e} = O(e). 

Thus 
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where 

and 

7(x, s, ~) = f (x ,  u(x) + s, Du(x) -b ~), 

we are led to 

lim F(u + Zk, s _>_= l iminfF(u  + gk, g2') -- e -- O(e) 
k-~oo k ~ o o  

>= F(u -b v, g-2') -- e -- O(e). 

At least for a subsequence we may suppose that zk(x)-+ 0 for almost all 
x E ~.  Set 

6 = {x ~ ~: v(x) 4= o} 

6 = a A { x ~  ~2: z~(x) + 0), 

so that meas ((7) = meas (G). Since the functions g~ are continuous and converge 
to v i n L  ~, we have 

gk(x) -+ v(x) 

for all x E ~ ,  hence for all x E G. If  we now suppose 

meas (G) > (m + 1) e 

we obtain a contradiction. Indeed by (II.7) 

meas ((~ A Hi) > ~ for all k,  

and by Lemma [I.6], for a subsequence, 

F(u + z~, t2) >= F(u + g~, t2 \ A3 -- O(e). 

Choose an open set ~2' C s containing s \ A~ and such that 

[ F(u + gk, ~')  -- F(u -F gk, .C2 \ A ~)[ < e 

(this is possible since the functions gk are uniformly bounded in W1'~176163 Rm)). 
Applying Theorem [II.1] to the functional 

F(w, s) = f 7(x, w(x), Dw(x) dx), 
S 

[(M*~g ~ (x)]" a~} 
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If  ~ belongs to this set, then 

= - = o ,  

contrary to the definition of G. 
We may thus write, by the positivity o f f ,  

lira F(u q- z~, [2) >= F(u, s \ G) - -  O(e) - -  
k - +  oo 

F(u, O) -- O(e) -- e -- ~?[(m + 2) e], 

which concludes the proof since ~ is arbitrary. 
In this proof the role played by the hypothesis f ~  0 is fundamental. Indeed 

if (II.6) is changed to 

If(x, s, ~)l :< a(x) q- C(Isl" + t~1"), 

and (II.2), (I1.3) are satisfied, then Theorem [I1.4] is false, at least for n > 2, but 
one can prove that for all e >  0 the funtional u ~ F ( u , O )  is swlsc on 
WI'P+~(O; R '~) (see [9]). 

Since semicontinuity on W I'p implies semicontinuity on W 1'0~ we may sum- 
marize the results of this section as follows: 

Statement 111.51. Let f :  R ~ X R  m x R  nm ---> ~2~ be a Carathdodory function which 
satisfies (II.6) for some p >: 1 [or alternately satisfies (I1.4)]. Then the functional 
u~-> F(u, f2) is swlsc on W1'P(I2;R m) [or is sw*lsc on WI'~176 i f  and only 
i f f  is quasi-convex in ~. 

IH. A Representation Theorem 

In this section, given a functional of the type (II.1) with f not necessarily 
l p Q R  quasi-convex in ~, we deal with the problem of finding its lsc envelope on W ' ( ; ), 

i.e. the greatest functional less than or equal to F which is swlsc on WI'P(f2; Rm). 
As a consequence of statement [II.5], it will suffice to treat the case p = + c~. 

Let f:Rn)<Rm)<]z~,nm--->R be a Carathdodory function satisfying (11.4). For 
every r > 0 and for every .(2 bounded open set of R n, if uE W1'~176 m) 
with ][DUHL~O(9;Rnm ) ~ r, we define 

F(r, u, t2) = inf{lim_>inoofF(Uk, f2): uk ~ u (weak*) in Wl'~176 m) 

and II Duk [[LOO(~;Rnm ) ~ r} 

Fo(r, u, O) = inf (lim_~f F(uk, .(2): (Uk -- U ) ~  0 (weak*) in W~'~~ m) 

and II OUk ]lLoo(~;R,m ) ~-- r}, 

where F(u, .(2) is defined by (II.1). The argument employed in [11], Lemmas 3.3 
and 4.5, leads us to the following results. 
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Lemma [III.1l. I f  f satisfies the foregoing hypotheses, then for every r > 0 and 
every u E W1'~((2; R m) with II Ou IlL~(mR,m) < r there exists a function h~ E L 1 ((2) 

such that 

F(r, u, ~ ' )  = Fo(r, u, if2') = i hu(x) dx 

for every open set t2'Cs 

Lemma !I~.21. Let u~, u 2 E wl'~176 ]~m), with [IDuillzoo(a;~,m) < r and 

II u~ IIL=(mRm) < d, i = 1, 2. Then for every open set O' C g2 we have 

IF(r, Ul, ~2') - F(r, u2, f2')[ <: f o~(x, d, 3r, Ilu~ - u2llwX,oo(~;Rm))dx, 
O" 

where 

o~(x, d, r, 5) = sup {If(x, s~, ~,) - - f ( x ,  s~, ~)1:  Is~l < d, 1~1 < r for  i = 1, 2, 

and lsx - - s 2 l  q- I~1-~21<~). 

We now use these results to prove 

Lemma llII.31. To each r > 0 there exists a Carathdodory function r defined on 
~'~X][2~mX(~EF~nm: I~ I < r} such that for every uE wl'~176 m) with 
IIDu[IL~(o;R.m ) < r we have 

cb,(x, u(x), Du(x)) = h,(x) for almost every x E 1"2. 

Proof. Let ~r be the class of  all affine functions on R n with rational coefficients 
and with gradient less than r in norm. Also let L be the set of the points in R" 
which are Lebesgue points for every function hu, with u E ~r For  x E L, s E Qm, 

E Q'", with I~1 < r, put 

4,,(x, s, ~) = h.(x) ,  

where u E ~r u(x) = s, Du = ~. Lemma [111.2] implies that ~b~ is continuous 
in (s, ~) for almost every xE  L. Since L x  Q ' •  Q"" is dense in L • 2 1 5  ' ' ,  
we may therefore extend the definition of q~ to I2•215 Wm: I~1 < r}, 
obtaining 

[ ~,(x, sl, ~1) --  ~ (x ,  s2, ~2) I <= o~(x, d, 3r, 5) 

or almost every xE  ~ and for I stl < d, [~il < r (i = l, 2), whenever 
st -- s21 -b 1~1 --  ~21 < 5. This inequality yields 

h.(x) = ~,(x, u(x), Du(x)) 

for every uE WI '~( f2 ;R m) with IIDUIILOO(e;R,,,)< r and for almost every 

x E f 2 .  
It remains to be proved that for all (s, ~) the function x ~ q~r(x, s, f) is measur- 

able. Let sl E P~ and let u be affine with u(O) = sl, Du = ~. For almost every 
x E s we have 

4,Ax, sl  + ~ . x, ~) = h.(x) ,  
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k 

hence this function is measurable. If  ~0 is a simple function, i.e. ~o(x) = Y~ si)cEt(x), 
with each E i measurable and E i A  Ej = 0 if i ~ j ,  then ~ =1 

k 

r ~o(x) + ~.  x, ~) = ~g r s~ + ~. x, ~) z~(x). 
i = 1  

Therefore by an approximation argument we can prove that x ~-+ ebb(x, O(x) + 
~. x, ~) is measurable, for 0 E L~(12). This happens in particular if O(x) = s -- 

�9 x, and the proof is complete. 
The above lemma, together with the semicontinuity of F(r, u, s and Remark 

[II.3], implies 

Remark [III.4]. For every (x, s, ~)E ff2xe~mx ~.m set 

4~(x, s, ~) = lim 4~r(X, S, ~) = inf $~(x, s, ~). 
r-+Oo r > l # [  

The function qb is measurable in x, upper semi-continuous in s, continuous in ~, and 
quasi-convex in ~. 

Let ~ E f2, ~ E ~m. Lemma [III.3] implies that for all 

function g~'') such that 

Put 

r > 0 there exists a 

f g?'*)(Du(x)) dx = inf {lim_+ioonf ff(?c, ~, DUk(X)) dx: Uk ~ u 
s9 

(weak*) in WI'~163 m) and IIOukllL~(mRn,,) <- r} 

for all uE Wx'o~(f2;R m) with [IDUllLoO(a;Rnm) < r. 

g(~.i')(~) = lim g~?r 
r--+ oo 
r > [ ~ l  

Theorem [111.5]. For almost every x E I2 and every s E R m the function ~ 
d~(x, s, ~) is the greatest quasi-convex function less than or equal to ~ ~-~ f ( x ,  s, ~). 

Proof. Let K (  s be a compact set such t h a t f i s  continuous on K • 2 1 5  "m. 
For x E K ,  s E R  m, set 

gr(x, s, ~) = g~X,,)(~). 

By the uniform continuity o f f  on bounded subsets of K •  m •  "m, g, is con- 
tinuous on KxRm• [81 < r}. Since K is arbitrary, gr is defined for 
almost every xEg2, and every s E R  m, 8 E R  "m, with 1 8 [ < r .  Moreover, 
Lemma [I.5] implies that gr is a Carath6odory function, and it is quasi-convex in 
since the same holds for all g~X,~). As we remarked after Theorem [II. 1 ], the func- 
tional 

G,(u, t2) = f gr(x, u(x), Du(x)) dx 

is sw*lsc on {uE WI'~176 [IDUI[L~OCa;R,,n ~< r}. 
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If  we set, for all x, s, 2, 

then the functional 

g(x, s, ~) = g(~")(~), 

u ~ f g(Yc, ~, Du(x)) dx 

is the lsc envelope on WI'~(s m) of the functional 

u ~ f f (7c ,  ~, Du(x)) dx. 
0 

Hence 2 ~ g(~, Y, 2) is the greatest quasi-convex function not greater than 
e ~-~f(~c, J, ~). This implies g --__ ft. For every r > 0, G~ is semicontinuous, hence 
G,(u, s <= F(r, u, g2), and g~ ~ 4~,, whence g ~ ~b. [ ]  

Note that the function 4~ does not necessarily represent the lsc envelope of 
u ~-~ F(u, s Indeed, i f~ is not a Carath6odory function, there is a counterexample 
even if f is convex in ~ (example 3.11 in [11]). 

We give here some conditions which ensure that 4~ is a Carath6odory function. 

Theorem llII.6l. If either o f  the conditions 

(III.1) f = f ( x ,  2), or 

(111.2) If(x,  S l ,  ~) - - f ( x ,  s2, 2)1 < co(x, Is1 -- s~l)~(l~l), 
where co :Rn• + is a Carath~odory function, 

is increasing and non-negative, 

is satisfied, then r is a Carathdodory function. 

co(x, O) = O, and 

Proof. If  (III.1) holds, the result follows from Remark [111.4]. Next assume that 
(Ill.2) holds. We note (see [8], Corollary 2.4) that if ~o:R q - + R  + is a convex 
function and if we set M = max ~p(y), then for all r < R and yl ,  Y2 E B,(0) 
there holds lY[~-R 

M 
],;(yx) - W(y2)l < - - l Y ~  -- y21. ~ R - - r  

Since quasi-convexity implies weak quasi-convexity, this estimate shows that if 
~3 : F~ nm ~ R + is quasi-convex then for all r < R and 21, 22 E Br(0) we have 

M l/min (m, n) 
I~0(21) - v,(22) I < 12~ - 221 ,  

= R - - r  

where we have put M = max ~?(~). 
[~e~Rl 

Note that ~b almost everywhere satisfies the inequality 

I r  s .  2) - ~(x,  s2, ~)I < co(x, ls~ - s~l) ~(1~1), 

as one can see by proving the same estimate for the function gr and then using the 
equality g = ~b. 
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Choose R > 0 ,  and for all x Eg2 put 

M(x) = a(x) + sup {b(s, ~): [ s I <= R, [~1 ~ R} 

sup (qb(x, s, ~) : I s l ~ R, I ~l ~ R}. 

For almost all x ~ f2 one has, for all r < R, sl, s2 E B,(O) Q R m, and ~1, ~z E 
Br(O) C R "m, 

I if(x, sl, ~1) -- ~(x, s2, ~2) 1 ~ M(x) I/min (m, n) 
R - - r  1~1--~2] + 

-k o~(x, Is1 -- s21) fl(R). [] 

We summarize the results of section III as follows. 

Statement [111.71. Let f :  R" •  •  ---> 1% be a Carathdodory function which 
satisfies (11.6)for some p ~ 1 [or alternately satisfies (II.4)], and let either one 
of  the conditions 0ILl ) ,  (111.2) hold. Then the lsc envelope on WI'p(g2;R m) [on 
Wl'~176 of u~--~ F(u, g2) is the functional 

u e--> f oh(x, u(x), Du(x)) dx, 
0 

where for almost all x E 0 and for all s E R m the function 

~ Co(x, s, ~) 

is the greatest quasi-convex function which is less than or equal to ~ e-> f (x ,  s, ~). 

This theorem provides an extension of the results of [6] to the case in w h i c h f  
depends on u as well as on x and ~. 

Note. This work was supported by the Italian government through the Consiglio 
Nazionale delle Ricerche. 
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