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Introduction

Let f:R® >R be a twice continuously differentiable function, and for
uc Whl(a, b) set

F(u; a, b) = f S (x, u(x), u'(x)) dx.

In a paper of ToNELLI [17] it is proved that the functional Fis lower semicontinuous
(Isc) in the topology of L¥(a, b) if and only if the function fis convex in the last
variable. Later, several authors generalized this result: among the many theorems
obtained, in which x is allowed to belong to R" and considerably less regularity
on f is required, we recall particularly Theorem 12 of SERRIN [15], in which for
the first time differentiability conditions on f are dropped, and the following
result due to MARCELLINI & SBORDONE [11]:

If fiR*xRxR"—R satisfies:
() f is measurable in x, and continuous in (s, §), and
(i) 0= f(x, s, &) = g(x, 5], [£D),
where g is increasing in | s| and |&|, and is locally summable in x, then the functional

0.1 F(u, Q) = [ f(x, u(x), Du(x)) dx
Q

is sequentially weakly lower semicontinuous* on W'?(Q), with 1 <p < + oo,
if and only if f is convex in &.

(See also EKeLAND and TeEMAM [8] for the case in which f does not depend
on u).

* That is, F(u, 2) < liminf F(u,, 2) whenever u, - u in the weak topology of
Wir(Q). When p = oo, weak convergence should be replaced by weak* convergence.
In what follows we shall use the abbreviation sw ! sc for “sequential weak lower semi-
continuity”, or sw* [ sc when “weak” is replaced by “weak*”.
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On the other hand, if we allow the function u to be vector-valued, i.e. u¢
W'P(Q2;R™), then the convexity hypothesis turns out to be sufficient, but too
strong to be necessary, for F to be Isc: MORREY proved in [13] that, under strong
regularity assumptions, F is sw* [ sc on W°(Q;R™) if and only if f is quasi-
convex, that is for every s€ R™ and for almost every x€R” the function
&> f(x, s, &) satisfies the condition

©.2) f(x, 5, &) - meas () < ff(x, s, &+ Dw(p)) dy
2 v

for every £€R"™, for every bounded open set Q2 CR”, and for every w¢
C3’(22;R™), Although it is technically not easy to handle, this condition arises
in a natural way in many problems (especially in elastostatics); moreover, it is
equivalent to convexity in & in the case m = 1.

The theorem of MORREY was extended by MEYERs [12] to the semicontinuity
(on W*P(Q2;R™) of functionals of the type

0.3) [ f(x, u(x), ..., DFu(x)) dx,

always under strong continuity hypotheses.

In section II, by means of techniques basically relying on a recent theorem
of Liu [10], which allows us to deduce semicontinuity on W'?(£2;R™) from
semicontinuity on W1*(2;R™), we prove the following main result (theorem
[I1.4}):

If ffR"XBR"xXR"™ —R satisfies

(i) f is measurable in x, continuous in (s, &), and

(i) 0 =flx, 5, &) = a(x) + C(|s|” + [£]7),

where p = 1, a is a non-negative locally summable function, and C is a non-

negative constant,

then the functional (0.1) is swisc on WY?(2;R™) if and only if &> f(x, s, &) is
quasi-convex, for every s and almost every x.

Counterexamples valid even in the convex case show that these hypotheses
are almost the minimal ones necessary to obtain a theorem of this kind.

As a particular case of our result, we deduce the weak semicontinuity on
win(2;R" of the functional

[ b(x) | det Du(x) | dx

(where b is non-negative, and bounded on bounded sets of R"). The integrand
satisfies a stronger hypothesis than quasi-convexity (namely polyconvexity, a
condition introduced and studied by BALL in [2], [3], [4], [5]), but the result does

not seem to be previously known.
In the last section we prove a representation theorem for the greatest swlsc

functional which is less than or equal to f S(x, u(x), Du(x)) dx, where f is not
2

necessarily quasi-convex. We show that, under reasonable continuity assumptions
on f, this functional has the form f ¢(x, u(x) Du(x)) dx, where ¢ is the greatest
Q2
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quasi-convex function which is less than or equal to f. A similar result has been
proved by DACOROGNA [6], if f is a polyconvex function.

We remark that, using more complicated notations as in [12], [5], our results
can be extended to the case of functionals of the type (0.3). For other results and
additional bibliography on quasi-convexity, see the many important papers by
BALL, MEYERS, and MORREY.

1. Notation and Preliminary Lemmas

If acR”, then |a| is its euclidean norm; if £ is an m X »n matrix, |&] is the
norm of & when regarded as a vector inR™”, The Lebesgue measure of a measurable
subset S of R” will be denoted by meas (S).

Let QCR” be an open set, 1 < p=< 4 o0, m=1; we define L?(Q2;R™)
to be the collection of all m-tuples (f\V, ..., £ of real functions in L?({2). Ana-
logously, we say that ue W'P(Q;R™) if u belongs to L?(2;R™) together with

ou®
its distribution derivatives e 1=ism, 1 £j< n The mxn matrix of
G
these derivatives will be denoted by the symbol Du; W!?(Q;R™) becomes a Ba-
nach space if it is endowed with the norm

“ullwl,p(Q;RM) = IHulnLP(g)p + IHDu“lLP(Q)’
where
lul () = [uC)|, | Du (x) = [ Du(x)|.

Finally, u€ Cy(2;R™) if each 4 is a C* function on £ with compact support,
while W§P(2;R™) is the closure of C{(£2;R™) in the topology of W!7(2;R™).

Definition {I.1]. f:R™ — R is weakly quasi-convex if for every Ec R™, n€R™
and AcR" the functions

AfE+ART, n—=fE+i®1)

are convex, where (A @ n); = Amj.

Definition [I.2}. 4 continuous function f:R"™ —R is quasi-convex if for every
EER™, for every open subset 2 of R", and every function z € CA(Q;R™) we have

@1 meas (2) - f§) < [ £ + Dz(x)) dx.
Q2

In what follows, if f is a real function defined in R”XR™xR™, we will
say that fis quasi convex in & if there exists a set 7 R”, with meas (/) = 0,
such that for every x€R"\ I and §€R™ the function &+ f(X,5, &) is quasi-
convex.

To prove that a function f is quasi-convex, note that it is enough to verify
(I.1) for one open set £, and for every z¢ C(£2;R™); moreover if fis quasi-
convex then (L1) holds for every z€ W,=(2;R™).
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Quasi-convexity implies weak quasi-convexity, which in turn implies that
the function locally satisfies a Lipschitz condition. If m =1 or n=1, then
quasi-convexity is equivalent to convexity; in general, a function f¢ C*(R™)
is weakly quasi-convex if and only if for every £c¢R™, 1¢R", n€R™ there
holds

A >
1 hk=1 O€m O&jc & Lk = 0

(Legendre-Hadamard condition).

The proofs of the previous remarks may be found in [2], [12}, [14]. The follow-
ing result ([12), Lemma 1) will be useful to disengage Definition [I.1] from the
boundary condition on z.

Lemma [1.3). Let f:R™—R be quasi-convex. For every bounded open set
Q CR" and every sequence (z;) C WV™(2;R™) which is weakly* convergent
to zero, we have

meas (Q) - £(§) < liminf [f(§ + Dz(v) dx
Q2

Jor every E€R™.

Definition [[.4]. f:R"xR™xR™ —R is a Carathéodory function if the following
conditions are satisfied:
Jfor every (s, &) ¢ R"xXB"™, x> f(x, s, &) is measurable;

Jor almost all xcR", (s, & f(x, s, &) is continuous.

The following result of Scorza-DrAGONI ([8], page 235) characterizes the
class of Carathéodory functions.

Lemma [I.5]. 4 mapping f:R"XR"xXR"™ —R is a Carathéodory function
if and only if for every compact set K CR" and &> 0 there exists a compact
set K, C K, with meas (K\ K,) <&, suchthat the restriction of fto K, xR™XR"™
is continuous.

The next lemma may be found in [7].

Lemma [1.6]. Let G CR" be measurable, with meas (G) << co. Assume (M) is
a sequence of measurable subsets of G such that, for some &> 0, the following
estimate holds:

meas (M,) = ¢ for all ke N.

Then a subsequence (My,) can be selected such that [\ My, = 0.
REN

Lemma [I.7]. Let ($,) be a bounded sequence in L*(R"). Then to each ¢ > 0 there
exists a triple (4,,9,S), where A, is measurable and meas (4,) <<¢g, 0>0,
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and S is an infinite subset of N, such that for all ke S
[18®)]dx <&
B

whenever B and A, are disjoint and meas (B) < 0.

Proof. We reason by contradiction. Hence we suppose that there exists a ¢ >0
such that, for every (4., 8, S) as in the statement of the theorem, we may choose
a measurable set B, with BN A, =0 and meas (B) << 4, and an index k€ S
such that

f[d)k(x)l dx = e.
B

This implies that for every set 4, with meas (4) < e, and every infinite set
S C N, there exists both a set C, with C"N A =0 and meas(4\V C)<eg,
and an infinite subset T of S such that

[Iux) dx=¢ for all keT.
C

This will be proved later; now we show that we are led to a contradiction.
Set A =0, S=N, and let C, and T, be as above. Starting from 4 = C,
and S=T,, we pass to C, and T,, where C,NC, =90 and

[ 1) dx = [[ddx)| dx + [ |du(x)] dx = 2e
Cl\/cz Cl CZ

for all k€ T,. Since meas (C,V C,)<<e wemayset A =C,VC,, S=T,,
and continue with the same argument. If

-1
N > € :éll\? “ ¢k ||L1(Rn) 2

then after N iterations we obtain the contradiction.

We return to the interrupted proof: let 4 and S be as stated, set S; =S
and take d; << (¢ — meas (4))/2. There exist a set B; disjoint from A, with
meas (B,) << d,, and an index k,€ .S, such that

[ 140l dx = .
B,

Applying induction, put
1
0, = —2—6;1—1’ Sp = {ké Sp1:k> kn—l}a

and set
C= U Bh’ T = {kh: hE N},
hEN

then C and T satisfy our requirements: C/N\ 4 = @, meas (C) + meas (4) < e,
T C S is infinite, and

[ dx=e
C

for all k€ T. This completés the proof.
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If r>0 and xeR", set B,(x)={ycR":|y — x| <r}, and meas (B,(x))

= w,r".
Definition [I.8}. Let uc C3(R"). We define

(M*4) (2) = (M) (x) + g (MDy) (),

where we set

l

M) ) = sp oz [ 170 dy

Jor every locally summable f.

Lemma [L.9]. If u¢c CP(R™) then M*uc C°(R") and
|u(x)| + ;1 | Diu(x)| = (M*u) (x)

for all xcR". Moreover (see [16]) if p > 1 then

” M*uy ”LF(Rn) g C(n, p) ” u”wl,p(R”)

and if p=1 then
" c(n)
meas {x € R": (M*u) = A]} < — ||u||W1,1(R,,)
for all 1> 0.
Lemma [1.10]. Let uc CP(R"), and put

1) — ) — 3 D) (s — )
|y — x| '

Ulx,y) =

Then for every xcR" and r>0
[ Ulx, y) dy = 20,r"(M*u) (x).
B,(x)

The proof is contained in [10], Lemma 2. By modifying another demonstration
of [10], we are also able to prove
Lemma [I.11). Let uc CF(R") and A >0, and set
H = {xeR": (M*u) (x) < A}.
Then for every x,y¢ H* we have

|u(y) — u(x)]

Zem)A.
ly—x] = @)



Semicontinuity in the Calculus of Variations 131

Proof. Let ¢'(n) be such that for every x,ycR” with |x — y| =r, we have

1.2) meas (B.(x) N B,(y)) > ——(—-3 W,r"

For 6 >0 set
Wr(x’ Cs) = {ye B,.(X)Z U(x: y) < 6}9

whence by Lemma {I.10]
meas (B,(x) \ W,(x, §)) = iw W (M*u) ().

If ze H*, then

n

w,r
M*u) (2) <

20 "
(1.3) meas (B,(z) \ W,(z, 2c'(n) D)) = TR

2c¢'(n )Z(
Let x,y€ H* with r = |x — y|. By (1.2) and (1.3)

W, (x,2¢(my YN W (y, 2¢'(m) A) == 0.
Choose z in this intersection, so that |z — x| <<r, |z — y| <<r. Then

|u(y) — u(x)|

S = U0s D+ X 10w + | D))
< (et +2)2,

as required.

Lemma [I.12]. Let X be a metric space, E a subspace of X, and k a positive real
number. Then any k-Lipschitz mapping from E into R can be extended by a k-
Lipschitz mapping from X into R.

For the proof see [8], page 298. We conclude this preliminary section by
defining

G =0""(x+ Y):xel, »EN,
where ¥ =(0,1)" ={yeR":0< y; <1 for 1 i< n}

II. Semicontinuity Theorems

If fis a real function defined on R*xR™xR™, and if the left hand side of
(IL.1) makes sense, then we define (for every measurable set S C R")

(IL.1) f f(x, u(x), Du(x)) dx = F(u, S).
§
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Theorem [II.1]. Ler f:R"XR"XR™ — R satisfy:
(IL.2) fis a Carathéodory function;
(11.3) f is quasi-convex in §;

(I1L4) 0= f(x,5 8 = alx)+ b(s,&) for every xcR", scR™ and E€R™,
where a is a non-negative locally summable function on R, and b =0 is
locally bounded on R™ xR"™.

Then for every open set 2 in R" the functional uw F(u, Q) is sw*lsc on
WLo(Q;R™).

Proof. Let us suppose first that 2 = (0, 1)". Fix ue€ W*(2;R") and (z) C
whHeo(Q;R™) with z¢ —~0 (weak* convergence) in W!*(2;R"); we must
prove that

Fu, Q)< ligglfF(u + z, ).
Without loss of generality we may suppose a(x) << + oo for every x. Put
2= [l nogiarm, - SUP 121,50
M = sup {b(s, &): [s| < 4, 1§ < 2.
Now take £€>0, and let « = 1 be so large that if

E={xeQ:ax)<o}\I
then

meas (2\ E) < fa(x) dx <e.

£

M ’ NE
By Lemma [I.5] there exists a compact set K £ such that fis continuous on
KxR"xR™ and

£
N\K<——.
meas (2\ K) < T T
If we neglect sets of measure zero, then for all v&€ N we can write

ny

2=\ g
r=1

with Q€ G”. The range 1 < A = 2" will be assumed henceforth, and we shall

also write >, and \/ when / ranges from 1 to 2”. Define
k h

Wi =2"" fu@)dy, @)= ’Z (W 2gr(%)

o

(Du), = 27" [ Du(y)dy, (Duy (x)= % (D) (%)
oj
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Note that
“ (u)” ||L°°(Q;Rm) + “ (Du)v”LOO(Q;RnM)é ” u“wl,m(g;RM)9

and that the sequences ((#)") and ((Du)") converge pointwise a.e. to «# and Du
respectively.
For every v and A fix x,€ Q, N\ KN E, if this set is not empty. Then

Fu+ 2, Q= Fu+ 2z, KNE)= g+ b, + ¢, + d’ + e,
where we put

a = [ Lf(x, (u+ z) (%), (Du + Dz) (x)) — f(x, u(x), (Du + Dz,) (x))] dx;

KNE
bp=2 [ Lf(xux),Du+ Dz)(x)) — f(xh @, (D), + Dzi(x))] dx;
I Q¥nKNE
=72 [ Uf(xh @5 (D) + Dzi(x)) — f(xh, (), (Du)i)] dx;
h Q}NKNE
=% [ [f(xh @ (Du)) — f(x, u(x), Du(x))] dx.
k. QINKNE

By the uniform continuity of f on the bounded sets of KxR”XR"™ we have
klim a;, = 0. Similarly the uniform continuity of f and the pointwise convergence

of ((u)") and ((Dw)") imply that

lim "= 0, lim b} = 0 uniformly with respect to k.

> 00

Hence we may suppose that » is large enough to ensure that |b}| + |d"| < ¢
for all %.
Now note that

> [ UG @ (D) + Dzi(x)) — f(xh, (s, (Du)y)] dx

k Q}\KNE)

<23 [ [at) + Mdx

k. QIENE)

§2[(oc+M)meas(.Q\K)+Mmeas(Q\E)—{— focdx]

NE

S4e+2 [ a(x)dx = 6e.
O\E

Applying Lemma [1.3] to each @}, we find that
lilg_l)gf ¢ = —6e¢.
Finally,
e = Fu, KN E) = F(u, ) — 3e.
As k— oo, the foregoing estimates yield

li’gglfF(u + zp, ) = F(u, 2) — 10¢,
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Since ¢ was arbitrary, this proves our result for the special choice of £ noted at
the beginning.

It is easy to see that the same argument applies to every hypercube {2 with
edges parallel to the coordinate axes; the assertion for a generic £2 follows from
the fact that the supremum of a family of Isc functions is Isc. This completes the
proof.

A slight modification of the proof yields the same theorem even if f satisfies
(11.2) and (IL.3), and |f| satisfies (I1.4) (see [12], [9]). Note that if fis defined on
QxR"x{E€R": |§] < r} forsome r > 0 and the hypotheses of theorem [II.1]
hold, then the functional u+ F(u, £2) is sw*Isc on the space of functions u¢
wi=(Q;R™ such that ]|Du||L°o(g;R,,m) <r.

The inverse to theorem [II.1] is given by

Theorem [IL.2]. Let f:R*"xR"xR"™ —R satisfy (11.2) and (11.4). Assume the
Sunctional ur> F(u, 2) to be sw*lsc on W"2(Q2;R™) for every open set 2 C R".
Then f is quasi-convex in &.

Proof. We have to show that, if we fix an open set 2 CR”, then there exists a
set I C £, with meas (I) = 0, such that & f(x, s, &) is quasi-convex for every
x€ 2\ T and scR™ To this end, we will use only the fact that u+— F(u, £2)
is Isc for that particular £.

By Lemma [I.5] we can choose a nondecreasing sequence (K;) of compact

1
sets, with meas (2 \ X)) < — such that fis continuous on each K;xR”xR™".

Define I in the following way: x ¢ £\ [ if the following conditions are satis-
fied:

€N
a(x) < + oo;
x is a Lebesgue point for yx,, for every i;*

x is a Lebesgue point for a - yqo\k,, for every i

Fix x€ 2\ I, s¢R™, £cR™, where clearly we may suppose x = 0, and
also set u(x) =5 + &-x, where & is regarded as an mXxn matrix. Let z¢€
C&(Y;R™), and put

}' = ”u”pyl,OO(g;RM) + ”zllwl,oc(y;RIn)'

Define z periodically on R”, setting z(x) = z(x + y) for every y€ Z". Let k
be so large that 27%*Y C 2; for k= k and v¢€ N define

27k 2My)  if xe27kY

2 (x) =
g 0  otherwise,

* This means that lirr(l) [meas (B,(x))]~* f a0 dy = 1.
r—
B,(x)
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so that ||z,”c||W1,,,°(g,Rm)§l. For every k, z; —0 (weak*) in W1(2;R™)
as v — + oo, hence z, — 0 strongly in L*(2;R™). Also for fixed k if we neglect
sets of measure 0, then
2—kY — U Qlliv
h

with Q¥ € G for 1< h<2™. We denote by x} the corner of Q¥ nearest
to the origin, so that Q" = x}, + 27%7.

By (I11.5), we may suppose that 0¢ K; for all i. Choose &> 0. Then there
exists i such that for i =i we have

f fa(x) + M)dx < e,

2iK;
where
M = sup {b(s, &): [s] + €] < 24},

Let f, be a continuous function on R”"XR™xR™, coinciding with f on
K x{(s,&):]s| + |&] = 24} = K; X B,;. We may also suppose that f; satisfies

0=f= Jmax f- Choose a function y€ CH(£2) so that
i X522

0=yp(x)=1 for all xe 2,
y(x) =1 for all x€ K;,

d .
. \fK ,- p(x) dx < e/Kgr;ag;lf

The function f; = zpf; is another continuous extension of f outside KX B;.
We can split the functional F(u + zj,27%Y) as follows:

Fu+t+z,27*N=a+ b+ ¢,
where we set

a = £ [f(x, (u + z) (%), (Du + Dz) (x))
2—ky
— filx, (u + z) (x), (Du + Dz}) (x))] dx;
b= %‘, { [fi(x, (u + zi) (x), (Du + Dz}) (x))
ok
— fi(xh, u(xh), Du(xp) + Dzi(x))] dx;
¢ =3 f fi(x5, u(x}), Du(xy) + Dz(2¥x)) dx

h Qﬁ"

= 227" [ fi(xh, u(xy), Du(x;) + Dz(y)) dy.
h Y

Our choice of f; yields |a’| << 2¢ for every » and i= i. Moreover since u€
C'(£2;R™) and f; is uniformly continuous, we have lim 4" = 0. Finally ¢’ has

y—> o0
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the form of a Cauchy sum, over the cube 27%Y, of the continuous function

x> [ fi(x, u(x), Du(x) + Dz(y)) dy.
Y

Hence it is convergent as » — oo, with

lim "= [ [ [fi(x,u(x), Du(x) 4 Dz(y)) dy] dx.
v

=00
2—ky

Combining the above three lines we have

lim sup F(u + z, 27kY) < 26 - [ [[ Si(x, u(x), Du(x) + Dz(y)) dy] dx.

2—ky LY

Let y tend to xx,. Since f=f; on K;X By, it follows from the dominated
convergence theorem that

lir”rl)so})lp Fu-+z,27%Y) < 2¢ + f [ff(x, u(x), Du(x) + Dz(y)) dy] dx.
Y

K;n2—ky
By tﬁe semicontinuity of u+ F(u, £2) and the fact that z, =0 on 2\ 27*Y
Flu, Q) = F(u,27%Y) + F(u, 2\ 27%Y)
= livrr_lg'xr)lf [Flu+ z;,27%Y) + Fu, 2\ 27*Y)].

Hence for i = i

F(u,27%Y) < 2¢ + [ 2,0 f(x, u(x), Du(x) + Dz(y)) dx dy.

2=kyxy

Letting {— 4 oo, and using the fact that ¢ is arbitrary, we get

Fu2™*n)= [ [ff(x, u(x), Du(x) + Dz(y)) dy] dx,

2—ky LY

so that

Ak I [ S, u(x), Du(x)) — [ f(x, x, u(x), Du(x) + Dz()) dy] dx 0.
2=ky v

Call p(x; u, z) the integrand in the square brackets; our hypotheses on the set 7,
and the continuity of f on K;: X By, then yield

lim 27 [ wx;u,z)dx

k— o0

2—"}’/\1(1,
= lim (2"" [ 2 (x) dx) ([meas QYN K [ wx;u2) dx)
2—ky 2—’<Y/\KF

= 10,55 — [/0,5,F + Dz() .
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On the other hand the integral of 4 on 2 %Y\ K; is small because
2% xsu, 2) dx| < 2% [ la(x) + M]dx

2“kY\K;_- 2_kY\K‘~,'

= 2 f [a(x) + M] l!)\K;(x) dx,
2—ky
which tends to zero as k — oco. These estimates show that (I.1) is satisfied on
the open set Y, hence on every open set Q CR*. []
Note that the proof remains almost unchanged if we suppose that (11.2) holds,
that [f] satisfies (IL4), and that the functional u+> F(u, ) is sw*lsc on each
Dirichlet class u + W§>(2;R™), with # a polynomial of degree one.

Remark [I1.3]. Let f satisfy (11.2) and (11.4). Assume that the functional u> F(u, )
is sw*Isc on the space of functions u in W'*(2; R™) such that || Du| Loocasrmmy < T
(where r > 0). Then there exists a set I 2, with meas(I) =0, such that for
every Y€ 2\ 1, 5eR™, and Ec B0) CR™, and for every z€ WH(2;Rm)

such that ][E + DZ”LOO(_Q.RIIM) < r, we have

meas (Q) - f(%, 5,8 = [f(% 5, & + Dz(x)) dx.

Theorems [II.1] and [II.2] generalize results contained in [12], [9]. Our next
theorem deals with semicontinuity in W'?, p > 1.

Theorem [I1.4]. Let 1 < p < 4+ oo, and assume that [:R*xR"XR"™ >R
satisfies (11.2), (11.3) and

(IL6) 0=f(x, 5,8 < a(x) + C(s|? + |&E|") for every xcR", scR", EcR™,
where C is a non-negative constant and a is a nor-negative locally summable
Junction on R”.

Then for every open set 2 CR” the functional u> F(u, Q) is swisc on W'P(Q;R™).

Proof. As in theorem [I1.1] we may confine ourselves to a particular set £2, say
a ball. Take uc W'P(Q2;R™) and (z) C W"(2;R™ with z, —~ 0 (weakly)
in Wh(Q;R™. We may suppose

1i11<r_1)i°rofo(u + 2, Q) = klim F(u + z, 9).

This will allow us to select subsequences without altering li{p inf F(u + z,, £);

hence we need not indicate subsequences, denoting all of them with the same
index k.

By an extension theorem ([1], Theorem 4.26) we may assume each z; to be
defined on R”, with ||Zk”W1=I’(R";R’") bounded uniformly with respect to k. Since
CF(R"; R™)is dense in WHP(R”; R™) and u+> F(u, 2) is continuous in the strong
topology of Wwhtr(Q;R™), there exists a sequence (wy) C CO(R”; R™ such that

1
< —_

llwe — P

1
[Fu + wy, @) — Fu + z,, Q)| <—k—.

Zk ” WI’P(R";R'")
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Hence we may assume the sequence (z;) to be in C3°(R”; R™), and to be bounded
in WP@®R"; R™),

Let #:R+->R* be a continuous increasing function, with 7(0) = 0, such
that for every measurable set B Q

[ Ia(x) + C(lu(x)]? + | Du(x)|?)] dx < n(meas (B)).

Fix ¢>0, and apply Lemma [L.7] to each of the m sequences ((M*z{’)?),
1 < i< m. This gives a subsequence (z;), a set 4, C £, with meas (4,) <s¢,
and a real number § > 0 such that

[UM*2Q) ()P dx < ¢
B
for all k, for 1 <i=m, and for every B 2\ 4, with meas(B) << d. By
Lemma [1.9] we may take A > 0 so large that for all i, k
awn meas {x ¢ R": (M*z{) (x) = A} < min (s, ).
For all i, k set

Hi = {xcR:(M* D) (x) <A, Hi=/\Hk.
i=1

Lemma [I.11] ensures that, for all x,y€ H} and 1< i< m,
122(») — 20(%)]
[y — x|

Let i be a Lipschitz function extending z{? outside H}, with Lipschitz constant
not greater than c(n) A (Lemma [I.12]). Since H} is an open set we have

8P(x) = 0(x), Dg(x) = Dz(x)

< c(n) A

for all x¢ Hf, and

I Dg| = o(m) .

LOR™) =
We may also assume
1821 < 22| =4

Lo@M = Lo =

We may suppose that, at least for a subsequence,
g9 o (weak*) in W ()
for 1<i<m Put (g2,...,gf") =g, @O, ...,v"™)=0v; we have
Flu+ 2, @) = Flu + g, (2\ 4) N Hp)
= F(u + g, 2\ A) — Flu + g, (2\ 4.)\ Hp).

Since

meas [(@\ 4)\ B < 3 meas [(2\ 4)\ Hix] < m min (&, 0)
i=1 )
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by (I1.6) and by our choice of 4, we obtain
Flu+ g, (2\ A)\ HY) = 2" {n(me) + c(n, ) 27 meas [(2\ 4)\ Hl}
<277 npme) + c(n, D 2, [ UM*ZD) (D)) dx}
=l @\\H},
= 277 Un(ms) + me(n, ) & = O(e).
Thus
F(u+zk7 Q)gF(u_{_gk’Q\Ae)_ 0(8)'
Choose an open set 2 C Q containing 2\ 4, and such that
[F(u—*_gka‘Q,)_F(u+gk7'Q\A€)[<8

(this is possible since the functions g, are uniformly bounded in WLo(2; R™).
Applying Theorem [II.1] to the functional

I'w, S) = f y(x, w(x), Dw(x) dx),
S

where

y(x, s, &) = f(x, u(x) + s, Du(x) + §),

we are led to
kll)rrolO Flu+ z, Q) = lilrcr_l)iotng(u + g, 2) — & — O(e)
= Fu -+ v, 2) — & — 0().

At least for a subsequence we may suppose that z/(x) -0 for almost all
x€ 0. Set

G ={xe Q2:v(x) == 0}
and

G= GN{xe Q:z,(x) >0},

so that meas (G) = meas (é). Since the functions g, are continuous and converge
to v in L™, we have

&%) = v(x)
for all x¢ 2, hence for all x€ G. If we now suppose
meas (G) > (m + )¢
we obtain a contradiction. Indeed by (IL.7)
meas (G N H}) > ¢ for all k,
and by Lemma [I.6], for a subsequence,

</\ H,ih>f\ G+ 0.

heN
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If x belongs to this set, then
o) = Jim g0, ) = Jlim 2, = 0,

contrary to the definition of G.
We may thus write, by the positivity of f

kllglo Flu -+ 2, Q) = Flu, 2\ G) — O(e) — ¢
= F(u, 2) — O(s) — ¢ — nf(m + 2) €],

which concludes the proof since ¢ is arbitrary.
In this proof the role played by the hypothesis f= 0 is fundamental. Indeed
if (IL.6) is changed to

[f(x, 5,8)| = alx) + C(|s]” + [£),

and (I1.2), (IL.3) are satisfied, then Theorem [I1.4] is false, at least for » > 2, but
one can prove that for all >0 the funtional u+> F(u, ) is swilsc on
wtrte(Q; R™) (see [9)).

Since semicontinuity on W'? implies semicontinuity on W!*, we may sum-
marize the results of this section as follows:

Statement [II.5]. Let f:R*xR™xR"™ R be a Carathéodory function which
satisfies (11.6) for some p = 1 [or alternately satisfies (11.4)). Then the functional
u> F(u, Q) is swisc on W'"P(2;R™) [or is sw*Isc on WE*(2;R™)] if and only
if f is quasi-convex in &.

III. A Representation Theorem

In this section, given a functional of the type (II.1) with f not necessarily
quasi-convex in &, we deal with the problem of finding itsIsc envelope on W'?(2;R),
i.e. the greatest functional less than or equal to F which is swisc on W7(2;R™).
As a consequence of statement [IL.5], it will suffice to treat the case p = 4 co.

Let f:R*xR™xR" —R be a Carathéodory function satisfying (IL.4). For
every r>0 and for every £ bounded open set of R”, if ue W'®(Q;R")
with ”D””Lw(n;nn'n) < r, we define

F(r,u, Q) = inf {li;r}l inf F(uy, Q) u, —~ u (weak¥) in WH2(2;R")

and ” Du, ”L"°(Q;R"m) = r}
Fo(r, u, Q) = inf {lilrcI_L iorolf F(uy, Q): (u, — u) —~ 0 (weak*) in W§H™(Q2;R™

and || Dy =r},

LO(2;R"M)

where F(u, ) is defined by (II.1). The argument employed in [11], Lemmas 3.3
and 4.5, leads us to the following results.
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Lemma [III.1}. If f satisfies the foregoing hypotheses, then for every r >0 and
every uc Wh2(Q;R™) with | Du|| < r there exists a function h, € L*(Q)

such that

Loo(a;Rm)
F(r,u, ) = Fo(r,u, @) = [ h(x)dx
&

for every open set Q" C Q.

Lemma [IXL.2]. Let uy, u, € Wh2(2;R™), with | Dutil| oo pnmy < T and
lluiHme‘Rm) <d, i=1,2. Then for every open set 2 ( £ we have
‘F(r! U, QI) - F(r’ Uz, 'Q,)[ é fw(x’ da 3r: ” U — uZIIWI,OO(_Q;Rm)) dx,
&
where

w(x, d, r, 0) = sup {|f(x, 51, &) — f(x, 82, | sl < d & < r for i=1,2,
and |5y — s,| + |& — &| < 8}

We now use these results to prove

Lemma [II1.3]. To each r > 0 there exists a Carathéodory function ¢, defined on
QXR"x{E€R™: |E] < r} such that for every uc W' (2;R™) with
| Duf < r we have

& (x, u(x), Du(x)) = h(x) for almost every x€ Q.

LO(2;R"™)

Proof. Let o, be the class of all affine functions on R” with rational coefficients
and with gradient less than r in norm. Also let L be the set of the points in R”
which are Lebesgue points for every function A4, with u € «f,. For x€ L, sc Q™,
Ee Q™ with |&| <r, put

é.(x, 5, &) = h(x),

where u€ o, u(x)=s, Du=E. Lemma [IIL.2] implies that ¢, is continuous
in (s, &) for almost every x€ L. Since Lx Q"X Q™ isdensein LxXR™xR"™,
we may therefore extend the definition of ¢, to QXR"x{E€R™:|§| < r),
obtaining

l¢r(x’ S1s 61) - ¢r(x, S, ‘Sz)l g (,O(x, d, 3)’, 6)
or almost every x€ Q2 and for |5;| < d, |&| <r (i =1, 2), whenever
sy — 82| + |y — &,] < 4. This inequality yields
hu(x) = d)r(x’ u(x), DH(X))

for every uc W 2(Q;R™ with |Du|
x€ Q.

It remains to be proved that for all (s, &) the function x> ¢,(x, s, §) is measur-
able. Let s, € R and let u be affine with u(0) = s,, Du = & For almost every
x€ Q2 we have

Loogapamy < T and for almost every

¢r(x3 S + E * X, 5) = hu(x)’
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k
hence this function is measurable. If v is a simple function, i.e. p(x) = D, SixE (%),
with each E; measurable and E;N\E; =0 if i==j, then £=1

k
b(x, p(x) + &%, 8) = Zl ¢ (%, 5 + &+ x, §) xg,(%).

Therefore by an approximation argument we can prove that x> ¢.(x, 6(x) +
& - x, &) is measurable, for 0¢ L'(£). This happens in particular if 0(x) = s —
&+ x, and the proof is complete.

The above lemma, together with the semicontinuity of F(r, u, £2) and Remark
[I1.3], implies

Remark [[I1.4]). For every (x,s, &) € QxR"xXR™ set
¢(x, 5, &) = lim ¢,(x, s, §) = gllg é(x, 5, §).

r>|§|

The function ¢ is measurable in x, upper semi-continuous in s, continuous in &, and
quasi-convex in §.

Let x¢ 2, s¢R™ Lemma [II1.3] implies that for all » > 0 there exists a
function g™ such that

[ 85 Du(x)) dx = inf {liminf [ f(%, 5, Du(x)) dx: wy, — u
Q Q

(weak®) in WH=(Q;R™) and || Duelcoig gumy = 7}

for all ue W'-(Q;R™) with []Du]le(g,an) <r.

Put
g&(E) = lim g*9(¢).

r>1§|

Theorem [I1.5). For almost every x€ 2 and every scR™ the function &—
d(x, s, &) is the greatest quasi-convex function less than or equal to &+ f(x, s, &).

Proof. Let K 2 be a compact set such that fis continuous on KxR™xR™,
For xe K, sc€R™, set

g.(x, 5, &) = g&9().

By the uniform continuity of f on bounded subsets of KxR™xR*", g, is con-
tinuous on KxXR™x{£€R"™ :|&]| < r}. Since K is arbitrary, g, is defined for
almost every x¢ £, and every scR”™, &cR™, with |[£] <<r. Moreover,
Lemma [I.5] implies that g, is a Carathéodory function, and it is quasi-convex in &
since the same holds for all g*. As we remarked after Theorem [II.1], the func-
tional

G,(u, Q) = [ g(x, u(x), Du(x)) dx

is sw¥lsc on {u€ WH(Q;B™): | Dull corg.pmm (< 1}
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If we set, for all x, s, &,

glx, 5, &) = g*9®),
then the functional
ur> [ g%, 5, Du(x)) dx
2

is the 1sc envelope on W*(Q;R™) of the functional

ur> [f(x,5, Du(x)) dx.

Hence &+ g(x,s,&) is the greatest quasi-convex function not greater than
&> f(x, 5, ). Thisimplies g = ¢. Forevery r > 0, G, is semicontinuous, hence
G(u, D < F(r,u,Q), and g, < ¢,, whence g=¢. [

Note that the function ¢ does not necessarily represent the Isc envelope of
uvr> F(u, ). Indeed, if ¢ is not a Carathéodory function, there is a counterexample
even if fis convex in & (example 3.11 in [11]).

We give here some conditions which ensure that ¢ is a Carathéodory function.

Theorem [IIL.6]. If either of the conditions
(1LY f=f(x,8), or

(IIIz) [f(x’ 815 ‘f) _f(x’ 82, 5)[ < CO(X, [Sl - SZD ﬂ(l£|)9
where o :R*"XR —>R* is a Carathéodory function, w(x,0)=0, and
B is increasing and non-negative,

is satisfied, then ¢ is a Carathéodory function.

Proof. If (III.1) holds, the result follows from Remark [IIL4]. Next assume that
(II1.2) holds. We note (see [8], Corollary 2.4) that if »:R? > R" is a convex
function and if we set M = max (y), then for all » < R and y,, y, € B,(0)
there holds =k

M
19 — vO2)| = 5 — 1y — 2l

r

Since quasi-convexity implies weak quasi-convexity, this estimate shows that if
y:R™ — Rt is quasi-convex then for all r << R and &, §,€ B,(0) we have

M Vmin (m, n)
r

9D — v =—F%—

|€ — &,

where we have put M = lrfngalye(] ().

Note that ¢ almost everywhere satisfies the inequality
ld)(x; Sl; S) - ¢(x5 S29 E)I < w(x, ISI - SZI) ‘B(IED,

as one can see by proving the same estimate for the function g, and then using the
equality g = ¢.
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Choose R>0, and for all x¢ £ put
M(x) = a(x) + sup {b(s, &): |s| = R, |£| < R}
= sup {¢(x, 5,€): [s| = R, |§] = R}.

For almost all x€ 2 one has, for all r < R, sy, s,€ B(0) CR™, and §,,§,¢€
B.(0) CR™,

We

|$(x, 51, &1) — d(x, 52, £2)| < M(x)}l;min (m, n)

1§, — & +

—r
+ olx, |5, — s:) R). [

summarize the results of section III as follows.

Statement {III.7]. Let f:R"xXR™xXR™ >R be a Carathéodory function which
satisfies (11.6) for some p =1 [or alternately satisfies (11.4)], and let either one
of the conditions (I111.1), (I11.2) hold. Then the Isc envelope on W'P(Q2;R™) [on

Wl

(2 R™M)] of ur> F(u, £2) is the functional
U f $(x, u(x), Du(x)) dx,
@

where for almost all x€ Q and for all seR™ the function

is t

> d(x, 5, 8)

he greatest quasi-convex function which is less than or equal to &+ f(x, s, §).

This theorem provides an extension of the results of [6] to the case in which f

depends on u as well as on x and &.

Note. This work was supported by the Italian government through the Consiglio

Nazionale delle Ricerche.
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