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An SDP relaxation based method is developed to solve the localization problem in sensor
networks using incomplete and inaccurate distance information. The problem is set up to find a
set of sensor positions such that given distance constraints are satisfied. The nonconvex constraints
in the formulation are then relaxed in order to yield a semidefinite program which can be solved
efficiently.

The basic model is extended in order to account for noisy distance information. In particular, a
maximum likelihood based formulation and an interval based formulation are discussed. The SDP
solution can then also be used as a starting point for steepest descent based local optimization
techniques that can further refine the SDP solution.

We also describe the extension of the basic method to develop an iterative distributed SDP
method for solving very large scale semidefinite programs that arise out of localization problems
for large dense networks and are intractable using centralized methods.

The performance evaluation of the technique with regard to estimation accuracy and compu-
tation time is also presented by the means of extensive simulations.

Our SDP scheme also seems to be applicable to solving other Euclidean geometry problems
where points are locally connected.

Categories and Subject Descriptors: G.1.6 [Optimization]: Convex programming; G.4 [Mathe-

matical Software]: Algorithm design and analysis

General Terms: Algorithms

Additional Key Words and Phrases: Semidefinite Programming, Sensor Network Localization,
Distributed Methods

1. INTRODUCTION

There has been an increase in the use of ad hoc wireless sensor networks for mon-
itoring environmental information (temperature, sound levels, light etc) across an
entire physical space. Typical networks of this type consist of a large number of
densely deployed sensor nodes which must gather local data and communicate with
other nodes. The sensor data from these nodes are relevant only if we know what
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location they refer to. Therefore knowledge of the node positions becomes impera-
tive. The use of a GPS system is a very expensive solution to this requirement.

Instead, techniques to estimate node positions are being developed that rely
just on the measurements of distances and angles between neighboring nodes. De-
pending on the accuracy of these measurements and processor, power and memory
constraints at each of the nodes, there is some degree of error in the distance in-
formation. Furthermore, it is assumed that we already know the positions of a
few anchor nodes. The problem of finding the positions of all the nodes given a
few anchor nodes and relative distance and angle information between the nodes is
called the position estimation or localization problem. Section 2 briefly discusses
some of the previous work in this area.

Section 3 describes an SDP relaxation based method (first discussed in [Biswas
and Ye 2004]) for the position estimation problem in sensor networks. The op-
timization problem is set up so as to minimize the error in sensor positions for
fitting the distance measures. The basic idea behind the technique is to convert the
nonconvex quadratic distance constraints into convex constraints by introducing a
relaxation to remove the quadratic term in the formulation. Similar relaxations
were developed for solving other distance geometry problems, see, e.g., [Alfakih
et al. 1999] and [Laurent 2001].

Section 4 extends the basic distance geometry model to effectively use noisy dis-
tance constraints as well. Nonlinear optimization problems using lower and upper
bound or interval based constraints as well as equality constraints are developed
and the SDP relaxation is used to convert the problem into a convex optimiza-
tion problem. Ideas from maximum likelihood estimation are also utilized to setup
optimization problems that minimize the expected error in estimation.

Section 5 describes a steepest descent based local search method that can further
refine the solutions obtained from the SDP. Infact, the SDP solution turns out to be
an excellent starting point for the local optimization and provides good convergence.

In Section 6, we present an iterative distributed semidefinite programming method
for solving localization problems that arise from networks consisting of a large
number of sensors. Using the distributed method, we can solve very large scale
semidefinite programs which are intractable for the centralized methods.

The SDP based techniques are evaluated in terms of estimation error by perform-
ing extensive simulations using various configurations of radio range, measurement
noise, number of anchors etc. The performance is highly satisfactory compared to
other techniques as well. These results are presented in Section 7.

2. RELATED APPROACHES

A great deal of research has been done on the topic of position estimation in ad-hoc
networks ([Ganesan et al. 2002], [Hightower and Borriello 2001]). Most techniques
use distance or angle measurements from a fixed set of reference or anchor nodes;
see [Doherty et al. 2001], [Niculescu and Nath 2001], [Savarese et al. 2002], [Savvides
et al. 2001], [Savvides et al. 2002], [Shang et al. 2004]; or employ a grid of beacon
nodes with known positions; see [Bulusu et al. 2000], [Howard et al. 2001]. Also see
[Moré and Wu 1997] for solving another distance geometry problem.

[Niculescu and Nath 2001] describe the ”DV-Hop” and related ”DV-Distance”
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and Euclidean approaches which is quite effective in dense and regular topologies.
The anchor nodes flood their position information to all the nodes in the network.
Each node then estimates its own position by performing a triangulation using
this information. For more irregular topologies however, the accuracy can deterio-
rate to the radio range. The authors also investigate the use of angle information
(”DV-Bearing”) in for localization [Niculescu and Nath 2003] using the information
forwarding techniques described above.

[Savarese et al. 2002] present a 2 phase algorithm in which the start-up phase
involves finding the rough positions of the nodes using a technique similar to the
”DV-Hop” approach. The refinement phase improves the accuracy of the estimated
positions by performing least squares triangulations using its own estimates and
the estimates of the nodes in its own neighborhood. This method can accurately
estimate points within one third of the radio range.

When the number of anchor nodes is high, the ”iterative multilateration” tech-
nique proposed by [Savvides et al. 2001] yields good results. Nodes that are con-
nected to 3 or more anchors compute their position by triangulation and upgrade
themselves to anchor nodes. Now their position information can also be used by
the other unknown nodes for their position estimation in the next iteration.

[Howard et al. 2001] and [Priyantha et al. 2001] have discussed the use of spring
based relaxations that initially try to find a graph embedding that resembles the
actual configuration and then modify the embedding to approach the actual one
using a mass-spring based optimization to correct and balance errors.

While the above methods can be run in a distributed fashion, there also exist
some centralized methods that offer more precise location determination by using
global information.

[Shang et al. 2003] demonstrate the use of a data analysis technique called ”mul-
tidimensional scaling” (MDS) in estimating positions of unknown nodes. Firstly,
using basic connectivity or distance information, a rough estimate of relative node
distances is made. Then classical MDS (which basically involves using a Singular
Value decomposition) is used to obtain a relative map of the node positions. Finally
an absolute map is obtained by using the known node positions. This technique
works well with few anchors and reasonably high connectivity. For instance, for a
connectivity level of 12 and 2% anchors, the error is about half of the radio range.
The centralized version of the above mentioned technique does not work well when
the network topology is irregular. So an alternative distributed MDS and patching
technique is explored in [Shang and Ruml 2004; Shang et al. 2004]. Here local
clusters with regular topologies are solved separately and then stitched together
subsequently.

One approach closely related to ours is described in [Doherty et al. 2001] wherein
the proximity constraints between nodes which are within ’hearing distance’ of each
other are modeled as convex constraints. Then a feasibility problem can be solved
by efficient convex programming techniques.

It will be helpful to first introduce some notations to describe this technique.
The trace of a given matrix A, denoted by Trace(A), is the sum of the entries on
the main diagonal of A. We use I, e and 0 to denote the identity matrix, the vector
of all ones and the vector of all zeros, whose dimension will be clear in the context.
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The inner product of two vector p and q is denoted by 〈p, q〉. The 2-norm of a
vector x, denoted by ‖x‖, is defined by

√

〈x, x〉. A positive semidefinite matrix X
is represented by X º 0.

Suppose 2 nodes x1 and x2 are within radio range R of each other, the proximity
constraint can be represented as a convex second order cone constraint of the form

‖x1 − x2‖2 ≤ R. (1)

This can be formulated as a matrix linear inequality ( [Boyd et al. 1994]):
(

I2R x1 − x2

(x1 − x2)
T R

)

º 0. (2)

Alternatively, if the exact distance r1,2 ≤ R is known, we could set the constraint

‖(x1 − x2)‖2 ≤ r1,2. (3)

The second-order cone method for solving Euclidean metric problems can be also
found in [Xue and Ye 1997] where its superior polynomial complexity efficiency is
presented.

However, this technique yields good results only if the anchor nodes are placed
on the outer boundary, since the estimated positions of their convex optimization
model all lie within the convex hull of the anchor nodes. So if the anchor nodes are
placed in the interior of the network, the position estimation of the unknown nodes
will also tend to the interior, yielding highly inaccurate results. For example, with
just 5 anchors in a random 200 node network, the estimation error is almost twice
the radio range.

One may ask why not add, if r1,2 is known, another ’bounding away’ constraint

‖(x1 − x2)‖2 ≥ r1,2. (4)

These two constraints are much tighter and would yield more accurate results. The
problem is that the latter is not a convex constraint, so that the efficient convex
optimization techniques cannot apply. The SDP relaxation method presented in
this paper attempts to formulate tighter convex constraints similar to 4. Then we
relax it to linear matrix inequalities similar to (2).

The techniques described above also differ in their implementation in terms of
being centralized or distributed. For centralized techniques, the available distance
information between all the nodes must be present on a single computer. The
distributed approach has the advantage that the techniques can be executed on
the sensor nodes themselves thus removing the need to relay all the information
to a central computer. This also affects the scalability and accuracy of the prob-
lems under consideration. Distributed techniques can handle much larger networks
whereas centralized approaches yield higher accuracy by using global information.
Our distributed approach is designed to employ the advantages of both paradigms.

3. SEMIDEFINITE PROGRAMMING METHODS

We would like to first introduce some notations and the mathematical formulation
of ad hoc sensor network localization problem. For two symmetric matrices A and
B, A º B means A − B º 0, i.e. A − B is a positive semidefinite matrix. We use
Id, e and 0 to denote the d×d identity matrix, the vector of all ones and the vector
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of all zeros, whose dimensions will be clear in the context. ei is a vector with all
zeros except its ith entry, which is one. The 2-norm of a vector x is denoted as ‖x‖.

The following notations are related to the ad hoc sensor network localization
problem. In an ad hoc sensor network in ℜ2 with m anchors and n sensors, an
anchor is a node whose location ak in ℜ2, k = 1, 2, ...,m, is known, and a sensor is a
node whose location has yet to be decided and denoted by xj in ℜ2, j = 1, 2, ..., n.
Note that for the sake of uniformity, we will be referring to anchor nodes strictly
with the index k, and the unknown nodes with indices i, j.

For a pair of sensors xj and xi, their Euclidean distance is denoted as dji. Simi-
larly, for a sensor xj and anchor ak, their Euclidean distance is denoted as djk. In
general, not all pairs of distances are known, so the pairs of nodes for which mutual
distances are known are denoted as (j, i) ∈ Nx for sensor/sensor and (j, k) ∈ Na for
sensor/anchor pairs respectively. In this section, the basic idea of the SDP formu-
lation will be explained using exact distance data, that is, not corrupted by noise.
Extensions to noisy data will be discussed in following sections.

So, mathematically, the localization problem in ℜ2 can be stated as: given m
anchor locations ak, k = 1, 2, ..., m and some distance measurements dji, (j, i) ∈
Nx, djk, (j, k) ∈ Na, find xj , j = 1, 2, ..., n, the locations of n sensors, such that

‖xj − xi‖2
= d2

ji,∀(j, i) ∈ Nx

‖xj − ak‖2
= d2

jk,∀(j, k) ∈ Na.

3.1 SDP Formulation

Let matrix X = [x1, x2, ..., xn]. Then, the problem can be written in matrix form,

find X ∈ ℜ2×n, Y ∈ ℜn×n

s.t (ei − ej)
T Y (ei − ej) = d2

ji,∀(j, i) ∈ Nx
(

ak

−ej

)T (

I2 X
XT Y

)(

ak

−ej

)

= d2
jk,∀(j, k) ∈ Na

Y = XT X.

(5)

Our method is to relax problem (5) to a semidefinite program: Change the
constraint Y = XT X in (5) to Y º XT X. This matrix inequality is equivalent to
(e.g., [Boyd et al. 1994])

Z :=

(

I X
XT Y

)

º 0.

Then, the problem can be written as a standard SDP (feasibility) problem:

find Z ∈ ℜ(n+2)×(n+2)

s.t. (1; 0;0)T Z(1; 0;0) = 1
(0; 1;0)T Z(0; 1;0) = 1
(1; 1;0)T Z(1; 1;0) = 2

(0; ei − ej)
T Z(0; ei − ej) = d2

ji,∀(j, i) ∈ Nx

(ak;−ej)
T Z(ak;−ej) = d2

jk,∀(j, k) ∈ Na

Z º 0

(6)

where Z =

(

I2 X
XT Y

)

, ej is a vector with all zeros except its ith entry, which is
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one, (ak;−ej) is a column vector in ℜn+2 with ak stacked on top of −ej .

3.2 SDP Model Analyses

The matrix of Z of (6) has 2n + n(n + 1)/2 unknown variables. Consider the case
that among {k, i, j}, there are 2n + n(n + 1)/2 pairs in Nx and Na, Then we have
at least 2n + n(n + 1)/2 linear equalities among the constraints. Moreover, if these
equalities are linearly independent, then Z has a unique solution. Therefore, we
can show

Proposition 1. If there are 2n + n(n + 1)/2 distance pairs each of which has
an accurate distance measure. Then (6) has a unique feasible solution

Z̄ =

(

I X̄
X̄T Ȳ

)

,

then we must have Ȳ = (X̄)T X̄ and X̄ equal true positions of the unknown sensors.
That is, the SDP relaxation solves the original problem exactly.

Proof. Let X∗ be the true locations of the n points, and

Z∗ =

(

I X∗

(X∗)T (X∗)T X∗

)

.

Then Z∗ is a feasible solution for (6).
On the other hand, since Z̄ is the unique solution to satisfy the 2n + n(n + 1)/2

equalities, we must have Z̄ = Z∗ so that Ȳ = (X∗)T X∗ = X̄T X̄.

We present a simple case to show what it means for the system has a unique
solution. Consider n = 1 and m = 3. The accurate distance measures from
unknown b1 to known a1, a2 and a3 are d11, d21 and d31, respectively. Therefore,
the three linear equations are

y − 2xT a1 = (d11)
2 − ‖a1‖2

y − 2xT a2 = (d21)
2 − ‖a2‖2

y − 2xT a3 = (d31)
2 − ‖a3‖2.

This system has a unique solution if it has a solution and the matrix
(

1 1 1
a1 a2 a3

)

is nonsingular. This essentially means that the three points a1, a2 and a3 are not
on the same line, and then x̄ = b1 can be uniquely determined. Here, the SDP
method reduces to the so-called triangular method. Proposition 1 and the example
show that the SDP relaxation method has the advantage of the triangular method
in solving the original problem.

Conditions under which the problem is uniquely localizable and its connections
to rigidity theory are explored in more detail in [So and Ye 2004] in detail. In
particular, we repeat a condition of uniquely localizability,

Definition 1. Problem (5) is uniquely localizable if it has a unique feasible so-
lution X̄ in ℜ2×n and there is no xj in ℜh, j = 1, ..., n, where h > 2 (excluding the
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case appending all zeros to X̄), such that

‖xj − xi‖2
= d2

ji,∀(i, j) ∈ Nx (7)

‖xj − (ak;0)‖2
= d2

jk,∀(j, k) ∈ Na.

The latter condition in the definition says that the problem cannot be localized in
a higher dimensional space where anchor points are augmented to (ak;0) ∈ ℜh, j =
1, ...,m. The importance of [So and Ye 2004] is that it firstly states that if the
problem is uniquely localizable, then the relaxation problem (6) solves (5) exactly.
To tell whether a problem is uniquely localizable or not before solving it is not
easy. But once we solve the SDP relaxation and observe whether Y = XT X in
the solution, we immediately know if the problem is uniquely localizable or not.
It should be kept in mind however, that the assumption in the above analyses is
that the distance measures are exact. We will deal with noisy data in the following
sections.

In particular, each individual trace

Ȳjj − ‖x̄j‖2 (8)

helps us to detect errors in estimation and isolate exactly the sensors which fail to
be estimated given the incomplete distance information.

Example 1. For the purpose of our examples, we generated random networks
of points uniformly distributed in a square area of 1 × 1. Distances were computed
between points that are within the radio range of each other. (The radio range in-
dicates that the distance values between any two nodes are known to the solver if
they are below the range; otherwise they are unknown.) The original and the esti-
mated sensors were plotted. The (blue) diamond nodes refer to the positions of the
anchors; (green) circle nodes to the original locations, A, of the unknown sensors;
and (red) asterisk nodes to their estimated positions from X̄. The discrepancies in
the positions can be estimated by the offsets between the original and the estimated
points as indicated by the solid lines. (The same setup and notations will be used
in all examples of this article).

The effect of variable radio ranges and as a result, connectivity, was observed in
Figure 1. For a network of 50 points, the radio range was varied from 0.2 to 0.35. In
Figure 1(b), for the four sensors with large error estimation, their individual traces
made up most of the total traces, which match where the real errors are accurately,
see Figure 2 for the correlation between individual error and trace for each unknown
sensor for cases in Figure 1(a) and 1(b).

In comparison, for the same case as Figure 1, we computed the results from the
[Doherty et al. 2001] method with the number of anchors 10 and 25, and depicted
their pictures in Figure 3. As we expected, the estimated positions were all in the
convex hull of the anchors.

3.3 Computational Complexity

A worst-case complexity result to solve the SDP relaxation can be derived from
employing interior-point algorithms, e.g., [Benson et al. 2000].
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(a) Radio range=0.20.
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(b) Radio range=0.25.
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(c) Radio range=0.30.
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(d) Radio range=0.35.

Fig. 1. Position estimations with 3 anchors, accurate distance measures and various radio ranges.

Theorem 1. Let k = 3 + |Nx| + |Na|, the number of constraints. Then, the
worst-case number of total arithmetic operations to compute an ǫ-solution of (6),
meaning its objective value is at most ǫ(> 0) above the minimal one, is bounded by
O(

√
n + k(n3 +n2k + k3) log 1

ǫ
), in which

√
n + k log 1

ǫ
represents the bound on the

worst-case number of interior-point algorithm iterations.

Practically, the number of interior-point algorithm iterations to compute a fairly
accurate solution is a constant, 20 − 30, for semidefinite programming, and k is
bounded by O(n2). Thus, the worst case complexity is bounded by O(n6). However,
in practice, as the number of points increases, the required radio range and number
of constraints required to solve for all positions scales more typically with O(n).
Therefore the number of operations is typically bounded by O(n3) in solving a
localization problem with n sensors. This issue is explored in further detail through
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(a) Error and trace correlation in Figure
1(a).
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(b) Error and trace correlation in Figure
1(b).

Fig. 2. Diamond: the offset distance between estimated and true positions, Box: the square root
of individual trace Ȳjj − ‖x̄j‖

2.
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(a) 10 anchors
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(b) 25 anchors

Fig. 3. Position estimations by Doherty et al., Radio range=0.30, accurate distance measures and
various number of anchors

simulations in Section 7.

4. EXTENSIONS FOR NOISY DISTANCE INFORMATION

For the localization problem with measurement noises, the story can be quite dif-
ferent. In general there is no feasible solution to satisfy the constraints in (5). We
develop two formulations to deal with noisy data: one minimizes the maximum like-
lihood estimation error and the other solves the distance feasibility problem with
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upper and lower bound or confidence interval measures. Both formulations admit
SDP relaxations similar to the one discussed earlier, and yield highly satisfactory
computational results.

4.1 Maximum Likelihood Estimation and its SDP relaxation

One approach, called maximum likelihood estimation, has been presented in [Liang
et al. 2004]. Let d : ℜ2 ×ℜ2 → ℜ be the distance function between a sensor/anchor
or sensor/sensor pair. Suppose there are some measurement errors between xj/ak

and xj/xi denoted by ωjk and ωji, respectively,

djk = d(xj , ak) + ωjk,∀(j, k) ∈ Na

dji = d(xj , xi) + ωji,∀(j, i) ∈ Nx

where we assume each ωjk ∼ N (0, σ2
jk) and ωji ∼ N (0, σ2

ji) , where N (0, σ2) is a

normal random variable with mean zero and variance σ2, and they are independent.
Let the maximum likelihood function p to estimate X, using all distance measure

information, be

p((djk, (j, k) ∈ Na; dji, (j, i) ∈ Nx), X) =

∏

j,k;(j,k)∈Na

1

2π
1

2 σjk

exp

(

− 1

2σ2
jk

(djk − d(xj , ak))2

)

∏

j,i;(j,i)∈Nx

1

2π
1

2 σji

exp

(

− 1

2σ2
ji

(dji − d(xj , xi))
2

)

and the maximum likelihood estimation be

Xml = arg max
X

p((djk, (j, k) ∈ Na; dji, (j, i) ∈ Nx), X).

Then, Xml can be written explicitly as

Xml = arg min
X

( ∑

j,k;(j,k)∈Na

1
σ2

jk

(djk − d(xj , ak))
2

+
∑

j,i;(j,i)∈Nx

1
σ2

ji

(dji − d(xj , xi))
2
.

)

(9)

Hence the following optimization problem solves the maximum likelihood esti-
mation problem

min
∑

j,k;(j,k)∈Na

1
σ2

jk

ǫjk +
∑

j,i;(j,i)∈Nx

1
σ2

ji

ǫji

s.t.
(‖xj − xi‖ − dji)

2
= ǫji,∀(j, i) ∈ Nx

(‖xj − ak‖ − djk)
2

= ǫjk,∀(j, k) ∈ Na.

(10)

The objective function described above is a special case of a class of cost functions
described in weighted multidimensional scaling literature, see [Cox and Cox 2001].
In fact, weighted multidimensional scaling has been applied to the sensor network
localization problem in [Costa et al. 2005], and the MLE function described above
is a specific case of the general cost function described therein. The key lies on
how to solve this (nonconvex) problem. In what follows, we show that this cost
minimization problem admits a similar SDP relaxation problem and can be solved
by solving and rounding its SDP relaxation. We use the MLE cost function for
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illustrating our relaxation technique. It should be borne in mind, however, that
more complicated cost functions of the type defined in [Costa et al. 2005] can also
be dealt with in the SDP framework.

If the variance of distance measurements are not known, any reasonable assump-
tion can be applied. Although problem (10) is not a convex optimization problem,
one can construct its SDP relaxation problem:

min
∑

j,k;(j,k)∈Na

1
σ2

jk

ǫjk +
∑

j,i;(j,i)∈Nx

1
σ2

ji

ǫji

s. t.

(−dji; 1)
T

Dji (−dji; 1) = ǫji,∀(j, i) ∈ Nx

(−djk; 1)
T

Djk (−djk; 1) = ǫjk,∀(j, k) ∈ Na

(0; ej − ei)
T

Z (0; ej − ei) = vji,∀(j, i) ∈ Nx

(ak;−ej)
T

Z (ak;−ej) = vjk,∀(j, k) ∈ Na

Dji º 0,∀(j, i) ∈ Nx

Djk º 0,∀(j, k) ∈ Na

Z º 0

(11)

where Z =

(

I2 X
XT Y

)

and

Dji =

(

1 uji

uji vji

)

, ∀(j, i) ∈ Nx, Djk =

(

1 ujk

ujk vjk

)

, ∀(j, k) ∈ Na.

One particular case is when we assume multiplicative noise (as is the case with
our simulations), that is,

dji = d̃ji · (1 + N (0, σ2)),

where d̃ji is the actual distance and dji is the measured distance. Then, σ2
jk =

d̃2
jkσ2, ∀(j, k) ∈ Na and σ2

ji = d̃2
jiσ

2, ∀(j, i) ∈ Nx.
Since the true distances are not known, we may approximate the variances using

the measured distances dij and djk. Therefore, in this case, the objective value will
be

∑

j,k;(j,k)∈Na

1

d2
jk

ǫjk +
∑

j,i;(j,i)∈Nx

1

d2
ij

ǫji. (12)

We remark that the SDP approach is extensible to a larger class of distance
measure, formulations and cost functions. Other types of constraints are also easily
integrated in to the SDP framework. For example, the use of angle information
between sensors has been exploited to perform localization using SDP in [Biswas
et al. 2005]. Another example is presented in more detail next where instead of
single distance measures between a pair of sensors, the information we have between
them are in the form of intervals or ranges, that is, the distance between the 2
sensors will lie in a certain confidence interval. Therefore, for multimodal scenarios
with different types of distance and angle measures, the SDP approach can provide
a global framework with which to attack the localization problem.

4.2 Interval Approach and its SDP relaxation

Our second approach to deal with noises is solving an SDP feasibility problem with
upper and lower bound distance measures. Often, the mutual distance measures
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that can be obtained are in terms of interval instead of a single value, i.e. noisy
distance measures may be represented in a confidence interval form of an upper
bound d̄kj and lower bound dkj between ak and xj , or upper bound d̄ij and lower
bound dij between xi and xj .

Then, the quadratic model can be defined by:

Find X
subject to (dij)

2 ≤ ‖xi − xj‖2 ≤ (d̄ij)
2, ∀(j, i) ∈ Nx,

(dkj)
2 ≤ ‖ak − xj‖2 ≤ (d̄kj)

2, ∀(j, k) ∈ Na.
(13)

Therefore, in this formulation , we end up with inequality constraints instead of
equality constraints. The SDP relaxation is

find Z ∈ ℜ(n+2)×(n+2)

s.t.
d2

ij ≤ (0; ei − ej)
T Z(0; ei − ej) ≤ d̄2

ji,∀(j, i) ∈ Nx

d2
kj ≤ (ak;−ej)

T Z(ak;−ej) ≤ (d̄kj)
2,∀(j, k) ∈ Na

Z º 0

(14)

where Z =

(

I2 X
XT Y

)

.

If the distance measurements are exactly correct (in the case of inequality con-
straints, this would imply that both the upper and lower bounds are the same and
we are essentially solving an equality constrained problem) and the sensor network
is uniquely localizable, then all three formulations (6), (11) and (14) solves the true
sensor locations. If the bounds are not the same as is the case of noisy data, the
model will return (due to the property of SDP interior-point algorithms) a central
solution that is the “mean solution” of all feasible SDP solutions. This is desirable
when distance noises exist, since a localization in the center of the possible location
range is a unbiased estimate.

4.3 The High-Rank Property of SDP Relaxations

The solution of (11) and (14) may not be satisfactory when the distance data is
extremely noisy. Due to the relaxation, the matrix rank constraint is removed
and therefore the SDP solution may be lifted to a higher rank (higher dimensional
space) in which the objective function is lower than it would be had the solution
been constrained to be in the original dimension. In other words, the relaxation

Y º XT X is no longer exact. So the matrix

(

I2 X
XT Y

)

has a rank higher than 2.

Like in other SDP applications (e.g., combinatorial optimization), a main SDP
research topic is how to round the higher-dimension (higher rank) SDP solution into
a lower-dimension (desired low rank) solution. One way is to ignore the augmented
dimensions and use the projection x∗ as a suboptimal solution, which is the case
in [Biswas and Ye 2004]. The other is the eigenvalue decomposition similar to
multi-dimension scaling. An alternative way is to use randomized rounding or local
search. One particular choice of local search is the gradient-based descent method
that will be discussed in the next section.

We are currently also investigating the use of different objective functions with a
regularization term, intelligent weighting of constraints and optimum anchor place-
ment that will ensure a lower-dimension (lower-rank) solution from the SDP. This
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will eliminate the need for rounding and refinement procedures such as the gradient
local search method. We use the following examples to describe the effect of noise
on position estimation and to illustrate the effect of one of the above mentioned
ideas.

Example 2. In Figure 4, the estimation results for a random network of 50 sen-
sors obtained from setting nf to 0.10, the number of anchors to 7, and varying the
radio range are shown. Even with 10% error measurement, the position estimation
for the sensors near anchor nodes is still fairly accurate.
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(a) Radio range=0.30.
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(b) Radio-range=0.40.

Fig. 4. Position estimations with 7 anchors, noisy factor=0.1, and various radio range.

One important point to note from the example in the noisy case is that the anchor
placement is crucial. Placing the anchor points at the perimeter of the network
greatly reduces the estimation error caused by noisy distance measures. In sharp
contrast, points outside the convex hull of the anchor points tended to be estimated
quite poorly. When the distance measures used are exact, the SDP relaxation finds
the exact position estimates irrespective of the anchor placement. This is the major
improvement that the SDP relaxation has over the previous convex optimization
approaches [Doherty et al. 2001]. However, the introduction of noise in the distance
measures diminishes the degree of improvement. We are currently investigating this
in further detail in order to develop formulations that are less sensitive to anchor
placement and to also develop efficient anchor placement strategies.

Example 3. An example of this occurrence is demonstrated in Figure 5 where
for the same network of points and different anchor positions, the estimations are
drastically different.

5. A GRADIENT LOCAL SEARCH METHOD

The examples discussed in Figures 4 and 5 are uniquely localizable so that all the
sensors should be located correctly if nf = 0. However, the figure shows that quite
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(a) 4 inner anchors
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(b) 4 outer anchors

Fig. 5. Position estimations with 4 anchors, noisy factor=0.1, Radio range=0.3 and different
anchor placement

few of localizations are far from their actual locations. Since this network is uniquely
localizable, the localization errors are completely due to the distance measurement
errors. A higher dimensional localization is then found from the SDP relaxation,
and after its projection on the 2-dimensional space, the estimation errors can be
high.

As we mentioned before, one local search method to improve the SDP solution is
moving every sensor location along the opposite of its gradient direction of the sum
of error square function, which will for sure reduce error function value. Let us begin
from (9) and simplicity, assume the case of multiplicative noise discussed in (12).
The maximum likelihood estimation is an unconstrained optimization problem if all
constraints are substituted into the objective function, say f(X). Let the gradient
be ∂fxj

for a certain sensor xj . It is important to notice that ∂fxj
only relates to

the sensors and anchors that are connected to (within the radio range) xj , and they
are local information, so that ∂fxj

for every sensor xj can be solved distributively.
The following update rule is applied to improve the iterative solution:

xj ←− xj − α · ∂fT
xj

for j = 1 to n, (15)

where α is the step size. In each gradient step, the method calculates the gradient
of each sensor and updates its location by this rule.

Example 4. Consider the example presented in Figure 6. For a network of
45 sensors and 5 anchor nodes, a radio range of 0.3, 10% noise, the SDP result
is indicated by the red stars in 6(a). The SDP localization is used as the initial
solution. Figure 6(a) also shows the update trajectories in 50 iterations. It can be
observed clearly that most sensors are moving toward their actual locations marked
by the green circles. The final localizations after 50 gradient steps are plotted in
Figure 6(b). which is a much more accurate localization.

In Figure 6(c) the objective function values vs. number of gradient steps curve is
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(a) Gradient search trajectories
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(b) Gradient result after 50 iterations
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(c) The sum of error squares vs. number of
gradient search steps
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(d) Result of gradient search with random
initial starting point

Fig. 6. Refinement through gradient method for 50 anchor network, 10 % noise

plotted in a solid line. One can see that in the first 15 steps the objective function
value drops rapidly, and then the trajectory tends to be flat. This demonstrates that
the gradient search method does improve the overall localization result. A natural
question is how good the new localization is. To answer this question we need a
lower bound of the objective function value. One trivial lower bound of the objective
function value is 0; but a better one is the SDP relaxation objective value, since
the SDP problem is a relaxation of the original 2-dimensional localization problem.
In this case, the SDP objective value is about 0.136, plotted in Figure 6(c) in a
dashed line, and the gradient search method finds a 2-dimensional localization with
objective function value about 0.173. Thus an error gap 0.037 of the suboptimality
is obtained, which is less than 30% of the error lower bound value

The gradient-based descent method is a local search method and can be proved to
find the global optimal solution only for convex optimization. The ad hoc sensor
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network localization problem is NOT a convex optimization problem. Hence a pure
gradient search method with randomly initial localization obviously does not work.
It is quite important that the SDP relaxation finds a well-positioned localization,
even is not accurate, which can be used as a good initial solution to start the local
search.

To see this, another experiment is performed. We set the initial sensor locations
at the origin and update them by the same rule (15). The updated trajectories are
shown in Figure 6(d). None of these sensors converges to their actual positions. So
we can see that the use of the SDP solution as the initial localization makes all the
difference.

The idea of local refinement after finding an approximate solution is not new.
Many other localization algorithms (see [Savarese et al. 2002] and [Shang et al.
2004]) perform such a post refinement step after obtaining a rough global map.
It should be also pointed out, that using majorization techniques developed in
[Groenen 1993], the cost function can be minimized in a manner that the function
value drops at every iteration. This idea is used in [Costa et al. 2005] for the sensor
network localization problem. Therefore the problem of non-convergence can be
avoided. But this does not prevent the method from converging to a possible local
minimizer, even though advanced search techniques may reduce the extent of this
possibility.

Although this might imply that SDP is an expensive initialization technique to
avoid non-convergence when this problem can be tackled by other means, we argue
that the gradient descent technique is merely an optional refinement technique in
our case. As our results will demonstrate, the original formulations yield estimates
that are already quite accurate and the gradient method offers minor improvement.
In fact, our localization results using the interval formulation with upper and lower
bounds does not involve the post processing gradient step and in spite of this, for
high noise, it delivers better estimation accuracy than the MLE formulation followed
by post processing by the gradient descent method; see Section 7. Furthermore,
the SDP solution establishes a lower bound on the error function value so that
the final localization quality can be certified for every instance of the problem;
see the final gap between the blue curve and red dash line in Figure 6(c). No
previous methods were able to generate simultaneously with the solution this kind
of problem specific “proof of quality” . Note that unlike a Cramer Rao lower bound
as discussed in [Patwari and III 2002], the SDP lower bound does not need to make
any assumptions on the noise model or distribution.

The effects of the gradient method on estimation accuracy seem more pronounced
when the anchors are in the interior. As mentioned before, all estimates are er-
roneously pulled towards the origin in such cases. This is indeed the case in the
example presented in Figure 6. We believe that the addition of regularization terms
in the objective function that penalize such crowding at the center can improve the
performance substantially. Preliminary results have been promising and a complete
explanation will be reported elsewhere in the future.
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6. A DISTRIBUTED SDP METHOD

Unfortunately, the existing SDP solvers have very poor scalability. They can only
handle SDP problems with the dimension and the number of constraints up to few
thousands, where in the SDP sensor localization model the number of constraints
is in the order of O(n2), where n is the number of sensors. The difficulty is that
each iteration of interior-point algorithm SDP solvers needs to factorize and solve
a dense matrix linear system whose dimension is the number of constraints. While
we could solve localization problems with 50 sensors in few seconds, we have tried
to use several off-the-shell codes to solve localization problems with 200 sensors
and often these codes quit either due to memory shortage or having reached the
maximum computation time.

We describe an iterative distributed SDP computation scheme, first demonstrated
in [Biswas and Ye 2003] to overcome this difficulty. We first partition the anchors
into many clusters according to their physical positions, and assign some sensors
into these clusters if a sensor has a direct connection to one of the anchors. We then
solve semidefinite programs independently at each cluster, and fix those sensors’ po-
sitions which have high accuracy measures according the SDP computation. These
positioned sensors become ‘ghost anchors’ and are used to decide the remaining
un-positioned sensors. The distributed scheme then repeats.

The distributed scheme is highly scalable and we have solved randomly generated
sensor networks of 4, 000 sensors in few minutes for a sequential implementation
(that is, the cluster SDP problems are solved sequentially on a single processor),
while the solution quality remains as good as that of using the centralized method
for solving small networks. A parallel implementation for solving the SDP at each
cluster would be even more efficient.

We remark that our distributed or decomposed computation scheme should be
applicable to solving other Euclidean geometry problems where points are locally
connected.

A round of the distributed computation method is straightforward and intuitive:

(1) Partition the anchors into a number of clusters according to their geographi-
cal positions. In our implementation, we partition the entire sensor area into
a number of equal-sized squares and those anchors in a same square form a
regional cluster.

(2) Each (unpositioned) sensor sees if it has a direct connection to an anchor (within
the communication range to an anchor). If it does, it becomes an unknown
sensor point in the cluster to which the anchor belongs. Note that a sensor
may be assigned into multiple clusters and some sensors are not assigned into
any cluster.

(3) For each cluster of anchors and unknown sensors, formulate the error minimiza-
tion problem for that cluster, and solve the resulting SDP model if the number
of anchors is more than 2. Typically, each cluster has less than 100 sensors and
the model can be solved efficiently.

(4) After solving each SDP model, check the individual trace error(8) for each un-
known sensor in the model. If it is below a predetermined small tolerance, label
the sensor as positioned and its estimation x̄j becomes an “ anchor”. If a sensor
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is assigned in multiple clusters, we choose the x̄j that has the smallest individ-
ual trace. This is done so as to choose the best estimation of the particular
sensor from the estimations provided by solving the different clusters.

(5) Consider positioned sensors as anchors and return to Step 1 to start the next
round of estimation.

Note that the solution of the SDP problem in each cluster can be carried out at the
cluster level so that the computation is highly distributive. The only information
that needs to be passed among the neighboring clusters is which of the unknown
sensors become positioned after a round of SDP solutions.

In solving the SDP model for each cluster, even if the number of sensors is
below 100, the total number of constraints could be in the range of thousands.
However, many of those ”bounding away” constraints, i.e., the constraints between
two remote points, are inactive or redundant at the optimal solution. Therefore, we
adapt an iterative active constraint generation method. First, we solve the problem
including only partial equality constraints and completely ignoring the bounding-
away inequality constraints to obtain a solution. Secondly we verify the equality
and inequality constraints and add those violated at the current solution into the
model, and then resolve it with a “warm-start” solution. We can repeat this process
until all of the constraints are satisfied. Typically, only about O(n+m) constraints
are active at the final solution so that the total number of constraints in the model
can be controlled at O(n + m).

However, in the case with measurement noises, this method needs to be modified.
Firstly, the trace error(8) may be no longer a reliable error measure. Instead, we
compute the local error measure for each point xj ,

LDMEj =

∑

i∈N
j
x
(‖xi − xj‖ − dij)

2 +
∑

k∈N
j
a
(‖ak − xj‖ − dkj)

2

|N j
x| + |N j

a |
.

where k ∈ Nk
a if (j, k) ∈ Na and i ∈ N i

x if (j, i) ∈ Nx, that is, the indices of the
anchors and unknown points which have distance measures with point xj .

If the local error measure is below a certain threshold for a point, it is updated
to anchor status in the next iteration. Therefore in the noisy case, there are more
iterations, it takes much longer time to converge and the results are inaccurate for
a large number of points as can be expected. Therefore, once again, we employ the
gradient method once a good starting point for local optimization is obtained.

In the gradient based approach, we stop the SDP iterations after a fixed number
of steps. Then, the solution produced by the decomposed SDP strategy serves as
the starting solution for the gradient-based search method to minimize the objective
function of the entire sensor network. Since the computational complexity of the
gradient vector is very low so that the gradient-based method, although applied to
the entire network without decomposition, can be completed extremely fast.

Example 5. For the distributed case, simulations were performed on networks
of 2, 000 to 4, 000 sensor points. The first simulation is carried out for solving a
network localization with 2, 000 sensors, where the iterative distributed SDP method
terminates in three rounds, see Figure 7 . When a sensor is not positioned, its
estimation is typically at the origin. In this simulation, the entire sensor region is
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partitioned into 7 × 7 equal-sized squares, that is, 49 clusters, and the radio range
is set at .06.
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(a) First iteration
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(b) Second iteration
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(c) Final iteration

Fig. 7. Position estimations for the 2, 000 node sensor network, 200 anchors, noisy-factor=0,
radio-range=.06, and the number of clusters=49.

As can be seen from the Figure 7 , it is usually the outlying sensors at the bound-
ary or the sensors which do not have many anchors within the radio range that
are not estimated in the initial stages of the method. Gradually, as the number of
well estimated sensors or ’ghost’ anchors grows, more and more of these points are
estimated. The total solution time for the three round computation, excluding the
computation of d̂ji, is about two minutes.

It is interesting to note that the erroneous points are concentrated within par-
ticular regions. This clearly indicates that the clustering approach prevents the
propagation of errors to other clusters. This is because the estimated points within
a cluster are used to estimate other points only if their estimation error is below a
threshold.

The second simulation solves a network localization with 4, 000 sensors, where
the iterative distributed SDP method terminates in five rounds. In this simulation,
the entire sensor region is partitioned into 10× 10 equal-sized squares, that is, 100
clusters, and the radio range is set at .035. The total solution time for the five
round computation, excluding computing d̂ji, is about four minutes.

Example 6. Now consider a localization problem with 1800 sensors, 200 an-
chors, radio range 0.05 but also introduce a noise factor of 0.1. The sensor network
is decomposed into 36 equal-sized domains. Figure 8(a) shows the SDP solution af-
ter 3 iterations. One can see that the SDP algorithm fails to find accurate solution
in certain small areas. But after 50 gradient-based search steps, the final localiza-
tion, shown in Figure 8(b), is improved.

Our program is implemented with MATLAB and it uses SEDUMI[Sturm 1999]
or DSDP2[Benson et al. 2000] as the SDP solver. It costs 165 seconds of SEDUMI
or 63 seconds of DSDP2 to get the SDP localization in Figure 8(a) on a PC. Then,
after 50 gradient search steps (costs less than 20 seconds), the objective function
is reduced from 12.81 to 0.230. It can be seen from Figure 8(b) that most of the
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(a) SDP solution after 5 iterations
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(b) Gradient solutions after 50 iterations

sensors are located very close to their true positions, although few of them, most of
which are close to the boundary of the network, are solved inaccurately.

The current clustering approach assumes that the anchor nodes are more or less
uniformly distributed over the entire space. So by dividing the entire space into
smaller sized square clusters, the number of anchors in each cluster is also more or
less the same.

However this may or may not be the case in a real scenario. A better approach
would be to create clusters more intelligently based on local connectivity informa-
tion. Keeping this in mind, we try and find for each sensor its immediate neigh-
borhood, that is, points within radio range of it. It can be said that such points
are within one hop of each other. Higher degrees of connectivity between different
points can also be evaluated by calculating the minimum number of hops between
the 2 points. Using the hop information, we propose to construct clusters which
are not necessarily of any particular geometric configuration but are defined by
its connectivity with neighborhood points. Such clusters would yield much more
efficient SDP models and faster and more accurate estimations. These ideas have
been discussed in further detail in [Biswas et al. 2005].

Our distributed algorithm has also been used to develop adaptive rule-based
procedures for performing cluster formation and localization for very large sensor
networks. Significant improvements have been reported in [Carter et al. 2005],[Jin
2005] with regard to the accuracy and scalability of the original distributed algo-
rithm.

7. EXPERIMENTAL RESULTS

Simulations were performed on networks of 50 nodes randomly placed in a square
region of size 1 × 1 centered at the origin. The distances between the nodes was
calculated. If the distance between 2 nodes was less than a specified radio range R
between [0, 1], a random error was added to it.

dji = d̃ji · (1 + N (0, 1) ∗ nf),
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where d̃ji is the actual distance between the 2 nodes, nf (noise factor) is a given
number between [0, 1] that is used to control the amount of noise variance and
N(0, 1) is a standard normal random variable.

Upper and lower bounds for the distance measures were generated in the following
manner,

dji = d̃ji · (1 − |N (0, 1) ∗ nf |) d̄ji = d̃ji · (1 + |N (0, 1) ∗ nf |),
which gives more or less the 68% confidence interval for the interval SDP method
(14).

The average estimation error was defined by

1

n
·

n
∑

j=1

‖x̄j − x̃j‖ (16)

respectively, where n is the total number of unknown points, xj comes from the
SDP solution and x̃j is the true position of the jth node. The error is also expressed
in terms of %R. In that case, it is the average estimation error described above
multiplied by 100/R.

Connectivity indicates how many of the nodes, on average, are within the radio
range of a node. Therefore, by varying the radio range, the connectivity and the
number of available distance measures can be varied. The average case performance
of the algorithm with varying connectivity, noise variance in distance measurements
and number of anchors was assessed by running extensive simulations on randomly
generated networks. For each configuration of a particular radio range, number of
anchors and noise variance, the algorithms were run on 25 independently generated
networks of points and the average error computed.

The effect of anchor placement in the perimeter of the network as opposed to
the interior was discussed in Section 4.3 and illustrated in Figure 5. For the first
part of our simulations, we place four anchors,one each on the corners of a square
network. The estimation error is reduced significantly by doing this. We argue
that this assumption that anchors are placed on the perimeter of the network is
reasonable in a range of position estimation scenarios since during deployment of
a network, we should be aware of the overall area in which it it to be deployed.
The placement of powerful anchor nodes on the perimeter of this area is a feasible
assumption. Other anchors may be deployed randomly in the interior like the rest
of the nodes.

For all the graphs shown below, the notation R will be used for radio range,
nf for noise factor(a number between 0 and 1 that is used to control the noise
variance), and m for the number of anchors. The results of 3 different methods
are compared, that is, using inequality or interval formulation (14), the maximum
likelihood estimation formulation (11), and the gradient local improvement method
(15) where the MLE solution is used as the starting point for the gradient method
for all cases considered.

7.1 Effect of Varying Radio Range and Noise Factor

Figure 8 shows the variation of average estimation error(normalized by the radio
range R) when the noise in the angle measurements increases and with different
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radio ranges. Figure 9 shows the variation of estimation error when the radio range
is increased and with different measurement noises. Also the error is calculated as
a percentage of the radio range. The absolute error is also presented in cases where
deemed necessary. Figure 10 shows the absolute error variation as calculated from
16 with varying radio range. 4 anchors are placed near the corners of the square
network. There are no more anchors placed in the interior.
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Fig. 8. Variation of estimation error with measurement noise, 4 anchors,
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Fig. 9. Variation of estimation error with radio range, 4 anchors

When the radio range R is too low, there is not enough information between the
points for the estimation to be effective (60-70%R). The error decreases consistently
for all methods as the radio range and consequently, the connectivity is increased.
This holds for the high measurement noise cases as well. For nf = 0.2 and R = 0.3,
the error is about 10 − 20%R for all methods.

Observing the results, many insights into the relative advantages of the differ-
ent algorithms in different scenarios can be obtained. For lower radio ranges and
low measurement noise, the MLE and gradient methods together outperform the
interval method. On the other hand, the inequality method is more accurate and
less sensitive to noise than the other 2 methods together when the connectivity and
measurement noise are high. The gradient method also offers more improvement
over the MLE method for high noise when the connectivity is high. This is an
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Fig. 10. Variation of absolute estimation error with radio range

encouraging fact since distance measurements maybe available in terms of intervals
or ranges than exact values. This and the improvement offered by the gradient
method over the MLE method for high noise and connectivity cases could also
motivate the study of gradient type methods that solve local improvement prob-
lems using inequality constraints. The choice of a suitable objective function that
improves estimation accuracy and allows efficient computation of gradients using
interval constraints is a topic of further research.

Overall, this indicates that if the measurement technology is accurate over lower
ranges, the MLE and gradient methods might be be used. But if the technology
provides distance ranges over longer distances, the interval method should be used.
This also makes perfect intuitive sense since a small subset of accurate distances
corresponds closely to solving a set of equality constraints. When there are too
many such constraints and there is also high uncertainty in them, the results are
poorer. If there are many uncertain constraints, it makes more sense to solve for a
set of interval or inequality constraints. There are enough constraints to limit the
solution space and the sensitivity to erroneous measurements is less severe.

7.2 Effect of Number of Anchors

Figure 11 shows the variation of estimation error by increasing the radio range while
varying the number of anchors from 4 to 8. 4 anchors were placed at the perimeter
and the rest in the interior, and the nf was fixed at 0.1. For the same networks,
Figure 12 shows the variation of estimation error by increasing the measurement
noise(nf) while varying the number of anchors from 4 to 8, where the radio range
is fixed at 0.3. We remind the reader that the number of anchors is denoted by m.

The improvement from having a higher number of anchors diminishes with higher
radio range. But when the measurement noise is high, the presence of more anchors
tends to reduce the estimation error.

7.3 Effect of Random Anchor Placement

In order to demonstrate the effect that anchor placement has over the estimation
result, simulation results are also presented for random anchor placement. That is,
we no longer operate under the assumption that anchors are placed in the perimeter.
These cases are also instructive because they behave differently with varying noise,
radio range and number of anchors.
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Fig. 11. Variation of estimation error with more anchors and varying radio range
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Fig. 12. Variation of estimation error with more anchors and varying measurement noise

—Varying Radio Range and Noise Factor

Figure 13 shows the variation of average estimation error(normalized by the ra-
dio range R) when the noise in the distance measurements increases and with
different radio ranges. Figure 14 shows the variation of estimation error when
the radio range is increased and with different measurement noises.
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Fig. 13. Variation of estimation error with measurement noise, 6 anchors randomly placed
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Fig. 14. Variation of estimation error with radio range, 6 anchors randomly placed

Clearly, in the case of random anchor placement, the estimation error is far higher
for a particular radio range R and measurement noise nf . The improvement
in estimation with greater radio range/connectivity is more pronounced. This
indicates that even with random anchor placement, the problem of bad estimation
for outlying points when the measurement noise can be mitigated by having a
high connectivity. For example, even for nf = 0.25, when the radio range is 0.4,
the estimation error is only about 20%R.

—Varying Number of anchors

Figure 15 shows the variation of estimation error by increasing the radio range
while varying the number of anchors from 6 to 10. The nf is fixed at 0.1. For the
same networks, Figure 16 shows the variation of estimation error by increasing
the measurement noise(nf) while varying the number of anchors from 6 to 10.
The radio range is fixed at 0.3. Again, in these figures, the number of anchors is
denoted by m.
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Fig. 15. Variation of estimation error with more anchors and varying radio range, Random

anchor placement

The graphs show that in contrast to the case when 4 anchors are placed on the
perimeter, adding more anchors in the random placement case offers a distinct
advantage in terms of reducing the estimation error. In fact, selecting the op-
timum number of anchors and intelligent anchor placement are future research
topics that merit deeper investigation.
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Fig. 16. Variation of estimation error with more anchors and varying measurement noise,

Random anchor placement

7.4 Computational Effort

Our simulation program is implemented with MATLAB and it uses SEDUMI[Sturm
1999] as the SDP solver. The simulations were performed on a Pentium IV 2.0 GHz
and 512 MB RAM PC. The computational results presented here were generated us-
ing the interior-point algorithm SDP solvers SeDuMi of [Sturm 1999] and DSDP2.0
of [Benson et al. 2000] with their interfaces to MATLAB on a Pentium 1.2 GHz
and 500 MB RAM PC. DSDP is faster due to the fact that the data structure of
the problem is more suitable for DSDP. However SeDuMi is often more accurate
and robust.

—Number of constraints and solution time

The number of constraints and solution time was analyzed. Figure 17 shows how
the number of constraints grows with the number of points for the case considered
above for the interval formulation. Figure 18 illustrates how the solution time
increases as the number of points in the network increases. Note that the gra-
dient solution time just takes into account the time taken for the local gradient
optimization. The MLE SDP solution needs to be computed before the gradient
method can be applied. Therefore, the total time would be the combined time
for the MLE and gradient methods. However, in our graphs, we do not show the
combined times. Instead, times for each of the individual steps are shown in order
to also compare the relative times taken by each of the steps. It should be noted
that a smaller radio range will be required for denser networks. Since the net-
works get denser with more points, the connectivity increases as well. However,
beyond a certain value, increasing the connectivity only adds more redundant
constraints to the problem and increases the computational effort required. So
we also progressively decrease the radio range with the number of points so as to
keep connectivity within a certain range. The radio range for 40 points is set at
0.4. For each increase of 20 points, the radio range is decreased by 0.05.

From the results, it can be observed that the number of constraints and solution
time is highly dependent not only on the number of points but upon the radio
range selected as well. For example, the connectivity for 100 points and a radio
range 0.25 is higher than that for 120 points and radio range 0.2, therefore number
of constraints and solution time and are also higher. But overall, it can be said
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Fig. 18. Solution Time vs. Number of points

that the number of constraints does not scale with O(n2) but more typically
with O(n). Therefore as discussed in Section 3.3, the computational effort is
more typically O(n3) as opposed to the worst case O(n6). Also, the inequality
method is always more time-consuming simply because for every pair of points,
instead of one constraint, we have both upper and a lower bound constraints.
But we believe that the inequality method time can be reduced further by using
a combined semidefinite programming and linear programming formulation.

—Distributed Method

The solution time and error for the distributed method for larger networks is
presented in Figure 19(a) and 19(b) respectively.
As can be seen from the results, a combination of the SDP and gradient method
is particularly useful in these cases in reducing the error and is also very compu-
tationally efficient. Even for a 4000 point network, the combined solution time is
about 400 seconds for a sequential implementation. The estimation error is also
extremely low because the networks have a high connectivity and this approach
exploits this fact while keeping the solution time low. In fact, the 1000 point
network which has a radio range of 0.1 has the highest connectivity, so the error
is the least. For the 2000 point network with radio range 0.05, the connectivity
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Fig. 19. Distributed Method Simulations

is lower, so the relative average estimation error is higher. But a higher connec-
tivity is also reflected in the increase in solution time from going to the 500 to
1000 points. This case has a sharper rate of increase than the other transitions.

7.5 Comparison with existing methods

Partial comparison with existing methods is also presented. For this purpose, Mul-
tidimensional Scaling, another centralized approach is used. The comparisons are
made against the simulation results reported in [Shang et al. 2004] with networks of
200 points uniformly distributed in a square area of 10r × 10r and the radio range
varied from 1.25r to 2.5r. Only 5% measurement noise, that is, nf = 0.05, was
reported in [Shang et al. 2004]. For detailed results obtained by MDS, refer to the
experimental results section in [Shang et al. 2004] for random uniform networks.
While their results are also presented for localization using only simple connectiv-
ity data, our comparisons will only be against the results presented for localization
using distance data as well. The results from the paper show that MDS outper-
forms other methods such as [Niculescu and Nath 2001] and so is a good choice for
comparison.

Figure 20 shows the results for the above mentioned setup as reported in [Shang
et al. 2004] for 4 different MDS based methods(MDS-MAP(C), MDS-MAP(C,R),
MDS-MAP(P), MDS-MAP(P,R)) which differ in whether a central method is used
or alternatively broken into smaller patches and also whether a post processing
refinement step is applied or not. The radio range and number of anchors is varied.

—Random anchor Placement

Figure 21 shows the results of the SDP based relaxation for the same setup when
the anchors are randomly placed.
The results show that in the random anchor placement case, the error is quite
high when the radio range is low, where our estimation is inferior to the MDS
method. It is interesting to observe again that the impact of having a different
number of anchors is strong. For 6-10 anchors, the anchors cover more of the
square space and so the estimation is better. Also, for higher radio ranges, the
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Fig. 20. MDS results, Estimation error for 200 point networks with varying radio range,

random anchor placement
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Fig. 21. Comparison with MDS, Estimation error for 200 point networks with varying

radio range, random anchor placement

error reduces quite substantially so that the estimation is only a few 2 − 3%R
more than the reported MDS result.

—Anchors placed in the perimeter

Figure 22 shows the results obtained by SDP for the case when the setup is the
same except that 4 anchors are placed at the perimeter. Remaining anchors are
placed inside randomly.

When 4 anchors are placed in the perimeter, the estimation once again improves
dramatically for our SDP methods, especially for lower radio ranges. The high
radio range performance is comparable to the performance of the MDS methods
(between 0 − 5%R). Only in the lower radio range regime, the MDS estimation
error reportedly drops to about 10 − 20%R after a local refinement, as opposed
to 20− 30%R for our SDP based methods. Therefore, the refined MDS methods
appear to have slightly better performance for uniform networks with low radio
range and low noisy factor. Overall, however, the performances of the competing
techniques are quite similar for this particular problem. Given that the estima-
tion error of our methods grows slowly as the noise factor increases (see Figure
13), it is our belief that with development of more suitable objective functions,
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Fig. 22. Comparison with MDS, Estimation error for 200 point networks with varying

radio range, 4 anchors in perimeter

intelligent anchor placement schemes and better ways of rounding the higher di-
mension solution to the 2 dimensional space, the SDP methods could be made to
outperform existing localization methods for different kinds of sensor networks
over a wider range of noises.

8. CONCLUDING REMARKS

The paper presents an SDP relaxation based method to solve the sensor network
localization problem based on incomplete and inaccurate distance information. For-
mulations that account for noisy distance data and distributed processing tech-
niques are also developed in order to make the algorithm more robust and scalable.
Experimental results are presented to show that the algorithm performs well even
in highly noisy environments.

More theoretical analysis of the dependence of the algorithm on the anchor place-
ment, measurement noise and the objective function is required in order to develop
optimum anchor placement schemes, provide tighter bounds on the estimation error
and improve estimation accuracy.

The intelligent inclusion of angle constraints (possibly obtained using Angle of
Arrival methods) can yield much better solutions using fewer anchors and less dis-
tance information. Formulations that extend the model for a combination of dis-
tance and angle information as well as pure angle information are being developed.
Some results are presented in [Biswas et al. 2005].

The overall distance geometry model and SDP relaxation are applicable to any
other problem in distance geometry with mutual distance and angle information
between two points. Applications to problems such as molecule conformation and
Euclidean ball packing are being explored. The case of molecule conformation in
3-D has been dealt with in detail in [Biswas et al. 2005].
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