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Abstract

We consider relaxations for nonconvex quadratically constrained quadratic programming

(QCQP) based on semidefinite programming (SDP) and the reformulation-linearization tech-

nique (RLT). From a theoretical standpoint we show that the addition of a semidefiniteness

condition removes a substantial portion of the feasible region corresponding to product terms

in the RLT relaxation. On test problems we show that the use of SDP and RLT constraints

together can produce bounds that are substantially better than either technique used alone. For

highly symmetric problems we also consider the effect of symmetry-breaking based on tightened

bounds on variables and/or order constraints.
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1 Introduction

We consider a quadratically constrained quadratic programming problem of the form:

QCQP : max xTQ0x + aT
0 x

s.t. xTQix + aT
i x ≤ bi, i ∈ I

xTQix + aT
i x = bi, i ∈ E

l ≤ x ≤ u,

where x ∈ ℜn and I ∪ E = {1, . . . , m}. We assume that −∞ < li < ui < +∞ for each i, and

the matrices Qi are all symmetric. If Q0 � 0, Qi � 0 for i ∈ I and Qi = 0 for i ∈ E , then

QCQP is a convex optimization problem. In general however QCQP is NP-hard. QCQP is a well-

studied problem in the global optimization literature with many applications, frequently arising

from Euclidean distance geometry. An example that has attracted considerable recent attention

concerns localizing sensor networks given distance information [11].

Global optimization methods for QCQP are typically based on convex relaxations of the prob-

lem. In this paper we compare two such relaxations, based on semidefinite programming (SDP)

[14] and the reformulation-linearization technique (RLT) [8]. These two relaxations are described

in the next section. In section 3 we analyze the effect that adding the semidefiniteness condition

has on the feasible region for the three variables in the RLT relaxation corresponding to product

terms induced by two original variables xi, xj. We show that for typical values of the original

variables the semidefiniteness constraint removes a large fraction of this feasible region. In section

4 we consider computational results on two different classes of test problems. For nonconvex box-

constrained QPs we show that the use of SDP and RLT constraints together produces bounds that

are substantially better than when either technique is used alone. We also consider SDP and RLT

relaxations applied to circle-packing problems in the plane. These problems are highly symmetric,

and we examine the effect of partial symmetry-breaking based on tightened bounds for subsets of

variables. In section 5 we consider the effect of further symmetry-breaking based on imposing ad-

ditional order constraints. Computational results on these problems indicate unexpectedly regular

solution values for the various relaxations, as well as an unexpected relationship between bounds

from SDP relaxations and bounds from RLT relaxations with additional order constraints.

Notation We use X � 0 to denote that a symmetric matrix X is positive semidefinite. For n × n

matrices X and Y , X • Y denotes the matrix inner product X • Y =
∑n

i,j=1 XijYij . We use e to

denote a vector with each component equal to one.

2



2 The SDP and RLT Relaxations

Relaxations of QCQP based on SDP and RLT both utilize variables Xij that replace the product

terms xixj of the original problem. The relaxations differ in the form of the constraints that are

placed on these new variables. The SDP relaxation is based on the fact that since X = xxT in

the actual solution of QCQP, one can obtain a relaxation of QCQP by imposing X � xxT instead.

The SDP relaxation of QCQP [14] may then be written

SDP : max Q0 • X + aT
0 x

s.t. Qi •X + aT
i x ≤ bi, i ∈ I

Qi •X + aT
i x = bi, i ∈ E

l ≤ x ≤ u, X − xxT � 0.

Moreover it is very well known that the condition X − xxT � 0 is equivalent to

X̃ :=

(

1 xT

x X

)

� 0, (1)

and therefore SDP may be alternatively written in the form

SDP : max Q̃0 • X̃

s.t. Q̃i • X̃ ≤ 0, i ∈ I
Q̃i • X̃ = 0, i ∈ E
l ≤ x ≤ u, X̃ � 0,

where

Q̃i :=

( −bi aT
i /2

ai/2 Qi

)

.

When the original QCQP is a convex problem (Q0 � 0, Qi � 0 for i ∈ I and Qi = 0 for

i ∈ E), it is straightforward to show that SDP is equivalent to QCQP. If QCQP is nonconvex,

however, SDP may be unbounded even though all of the original variables have finite upper and

lower bounds. This can easily be remedied by adding upper bounds to the diagonal components of

X . For example, it is obvious that Xii ≤ max{l2i , u2
i }. Better upper bounds for Xii are obtained

as part of the RLT relaxation that we describe below. An approximation result based on the

SDP relaxation for a special case of QCQP (l = −e, u = e, I = ∅, ai = 0 and Qi diagonal for

i = 1, . . . , m) is given in [18]

The RLT relaxation of QCQP is based on using products of upper and lower bound constraints

on the original variables to obtain valid linear inequality constraints on the new variables Xij [8].
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For two variables xi and xj we have constraints xi − li ≥ 0, ui − xi ≥ 0, xj − lj ≥ 0, uj − xj ≥ 0.

Multiplying each of the constraints involving xi by a constraint involving xj, and replacing the

product term xixj with the new variable Xij, we obtain the constraints

Xij − lixj − ljxi ≥ −lilj,

Xij − uixj − ujxi ≥ −uiuj,

Xij − lixj − ujxi ≤ −liuj,

Xij − ljxi − uixj ≤ −ljui,

i, j = 1, . . . , n. Note that these constraints also hold when i = j, in which case the last two

constraints are identical. Moreover the last two constraints are identical for all i, j once the condition

Xij = Xji is imposed. The resulting relaxation of QCQP can then be written

RLT : max Q0 • X + aT
0 x

s.t. Qi •X + aT
i x ≤ bi, i ∈ I

Qi •X + aT
i x = bi, i ∈ E

X − lxT − xlT ≥ −llT

X − uxT − xuT ≥ −uuT

X − lxT − xuT ≤ −luT

l ≤ x ≤ u, X = XT .

Using the fact that Xij = Xji, the result is an ordinary linear programming (LP) problem with

n(n + 3)/2 variables and a total of m+ n(2n + 3) constraints. (In fact it is known that the original

bound constraints l ≤ x ≤ u are redundant and could be removed [10, Proposition 1].)

If QCQP contains linear constraints other than the simple bounds (Qi = 0 for some 0 < i ≤ m),

then additional constraints can be imposed on the variables X in the SDP and/or RLT relaxations.

For RLT the standard methodology is to form all possible products of pairs of linear inequality

constraints, including the bound constraints on the variables [10]. If |{i ∈ I :Qi = 0}| = k this

would add an additional 2kn + k(k − 1)/2 linear inequality constraints to the RLT relaxation. If

there are linear equality constraints then it suffices to consider the constraints on X obtained by

multiplying individual equality constraints by each variable xj [8, Remark 8.1], so if |{i ∈ E : Qi =

0}| = p, a total of pn additional linear equality constraints would be added to the RLT relaxation.

For linear equality constraints the standard approach in forming SDP relaxations (see for example

[17, Remark 13.4.1]) is to add only the “squared” constraints

aT
i x = bi ⇒ aT

i Xai = b2
i .
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The treatment of linear inequality constraints in SDP relaxations is less obvious, because the

constraint obtained by “squaring” a linear inequality aT
i x−bi ≥ 0 is already implied by X̃ � 0. In [2]

some theoretical justification is given for generating additional constraints from linear inequalities

by first adding slack variables to obtain equalities and then forming the squared equality constraints.

3 Adding SDP to RLT

In this section we examine the effect of adding the semidefiniteness condition X � xxT to the RLT

relaxation of QCQP. We will focus on the effect that adding semidefiniteness has on the feasible

values for the product variables Xij. It is well known that the RLT relaxation is invariant with

respect to an invertible affine transformation of the original variables [8, Proposition 8.4], and it

is easy to show that such an invariance also holds for the SDP relaxation. As a result we may

assume without loss of generality that l = 0, u = e. We will consider two variables xi, xj, and for

convenience assume that i = 1, j = 2. By interchanging and/or complementing the variables we

may further assume that 0 ≤ x1 ≤ x2 ≤ .5. Under these assumptions the RLT constraints on X11,

X22 and X12 become

0 ≤ X11 ≤ x1, (2a)

0 ≤ X22 ≤ x2, (2b)

0 ≤ X12 ≤ x1. (2c)

Next we consider imposing the semidefiniteness condition X − xxT � 0. As described in the

previous section this is equivalent to X̃ � 0, where X̃ is defined as in (1). Restricting attention to

the principal submatrix of X̃ corresponding to x1 and x2, we certainly have









1 x1 x2

x1 X11 X12

x2 X12 X22









� 0, (3)

and it is straightforward to show that for X12 ≥ 0, (3) is equivalent to the constraints

X11 ≥ x2
1, (4a)

X22 ≥ x2
2, (4b)

X12 ≤ x1x2 +
√

(X11 − x2
1)(X22 − x2

2), (4c)

X12 ≥ x1x2 −
√

(X11 − x2
1)(X22 − x2

2). (4d)
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Our goal is to compare, for fixed values of x1 and x2, the three-dimensional feasible regions for

(X11, X22, X12) corresponding to (2) before and after the addition of (4). Assuming that x1 > 0,

x2 > 0 it is clear that adding (4) has no effect on the upper bounds for Xii, i = 1, 2 but improves

the lower bounds from Xii ≥ 0 to Xii ≥ x2
i . (The use of these convex, nonlinear constraints to

strengthen the RLT relaxation was suggested in [10].) For any values Xii satisfying x2
i ≤ Xii ≤ xi,

i = 1, 2, values of X12 for which (X11, X22, X12) are feasible in both (2) and (4) must satisfy (2c)

as well as (4c) and (4d). In Figure 1 we show the resulting feasible region as a subset of the RLT

feasible region (2) for the case x1 = .5, x2 = .5. For these values it is clear that the bounds (4c)

and (4d) dominate the original RLT bounds on X12 for all values of X11 and X22 that satisfy

x2
i ≤ Xii ≤ xi, i = 1, 2. However for more general values x1, x2 the situation is more complex. For

example, in Figure 2 we illustrate the case of x1 = .1, x2 = .5. In the next theorem we characterize

the three-dimensional volume of the combined SDP+RLT region for all relevant values of x1, x2.

Theorem 1 Suppose that l = 0, u = e, 0 < x1 ≤ x2 ≤ .5. Then the three-dimensional volume of

{(X11, X22, X12)} feasible in (2) is x2
1x2, and the volume of {(X11, X22, X12)} feasible in both (2)

and (4) is

x2
1x2(1−x2)−

1

9
x3

1(6x2
2−6x2+5)+

1

3
x3

1((1−x2)
3−x3

2)) ln

(

1 − x2

x2

)

−1

3
x3

1((1−x2)
3+x3

2)) ln

(

1 − x1

x1

)

.

Proof: The volume of {(X11, X22, X12)} feasible in (2) is trivial. To compute the volume of

{(X11, X22, X12)} feasible in (2) and (4) it is convenient to consider the regions with X12 ≤ x1x2

and X12 ≥ x1x2 separately.

Assume that x2
i ≤ Xii ≤ xi, i = 1, 2. It is then easy to compute that the lower bound (4d) will

dominate the lower bound X12 ≥ 0 from (2c) exactly when

X22 ≤ x2
2X11

X11 − x2
1

. (5)

Since X22 ≤ x2 by assumption, (5) certainly holds if

x2 ≤ x2
2X11

X11 − x2
1

,

which is equivalent to

X11 ≤ x2
1

1− x2
. (6)

Note moreover that since by assumption 0 < x1 ≤ .5 and 0 < x2 ≤ .5, we have

x1 + x2 ≤ 1 ⇒ 1 − x2 ≥ x1 ⇒ 1

1 − x2
≤ 1

x1
⇒ x2

1

1 − x2
≤ x1,
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Figure 1: RLT versus SDP+RLT regions, 0 ≤ x ≤ e, x1 = .5, x2 = .5.
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Figure 2: RLT versus SDP+RLT regions, 0 ≤ x ≤ e, x1 = .1, x2 = .5.
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so the upper bound on X11 in (6) cannot be greater than the original upper bound X11 ≤ x1 from

(2). It follows that the volume of {(X11, X22, X12)} feasible in both (2) and (4) with X12 ≤ x1x2 is

given by

∫ x1

x
2

1

1−x2

∫ x2

x
2

2
X11

X11−x
2

1

x1x2 dX22 dX11 +

∫ x1

x
2

1

1−x2

∫

x
2

2
X11

X11−x2

1

x2

2

(X11 − x2
1)

1

2 (X22 − x2
2)

1

2 dX22 dX11

(7)

+

∫

x
2

1

1−x2

x2

1

∫ x2

x2

2

(X11 − x2
1)

1

2 (X22 − x2
2)

1

2 dX22 dX11.

A straightforward integration exercise shows that the volume given by (7) is equal to

x2
1x

2
2(1− x1 − x2) +

4

9
x3

1x
3
2 −

1

3
x3

1x
3
2 ln

(

1 − x1

x1

1 − x2

x2

)

. (8)

The derivation of the volume of {(X11, X22, X12)} feasible in (2) and (4) with X12 ≥ x1x2 is similar

and we omit the details. The resulting volume is

x2
1(1 − x2)

2(x2 − x1) +
4

9
x3

1(1− x2)
3 − 1

3
x3

1(1− x2)
3 ln

(

1 − x1

x1

x2

1 − x2

)

, (9)

which is exactly (8) with (1 − x2) substituted for x2 throughout. The proof is completed by

combining (8) and (9). 2

Theorem 1 has several interesting implications. For example, for any 0 < x1 ≤ x2 ≤ .5 one can

use the results of the theorem to compute the ratio of the volume of {(X11, X22, X12)} feasible in

both (2) and (4) to the volume of {(X11, X22, X12)} feasible in (2) alone. In Figure 3 we illustrate

this fraction in terms of x2 and the ratio x1/x2. The minimum fraction of 1/9 is achieved at

x1 = x2 = .5, as depicted in Figure 1. The worst-case ratio of 1.0 corresponds to the limit as

x2 → 0, x1/x2 → 0. In Figure 4 we illustrate {(X11, X22, X12)} feasible in both (2) and (4) for

x1 = .01, x2 = .1; for these values the (SDP+RLT)/RLT volume fraction is approximately .7923.

In addition to comparing the volumes of the RLT and SDP+RLT feasible regions for fixed values

of x1 and x2, Theorem 1 can be used to derive the five-dimensional volumes of the corresponding

feasible regions based on the original bounds 0 ≤ xi ≤ 1, i = 1, 2. We give this result in the

following theorem.

Theorem 2 Suppose that 0 ≤ xi ≤ 1, i = 1, 2. Then the volume of {(x1, x2, X11, X22, X12)} that

are feasible for the RLT constraints is 1/60, and the volume of {(x1, x2, X11, X22, X12)} that are

feasible for the RLT constraints and (3) is 1/240.
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Proof: From Theorem 1, the volume of {(x1, x2, X11, X22, X12)} feasible for the RLT constraints,

with 0 ≤ x1 ≤ x2 ≤ .5, is
∫ 1

2

0

∫ x2

0
x2

1x2 dx1dx2,

which is easily computed to be 1/480. To find the corresponding volume of {(x1, x2, X11, X22, X12)}
that also satisfy (3) requires computing

∫ 1

2

0

∫ x2

0
v(x1, x2) dx1dx2,

where v(x1, x2) is the three-dimensional volume given in Theorem 1. Using MapleTM 11 this integral

evaluates to equal 1/1920. Moreover the region 0 ≤ x1 ≤ x2 ≤ .5 represents 1/8 of the original

feasible region 0 ≤ xi ≤ 1, i = 1, 2, and volumes are invariant with respect to the transformations

(exchanging and/or complementing variables) needed to map any other (x1, x2) onto this region.

2

The result of Theorem 2 is remarkably simple: adding the semidefiniteness condition (3) to

the RLT relaxation removes exactly 75% of the feasible region determined by two of the original

variables. The following result, proved in [1], shows that no further improvement is possible for a

convex relaxation.

Theorem 3 ([1]) For n = 2 and 0 ≤ x ≤ e, the set of X̃ � 0 such that (x, X) are feasible for the

RLT constraints is equal to the convex hull of {(1x
)(1

x

)T
: 0 ≤ x ≤ e}.

4 Computational results

In this section we compare bounds obtained using the SDP, RLT and SDP+RLT relaxations on

two different classes of test problems. All problems were solved on a 2.8 GHz Pentium 4 PC with

2GB of RAM, using the Matlab-based SeDuMi solver [12] with a feasibility/optimality tolerance of

1E-8. To begin we consider indefinite box-constrained QPs, corresponding to the case E = I = ∅
in QCQP. Box-constrained QPs have a number of applications and have been well-studied in the

global optimization literature; see for example [15] and references therein. In Table 1 we compare

the bounds, and relative gaps between bounds and the optimal value, for a group of test problems

from [15]. These problems all have n = 30, 0 ≤ x ≤ e, and were solved to optimality using a finite

branch-and-bound method based on polyhedral bounds in [15]. (An extension of this method that

uses semidefinite relaxations is given in [3].) In Table 1, PS is the value of the polyhedral bound

at the root problem, and BARON is the root bound obtained by the BARON global optimization

10



Table 1: Comparison of bounds for indefinite box-constrained QP Problems

Problem Optimal Bound value SDP+ Relative gap to optimal value (%) SDP+
instance value RLT BARON PS SDP RLT RLT BARON PS SDP RLT

30-60-1 706.00 1454.75 1430.20 1405.25 768.12 714.67 106.06 102.58 99.04 8.80 1.23
30-60-2 1377.17 1699.50 1668.51 1637.00 1426.94 1377.17 23.41 21.15 18.87 3.61 0.00
30-60-3 1293.50 2047.00 2006.83 1966.00 1370.13 1298.21 58.25 55.15 51.99 5.92 0.36
30-70-1 654.00 1569.00 1547.43 1525.50 746.43 674.00 139.91 136.61 133.26 14.13 3.06
30-70-2 1313.00 1940.25 1888.67 1836.25 1375.07 1313.00 47.77 43.84 39.85 4.73 0.00
30-70-3 1657.40 2302.75 2251.55 2199.50 1719.77 1657.55 38.94 35.85 32.71 3.76 0.01
30-80-1 952.73 2107.50 2072.29 2036.50 1050.76 965.25 121.21 117.51 113.75 10.29 1.31
30-80-2 1597.00 2178.25 2158.29 2138.00 1622.81 1597.00 36.40 35.15 33.88 1.62 0.00
30-80-3 1809.78 2403.50 2376.47 2349.00 1836.79 1809.78 32.81 31.31 29.79 1.49 0.00
30-90-1 1296.50 2423.50 2385.44 2346.75 1348.48 1296.50 86.93 83.99 81.01 4.01 0.00
30-90-2 1466.84 2667.00 2623.11 2578.50 1527.87 1466.84 81.82 78.83 75.79 4.16 0.00
30-90-3 1494.00 2538.25 2499.69 2460.50 1516.81 1494.00 69.90 67.32 64.69 1.53 0.00
30-100-1 1227.13 2602.00 2541.99 2481.00 1285.74 1227.13 112.04 107.15 102.18 4.78 0.00
30-100-2 1260.50 2729.25 2699.12 2668.50 1365.32 1261.08 116.52 114.13 111.70 8.32 0.05
30-100-3 1511.05 2751.75 2704.14 2655.75 1611.11 1513.08 82.11 78.96 75.76 6.62 0.13

Average 76.94 73.97 70.95 5.58 0.41

package [7] after tightening based on range reduction [16]. The columns RLT and SDP correspond

to values obtained by the relaxations RLT and SDP of section 2, and SDP+RLT corresponds to

the problem with both sets of constraints imposed. (The SDP relaxation also includes the upper

bounds on diagonal components Xii ≤ xi.)

Examining Table 1, we conclude that on these problems the bounds from RLT, BARON and

PS are similar, while those from SDP have gaps that are an order of magnitude smaller and those

from SDP+RLT are an order of magnitude smaller again. It is also notable that the bounds from

RLT and BARON are quite close, as one would expect since BARON is based on the reformulation-

linearization technique. (The fact that the BARON bounds are always somewhat better is consistent

with the fact that they are being reported after tightening based on range reduction.) In terms

of computational cost, each RLT or SDP bound for these problems required approximately 1

second of computation, but each SDP+RLT bound required over 200 seconds of computation. It

is well known that “mixed” SDP/LP problems involving large numbers of inequality constraints

are computionally challenging, and reducing the work to solve such problems is an area of ongoing

algorithmic research. The approach taken in [9] is to add linear constraints implied by X̃ � 0 to the

RLT relaxation in an effort to obtain stronger bounds without incurring the computational cost of

solving the SDP+RLT problem. In [4] a similar approach is proposed that adds second-order cone

constraints to RLT; these are stronger than the linear constraints used in [9] but computationally

still easier to handle than the full SDP+RLT problem.

Our second set of test problems are based on circle packing in the plane: for a given n ≥ 2
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find the maximum radius of n non-overlapping cicrles that all lie in the unit box 0 ≤ xi ≤ 1,

0 ≤ yi ≤ 1, i = 1, . . . , n. This geometric problem has been extensively studied in the global

optimization literature [6, 13]. Via a well-known transformation the problem is equivalent to the

“point packing” problem

PP : max θ

s.t. (xi − xj)
2 + (yi − yj)

2 ≥ θ, 1 ≤ i < j ≤ n

0 ≤ x ≤ e, 0 ≤ y ≤ e.

Regarding problem PP, note that

• The variable θ represents the minimum squared distance separating n points in the unit

square. The corresponding radius for n circles that can be packed into the unit square is
√

θ/[2(1 +
√

θ)].

• The problem formulation involves no terms of the form xiyj. As a result, the RLT and SDP

relaxations can be based on matrices X and Y relaxing xxT and yyT , respectively.

• Let nx = ⌈n/2⌉, ny = ⌈nx/2⌉. By symmetry one can assume .5 ≤ xi ≤ 1, i = 1, . . . , nx and

.5 ≤ yi ≤ 1, i = 1, . . . , ny. We will use SYM to refer to any problem formulation that uses

these more restricted bounds.

We have solved various relaxations of PP for 2 ≤ n ≤ 50. The solution values for these

relaxations have an unexpectedly simple structure described in Conjecture 4, below. We present

these results as a conjecture since we have obtained the solution values only up to n ≤ 50, and

all values are approximate (but high precision) estimates of the true optimal values obtained by a

numerical solver.

Conjecture 4 For n ≥ 2 consider the RLT and SDP relaxations of PP, where the SDP relaxation

also imposes the diagonal upper bounds Xii ≤ xi, Yii ≤ yi, i = 1, . . . , n. Then:

1. The optimal value for the RLT relaxation is 2.

2. The optimal value for the SDP relaxation is 1+ 1
n−1 and adding the RLT constraints does not

change this value.

3. For n ≥ 5 the optimal value for the RLT+SYM relaxation is 1
2 .

4. For n ≥ 5 the optimal value for the SDP+SYM relaxation is 1
4

(

1 + 1
⌊(n−1)/4⌋

)

.
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Note that the RLT bound of 2.0 is “worst possible” in that this is the maximum squared distance

between two points in the unit square. In addition, the effect of adding the more restricted SYM

bounds is very similar for both the RLT and SDP relaxations: the solution value is reduced by a

approximately a factor of 4. In Figure 5 we illustrate the various bounds described in Conjecture 4

for 2 ≤ n ≤ 30. (The SDP+SYM+ORD relaxation is described in the next section.) Figure 5 gives

the square roots of the solution values for the various relaxations, corresponding to bounds on the

minimum distance bewteen two points. The “MAX” values correspond to high-precision estimates

for the exact optimal values of PP obtained by verified computing techniques [6], available from

http://packomania.com. It is worth noting that while these problems have some similarity with

the sensor network problems considered in [11], the SDP relaxations for PP do not appear to be

nearly as tight as those for the sensor problems. We believe that there are at least two reasons

for this difference. First, the PP problem has a high degree of symmetry which is problematic for

any bound based on convex optimization. Second, the distance information in the sensor network

problems, especially distance information involving fixed anchor points, provides many additional

constraints on components of X̃ that considerably tighten the SDP relaxation.

13



5 Symmetry-breaking using order constraints

The results in Conjecture 4 show that the more restricted bounds based on symmetry have a

substantial effect on both the SDP and RLT relaxations of PP. In this section we consider a

more elaborate symmetry-breaking strategy based on orderings of variables. In particular, for the

variables x and y in PP one could certainly assume that

xi ≥ xi+1, i = 1, . . . , n − 1. (10)

Simply adding (10) to the SDP or RLT relaxations would have no effect, since (10) can be satisfied

by re-ordering the variables in any solution. However (10) can be used to generate additional linear

constraints on the variables (x, X). As described in section 2, the usual approach in forming RLT

relaxations is to generate constraints based on all pairs of linear inequalities, including the original

bound constraints on the variables. In the case of (10) this would result in an additional O(n2)

constraints, which would be computationally very costly if semidefiniteness of X̃ is also imposed.

To reduce the computational burden we will generate a total of O(n) constraints by using (10) for

a given i together with only the bound constraints on xi and xi+1. It is straightforward to show

that the resulting constraints have the form

Xii − Xi,i+1 + lixi+1 − lixi ≥ 0,

Xii − Xi,i+1 + uixi+1 − uixi ≤ 0,

Xi+1,i+1 − Xi,i+1 + ui+1xi − ui+1xi+1 ≥ 0,

Xi+1,i+1 − Xi,i+1 + li+1xi − li+1xi+1 ≤ 0,

i = 1, . . . , n−1. We will use ORD to denote any relaxation that imposes these additional constraints.

Note that if the more restricted SYM ranges are imposed then the constraint (10) is not valid for

i = ny, but can still be imposed for all other i. In this case we simply omit the constraints on

(x, X) corresponding to i = ny.

We have solved a variety of relaxations of PP using the additional ORD constraints, for 2 ≤ n ≤
50. The unexpectedly regular behavior of the RLT and SDP relaxations with and without the SYM

restrictions, described in Conjecture 4, becomes even more remarkable when the ORD constraints

are added. These findings are given in Conjecture 5 below. As with Conjecture 4 we decribe

our results as a conjecture since they have only been observed up to n ≤ 50, and correspond to

high-precision estimates of the true optimal values of the problems obtained by a numerical solver.
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Conjecture 5 For n ≥ 2 consider the RLT and SDP relaxations of PP, where the SDP relaxation

also imposes the diagonal upper bounds Xii ≤ xi, Yii ≤ yi, i = 1, . . . , n. Then:

1. The optimal value for the RLT+ORD relaxation is equal to that of the SDP relaxation.

2. For n ≥ 5 the optimal value for the RLT+SYM+ORD relaxation is equal to that of the

SDP+SYM relaxation.

3. For n ≥ 9 the optimal value for the SDP+SYM+ORD relaxation is strictly less than the

optimal value of the RLT+SYM+ORD relaxation.

Loosely speaking, Conjecture 5 says that adding the ORD constraints to RLT, with or without

the tightened SYM bounds, has exactly the same effect as using SDP instead. However the bounds

computed by adding the ORD constraints to RLT are cheaper to compute than those based on SDP.

For example, for n = 50 the time required to compute the RLT+SYM+ORD bound was about 36

seconds, compared to 54 seconds for SDP+SYM. The last part of Conjecture 5 indicates that for

n ≥ 9 the best bounds are obtained using SDP+SYM+ORD. However from Figure 5 it is clear

that the difference between the solution values for the RLT+SYM+ORD and SDP+SYM+ORD

relaxations is relatively small, and the SDP+SYM+ORD bound is substantially more expensive

to compute (for n = 50 the SDP+SYM+ORD bound required over 100 seconds to compute). In

conlusion, for these problems a substantial amount of the bound improvement of SDP compared

to RLT can be obtained relatively cheaply by appropriate tightenings of RLT based on problem

symmetry. It is interesting to note that these tightenings of RLT are not based on trying to

approximate the semidefinitess of X̃ using additional linear or convex quadratic constraints, as in

[4] and [9].
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