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Semidiscrete-Least Squares Methods for a Parabolic
Boundary Value Problem*

By James H. Bramble and Vidar Thomee

Abstract. In this paper some approximate methods for solving the initial-boundary
value problem for the heat equation in a cylinder under homogeneous boundary condi-
tions are analyzed. The methods consist in discretizing with respect to time and solving
approximately the resulting elliptic problem for fixed time by least squares methods. The
approximate solutions will belong to a finite-dimensional subspace of functions in space
which will not be required to satisfy the homogeneous boundary conditions.

1. Introduction. The purpose of this paper is to analyze some approximate
methods for solving the initial-boundary value problem for the heat equation in a
cylinder under homogeneous boundary conditions. The methods consist in discretizing
with respect to time and solving approximately the resulting elliptic problem for fixed
time by least squares methods. The approximate solutions will belong to a finite-
dimensional subspace of functions in space which will not be required to satisfy
the homogeneous boundary conditions.

Let P. be a bounded domain in Euclidean TV-space RN with smooth boundary dtt.
We shall consider the approximate solution of the following mixed initial-boundary
value problem for u = u(x, t), namely,

du ^ d u— = A« =       T~2     in 0 X (0, co),

u = 0 on 30 X [0, co),

u(x, 0) = v(x) in Q.

By replacing the time derivative in (1.1) by a backward-difference quotient, we
define an approximate solution uk(x, t) for t = nk, n = 0, 1, 2, • • • , by

uk(x, t + k) — uk(x, t)- = Auk(x, t + k),      x E 0,
(1.2)

uk = 0, x E dQ,

uk(x, 0) = v(x), x E 0.

With uk(x, t) = v, uk(x, t + k) = w, we then have the following equation to solve
for w, when v is known:

(1.3) w — kAw = v    in Q,

(1.4) w = 0   on dQ.
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634 james h. bramble and vidar thomee

We shall prove that this Dirichlet problem admits a unique solution and that, for
sufficiently smooth initial-values v,

sup  ||k*(-, t) - «(•, Oil = OQc) asA:->0,

where || * || denotes the norm in L2(ti),

\\v\\ = (fnHx)\2 dxj\

For the approximate solution of the problem (1.3), (1.4), we shall use a finite-
dimensional subspace SI depending on a small positive parameter h such that for
any v in h"+2, n ^ 0 (or in a certain subspace of h"+2), there is a p 6     such that

I |d - <p\\hi ̂ C/^-'lMU^,
Here, h' = w'2(Jl), j = 0, 1, 2, • • • , denotes the Sobolev space defined by

INI* = E \\d"v\\.

The functions in S£ are not assumed to satisfy the homogeneous boundary conditions
on dü.

Given v, we shall then take for the approximate solution of (1.3), (1.4) the unique
function in Sk which minimizes the functional

(1.5) A(^t0= \\<p - kA<p -v\\2 +ykh\<p\2,

where | • | denotes the norm on L2(dti),

\d\ =        |^)|2 dsj ' .

The selection of the weight ykh in (1.5) is crucial and depends upon an a priori in-
equality for the elliptic operator in (1.3). It will turn out that it is appropriate to
choose ykh such that, for certain positive y and C,

(1.6) ykl/2 ^ ykh S Ck2h-\

If we thus define ukh(x, t), t = nk, n = 0, 1, 2, • • • , by setting

A(m*„(- , t + k); ukh(-, 0) =  min A(<p; uth(-, 0).
»es»'

Uhh(x, 0) = v(x),      x G 0,

we shall be able to prove that

sup ||h*a(-, f) — «(•, Oil = 0(k + h") ask,h^0.

Notice here that (1.6) implies that khT2 is bounded away from zero. This requirement
goes in the opposite direction compared to the well-known stability requirement for
explicit difference schemes. Notice also that as a consequence of this requirement the
error estimate has the form 0(k) for all p ^ 2.
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In order to obtain greater accuracy, it is natural to consider, instead of (1.2), the
Crank-Nicolson symmetric formula

ük(x, t + k) — ük'x, Q     . ,
-^-= iAuk(x, t + k) + !A«,t(.x, r).

In this case, the problem (1.3), (1.4) changes into

(1.7) w — \kAw = v + f&Au   in fi,

(1.8) w = 0 on dO.

This problem again admits a unique solution and we shall now prove a convergence
result which this time takes the form

sup  \\ük(-, t) - w(-, Oil = 0(k2) as&^O.

In order to solve the problem (1.7), (1.8) approximately, we shall introduce the
functional

M<e;v) = \W- \kA<? - v - ikAv\\2 + ?mIH2,

where now the weight ykh will be chosen to satisfy

(1.9) 7« ^ f*» ^ Ck2h~\

with positive ya and C. With the appropriate definition of ükh, we shall then prove

sup ||«M(-, 0 - "(•, Oil = 0(k2 + h")   as/c, h-*0.

By (1.9), k2 ^ ch3 and, hence, the error estimate here has the form 0(k2) for all ß ^ 3.
All the above convergence estimates require v to be sufficiently smooth. The exact

degree of regularity assumed in each case will be clear from the statement of our
theorems below. For v less regular, we shall prove correspondingly weaker conver-
gence estimates. In the case of the approximate Crank-Nicolson method, a specific
difficulty appears in that the functional A contains Av and, thus, requires more
regularity from the initial-values than in the purely implicit method. As we shall see,
this difficulty can be overcome, for instance, by taking the first step by the purely
implicit method.

In the extensive recent literature dealing with the solution of elliptic and parabolic
problems by variational methods, many papers concerned with homogeneous bound-
ary conditions employ finite-dimensional subspaces of the relevant Hilbert spaces,
the elements of which satisfy the boundary conditions. In the parabolic case, such
techniques have been analysed by Price and Varga [14] and Douglas and Dupont [9].
In order to avoid the difficulty of constructing subspaces with a prescribed behavior
at the boundary, different variational principles have been considered where, for the
approximate solution, the boundary values are assumed only approximately; cf.
Aubin [2], Babuska [3], Bramble and Schatz [6]. The method of solution of the elliptic
problems above at fixed time is that of Bramble and Schatz. The analysis of the effect
of the discretization in time is similar to that in Peetre and Thomee [13]. A somewhat
different way of applying the ideas in [6] in parabolic problems has been described in
King [11].
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2. The Continuous Problem. In this section, we shall prove an a priori estimate
for the continuous problem which we shall need for our error estimates. For this
purpose we recall some properties of the eigenvalue problem

(2.1) Av + Xv = 0   in Q,

(2.2) v = 0   on dü.

We collect what we need in the following lemma.
Lemma 2.1. The eigenvalue problem (2.1), (2.2) admits a sequence { Am|" of positive

eigenvalues and a corresponding sequence {pm}1 of eigenfunctions which constitute an
orthonormal basis in L2(ü); every v £ L2(ü) may be represented as

(2.3) u(x) = 22ßm<Pm(x),      ßm = ((v,<pj) =  f v(x)<pm(X)dx
m-l ■'Si

and ParsevaPs relation

Ml = (Z IW2)1/2

holds.
Let H', with s ^ 0, be the subspace of L2(ü) for which

INI.   =   (E K\ßm\y/2   <   CO, P.   =   ((", Vm))l

and let H" = (~}s>0 H\ It is easy to see that, if dü £ e", we have

H" = {u; r £ e"(ü), A'u = 0 on 3Q, / = 0, 1,   • •},

and for s an integer,

c.\\v\\h- ^ \\v\l = «-A)'o,i?) ^ C3||p|U.,      d £

The spaces H" have the following interpolation property (cf., e.g., [12]):
Lemma 2.2. Let s0 < s < sx. Then, there is a constant C such that, if 6, is a bounded

linear mapping from H"1 into a normed linear space 31 with norm 11 • | ̂  such that

\\av\U s A,\]p\[.t.    J = o, i,
then <2 is also a bounded linear mapping from H" into 91 and

IMk ^ c4"'^lkll.,     e = (s- s0)/(Sl - s0).
Consider now the initial-value problem

(2.4) du/dt = Au    in Ü X (0, °°),
(2.5) u = 0      on dQ X (0, <*>),

(2.6) u(x, 0) = v(x)   in Ü.

Theorem 2.1. This problem admits for v £ H" a unique solution u(x, t) = E(t)v.
The linear operator thus defined satisfies

(2.7) \\E(t)v\\ iS \\v\\,

and hence may be considered defined on all of L2(ü). Furthermore, E(t)v is smooth for
t > 0. For any I and s with 0 ^ s ^ I, there is a constant C such that v £ H" implies
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a parabolic boundary value problem 637

E(t)v £ H' and

(2.8) WEOMU j£ Cr<!-S>/2||£;||„      t > 0.

Proof. For p£/Y" defined by (2.3), set

E(t)v = £ /3„e~x" W*).

Then u(x, t) = E(t)v is the unique solution of the problem (2.4), (2.5), (2.6) and the
inequality (2.7) follows at once by Parseval's relation. Since, for r > 0,

we obtain

l|£(7>lh = (£*il/U2e-2W)1/2

g cr<'-»/^x;i/3m|2)I/2 = cr(l-')/2\\v\\s,

which proves (2.8).

3. The Semidiscrete Problems. We shall discuss here the two problems
obtained by backward and symmetric discretization with respect to time.

(a) The Purely Implicit Method. We shall first consider the problem (1.3), (1.4),
described in the introduction. More precisely, we introduce the elliptic operator
Lk = I — kA and let Eh: v —> w = Ekv be defined by the solution of the following
Dirichlet problem:

(3.1) Lkw = v   in 0,

(3.2) w = 0   on 50.

For / = nk, we then define Ek(t)v = E£v. These definitions are justified by the following
theorem.

Theorem 3.1. The semidiscrete problem (3.1), (3.2) admits a unique solution w,
and w = Ekv defines a bounded linear operator Ek in L2(tt). IfO^s^l and T > 0,
then, for \k(l — s) ^ t = nk S T, Ek(f) = El is a bounded linear operator from H°
into Hl and there is a constant C such that, for v £ H\

WM&Ml, =s cru-°)/2\\v\\e.
Proof. For v of the form (2.3), we have

By Parseval's relation, we have at once \\Ekv\\ ^ ||d||. Applying the inequality

tl,.~rt/7(1 + rjrif SC,      t ^ 0,      n     JjfJ - s),

valid for /, s fixed, we obtain

xJL/Ci + *xj2" ^ c2(«/c)-<!-s,x;,

and, hence,
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= (z i/uf2 ^ cm-™2(z x: w)"
= cr

which proves the theorem.
Our main interest is to analyze the convergence properties, as k —> 0, of the operat

Ek(t).
Lemma 3.1. There is a constant C such that, for r ^ 0,

(3.3)

(3.4)

11/(1 + t) - e~T\ g |1 - (1 + T)e~T\ S Cr2,

11/(1 + rf - e~nr\ |Cr,      n = 1, 2, • • • .

Proof. It is clearly sufficient to prove these inequalities for 0 ^ t ^ 1. The i
equality (3.3) is then obvious. To prove (3.4), we notice that, for 0 ^ t t% 1,

1/(1 + r) g e-r/2,

and, hence, using (3.3),

1
(1 + rf 1 +

^ Cnre

1
7^0 (1  + t)'

^ Cr.

Theorem 3.2. TTiere is a constant C such that, for 0^ sg2,cG #\ awa10 ^ ?
«/c g T,

\\Ek(t)v - E(t)c\\ S C*,/2||d||..

Proof. For v of the form (2.3), we have, for t = nk,

\Ek(t)v - E(t)v\\ = (V
* m

1
Id + /cXra)"

Using (3.4) of Lemma 3.1, we have the validity for 5 = 2 of

)l/2

11/(1 + k\mT - e~ s c'k\my/2.

Since the inequality obviously also holds for s = 0, it holds for all s with 0 g j ^
Consequently, we have, for such s,

\\EMv - E(t)v\\ s ck"2(Z K l/U2)1/2 = Ck^WvH,

which proves the theorem.
For later use, we notice:
Lemma 3.2. There is a constant C such that, for 0 ^ s ^ 4 and v £ H\

\\E„v - E(k)v\\ S \\Lk(Ek - E(k))c\\ S Ck!/2\\v\\8.

Proof. Using the fact that by (3.3) of Lemma 3.1, for 0 ;£ s g 4,

1
1 + k\„

£ |1 - (1 + /cXra)<TtA™| ^ C(7<X„,),/2,

we obtain
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a parabolic boundary value problem 639

\\Ekv- E(k)v\\ S \\Lk(Ek - E(k))v\\

= (E Ii -*-*x-<i + k\m)\2\ßm\J/2

s c^/2(£x;u/u2)1/2 ^ Cfc^lWI..

(b) 77ie Crank-Nicolson Method. In order to obtain higher accuracy, we shall
consider here the operator Ek: v —* w = Ekc corresponding to the symmetric dis-
cretization

(w - v)/k = A(> + i/j).

Setting Li = I ± ffcA, w = Ekv is defined this time as the solution of the Dirichlet
problem

(3.5) Lkw = Lkv   in 0,

(3.6) w = 0      on dfi.

We shall then for t — nk consider the semidiscrete solution Ek(i)v = E\x> and its
convergence, as k tends to zero, to the solution E(t)v of the continuous problem.
Although, formally, (3.5) requires that one can apply the Laplacian to the initial-
values, we shall see that Ek is bounded in L2. We have more precisely the following.

Theorem 3.3. The semidiscrete problem (3.5), (3.6) has a unique solution w and
w = Ekv defines a bounded linear operator in L2(Q). If s ^ 0 and T 3: 0, we have, for
v £ H' andO ^ / = nk g T,

\mw\. ̂  ihi..
Proof. For c of the form (2.3), we have

1 - ikK
EkV(x) =        , T lvxm ßm<Pm(x),

m   a ~r 2k\m

and, by repeated application,

^-(?*|(ttSjM7
S (ZXlW)1" - IWI-

Notice that EdJ) does not have the smoothing property that Ek(t) had.
Lemma 3.3. There is a constant C such that, for r > 0,

(3.7)
l + h S (1 + *r) 1 ~

im-'-S Cr2,

1 + \r

n = 1,2,

g Ct ,

Proo/. In both cases, it is sufficient to consider 0 ^ t ;s 1. The first inequalities are
then again obvious. We have, for 0 ^ t g 1,

(1 - |r)/(l + h) S e~r/2,
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and, hence,

\1 + \r)
1 ~ h
i + b

2? I 1 2rV -(n-l-f)r
h \TTTr)e

which proves (3.7).
In the same way as in the proof of Theorem 3.2, application of this lemma gives

the following two results.
Theorem 3.4. There is a constant C such that, for 0 5 s ^ 4, c £ H\ and 0 ^ t =

nk g T,

\\Ek(t)v - WM S C*"2|M|..
Lemma 3.4. There is a constant C such that, for 0 ^ s g 6 and i; £ ./7 s,

\\Lk(£k - WM\ ^ C*'/2!MI.-
4. Some A Priori Estimates. In this section, we collect some a priori estimates

which will be crucial for the analysis of the discrete problem. In addition to the norms
in L2(ti) and L2(dti), we shall use the corresponding inner products, which we shall
denote by ((•, ■)) and (•, •), respectively. Further, we shall use the Dirichlet integral
defined by

Lemma 4.1. There is a positive constant C such that, for any e > 0 and d £ H1,

\v\ g flMlin + C^M.
Proof Let / = (fls • • • , fN) £ e'(0) be such that / = v on dti, where v is the

exterior normal of dti. Using Gauss' formula, we obtain

/ v ds = / £ ~T~ (/if2) dx
Jan Ja i-i oXj

= / Aivj-v2 dx + / £ fi2v-}Ldx,
Ja Ja i-i dx,

and, hence, the result follows by trivial estimates.
Lemma 4.2. There is a constant C such that for any v £ H2 vanishing on dti and

any e > 0,

g e||Ao||a + Ce-'Dicv).

Proof. By Lemma 4.1, we have, for any j,

dv
dXj g e\\v\\2H, + Ce ^(cv).

The result, therefore, follows by the well-known estimate,

IM|H. g C||Ad||,      v = 0   on dti.
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The following two lemmas are a priori estimates for the elliptic operators involved
in the semidiscrete problems treated in Section 3.

Lemma 4.3. There is a constant y such that, for v £ H2,

\\v\\2 S \\Lkv\\2 + yk,/2\v\2 ■

Proof. It suffices to prove the inequality for smooth v. Write v = H + w where
AH = 0 in ü, w = 0 on dü. We have

I HI2 - [ ILM I2 = 2*((»s Ar)) - k2\\Av\\2

= 2k((v, Aw)) - k2\\Aw\\2.

Now,

((p, Aw)) = (v, 0) - D(v, w) = (v,        - D(w, w),

since D(H, w) = 0, and hence using Lemma 4.2 with « = yk1/2,

2k((v, Aw)) S yk1/2\v\2 + k3/2y~
dw
du

2kD(w, w)

S yk,/2\v\2 + k2\\Aw\\2 + (Cl7"2 - 2)kD(w, w).

The result now follows if we choose y ^ (|Ci)1/2.
Lemma 4.4. For any a > 0, there is a positive constant ya such that, for v £ H2,

WLlvW2 £ (1 + akX\\Liv\\2 + ya\v\2)-

Proof. We have as above, with v = H + w,

\\Uo\\' - \\Lk-o\\2 = 2k((v, Ab)) = 2fc«l>, Aw)) = 2k(v, ~j - 2kD(w, w).

Now, by the Cauchy inequality and Lemma 4.2 with e = ^CJcß~l,

4,£)SÖW.+,r|£|'
g /3|t;|2 + |A:3C^-2||A>v||2 + 2kD(w, w),

or since by Lemma 4.3,

(i/c||Aw||)2 = m\Av\\)2 S 2\\v\\2 + 2\\Lkv\\2

we obtain

li^ll2

g 4||L,M|2 + 2yk1/2\v\2,

\Lku\\2 ^ 8kC^-2\\Lkv\\2 + 03+ 4TC1/c3/2/3-2)|U|

The result now follows if we choose ß = (8Cja_1)1/2.
For later reference, we conclude this section with the following trivial estimate.
Lemma 4.5. Let 6, T, and q be positive. Then there is a constant C such that, for

nk S T,
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* Z (Ü + 0)kT° S c(log |) 'V'

where 5„. i is the Kronecker delta.

min{0,l-a)

5. The Discrete Problems. We shall employ for the approximate solution of
the semidiscrete problems finite-dimensional subspaces St of H2 which approximate
H2 with accuracy ß in the sense that, for 0 ^ s ^ ß, there exists a positive constant C
such that, for any v £ H2+there is a vh £ St such that

Hb-PaIU. =2 C*,+M|MUi.      » ̂  2.
This implies the existence of a positive constant C such that, for v £ « + s,

inf  £ Ai_2||f -        g CA>||2+..

Hence, when we refer to the subspace St, we shall mean any fixed subspace satisfying
the above property. Such spaces have been constructed recently by many authors.
Typical examples include piecewise polynomial functions such as piecewise Hermite
polynomials [5], spline functions or "hill functions" [4], [10], [16], or "triangular
elements" [7], [17]. See also [1], [8], [15].

We shall now formulate and analyze the discrete problems.
(a) TAe Purely Implicit Method. We shall not be able to solve the Dirichlet

problem

(5.1) Lkw = v   in fi,

(5.2) w = 0   on dü,

exactly. Instead, we shall define an approximate solution W = Ekhv in St and take
ukh(x, t) = Elhv(x) for our solution at t = nk of the discrete problem. For the con-
struction of the operator Ekh, we introduce the quadratic functional

M<p; f) = \\Lk(p — v\\2 + ykh\<p\2,

where yhh is a real number satisfying

(5.3) ykU2 S 7m S Ck2h~\

where y is the constant in Lemma 4.3. Notice that, by (5.3), we assume that kh~2 is
bounded away from zero. Further, we introduce, for <p, \p £ H2,

(Op. #)a = ((LkV, lt*)) + ykh(v, f),

IMU = (Hl^ii2 + 7t.hv*.
By the fact that (5.1), (5.2) with v — 0 only admits the trivial solution w = 0, this
defines an inner product and a norm on H2.

According to the following lemma, we can now define W = Ekhv as the function
which minimizes A(p; v) as <p varies through St.

Lemma 5.1. There is a unique W £ St minimizing A(tp; v). This is the unique
solution in St of

((W, f))A = ((v, Lkj))   for all / £ Si
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Proof. Recalling that w = Ekv denotes the exact solution of (5.1), (5.2), we can
write

M<p; v) = \\<p — Etv\\\
and, hence, A is minimized by the unique W £ St which satisfies

«W - w, f))A = 0   for all / £ Si
Since, by (5.1), (5.2), ((w, /))A = ((u, /-*/)), the lemma is proved.

The operator Ekh defined above is bounded in L2.
Lemma 5.2. We have, for

\\Ekhv\\ 3 \\Ekhv\\, g |M|.

Proof. By Lemma 5.1, we have, with W = Ekhv,

\\m\i ^ \\»\\-\\Lkm\ ̂ ihi iiwiu.
Since on the other hand by Lemma 4.3, \\W\\ ^ ||W||a, the result follows.

Lemma 5.3. Let 0 ^ s S m- Then there is a constant C such that, for w £ H2+",

inf  \\<p — w||A ^ Ckh'\\w\\2+,.

Proof. We have, under the assumption (5.3) on ykh,

IMU ̂ c(|H| + *[MI*. + yli'M)
£ Ck(\\P\\H, + /r2|MI + h-3/2\<p\)

and, hence, using Lemma 4.1 with e = A1/2,

i ML ^ ckh'2 jl *'I HI*'-
1-0

Consequently, by the definition of St,
2

inf  \\<p — w||A ^ Ckh'2  inf   Z A'||#> — w||Hi ^ Ckh' \ \ w\|2+»,

which proves the lemma.
Lemma 5.4. We have, for v £ Hm^+2A),

(5.4) \\Ekhv - E(k)u\\ S C(AA"||i;|Us + £2|M|4),

and if s ^ 0,for v £ Hs,

(5.5) \\Ekhv - E(k)v\\ S \\Ekhv - E(k)v\\, :S C(Amin<s"i) + k^u/2-2)) \\v\\..

Proof. By Lemma 4.3, we have, using the definition of Ekh,

\\Ekhv — Ekv\\ S \\Ekhv — Ekv\\K =   inf   \\<p — Ekv\\K,

and by Lemma 5.3 and Theorem 3.1,

(5.6) 11       - EMU ^ Ckh"\\Ekv\\,+2 S Ckh"\\v\l+2.

Together with Theorem 3.2, this proves (5.4). In addition to (5.6), we have, by Lemma
5.2,
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\\Ekhv - Ekv\\K S 2\\v\\,

and, hence, by interpolation (Lemma 2.2) for 0 ^ s ^ p. + 2,

\\(Ekh - emu ^ cikhyn"+2)\\v\i s c(h' + ks/2)\Hi,.

Using once again Lemma 3.2, this implies (5.5) for 0 ^ s S p- + 2 and, hence, if
p. ̂  2, for all s 3: 0. For ^ = 1 and s }z 3, we have obviously

- Ml ^ C*A||d||. ^ CAfflil,<,'I)||D||.,

so that (5.5) holds also in this case.
Theorem 5.1. Let Ekh satisfy the above assumptions. Then, for s 5; 0, T > 0,

there is a constant C such that, for dGF andO ^ t = nk ^ T,

\\Ekh(t)v- E(t)u\\ i£ c{(log|),">i,,(-'" + (log|)'">i,,t*/2'1>} |H|..

Proof. We shall use the identity
n-l

Ekh(t)v - E(t)u = Elfi - EQkfv = E E^l-\Ekh - E(k))E(jk)v,
i-0

and notice that, hence, by Lemma 5.2,
n-l

(5.7) \\Ekh(t)o - E(t)v\\ g £ \\(E» ~ E(k))EUk)v\\.
j-0

For j > 0, we have, by (5.4) and Theorem 2.1 for s ^ min(p + 2, 4),

\\(Ekh - E(k))E{jk)v\\ g C&AM||£(/fc)»|U2 + CA:2||£C/A:)t>||4

g c|ttWf*+2"',/2 + ^W"(,",,/2l ||r||..

and, hence, by Lemma 4.5,
n-l

E IK^» - £(*))£(/A)ü||
(5.8)

^ c|A"(log|)S">in(0'(5-")/2> + ^(log|y"'Vin(0'(s-2)/2)}||i;||s.

Taking into account the fact that k ^ cA2, the result now follows from (5.5), (5.7),
and (5.8). The case 5 > min(^ + 2, 4) is treated similarly. This completes the proof of
the theorem.

(b) The Crank-Nicolson Method. In order to define the approximate solution
W = Ekhv in St of the Dirichlet problem

Lkw = Lkv   in fi,

w = 0      on dü,

we shall this time set

M<p;v) = ||L*V — L*MI2 + 7m M2.
where ykh satisfies ya ^ ykh S Ck2hT3, where ya is the constant in Lemma 4.4. We
also introduce the inner product and norm defined by
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(fe>. *))X = ((***>, LkSL)) + ?«(*>,

IHU = (ll^ll2 + ?«M2),/2.
In analogy with Lemma 5.1, we then have

Lemma 5.5. There is a unique W £ ST minimizing k'<p\ v). This is the unique
solution in St of

((W, f))i = LUD)   for all f £ S£.
Proof. As above, we may write

l(<p; v) = \\<p — Ekv\\\,

so that the functional is minimized by W satisfying, for all / £ St,

({W,       = «4p. /»i * (kLtv, Lkf)).
If we set Ekhv = W where W is defined in Lemma 5.5, our discrete solution at

/ = nk of the discrete problem is ukh(x, f) = £nkhv.
Lemma 5.6. The operator Ekh thus defined satisfies, for small k,

(5.9) \\Ekhv\\ S \\Ekhv\\K g (I + ok) \H\i

and, for nk ^ T,

(5.10) \\E2hv\\ £eaT\\v\\z.

Proof. Noticing that L~k = Lk/2 and that ykh 2; yk1/2 for small k, the first half of
(5.9) follows by Lemma 4.3. By Lemma 5.5, we have, with / = W,

\\w\\\ s \\tifi\\ \\w\\-,.
On the other hand, by Lemma 4.4,

\\Ltb\\ S (1 +ak) Mi:
Together, these last two inequalities prove the second half of (5.9). This immediately
implies (5.10).

Lemma 5.7. Let 0 ^ s, ^ p, 0 g s2 ^ 6. Then, for v £ ^-««+«—.)>

- F^IU g C(**"||r||,+., + A**"!!*!!.,)-
In particular, for any sä 2, and v £ H',

(5.11) - E(k)vWl S C(Amin(s'M) + k^°/2-2))WvW,.

Proof. As in Lemma 5.3, we have

inf  ||e - w\\i < CfcA"||w||a+.„

and hence, using also Theorem 3.3,

(5.12) \\Evp - %p\\i g C»A"||Ap|Ii+.. ^ CA:A"||b||2+si.

The first inequality then follows by Lemma 3.4. We now notice that, from (5.12), it
follows by the inequality between the geometric and arithmetic means that, for
2 S s S 2 + n,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



646 james h. bramble and vidar thomee

\\Ehhv - Ehv\\i S C(h° + k'/2)\\v\\s,

which proves (5.11) for 2 ^ s ^ p + 2. For s > p + 2,we have

We^v - Ekv\\i S CM'IMU S ChmiMl"s)\\v\\,.
This completes the proof of the lemma.

Theorem 5.2. For s 2: 2, T > 0, there is a constant C such that, for v £ H" and
0 S t = nk S T,

\\£kh(t)v - E<t)u\\ S c|(log|)S" /!min<"'"> + (log^'V111'*^

Proof We have as in the proof of Theorem 5.1, using Lemma 5.6,
n-l

\\£kh(t)v - E(t)c\\ fS £ W^'X^h - E(k))E(jk)v\\
i-0

n-l

S C £ \\(£kk - E(k))E<Jk)v\\l.
i-0

By Lemma 5.7 and Theorem 2.1, we have, for s ^ min(^t + 2, 6),

\\(Ekh - E(k))E<Jk)v\\i S C{kh"(jky^2-S)/2 + /c3o*r(6->/2}iMi,

so that by Lemma 4.5,
n-l

(5 13)      £ \\(£kh — E(k))E(jk)v\\z

g cKloglJ' V"""" + (log |)5' Vin(s/2':

The case s > min(yu + 2, 6) is treated similarly. Together, (5.11) and (5.13) complete
the proof.

(c) Some Modifications of the Crank-Nicolson Method. We shall consider briefly
the situation 0 ^ s < 2. In this case, the method above demands more regularity than
the initial-values possess. It is then natural to approximate the initial-values by
smoother functions. More precisely, we shall consider an approximating operator Ph
with the following property: For given s with 0 ^ s ^ 2 there is a constant C such
that if v £ H', then Phv £ H2 and

\\phv\U S or<2-s)|HI„    \\Phv-v]\ ch'\\v\\,.

Such operators exist, as can easily be seen using the expansion (2.3) and the definition
of || • ||,. We then set £'kh(t) = Ekh(t)Ph. For simplicity, we restrict ourselves to the case
p 3, that is, to the case when the accuracy in SJ matches that of the discretization in
time. We have

Theorem 5.3. Let p S: 3. For 0 g j g 2, J > 0 there is a constant C such that, for
v £ H" andO ^ t = nk g T,

\\£LO)v - E(t)v\\ f£ Ckh'^UvU,.

Proof. We have, using Theorem 5.2 and the definition of Ph,
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\\£'kh(t)v - E(t)v\\ S \\(£kh(t) - E(i),Phv\\ + \\E(tXPh - I)v\\ .

S C(h2 + k)\\Pkv\\2 + C\\Phv - v\\

S C((h2 + k)h-(2-3) + hs) \\v\U S Ckh-'2-3)\\v\\s.

The above method has an error estimate which for small s is unsatisfactory, since
kh~2 ä ch~1/2. We shall, therefore, describe a method which does not have this
deficiency. The modification consists in making the first step somewhat differently.
Thus, with the above notation let t = (n + \)k and set E'k'h(i) = £lhEk/2,h. This
amounts to taking the first half-step by the purely implicit method and using the
result as initial-values for calculations with the Crank-Nicolson method. Notice that
the assumption on 7kh is more restrictive than that on ykh.

We have the following:
Theorem 5.4. For s ä 0, T > 0, there is a constant C such that, for v £ H' and

0 < t = (n + \)k g T,

||«Kr)p- E(t)v\\ s cKiogl)8""^8"" + (iog|)5,'>inU/2'2)} Ml.

Proof. We have

\\Ell(t)v - E(t)v\\ S - E(nk))E(kk)v\\
+ \\£Tkh(E'\k) - Eh/2,„)v\\

= Si + S2.

For the first term, we have, as in the proof of Theorem 5.2,

Si s z iiÄ*~'(ißi» - E(k))E«j + m»\\
i-0

n-1

S c Z \\<Ekh - E(k))E((j + mv\h-
i-o

By Lemma 5.7 and Theorem 2.1, we have, for s ^ min(ji + 2, 6),

\\(£kh - E(.k))E((j + h)k)v\h

s anno + i)/c)-("+2-s,/2 + k\a + m-"-a)/2}\\v\u,
so that again, by Lemma 4.5,

Si ^ cKlogl)5' Vin(s"" + (log|)J"Vin(s/2'2>} ,

and, similarly, for s > min(p + 2, 6). By Lemmas 5.6 and 3.2, we have

S2 S C\\(Ek/2,h - EGk))v\h S CkmiM!/2'2)\\v\\s.

This completes the proof.
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