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The influence of a simple semiempirical van der Waals �vdW� correction on the description of dispersive,
covalent, and ionic bonds within density functional theory is studied. The correction is based on the asymptotic
London form of dispersive forces and a damping function for each pair of atoms. It thus depends solely on the
properties of the two atoms irrespective of their environment and is numerically very efficient. The correction
is tested in comparison with results obtained using the generalized gradient approximation or the local density
approximation for exchange and correlation. The results are also compared with reference values from experi-
ment or quantum chemistry methods. In order to probe the universality and transferability of the semiempirical
vdW correction, a range of solids and molecular systems with covalent, heteropolar, and vdW bonds are
studied.
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I. INTRODUCTION

The dispersive interaction between atoms and molecules
is important for many molecular and solid structures. The
bonding and energetics of such systems is often studied us-
ing density functional theory �DFT�.1,2 Thereby the
exchange-correlation �XC� functional is usually modeled us-
ing the local density approximation �LDA� �Ref. 2� or the
generalized gradient approximation �GGA� in various fla-
vors, e.g., Refs. 3–5. In many instances, e.g., for hydrogen-
bonded systems,6 GGA allows for a systematic improvement
over the LDA in describing chemical bonds. Whereas LDA
or GGA give excellent results for many dense matter sys-
tems, these approaches are often far less accurate in describ-
ing layered and liquid crystals, polymers, proteins, and bio-
molecular surfaces. Crystalline graphite is one prominent
example in that respect. Moreover, the interaction of atoms,
molecules, or surfaces at large separations is often not cor-
rectly described within LDA or GGA.

This failure is attributed to the van der Waals �vdW� or
dispersive interaction between the electrons. Its nonlocality
necessarily renders all trials to include vdW effects in the XC
functional numerically extremely expensive. The adiabatic
connection-fluctuation theorem for the correlation energy of
an inhomogeneous electron gas7 leads to a seamless vdW
density functional.8,9 However, the numerical expense re-
stricts its application to the interaction between atoms in
molecules or to the interaction between jellium slabs. This
holds also for the recently proposed general density func-
tional for asymptotic vdW forces.10,11 The spirit of the latter
approach12 is close to that of London,13,14 describing the in-
teraction of atoms separated by large distances.

The increasing interest in soft condensed matter requires
appropriate computational tools that allow for an efficient yet
accurate treatment of dispersive interactions. Although elec-
tron correlation is a quantum-mechanical phenomenon, the

vdW interaction can be understood as interaction between
instantaneous fluctuating dipoles. The resulting asymptotic
behavior proportional to R−6 with R as the distance between
two neutral fragments suggests the replacement of the vdW
contribution to the energy functional by an empirical correc-
tion. This has been studied by several groups, see, e.g., Refs.
15–21. They add an attraction �−f�R�C6R−6 to the interac-
tion of two atoms separated at a distance R. The corrections
differ with respect to the damping function f�R� and the co-
efficient C6 of the pair interaction. The approaches have been
applied to the hydrogen bonding and stacking interaction of
nucleic acid pairs, rare-gas diatomic molecules, graphite, and
larger molecules or molecular dimers or trimers. Further-
more, the approach has been applied to investigate molecular
adsorption on graphite.22 Despite these large number of ap-
plications, a comprehensive investigation of the reliability of
such an empirical correction—using a fixed set of parameters
and a fixed damping procedure—for a variety of typical
bonding scenarios is still missing. Therefore it is difficult to
assess the merits of such an approach for routine calcula-
tions. This issue is addressed in the present work. We use the
pair interaction energy in the damped form and keep the
functional dependence of f�R� as well as the occurring scal-
ing parameters and the C6 coefficients fixed, in order to in-
vestigate the universality and transferability of such an em-
pirical scheme.

The limits of the approach are immediately obvious. �i�
Terms higher in power than R−6 due to interacting pairs with
additional partners are neglected. These modifications are not
included here because they dominate for intermediate dis-
tances where the damping is applied. �ii� Metals have been
shown to obey a different power law, due to the free electron
motion. However, following Dobson23 we can assume that
for finite metallic systems �e.g., with impurities� and finite
temperature the R−6 dependence is recovered. �iii� The ap-
proach may also be inadequate in the limit of ionized frag-
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ments where the atomic polarizabilities change significantly.
However, these systems are not our primary targets, because
they are dominantly bonded through classical electrostatics.
�iv� Even for covalently bonded atoms, changes in the polar-
izability of up to 30% can be expected for different bonding
configurations, see, e.g., Ref. 24. While this effect can easily
be taken into acount using the semiempirical method de-
scribed here, it requires an a priori knowledge about the
bonding configuration.

Below, first the DFT implementation and the empirical
vdW correction are described, before results for various sys-
tems with covalent, ionic and vdW bonds are presented and
discussed. The quantities considered are binding energies,
bond lengths, vibrational frequencies �or corresponding force
constants/elastic constants�, and bulk moduli �for solids
only�.

II. COMPUTATIONAL METHODS

A. Implementation of the density functional theory

The total-energy and electronic-structure calculations
have been performed within the DFT �Refs. 1 and 2� using
the Vienna ab initio Simulation Package �VASP�.25,26 Apart
from the vdW interaction discussed below, exchange and
correlation effects are treated within two approximations:
For the XC functional either the �i� LDA using the Perdew-
Zunger parametrization27 of quantum Monte Carlo results for
the homogeneous electron gas28 or �ii� the GGA according to
Perdew and Wang4 �PW91� is applied.

The interaction of the valence electrons with the nuclei is
modeled either by means of non-norm-conserving Vanderbilt
pseudopotentials29,30 or using the projector-augmented wave
method.31 The wave functions are expanded in plane waves.
For molecular systems a cutoff energy Ecut=35 Ry was
found to be sufficient,32 for graphite convergence was
achieved with Ecut=26.3 Ry. Nonlinear core corrections33

are taken into account for Cl, Na, Si, Ne, Ar, and S.
The atomic geometries of the studied solids, molecules

and dimers are optimized by minimizing the energy function-
als within the respective approximations. The convergence
criterion for the Hellmann-Feynman forces is set to
10 meV/Å. Zero-point energies and zero-point vibrations are
neglected in the calculation of cohesive energies and bond
lengths, respectively. Their influence is small in most crys-
talline solids. For BN, e.g., the zero-point energy amounts to
approximately 2% of the cohesive energy.34 For crystalline
solids we apply the Birch equation of state35 to fit total en-
ergy curves. The fit yields the equilibrium energy, the iso-
thermal bulk modulus B0 and the equilibrium volume.
Thereby the energy alignment is done using the spin interpo-
lation formula36 for the spin-polarized ground state of each
atom. The relaxed equilibrium geometries serve as starting
points for the calculation of characteristic vibrational modes
using the frozen-phonon approximation.37

In order to model molecules in the gas phase, we use a
periodic arrangement of supercells. These must be large
enough to avoid interactions between the molecule and its
images. As convergence criterion we require that the Kohn-
Sham eigenvalues of the occupied molecular states show a

band dispersion below 0.1 eV and are converged within
0.1 eV. In the case of molecules and dimers we use 20
�20�20 Å3 supercells in order to guarantee a distance of
about 10 Å between the outermost atoms of the molecule
and its images.

We perform the Brillouin zone �BZ� integration using
Monkhorst-Pack points.38 Sets of 16�16�7 and 8�8�8
points are used for graphitic systems and fcc crystals, respec-
tively. In the case of large supercells containing molecules,
the dispersion of the electron bands is vanishing. Therefore
we sample the BZ just with the � point.

B. Semiempirical description of van der Waals interaction

In order to account for the long-range electron correlation,
the interaction of each pair i , j of atoms at Ri and R j with
R= �Ri−R j� is corrected by the additional attractive energy

�ij
vdW = − f ij�R�

C6
ij

R6 , �1�

where f ij�R� is the damping function which equals one for
large values of R and zero for small values of R. The
asymptotic form of �1� for R→� is chosen in agreement
with the original description of the dispersion energy by
London.13,14,39 He derived a virial coefficient of

C6
ij =

3

2
�i� j

IiIj

Ii + Ij
, �2�

where Ii is the ionization potential and �i the polarizability of
the atom at Ri. London interpreted Ii to be a characteristic
energy �or frequency� of the atom i. Its replacement by the
ionization potential should be sufficient since the main fre-
quency gives rise to the leading contribution to the molecular
forces.39 The experience with the use of Eq. �2� in molecular-
mechanics force fields shows a tendency for an overestima-
tion of the vdW interaction.24 We will come back to this
point later in the paper.

The vdW interaction in formulas �1� and �2� applies to
pairs of atoms irrespective of their environment. In order for
the approach to be universal, we apply formula �2� to both
homogeneous and heterogenous pairs of atoms. According to
Halgren,24 good results for the vdW interaction of different
species require combination rules to calculate the coefficients
C6

ij. One of these approximations is the Slater-Kirkwood
formula,40 which should give a better description for differ-
ent atoms than the original London version.24,41 Neverthe-
less, to avoid additional assumptions, we use the original
description of the dispersion forces according to Eq. �2�.

The polarizabilities41,42 and ionization potentials32 may in
principle be calculated from first principles. The polarizabil-
ity can be constructed from the eigenfunctions and eigenval-
ues of the Kohn-Sham equation which is solved for the free
atoms in an all-electron scheme. The ionization potentials
can be derived within the delta-self-consistent field
method.43 For simplicity, however, we use the experimental
values.44

For small atomic distances the vdW interaction does not
play a role. Several damping functions f ij�R� have been sug-
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gested to cancel the R−6 singularity.15,17,18,45,46 A Fermi func-
tion was included in our test studies and gave reasonable
results. The data presented here, however, have been com-
puted using an exponential decay function

f ij�R� = 1 − exp�− �xij
n � , �3�

xij = R/�rcov
i + rcov

j � , �4�

for which all derivatives exist. In Eq. �4� the atomic distance
R is normalized to a characteristic covalent bond length that
is represented as the sum of the covalent radii rcov

i and rcov
j of

the two interacting atoms. We use the values from Ref. 47.
This normalization completes the scheme in a coherent man-
ner and allows for the application of the damping function
�3� to any pair of atoms. The smallest exponent n in Eq. �3�
for which the singularity and, more accurately, the vdW in-
teraction disappears at R=0 is n=7. We choose n=8 for
which expression �3� goes quadratically to zero for small
distances. The damping constant �=7.5�10−4 is chosen to
reproduce the c-lattice constant of graphite and then used
throughout this study.

The vdW interaction �1� with the damping function �3� is
presented in Fig. 1 for a pair of carbon atoms. For R→� it
shows the asymptotic behavior of the London formula. Its
shape for small separations R is governed by the damping
function. The interplay of both for intermediate distances
leads to an attractive potential in the vdW regime that takes
its minimum at an atomic distance Rmin�2.3�rcov

i +rcov
j �. Its

effect at covalent distances is weak. This means that the vdW
pair interaction of the form �1� mainly acts at large distances
and tends to decrease the bond lengths. However, the effect
of attraction is relatively small. For a pair of carbon atoms it
only amounts to 3 meV at about R�Rmin �see Fig. 1�. De-
spite the smooth damping function the approach cannot be
proved to be seamless in the intermediate regime for arbi-
trary systems. Until now, however, we have not yet seen
deviations from well behavior on the relevant energy scale.

For the use in the total energy functional of the DFT, the
pair interaction energies are summed up over all possible
combinations of two atoms in the considered system. The
resulting vdW energy EvdW= 1

2�i,j� �ij
vdW is added to the total

energy functional of the DFT. This influences the calculated
equilibrium positions and thus, indirectly, the electronic
structure. It is not expected that remarkable changes for the
polarizabilities are induced by the vdW forces. This assump-
tion is corroborated by the work of von Lilienfeld et al. who
concluded that electronic quantities remained unchanged in
spite of an additional electron core potential to account for
dispersion interaction.48

In the following, we present results obtained by using the
PW91 energy functional corrected by EvdW. This can be in-
terpreted as the use of a DFT in which the XC functional in
LDA is corrected by generalized gradient corrections at in-
termediate distances �of the order of the bond lengths� and
by the vdW interaction at larger distances �of the order of
several bond lengths�. We mention, that other authors also
probed successfully a vdW correction of LDA results.18

However, for soft matter systems with typically high
electron-density gradients, the GGA is expected to be the
more accurate starting point for electronic structure calcula-
tions than the LDA.

III. RESULTS AND DISCUSSION

A. Solids

1. Covalent and ionic bonding in crystals

After having adjusted our damping model with the graph-
ite lattice constant, we investigate its influence on the co-
valently bonded bulk silicon and diamond. Here only little

TABLE I. Cubic lattice constant a0 �Å�, bulk modulus B0 �GPa�,
and cohesive energy Ecoh �eV/atom� of diamond �first line�, silicon
�second line�, and NaCl �third line� crystals in three approximations
for exchange and correlation. The relative difference of the experi-
mental data with respect to the values from GGA ��GGA� and
GGA+vdW ��vdW�, respectively, is expressed in the last columns
in percent.

LDA GGA GGA+vdW Expt. �GGA �vdW

a0 3.528 3.568 3.549 3.567a �0 	0.5

5.393 5.459 5.450 5.431a −0.5 −0.3

5.455 5.674 5.612 5.595b −1.4 −0.3

B0 464 431 442 442a 	2.6 �0

95.1 87.9 88.9 98.8a 	12 	11

32.0 22.9 27.0 24.9c 	8.7 −7.8

Ecoh 8.79 7.55 7.80 7.35d,e −2.6 −5.8

5.28 4.57 4.64 4.62d 	1.1 −0.4

6.99 6.30 6.70 6.61d 	4.9 −1.3

aReference 49.
bReference 50.
cReference 51.
dReference 44.
eReference 52.

FIG. 1. Van der Waals interaction energy �1� of a pair of carbon
atoms �solid grey line� versus atom distance. For comparison, the
shape of the pure London form �dashed grey line� is also shown.
Black lines represent total energy curves of one carbon atom in bulk
graphite as a function of interlayer distance within LDA �dashed-
dotted�, GGA �dashed�, and GGA+vdW �solid�. The vdW energy
�difference between GGA and GGA+vdW� results as the sum over
all pair interactions as described in the text.

SEMIEMPIRICAL VAN DER WAALS CORRECTION TO¼ PHYSICAL REVIEW B 73, 205101 �2006�

205101-3



changes are expected to result from the inclusion of the vdW
term. Results for structural properties and total energies of
both crystals are listed in Table I for the three different ap-
proximations LDA, GGA, and GGA+vdW. They are com-
pared with experimental findings.44,49–52 Indeed, the effect of
the vdW interaction on covalently bonded crystals is small
but measurable. It reduces the relatively strong correction of
the LDA overbinding by generalized gradient corrections.
Therefore all the data influenced by the vdW interaction �but
based on the GGA functional� are in between the values cal-
culated within the “pure” density functional theory but dif-
ferent LDA and GGA XC functionals. The vdW interaction
reduces the bond lengths and gives rise to larger bulk moduli
and cohesive energies. In comparison to measured values,
the GGA and GGA+vdW treatments lead to better agree-
ment with experiment than the LDA. However, there is no
clear trend in the performance of GGA+vdW with respect to
GGA. Obviously, however, the vdW correction does not
worsen the agreement with experiment.

Results for the ionic crystal NaCl, also displayed in Table
I, show the same behavior as observed for covalent crystals.
However, the dispersion corrections to GGA are more em-
phasized for NaCl than for diamond or silicon. We men-
tioned earlier that interactions between ionized fragments are
not necessarily improved. For NaCl, however, this is not ob-
vious, showing the robustness of the approach. Since both
GGA and GGA+vdW outcomes for structural, energetic, and
elastic properties agree well with experiment, we conclude
that using the additional van der Waals term does not worsen

the results obtained for covalent and ionic bonds in bulk
materials. This is important, e.g., for studies of surface-
molecule interactions and can be understood comparing co-
valent �or even electrostatic� and dispersive energies: Com-
monly the latter is orders of magnitude smaller.

2. Graphitic structures

We now turn to electronic systems which deviate more
strongly from homogeneous electron gases. The reliability of
standard DFT approximations is questionable for large scaled
density gradients ����n � /n4/3 or ���n � /n7/6�53 such as in the
cases of graphite and graphitic BN. The geometry of the
hexagonal polytype of boron nitride �h−BN� is shown in
Ref. 54. The a- and c-lattice constant of hexagonal crystals
determine the structure. From the point of view of interlayer
bonding, the most interesting vibrational quantity is the
longitudinal-optical �LO� vibration accompanied by atomic
displacements in the c-axis direction. We calculate the corre-
sponding elastic coefficients C33. The energetics of the crys-
tal is characterized by two quantities, the cohesive energy
Ecoh and the exfoliation energy Eex. In particular the latter is
very sensitive to the interlayer bonding. The results in the
three approximations LDA, GGA, and GGA+vdW are com-
pared in Table II. Additionally we list experimental
data44,49,54–60following Hasegawa and Nishidate18 for the re-
interpretation of the results for the graphite interplanar cohe-
sive energy.56

We first discuss carbon-based graphite. The LDA shows
the characteristic overbinding, apart from two quantities re-

TABLE II. Structural, elastic, and energetic parameters of graphite �first line� and h-BN �second line�
from DFT calculations within the three approximations in comparison to experimental data and other semi-
empirical methods �units as in Table I, Eex in meV, c0 in Å, and C33 in GPa�. Energies in units per atom �C�
and units per pair �BN�. The difference of the latter with respect to the values from GGA ��GGA� and
GGA+vdW ��vdW�, respectively, is expressed in the last columns in %.

LDA GGA GGA 	 vdW Expt. other methods �GGA �GGA+vdW

a0 2.441 2.462 2.455 2.459a 2.465j −0.1 	0.2

2.481 2.504 2.496 2.504b �0 	0.3

c0 6.66 �9.1 6.69 6.672a 6.76j −27 −0.3

6.49 �9.0 6.55 6.652b −26 	1.6

C33 29.8 �1.3 41.7 41c −1.7

29.4 �1 43.2 32.4d −25

Eex 24.8 �3 83.5 35–52e–g 38.5j, 54–57k

55 �5 191

Ecoh 8.78 7.72 7.86 7.37h 9.01j −4.5 −6.2

15.70 13.78 14.09 13.3h,i −3.5 −5.6

aReference 55.
bReference 54.
cReference 58.
dReference 59.
eReference 60.
fReference 56.
gReference 57.
hReference 44.
iReference 49.
jReference 20.
kReference 18.
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lated to its layered structure, namely, Eex and C33. They dem-
onstrate that the interlayer binding energy is underestimated
despite a c-lattice constant slightly smaller than the experi-
mental value. In Fig. 1 the corresponding total energy curves
are compared revealing the sensitivity of the graphite struc-
tures to details of the XC functional. The GGA approach
does not result in a stable graphite crystal for reasonable
lattice constants. According to the calculation, the crystal
decays into isolated graphene sheets. This result is well-
known from other GGA calculations.18,61–63

The inclusion of the vdW interaction stabilizes the graph-
ite crystal. The lattice constants resemble the measurement.
The elastic constant C33 agrees well with findings of
Gauster58 in the low temperature regime. For the correspond-
ing LO phonon at the � point, we find a frequency of
4.1 THz. The binding energy Eex shows some ovestimation
of the interlayer bonding. Slight differences between our val-
ues for Eex and the experiment are expected due to the ne-
glect of the zero-point energy. More important, however, is
probably the use of the ionization potentials24 in the London
formula �2� for the vdW molecular coefficients �see also Ref.
18�. In any case, Table II shows that the semiempirical cor-
rection EvdW to the density functional in GGA yields reliable
results for the atomic distances and force constants of gra-
phitic structures.

This also holds for boron nitride where the c-lattice con-
stant calculated in GGA+vdW is in very good agreement
with experimental data �see Table II�. GGA and even LDA
perform significantly worse for this quantity, with deviations
of +3.3 and −0.17 Å, respectively. Additionally, the improve-
ment of elastic properties in GGA+vdW is obvious, but in
comparison to experiment the results are not as good as for
graphite. Unfortunately there are no experimental data avail-
able on the interlayer cohesive energy for hexagonal boron
nitride. From Lennard-Jones interaction potentials one has
derived values similar to graphite, namely, 83 meV per BN
pair.59

3. Rare-gas solids

The electron density between the graphene layers is very
low, similar to rare-gas systems. As seen for graphite and
hexagonal boron nitride, properties such as lattice parameters
not associated with covalent bonds, e.g., the c-lattice con-
stant, often agree better with experiment for LDA than for

GGA. By contrast, LDA gives rather bad results for the lat-
tice constant of the Ne crystal when compared to GGA,
GGA+vdW, and experimental64–66 values �see Table III�.
This shows that the LDA fortuitously describes the graphite
structure correctly.

For crystalline argon we find a strong underestimation of
the lattice constant in LDA. The deviation from experiment
is even worse, however, in GGA and GGA+vdW. Quantum
chemistry methods64 come close to the experimental data for
argon,65 depending on the specifics of the computation and
basis sets. For both rare-gas solids the vdW approach cor-
rects the GGA results towards the experimental values, but
the corrections are not sufficient.

The LDA bulk moduli are far from the experimental find-
ings, which correlates to the underestimation of the lattice
constant. The neon bulk modulus is determined to be unac-
ceptable high in this approximation and moderately overes-
timated in GGA and GGA+vdW, respectively. The experi-
mental values, derived from elastic constants, are 1.1 and
2.7 GPa for neon and argon, respectively. This trend is not
obtained using either LDA, GGA, or GGA+vdW. Similar
behavior is found for rare-gas dimers discussed below.

B. Molecules

Van der Waals forces should play no major role for the
chemical bonds of diatomic molecules with strong covalent
bonds. We study N2 and CO as typical examples, see Table
IV. The interatomic distance of the interacting nitrogens �re-

TABLE III. Structural and elastic properties of neon �first line� and argon �second line� crystals. Units and
deviations �GGA and �vdW as in Table I.

LDA GGA GGA+vdW CCSD�T� Expt. �GGA �vdW

a0 3.865 4.585 4.562 4.3a 4.464b −2.6 −2.1

4.943 6.068 6.002 5.3a 5.311c −12 −12

B0 8.6 1.8 2.1 1.9a 1.12b −38 −47

7.2 0.83 0.91 3.8a 2.66c

aReference 64.
bReference 66.
cReference 65.

TABLE IV. Equilibrium bond length d �Å�, force constant of
bond f �N/cm�, and binding energy E �eV/atom� calculated for the
diatomic molecules N2 �first line� and CO �second line�. Quantities
�GGA and �vdW as in Table I.

LDA GGA GGA 	 vdW Expt.a �GGA �vdW

d 1.107 1.112 1.112 1.0977 −1.3 −1.3

1.138 1.145 1.145 1.1283 −1.5 −1.5

f 22.66 22.08 22.07 22.95 	3.9 	4.0

18.52 17.82 17.82 19.02 	6.7 	6.7

E 10.65 9.68 9.68 9.76 	0.8 	0.8

12.34 11.10 11.10 11.11 	0.1 	0.1

aReference 44.
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spectively, carbon and oxygen� is smaller than a typical co-
valent bond length because of the triple bond. Here vdW
forces result in nonperceptible modifications of the bonding
strength and distance. The correction �1� can therefore be
transferred to such systems without loss of accuracy.

Intuitively, the van der Waals term is expected to be more
important for larger molecules. The O-O distance in the lin-
ear CO2 is in the regime of non-negligible dispersion forces.
The heteropolar bonding between the oxygens and the car-
bon atom, however, is well described within LDA or GGA.
Bonding distances differ less than 1% from experimental val-
ues �see Table V�. Even dynamical properties like vibrational
frequencies are obtained with high accuracy. When applied
to this system, the GGA+vdW approximation results in
rather small corrections to GGA. The bending mode is most
affected with a frequency shift of 2%.

More sensitive test systems are angular molecules. On the
one hand, additional forces between more distant atoms may
not exclusively act along molecular bonds. On the other
hand, regions of charge depletion may occur between frag-
ments of larger molecules. To figure out the influence of
vdW interaction, we study H2O, H2S, and NH3, see Table VI.

Although the hydrogens attract each other due to the vdW
term, the effect is small in H2O. Attractive forces result in a
slight decrease of the bonding angle, whereas the OH bond
length is hardly affected. The effect is somewhat larger for
H2S, where the bonds to the hydrogens are weaker than in
H2O. The lower stiffness results in a larger decrease of the
bonding angle. Nevertheless, the structures of both mol-
ecules are obtained in high accuracy both in GGA and
GGA+vdW. This also holds for NH3, see Table VI. There is

no clear trend whether the vdW term improves the accuracy
or not. In any event, the induced changes are of minor mag-
nitude.

We investigate benzene as model for larger molecules.
The resulting bond lengths are listed in Table VII for the
three approaches. Again, only small corrections to the GGA
geometry are observed within the GGA+vdW approach.

The problem of describing dispersive forces across re-
gions of sparse electron density, resulting from the locality of
the XC functional, has little effect on chemical bonds of
small molecules. Since we do not find a substantial improve-
ment of the calculations in LDA or GGA for the above men-
tioned molecules, we conclude that the correction due to the
vdW term is rather small for all studied molecules, but it is
comparable to the magnitude of the deviations due to the
variation of the XC functional in the DFT implementations.

C. Dimers

1. Rare-gas atoms

Dispersion interaction is particularly important for sys-
tems containing more than one molecule. Typically many
degrees of freedom have to be considered. Therefore we re-
strict our investigation to dimers which are the most common
and easiest test systems. Rare-gas dimers are often consid-
ered in connection with the discussion of the DFT problem
�see, e.g., van Mourik67 and references therein�. In addition
they can be treated using accurate quantum chemistry meth-
ods, and potential energy curves have been constructed from
experimental data.

The equilibrium distances in LDA are too small by 14%
for Ne2 and 10% for Ar2 �see Table VIII� compared to ex-
periment. This confirms the overbinding typical for the local
approximation of the XC functional. GGA improves the
LDA results for the bond length of both dimers coming close
to experimental findings. However, no further modification is
found switching on the vdW term. For both dimers the val-
ues for GGA and GGA+vdW differ less than 0.01 Å. This is
explained by the strong overestimation of the binding ener-
gies in GGA, especially for the Ne dimer, which reduces the
impact of the vdW energies.

The binding energies themselves are overestimated irre-
spective of the approximation used. For the Ar dimer the
values in GGA and GGA+vdW agree with the experimental
results within 1.5 and 3 meV, respectively, but for Ne all
approximations fail completely to give reasonable results. As
stated by van Mourik,67 the overestimation cannot be attrib-
uted to the basis set superposition error �BSSE�. This is con-

TABLE V. Bond length d �Å� of the CO bond and vibrational
frequencies 
 �cm−1� of the CO2 molecule. Quantities �GGA and
�vdW as in Table I.

LDA GGA GGA+vdW Expt. a �GGA �vdW

d 1.165 1.173 1.173 1.1600 −1.1 −1.1


 �S. str.� 1322 1323 1330 1333 	0.8 	0.2


 �A. str.� 2373 2321 2347 2349 	1.2 	0.1


 �Bend� 648 617 605 667 	8.1 	10

aReference 44.

TABLE VI. Bond length d �Å� of HX bond and bonding angle
�HXH �°� of the H2O molecule �first line, X=O�, H2S �second line,
X=S�, and NH3 �third line, X=N�. Quantities �GGA and �vdW as in
Table I.

LDA GGA GGA+vdW Expt. a �GGA �vdW

d 0.975 0.973 0.973 0.9575 −1.6 −1.6

1.349 1.346 1.343 1.3356 −0.8 −0.6

1.022 1.020 1.018 1.012 −0.8 −0.6

�HXH 105.6 104.9 104.4 104.51 −0.4 +0.1

91.3 91.6 90.2 92.1 +0.5 +2.1

108.4 107.6 106.2 106.7 −0.8 +0.5

aReference 44.

TABLE VII. Equilibrium bond lengths d �Å� for CC and CH
bonds of the benzene molecule. Quantities �GGA and �vdW as in
Table I.

LDA GGA GGA+vdW Expt. a �GGA �vdW

d �CC� 1.383 1.394 1.394 1.399 +0.4 +0.4

d �CH� 1.093 1.089 1.088 1.101 +1.1 +1.2

aReference 44.
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firmed by the present calculations which are BSSE-free.
Rather, the overbinding is related to the exchange energy as
shown by Wu et al.16 The pure exchange part already yields
a minimum in the interaction energy curve, at least for Ar2
and Kr2. As with the rare gas crystals, simulations for Ar2
and Ne2 in GGA-PW91 are not worsened with the vdW term.
An improvement within the dispersion approach cannot be
expected, since an accurate description of the exchange part
is required first.

For the rare-gas dimers the B3LYP functional in conjunc-
tion with additional dispersion interaction may improve the
results17 because the functional yields a repulsive potential
energy curve unlike PW91.

2. N2 dimers

After having calculated the N2 molecule, we now study
the pair interaction of such species which is three orders of
magnitude smaller than the bonding within the molecule.
Due to their chemical inactivity, N2 molecules are ideal test
systems for dispersive intermolecular interactions. All N2
dimer conformations are parametrized as described in Fig. 2.
The most prominent structures are T-shaped, defined by ��1

=90° ,�2=0° ,�=0° �, parallel H�90,90,0�, and
Z50�50,50,0�. These specific orientations are a subset of all
possible arrangements included in the N2-N2 potential en-
ergy surface �PES� determined from scattering experiments
and second virial coefficient data.72 Experimental and calcu-
lated values are listed in Table IX together with those ob-
tained within an advanced quantum-chemical computation.73

First of all, the calculations result in overestimated bind-
ing energies E for LDA in contrast to the findings for the

interplanar bonding in layered crystals within this approxi-
mation but in accordance to the rare-gas dimer results. This
overestimation is accompanied with an underestimation of
the dimer lengths. Furthermore, the results in Table IX show
irrespective of the specific conformation a rather good agree-
ment between GGA and experiment. The results of our GGA
calculations agree within few % with those of Couronne et
al.74 corrected for BSSE. They concluded that the use of
PW91 gives frequencies for the intermolecular vibrations in
excellent agreement with IR measurements.75 These charac-
teristics are again unlike the respective outcomes for layered
crystals, where one hardly finds bonding.

In each conformation, the vdW contribution to E at the
equilibrium distances is comparable to the experimental
binding energies, but unlike graphite, the N2 dimer is already
bonded in GGA. This yields overestimated energies for the
GGA+vdW approach, but the values mostly remain lower
than those of the LDA calculations. Irrespective of the ap-
proximation of the XC functional, we find an energetic or-
dering of the dimer geometries in accordance with the other
theoretical findings. The dimer lengths are most accurately
obtained in GGA+vdW for each conformation.

Additional relaxations are carried out to confirm the struc-
tural minimum at one of the Z positions �Z45/Z50�. Thereby
residual forces are smaller than 5 meV/Å. Results for the N2

TABLE VIII. Structural and elastic properties of neon �first line� and argon �second line� dimer. The
binding energy E �meV/atom� and the bond length d �Å� are compared to experiment and quantum chemistry
methods. Quantities �GGA and �vdW as in Table I.

LDA GGA GGA+vdW CCSD�T� Expt. Ref. 17 �GGA �vdW

d 2.65 3.01 3.01 3.10a 3.094b 2.9 +2.8 +2.8

3.40 3.97 3.97 3.8c 3.761d 3.7 −5.3 −5.3

E 20.3 15.1 16.0 3.58a 3.65b 19

31.0 13.8 15.3 12.26c 12.3d 26 −11 −20

aReference 68.
bReference 69.
cReference 70.
dReference 71.

FIG. 2. Relative orientation of two N2 molecules �left part�
where d is the distance between the molecular centers of mass on
the displayed axis. The orientation of the ith molecule with respect
to that axis is given as �i. � is the difference angle in the plane
perpendicular to that axis. Z� conformation of the dimer �as de-
scribed in the text for �=50°� resulting from structural relaxation
�right part�.

TABLE IX. Equilibrium distances d �Å� and binding energies E
�meV� of the H �first line�, T �second line�, and Z50 conformation
�third line� of the N2 dimer. Quantities �GGA and �vdW as in Table
I. Reference 72 gives values for a slightly different structure �Z45
instead of Z50� and estimates uncertainties to be 0.8 meV and
0.07 Å.

LDA GGA GGA+vdW MP2a Expt.b �GGA �vdW

d 3.38 3.94 3.81 3.7 3.81 −3.3 �0

3.79 4.29 4.21 4.2 4.03 −6.1 −4.3

3.60 4.16 4.06 4.02 4.30 +3.4 +5.9

E 18.9 11.0 22.4 9.2 11.8 +7.3 −47

24.9 15.4 24.1 12.0 13.3 −14 −45

31.9 16.1 25.4 13.7 9.1

aReference 73.
bReference 72.
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dimer systems obtained within GGA, GGA+vdW, and LDA
confirm that the minimum lies in-between 45°and 50°.

3. Benzene dimer

Benzene dimers have been studied by numerous groups,
see, e.g., in Refs. 76–79, and references therein. The most
often examined dimer structures are the sandwich �S�,
T-shaped �T�, and parallel-displaced �PD� conformations80

whose structural parameters are given in terms of the dis-
tances d or d1 and d2 �see Fig. 3�. d connects the centers
of mass. For the PD structure the quantity d1 gives the
distance between the molecular planes, and d2 is defined as
the lateral shift of the molecules. If d2 equals zero the S
structure is obtained with d=d1. In Table X structural param-
eters and binding energies for local minima on the PES of
the benzene dimer are compared with earlier theoretical
calculations.78,79,77

Table X indicates that the potential energy well depths are
overestimated in GGA+vdW. However, the quality of the
structural properties is clearly enhanced by the vdW ap-
proach. As already concluded by Meijer and Sprik,82 a dis-
persion correction to XC functionals containing gradient cor-
rections can cure the lack of bonding. Especially purely
repulsive energy curves are avoided resulting in reasonable
equilibrium distances, whereas the energies come out with
lower accuracy. Moreover, the correction does not change
the physics of orbital interaction as we have shown earlier
for the case of adenine adsorption on graphite.22

Whether PD or T-shaped structures are energetically fa-
vored is answered differently in LDA and GGA+vdW. LDA
favors the PD geometry energetically by 23% with respect to
the T structure, which is most stable in GGA+vdW with an
energy difference of about 6%. This preference in GGA
+vdW clearly comes from the T-shaped bonding in GGA
�see Table X�, which is traced back to an attractive electro-
static interaction according to Tsuzuki.76 For the parallel con-
formations no reasonable bonding is obtained in GGA, nei-
ther for the laterally displaced nor for the sandwich structure.
The unreasonable equilibrium distance of 4.9 Å for the S
structure within the GGA approach as listed in Table X re-
sults from a line search in that direction. This procedure is
comparable to the determination of the equilibrium separa-
tion of adenine on graphite22 and may be discussed analo-
gous to graphene sheets. As with the sheets preferring AB
stacking over AA, the molecule drifts away perpendicular to
this direction which is characteristic for a saddle point. These
finding are in accordance with Walsh,78 who stated that GGA
functionals are unsuitable for the description of benzene
dimers and reported that except for unreasonable distances

the dimers fail to bond. We confirm this statement for the
PW91 functional and for the parallel conformations. For the
T geometry, however, weak bonding is obtained.

In the literature there is no consensus about the minimum
position on the PES. Walsh78 used an approximation which
tends to give relative small monomer distances. It prefers the
T geometry over the PD structure. A recent DFT-based de-
scription in the LC-DFT+ALL approach from Sato et al.,79

however, predicts that the PD structure is more stable than
the T structure. Sinnokrot and Sherrill77 performed MP2
+�CCSD�T� simulations again yielding a slight preference
for the PD conformation for the estimated basis set limit.

FIG. 3. Benzene dimer structures for T-shaped �T�, parallel-
displaced �PD�, and sandwich �S� conformation.

TABLE X. S, T, and PD conformations of the benzene dimer in
the first, second, and third line, respectively, from several compu-
tational methods. Minimum conformations are given in terms of the
distances d or d1 and d2 �Å� with the corresponding energies E
�meV�. Quantities �d, �d1/2, and �E are related to the MP2
+�CCSD�T� �Ref. 77� results. Assuming a T-shaped structure, an
experimental study �Ref. 81� gives a dimer separation of d
=4.96 Å.

method d E �d �E

d1 d2 �d1 �d2

LDAa 3.78 45 +3.2 +76

4.77 95 +4.8 +25

3.32 1.73 117 +8.4 −7.5 +3.4

GGAa 4.9 6 −20

5.39 47 −7.2

GGA+vdWa 3.74 199 +4.3

4.82 277 +3.7

3.36 1.71 260 +7.1 −6.4

HF+WLb 3.7 35

4.7 139

3.3 1.8 122

LC-DFT+ALLc 3.9 92

5.0 143

3.6 1.7 137

MP2+�CCSD�T�d 3.9 79

5.0 119

3.6 1.6 121

DFT-PBE+vdWe 4.04 44

5.06 95

3.57 79

DFT-BLYP+vdWe 3.90 45

5.06 88

3.52 87

aThis work.
bReference 78.
cReference 79.
dReference 77.
eReference 19.
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IV. CONCLUSIONS

In conclusion, we implemented a semiempirical method
based on few simple assumptions that corrects DFT-GGA for
dispersion forces. The asymptotic form of the quantum-
mechanical interaction of two atoms is recovered using the
London formula. The dispersion forces for small distances
are damped. The resulting GGA+vdW �semiempirically
vdW-corrected GGA� functional is applied to crystalline,
molecular, and dimerized systems comparing the results to
GGA and LDA data as well as other theoretical schemes and
experimental findings.

In general, in the case of covalent or heteropolar crystals
and molecules the semiempirical vdW correction gives rise
to minor changes of the GGA results. Small changes in bond-
ing angles of the HXH type �X=N,O,S� are noticed. Bulk
properties remain nearly unchanged. As may be expected,
the semiempirical correction is much more important for sys-
tems, which are bonded by the long-range vdW interaction.
The geometrical data and the effective elastic constants of
the corresponding vibrations are calculated in reasonable
agreement with measured values. In the extreme case of
carbon-derived graphite the interlayer bonding between the
graphene sheets vanishes in the framework of the GGA. The
vdW corrections restore the correct distance of these layers.
The accompanying energy gains, however, are overesti-
mated. This is probably due to the use of the London formula
for the asymptotic behavior.

The correct description of rare-gas crystals which evade
an adequate simulation remains an open question. GGA
gives no consistent picture of long range interactions for

rare-gas atoms. Bond lengths and dimer binding energies are
already overestimated within GGA. Therefore no improve-
ment can result from the inclusion of an additional attractive
vdW term.

However, apart from the rare-gas systems, the quality of
the calculated parameters found for all systems clearly dem-
onstrates that the semiempirical correction is universally ap-
plicable to atomic aggregates of relevant systems indepen-
dent of their characteristic bondings. This is mainly due to
two facts: The vdW energy has the correct magnitude acting
at long distances, and the damping function is well adapted
for various fragment sizes. It does not outperform LDA and
GGA in all cases, but the present implementation of the vdW
interaction is a valuable supplement to the common approxi-
mations for the XC functional. Given the complexity and
numerical expense of an ab initio description of dispersive
interactions, schemes such as the one presented here present
a very helpful and �presently probably the only available�
tool to address vdW interactions in large and complex sys-
tems.
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