
Semiflexible random A – B block copolymers under tension
Pallavi Debnath and Binny J. Cherayil*
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In this paper we explore the conformational properties of randomA–B block copolymers with
semiflexible segments in a constant force field as a model of the behavior of biopolymers under
tension. The degree of semiflexibility of individual blocks, which is characterized by a persistence
length l, may range from values that correspond to complete flexibility of the block to values that
correspond to nearly complete rigidity. The distribution of blocks is described by a two-state
Markov process that generates the statistics governing the process of living polymerization in the
steady state. Force-extension curves for this model of the polymer are calculated as an average over
the chains conformations~which are described by a finitely extensible Gaussian model!, as well as
over both quenched and annealed distributions of the sequence ofA andB blocks along the chain
backbone. The results are sensitive to the nature of the sequence distribution: in the annealed case,
the force-extension curves are sigmoidal for essentially all values of the parameters that characterize
the conformational properties of theA andB blocks and their statistical correlations, while in the
quenched case, the curves exhibit plateau regions that are reminiscent of various kinds of transitions
in proteins and DNA.
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I. INTRODUCTION

Experimental techniques to apply carefully calibrat
forces to isolated molecules have now made it possible
explorein vitro many of the mechanical events that in livin
systems govern the pathways of different biochemi
processes.1,2 The applied forces can vary in size from a fe
piconewtons to several hundreds of piconewtons, and
induce several different kinds of response, ranging from
simple disentanglement associated with the loss of entr
freedom to more complex transitions associated with the
pearance of morphologically distinct conformational phas

Many of these responses can be understood in term
simple models of the macromolecule,3 especially if the mu-
tual interactions between a small number of distinct str
tural elements are the principal controlling factors behind
observed behavior.4 It is often adequate under such circum
stances to represent the molecule as a random connecte
quence of two or more pointlike residues with differe
strengths of interaction. These so-called randomA–B het-
eropolymer models have been very successful in identify
many of the broad features of the folding pathways
biopolymers like proteins and polypeptides.5,6 But, they also
ignore many of the structural motifs that are known to infl
ence certain kinds of conformational change in these m
ecules.a-helices andb-sheets are just two such motifs, an
they can seldom be modeled successfully within the exis
formulations ofA–B heteropolymers. However, somewh
more faithful representations of biopolymers with second
structural elements can be developed along the same
starting from randomblock copolymermodels. Block co-
polymers, by virtue of containing subunits that are the
selves polymeric, can be made to mimic some of these

*Electronic mail: cherayil@ipc.iisc.ernet.in
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ondary structural elements by suitable choice of
parameters that control the conformational properties of
individual blocks.

This idea forms the basis for the model developed
cently by Buhot and Halperin7 to study the response o
biopolymers to stretching. Here, the polymer is represen
as a linked chain of rods and coils arranged at random al
the backbone. Two distinct sequence distributions are con
ered: one where the randomness is quenched, and the
where it is annealed. The force-extension profiles for th
two scenarios are found to be quite different; the quenc
case shows a pronounced change in slope, while the
nealed case is sigmoidal. The predictions are in qualita
agreement with certain experimental results, but they
largely derived from phenomenological considerations, a
so are not easily justified microscopically.

We have recently formulated a similar model
biopolymers.8 In our approach, the macromolecule is repr
sented as a random linked sequence of two different kind
‘‘prepolymer,’’ A or B, which may span a range of differen
degrees of flexibility, from completely flexible to almos
completely stiff. Each prepolymer, itself a chain of identic
residues, is modeled as an inextensible curve using the
integral formalism of Saitoˆ, Takahashi, and Yunoki.9 Within
this approach, and in the absence of excluded volume in
actions and stretching forces, the mean size of the ch
averaged over the sequence ofA andB prepolymers using a
two-state Markov process,10 can be determined exactly as
function of the overall length of the heteropolymer, the re
tive amounts ofA to B components in the chain, and th
degree of stiffness of these components.

This model is based on a well-defined microscop
Hamiltonian that is easily generalized,formally, to the case
where a nonzero forcef acts at either end of the polyme
Unfortunately, the generalization no longer admits of an
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act analytical solution under the original constraint of fin
extensibility that must be imposed on the Hamiltonian.
we show in this paper, an exact solution of the problem
still be derived if this constraint is relaxed.

The general features of the model are introduced in
following section. The model is then applied to the calcu
tion of the mean square end-to-end distance of a rand
block copolymer that is acted on by a force. The calculat
involves an average over the conformational degrees of f
dom of the chain as well as over the sequence distributio
A andB prepolymer segments. The sequence average is
ried out for both quenched and annealed randomness u
the same two-state Markov process mentioned above, w
was introduced by Fredrickson, Milner, and Leibler in th
study of microphase ordering in block copolymers melts10

The calculation of the average size of the chain is comple
by enforcing the requirement of inextensibility. This is do
approximately~but self-consistently! using a conformation-
dependent spring constant to connect near-neighbor m
mers along the chain. The results of the calculation are
sented in Sec. III, along with a discussion of the
implications.

II. THEORY

A. Definitions

In these calculations, the heteropolymer is modeled a
random block copolymer ofn ‘‘prepolymers’’ ~to use the
terminology of Fredrickson, Milner, and Leibler10! of con-
tour lengthN. Each prepolymer is a semiflexible homopol
mer made up of eitherA or B residues that is characterize
by a persistence lengthl A or l B , and that is represented a
the continuum limit of a discrete set of coupled harmo
oscillators with bond strengthsbA or bB . In this continuum
representation,11 the prepolymer is the locus of a curve d
scribed by the set of distancesr (t). These distances are th
vectorial locations of the monomers that are imagined to
at the pointst defining the backbone of the chain. The to
contour length of the heteropolymer,nN, is denotedM, so, in
general, the parametert varies from 0 toM. A constant force
f is assumed to act at either end of the chain. In units wh
the thermal energykBT is 1, the Hamiltonian of this het
eropolymer is given by

H5bA(
i 51

n

du i ,1E~ i 21!N

iN

dt ṙ ~t!2

1bB(
i 51

n

du i ,21E
~ i 21!N

iN

dt ṙ ~t!22f•(
i 51

n

Ri . ~1!

Here,u i is a dichotomous random variable that is defined
be 11 if the i th prepolymer is made up ofA residues, and
that is defined to be21 if the i th prepolymer is made up o
B residues. The symbolṙ (t) stands for the derivative
dr (t)/dt, while Ri defines the end-to-end distance of thei th
prepolymer, and is given by

Ri5E
~ i 21!N

iN

dt ṙ ~t! ~2!
s
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5r ~ iN !2r ~~ i 21!N! ~3!

[r i2r i 21 . ~4!

As mentioned in the Introduction, this model of the he
eropolymer is different from our earlier model,8 which was
based on the approach of Saitoˆ, Takahashi, and Yunoki9

~STY!, and which used the set oftangent vectors u(t)
5dr (t)/dt at the pointst, and not the position vectorsr (t)
themselves, to define the trajectory of the continuum ch
Although the STY approach can be implemented exactly
calculate the mean square end-to-end distance of the ran
heteropolymer whenf50, the corresponding calculation
whenfÞ0, are highly nontrivial. The present model, defin
by Eq. ~1!, is an attempt to retain the basic structure of t
earlier approach without rendering it analytically intractab
In particular, we shall treat the constraint of inextensibili
expressed earlier by the requirement thatuu(t)u51 every-
where, in an alternative self-consistent approximation to
discussed later.

If the random block copolymer defined above contain
just a singleflexibleblock, of, say, typeA, the bond strength
bA would be 3/2l A , and the Hamiltonian of Eq.~1! would
reduce to the well-known Hamiltonian of the continuu
Gaussian chain.11

It proves convenient to eliminate the Kronecker deltas
Eq. ~1!, and to rewriteH identically as

H5(
i 51

n

D iE
~ i 21!N

iN

dt ṙ ~t!22f•(
i 51

n

Ri , ~5!

where

D i[
1
2~bA1bB!1 1

2~bA2bB!u i , ~6!

[D11D2u i . ~7!

This is the form of the Hamiltonian that will be used in th
subsequent calculations.

B. End-to-end distance

A useful measure of the radial dimensions of the po
mer subject to the forcef is its mean square end-to-end di
tance, defined as

^^R2&&s5(
i 51

n

(
j 51

n

^^Ri•Rj&&s

5(
i 51

n

^^Ri
2&&s12(

i 51

n21

(
j Þ i

n

^^Ri•Rj&&s , ~8!

where the outer brackets, with subscripts, denote the average
over the sequence ofAs andBs along the backbone, whic
may either be quenched~subscriptq! or annealed~subscript
a!, while the inner brackets, without a subscript, denote
average over the conformational degrees of freedom alo
These distinct averages are defined, respectively, by

^^X&&q[(
$u i %

p~$u i%!
1

Q~$u i%!
E D@r ~t!#X

3exp~2H@$u i%,r ~t!#!, ~9!
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^^X&&a[
($u i %

p~$u i%!*D@r ~t!#X exp~2H@$u i%,r ~t!#!

($u i %
p~$u i%!Q~$u i%!

.

~10!

In these two equations,X is any sequence and conformatio
dependent property of the chain,p($u i%) is the probability
that the first prepolymer is of typeu1 , the second is of type
u2 , and so on, andQ($u i%) is the chain partition function
defined as

Q~$u i%!5E D@r ~t!#exp~2H@$u i%,r ~t!#!. ~11!

The symbol*D@r (t)# stands for the functional integral ove
the continuous conformations of the chain, while the s
($u i %

stands for the sum over the values ofu1 ,u2 ,...,un .
The functional integrals in Eqs.~9! and ~10! that define

the average over chain conformations can be rewritten
terms of ordinary integrals over a product of chain ‘‘prop
gators’’ according to the general prescriptions outlined in,
instance, Ref. 11. In this way, one can show that

E D@r ~t!#Ri•Rje
2H

5E dR1E dR2¯E dRi¯E dRj¯E dRn21

3E dRn Ri•RjGf~R1 ,N!¯Gf~Ri ,N!¯

3Gf~Rj ,N!¯Gf~Rn21 ,N!Gf~Rn ,N!, ~12!

where

Gf~Rk ,N![E
r ~~k21!N!5rk21

r ~kN!5rk D@r ~t!#

3expS 2DkE
~k21!N

kN

dt ṙ ~t!21f"RkD ~13!

5S Dk

pND 3/2

exp~2DkRk
2/N1f"Rk!. ~14!

In the same way, the partition functionQ can be reduced to
the following product of ordinary integrals:

Q~$u i%!5)
k

n E dRk Gf~Rk ,N!. ~15!

From the definition of the propagator in Eq.~14!, this expres-
sion for the partition function is easily evaluated as

Q5expF f 2N2 (
k51

n

1/4DkG . ~16!

The simple Gaussian integrals in Eq.~12! are also easily
carried out to produce

E D@r ~t!#Ri
2e2H5QQ1 , ~17!

E D@r ~t!#Ri•Rje
2H5QQ2 , iÞ j ~18!
in
-
r

where

Q15S 3N

2D i
1

f 2N2

4D i
2 D , ~19!

Q25
f 2N2

4D iD j
iÞ j . ~20!

From these equations, one sees that

^^R2&&q5(
i 51

n

^Q1&s12(
i 51

n

(
j Þ i

n

^Q2&s , ~21!

^^R2&&a5
1

^Q&s
F(

i 51

n

^QQ1&s12(
i 51

n

(
j Þ i

n

^QQ2&sG . ~22!

The sequence averages in Eqs.~21! and~22! are calculated in
the next section.

C. Sequence average

The average over the distribution ofA and B prepoly-
mers can be carried out once the functionp($u i%) is speci-
fied. If one makes the Markovian assumption that the id
tity of the i th prepolymer in the chain is determined only b
the identity of the preceding prepolymer, then, as Fredri
son, Milner, and Leibler~FML! have shown,10 the probabil-
ity of realizing a given sequence ofAs andBs is determined,
in general, by a set of four conditional probabilitiespKL , K,
L5A,B, wherepKL is the conditional probability of observ
ing K given L. If one further assumes that this sequen
results from the process of living polymerization und
steady-state conditions, then thepKL can be related to the
mole fractionsw and 12w that define the composition ofA
and B in the chain so generated. When combined with
Markov condition, these two assumptions imply that on
two parameters are needed to fix the overall sequence d
bution in the chain: one isw itself, and the other may be
chosen to be the nontrivial eigenvaluel of the matrix of
conditional probabilities. The conditional probabilitiespKL

can now be expressed in terms of these parameters as

pAA5w~12l!1l, ~23!

pBB5w~l21!11, ~24!

pAB512pBB , ~25!

pBA512pAA . ~26!

The parameterl, which lies between21 and11, controls
the degree of correlation betweenA andB prepolymers in the
chain; whenl→21, theA andB prepolymers tend to suc
ceed each other in alternation, whenl→11, theAs tend to
succeedAs, andBs tend to succeedBs, and, finally, when
l50, As andBs follow each other entirely randomly.

From these considerations, one can show that

(
$u i %

p~$u i%!u l52w21, ~27!
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$u i %

p~$u i%!u lum5~2w21!214w~12w!l u l 2mu. ~28!

Results for higher moments of the variableu i are also easily
determined.

1. Quenched disorder

For this case, referring to Eq.~21!, and using Eq.~27!,
one may verify that

(
i 51

n

^Q1&s5n@w^RA
2&1~12w!^RB

2&#, ~29!

where ^RA
2& and ^RB

2& are the mean-square end-to-end d
tances of thei th prepolymer averaged over the conform
tions of the remainingn21 prepolymers when thei th pre-
polymer is of typeA and when it is of typeB, respectively.
From the definitions of quenched and annealed average
Eqs.~9! and ~10!, one can show that when a given prepo
mer is of adefinitetype ~A or B!, the sequence average ov
the remainder of the chain yields the same factor of unity
both the quenched and annealed operations. Thus,^RA

2& and
^RB

2& actually correspond to the dimensions of a homopo
mer of lengthN as calculated from the Hamiltonian of Eq
~5! in which n51 and the variableu i in Eq. ~6! is assigned
the value11 ~for a chain ofA residues! or the value21 ~for
a chain ofB residues.!

Returning to Eq.~21!, we have, similarly

(
i 51

n

(
j Þ i

n

^Q2&s5
f 2N2

4~D1
22D2

2!2 @$D12~2w21!D2%
2S1

14w~12w!D2
2S2#, ~30!

with S1 andS2 given by

S15 (
i 51

n21

(
j 5 i 11

n

5
1

2
n~n21!, ~31!

S25 (
i 51

n21

(
j 5 i 11

n

l u i 2 j u5
l

12l Fn2
12ln

12l G . ~32!

2. Annealed disorder

This case is actually harder to treat than the case
quenched disorder, in contrast to most other related calc
tions in condensed matter. Fortunately, it still admits an ex
result. Referring now to Eq.~22!, the first sum on the right-
hand side can be re-expressed as

1

^Q&s
(
i 51

n

^QQ1&s5
3

2
naN1

1

4
n f2N2~a21b2!

2
3

2J
NbS 11

1

3
a f 2NDT1 , ~33!

where

a5
D1

D1
22D2

2 , b5
D2

D1
22D2

2 , X5
1

4
b f N2 , ~34!

and
-
-
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-
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J5K expS 2X(
k51

n

ukD L
s

, ~35!

T15(
i 51

n K u i expS 2X(
k51

n

ukD L
s

. ~36!

Similarly, the second sum on the right-hand side of Eq.~22!
can be written in the form

1

^Q&s
(
i 51

n

(
j Þ i

n

^QQ2&s5
1

8
n~n21!a2f 2N22

1

4J
f 2N2

3@ab~T21T3!1b2T4#, ~37!

where

T25 (
i 51

n21

(
j 5 i 11

n K u i expS 2X(
k51

n

ukD L
s

, ~38!

T35 (
i 51

n21

(
j 5 i 11

n K u j expS 2X(
k51

n

ukD L
s

, ~39!

T45 (
i 51

n21

(
j 5 i 11

n K u iu j expS 2X(
k51

n

ukD L
s

. ~40!

The sequence averages in the expressionsJ, T1 , T2 , T3 ,
andT4 as well as the associated summations are easily
culated following the matrix methods described in detail
our earlier paper, Ref. 8, which we do not repeat here
summary of the principal results of these calculations~which
are extremely lengthy! is provided in the Appendix. Graph
of the fractional extension of the heteropolymer as a fu
tion of different chain parameters are presented later, a
a discussion, in the next section, of the treatment
inextensibility.

D. Inextensibility

In polymer models where the bonds between adjac
residues act effectively like Hookean springs, the chain
be stretched indefinitely when a constant force is applied
either end. This produces, among other results, an unphy
molecular weight dependence of the mean-square end-to
distance at large values of the force,12,13 and seriously limits
the model’s ability to treat problems in which the polymer
not unperturbed. However, without invoking the constrai9

uu(t)u51, finite extensibility at all values of the force can b
ensured in Gaussian chains by making the spring dep
nonlinearly on the applied force in such a way that an eff
tively infinite force is required to stretch the chain beyond
contour length. This is the principle used in the so-cal
finitely extensible nonlinear elastic~FENE! models of a
polymer,14 and it is used here, in modified form to achiev
the same ends. The idea is to replace the spring constanbA

or bB in the present model by the following sprin
constant:12
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3

2l i

12^Ri
2&0 /^Ri

2&m

12^Ri
2&/^Ri

2&m
, i 5A,B. ~41!

Here,^Ri
2&0 , ^Ri

2&m , and^Ri
2& denote the mean-square en

to-end distances of thei th prepolymer when it is, respec
tively, unperturbed, fully stretched, and under the action o
constant forcef. The rationale behind this definition ofbi is
the following: when f→0, ^Ri

2&→^Ri
2&0 , so bi→3/2l i ,

which is the ‘‘spring constant’’ for the Gaussian chai
whereas whenf→`, ^Ri

2&→^Ri
2&m , so bi→`, implying

that an infinite force is required to extend the chain to its f
contour length. In this way, the chain segment cannot
unphysically extended beyondN.

Equation~41! is now solved self-consistently for̂Ri
2&

by calculating^Ri
2& from the following Hamiltonian:

Hi5biE
~ i 21!N

iN

dt ṙ ~t!21f"Ri . ~42!

The result is

^Ri
2&5

3N

2bi
@11 f 2N/6bi #. ~43!

Substituting the expression forbi from Eq. ~41! into Eq.
~43!, and introducing the definitionsa i[^Ri

2&0 /^Ri
2&m

5Nli /N25 l i /N and zi5^Ri
2&/^Ri

2&m5^Ri
2&/N2, one finds

that the mean-square end-to-end distance of thei th prepoly-
mer under the forcef is obtained from the solution to th
following quadratic equation inzi :

zi5
a i

12a i
~12zi !F11

a i

9~12a i !
f 2N2~12zi !G ,

i 5A,B. ~44!

From this equation, it is easily shown that

Azi5
^Ri

2&1/2

N
5F11

9~12a i !

2a i
2f 2N2

3H 12A11
4

9
a i

2f 2N2J G1/2

. ~45!

The above expression forzi is now used in Eq.~41! to de-
termine the spring constantbi

bi5
l i f

2

3@A114l i
2f 2/921#

, i 5A,B. ~46!

As is easily confirmed, the above result producesbi→3/2l i

as f→0, while bi→` as f→`.

III. RESULTS AND DISCUSSION

A. Homopolymer case

Before proceeding to a discussion of the behavior of
random heteropolymer under the action of the forcef, we
first consider the results for the case of a single homop
mer to test the utility of the FENE approach against literat
data. As it happens, these results need not be derived s
rately; they are already contained in Eq.~45! for the frac-
tional extension of thei th prepolymer, which is nothing but
a

l
e

e

-
e
pa-

homopolymer of contour lengthN. N is essentially arbitrary,
and it is useful to let it be large, whilel i is kept fixed. In this
limit, Eq. ~45! simplifies to

^R2&1/2

N
5F11

9

2 f 2l 2 H 12A11
4

9
f 2l 2J G1/2

, ~47!

where we have omitted the subscripti, since it is no longer
necessary to distinguish between theA and B prepolymers.
The above expression has two further interesting anal
limits. When f→0, the fractional extension becomes

^R2&1/2

N
;

1

3
f l . ~48!

This result is identical to the small-f prediction of a highly
successful model of the elastic response of DNA to an
plied force by Marko and Siggia15 using an analytic interpo-
lation formula derived from a Kratky–Porod representati
of a semiflexible chain.

The second limit of interest corresponds tof→`; here,
Eq. ~45! reduces to

^R2&1/2

N
;F12

3

f l G
1/2

. ~49!

This result may be compared with the large-f predictions of
the above Marko–Siggia~MS! model, and another predictio
based on the freely jointed chain~FJC! model,16 which are
given, respectively, by

^R2&1/2

N
;12

1

A2 f l
, MS ~50!

^R2&1/2

N
;12

1

f l
, FJC. ~51!

Figure 1 shows the variation ofz1/2[^R2&1/2/N with the
logarithm of a dimensionless forcef A[ f l /2 for different

FIG. 1. Fractional extensionAz of a homopolymer as a function of the
dimensionless forcef A[ f l /2 for different chain models. Curves 1 and
correspond to the Marko–Siggia and freely jointed chain models, res
tively. Curves 2 and 5 and the curve defined by the symbol1 ~curve 3! are
calculated from Eq.~32! with, respectively,l /N53.2431025, 0.5, and
3.2431023.
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models of the chain. Curve 1 corresponds to the results o
Marko–Siggia calculation, in which the contour lengthN and
the persistence lengthl have been estimated from experime
to be 32.8mm and 106 nm, respectively. This curve provid
an excellent fit to experimental measurements of D
stretching.15 Curve 4 corresponds to the results of the F
model. Curves 2 and 5 and the curve defined by the1 signs
~curve 3! are derived from Eq.~45!, in which the parameters
f, N and l have been grouped into the dimensionless com
nations fA and l /N. In curve 3, l /N is assigned the value
3.2431023 based on the estimates forl andN determined by
Marko and Siggia.15 As is clear, with this assignment fo
l /N, our model reproduces the small-f limit of the MS model
~and hence of the experimental data! somewhat poorly. In
curve 2, l /N is arbitrarily assigned the value 3.2431025,
which significantly improves the agreement with the M
model. In all subsequent calculations involving the h
eropolymer, this value forl /N will be assigned to one of the
components of the copolymer. Curve 5 shows the result
yet another choice forl /N, in this case the choice 0.5, whic
makes the polymer relatively stiff to begin with, even in t
absence of the force.

The results depicted in Fig. 1 do indeed demonstrate
our FENE approximation provides a useful approach to
behavior of semiflexible polymers under tension. We n
turn to a discussion of the heteropolymer case.

B. Heteropolymer case

1. Quenched disorder

Equations~29!, ~30!, and ~45!, when used in Eq.~21!,
determine the force-extension behavior of the randomA–B
block copolymer as a function of the following paramete
~i! the number of prepolymersn in the chain~which is kept
fixed!; ~ii ! the contour lengthN in a given prepolymer~as-
sumed to be the same for bothA andB and also kept fixed!;
~iii ! the fractionw of A in the polymer;~iv! the persistence
lengthsl A and l B of the two prepolymers; and~v! the degree
of statistical correlationl betweenA andB along the chain
backbone. The nature of this behavior is best illustra
graphically.

Figure 2 is a plot of the fractional extensionz1/2

5^^R2&&q
1/2/M vs the forcefN for the following fixed values

of the parameterl: 0.0 ~curve 2!, 0.8 ~curve 3!, and 0.99
~curve 4!. In each of these curves, the parametersn, w, l A /N,
and l B /N are kept fixed at these respective values: 50, 0
0.99, and 3.2431025. Curves 2–4 therefore describe th
behavior of a moderately long copolymer with roughly equ
amounts ofA andB in which theA prepolymer is quite stiff
(N/ l A'1), theB prepolymer is very flexible (N/ l B@1) and
the arrangement ofA andB becomes increasingly random
the direction of decreasingl. ~l can also assume negativ
values, with l521 corresponding to an arrangement
which A andB alternate with each other in perfect regulari
The force-extension curves for a chain withl,0 at the
above values ofn, w, l A /N, and l B /N are almost indistin-
guishable from curve 2, and are therefore not shown.! Curve
1 is the force-extension curve for a homopolymer of cont
lengthM, obtained from the heteropolymer results by sett
he
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l A /N5 l B /N53.2431025. The notable feature of curve
2–4 is, of course, the appearance of a plateau region
certain values of the force. Numerous experiments and si
lations on polypeptides and polynucleotides have revea
similar plateaus,17 and they have been generally ascribed
the existence of transitions between distinct conformatio
substates of the polymer.

In Fig. 3, the stages by which the plateau develops
more clearly seen. Here,z1/2 is plotted against the logarithm
of fN at the following fixed values ofl A /N: 3.2431025

~curve 1!, 0.001~curve 2!, 0.01 ~curve 3!, and 0.5~curve 4!
at fixedn ~50!, w ~0.5!, l B /N (3.2431025) andl~0.0!. So,

FIG. 2. Fractional extension vs force for the quenched random heterop
mer at different values of the correlation parameterl. The curves are cal-
culated from Eqs.~21!, ~29!, ~30!, and~45! at thel values of 0.0~curve 2!,
0.8 ~curve 3!, and 0.99~curve 4! at fixed values ofn ~50!, w ~0.5!, l A /N
~0.99!, and l B /N (3.2431025). Curve 1 is the corresponding result for
homopolymer of contour lengthM, obtained from the heteropolymer resul
by settingl A /N5 l B /N53.2431025.

FIG. 3. Fractional extension vs force for the quenched random heterop
mer at different values of the degree of stiffnessl A /N of one of the copoly-
mer components. The curves are calculated from Eqs.~21!, ~29!, ~30!, and
~45! at the l A /N values of 3.2431025 ~curve 1!, 0.001 ~curve 2!, 0.01
~curve 3!, and 0.5~curve 4! at fixed values ofn ~50!, w ~0.5!, l B /N (3.24
31025), andl ~0.0!.
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the curves describe a completely random copolymer w
equal amounts ofA andB in which one component is flexible
and the other becomes increasingly stiff in the right to l
direction. The increase of stiffness in one component the
fore tends to produce greater chain extension for a gi
force, but thereafter, as the force continues to increase,
further increase in chain extension is less for those ch
with the more rigid component.

Figure 4 is a plot ofz1/2 againstfN for the following
fixed values of the parameterw: 0.2 ~curve 2!, 0.4 ~curve 3!,
0.6 ~curve 4!, and 0.8~curve 5! at fixedn ~50!, l A /N ~0.99!,
l B /N (3.2431025) and l ~0.6!. So, the curves describe
moderately ‘‘blocky’’ copolymer (As tend to followAs, on
average, andBs tend to followBs) in which one componen
is flexible and the other relatively stiff, and the proportion
stiff to flexible increases from curves 2 to 4. Curve 1 cor
sponds to a homopolymer of contour lengthM, obtained
from the heteropolymer results by settingl A /N5 l B /N
53.2431025. ~Had the persistence length of the homopo
mer corresponded to a stiff chain, the resulting curve wo
have been essentially a straight throughz1/251 for all fN.!

2. Annealed disorder

When the distribution ofA andB along the heteropoly-
mer corresponds to annealed disorder, the force-exten
curves are calculated from Eq.~22! using Eqs.~33! and~37!
and the results given in the Appendix. Figure 5 is a plot
the fractional extensionz1/25^^R2&&a

1/2/M vs the forcefN for
3 values ofl: 0.0 ~curve 2!, 0.8 ~curve 3!, and 0.99~curve 4!
at fixed values ofn ~50!, w ~0.5!, l A /N ~0.99! and l B /N
(3.2431025.) For these parameter values, the curves in F
5 represent the annealed analogs of the curves in Fig
Curve 1 corresponds to a homopolymer of contour lengthM,
obtained from the heteropolymer results by settingl A /N
5 l B /N53.2431025. The sigmoidal nature of the curves

FIG. 4. Fractional extension vs force for the quenched random heterop
mer at different values of the fractionw of one of the copolymer compo
nents. The curves are calculated from Eqs.~21!, ~29!, ~30!, and~45! at thew
values of 0.2~curve 2!, 0.4 ~curve 3!, 0.6 ~curve 4!, and 0.8~curve 5! at
fixed values ofn ~50!, l A /N ~0.99!, l B /N (3.2431025), andl ~0.6!. Curve
1 refers to the homopolymer of contour lengthM, obtained from the het-
eropolymer results by settingl A /N5 l B /N53.2431025.
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Fig. 5, which contrasts with the steplike behavior of t
curves in Fig. 2, is in qualitative agreement with the tren
observed in the more phenomenological model of Buhot
Halperin, and may be the result of equilibrium between co
formational intermediates that could otherwise have form
in the absence of annealing. Figure 5 also suggests tha
negligible dependence ofz1/2 on l may have a similar origin.

Figure 6 shows the variation ofz1/2 with fN at 4 fixed
values ofl A /N: 3.2431025 ~curve 1!, 0.001~curve 2!, 0.01
~curve 3!, and 0.5~curve 4! at constant values ofn ~50!,
w ~0.5!, l B /N (3.2431025) and l ~0.0!. The curves here
represent the annealed analogs of the curves in Fig. 3.

ly-FIG. 5. Fractional extension vs force for the annealed random heterop
mer at different values of the correlation parameterl. The curves are cal-
culated from Eqs.~22!, ~33!, ~37! and results from the Appendix at thel
values of 0.0~curve 2!, 0.8 ~curve 3!, and 0.99~curve 4! at fixed values of
n ~50!, w ~0.5!, l A /N ~0.99!, andl B /N (3.2431025). Curve 1 is the corre-
sponding result for a homopolymer of contour lengthM, obtained from the
heteropolymer results by settingl A /N5 l B /N53.2431025.

FIG. 6. Fractional extension vs force for the annealed random heterop
mer at different values of the degree of stiffnessl A /N of one of the copoly-
mer components. The curves are calculated from Eqs.~22!, ~33!, ~37!, and
results from the Appendix at thel A /N values of 3.2431025 ~curve 1!, 0.001
~curve 2!, 0.01~curve 3!, and 0.5~curve 4! at fixed values ofn ~50!, w ~0.5!,
l B /N (3.2431025), andl ~0.0!.
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Figure 7 is a plot ofz1/2 vs fN at 4 fixed values ofw: 0.2
~curve 2!, 0.4 ~curve 3!, 0.6 ~curve 4!, and 0.8~curve 5! at
constantn ~50!, l A /N ~0.99!, l B /N (3.2431025) andl ~0.6!.
The curves here represent the annealed analogs of the c
in Fig. 4. Curve 1 corresponds to a homopolymer of cont
lengthM, obtained from the heteropolymer results by sett
l A /N5 l B /N53.2431025.

Finally, Fig. 8 provides a comparison, in the same gra
of z1/2 vs fN for the annealed, quenched, and homopolym
results for one representative set of parameter values. Cu
2 and 3 correspond, respectively, to the quenched and

FIG. 7. Fractional extension vs force for the annealed random heterop
mer at different values of the fractionw of one of the copolymer compo
nents. The curves are calculated from Eqs.~22!, ~33!, ~37!, and results from
the Appendix at thew values of 0.2~curve 2!, 0.4 ~curve 3!, 0.6 ~curve 4!,
and 0.8 ~curve 5! at fixed values ofn ~50!, l A /N ~0.99!, l B /N (3.24
31025), andl ~0.6!. Curve 1 refers to the homopolymer of contour leng
M, obtained from the heteropolymer results by settingl A /N5 l B /N53.24
31025.

FIG. 8. Comparison of fractional extension vs force for a homopolym
~curve 1! and quenched and annealed heteropolymers~curves 2 and 3!. For
the heteropolymers,n550, w50.5, l50.0, l A /N50.01, andl B /N53.24
31025. The homopolymer of contour lengthM, is obtained from the het-
eropolymer withl A /N5 l B /N53.2431025, and withn, w, andl set to the
above values.
ves
r

g

,
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nealed cases, withn550, w50.5, l50.0, l A /N50.01, and
l B /N53.2431025. Curve 1 corresponds to a homopolym
of contour lengthM, obtained from the heteropolymer resul
by settingl A /N5 l B /N53.2431025.

In summary, then, the stretching of random block h
eropolymers under quenched and annealed averaging l
to distinct force-extension curves. The results for t
quenched case suggest that as a chain unfolds under th
tion of increasingly large forces~eventually reaching full ex-
tension!, it may pass through apparently distinct conform
tional intermediates. The effect depends in detail on
statistical features of the heteropolymer, but is qualitativ
the same for all such polymers. The results for the annea
case provide no evidence for the existence of similar con
mational transitions; all annealed heteropolymers respon
the applied force in essentially the same way as a homop
mer of comparable size.
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APPENDIX: PRINCIPAL FORMULAS FOR THE
CALCULATION OF ANNEALED AVERAGES

Referring to the equations in Sec. II C.~2!, and introduc-
ing the following matrices:

P5S pAA pAB

pBA pBB
D , E5S e2X 0

0 eXD ,

F5S e2X 0

0 2eXD , ~A1!

it can be shown, using the methods described in Ref. 8,

J5~1 1!E~PE!n21S pA

pB
D , ~A2!

and that

Yi[K u i expS 2X(
k51

n

ukD L
s

5~1 1!~EP!n2 iF~PE! i 21S pA

pB
D , ~A3!

where pA and pB are the probabilities, respectively, that
given prepolymer is either of typeA or typeB, and have the
valuesw and 12w. The functionYi ~the complete form of
which will not be shown in the interests of brevity! can be
calculated from

Yi5~1, 1!F 1

C1
L1

n2 iA11
1

C2
L2

n2 iA2G
3FF 1

C1
L1

i 21B11
1

C2
L2

i 21B2G S pA

pB
D , ~A4!

where

L1,25
1
2@pAAe2X1pBBeX6A~pAAe2X1pBBeX!224l#,

~A5!

ly-

r
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the plus sign referring toL1 and the minus sign toL2 . The
parametersC1 andC2 are defined by

Ci511
~pAAe2X2L i !

2

pABpBB
, i 51,2 ~A6!

while the matricesA1 , A2 , B1 , andB2 are given by

A15S 1 2f1*

2f1 f1f1*
D , A25S 1 2f2*

2f2 f2f2*
D ~A7!

B15S 1 2c1*

2c1 c1c1*
D , B25S 1 2c2*

2c2 c2c2*
D . ~A8!

The elements of these matrices are

f i5
~pAAe2X2L i !

pABe2X , i 51,2 ~A9!

f i* 5
~pAAe2X2L i !

pBAeX , i 51,2 ~A10!

c i5
~pAAe2X2L i !

pABeX , i 51,2 ~A11!

c i* 5
~pAAe2X2L i !

pBAe2X , i 51,2. ~A12!

In terms of the above results, the expressionsT1 , T2 , T3 ,
andT4 that appear in Sec. II C 2 are calculated from

T15(
i 51

n

Yi , ~A13!

T25 (
i 51

n21

(
j 5 i 11

n

Yi , ~A14!

and

T35 (
i 51

n21

(
j 5 i 11

n

Yj . ~A15!

The summations in these expressions can all be obta
analytically. The expression forT4 is somewhat more com
plicated. It is obtained from
ed

T45 (
i 51

n21

(
j 5 i 11

n

~1 1!F 1

C1
L1

n2 jA11
1

C2
L2

n2 jA2G
3FF 1

C1
L1

j 2 i 21B11
1

C2
L2

j 2 i 21B2G
3PF3F 1

C1
L1

i 21B11
1

C2
L2

i 21B2G S pA

pB
D . ~A16!

The summations in this expression can also be obtaine
closed form.
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