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In this paper we explore the conformational properties of randonB block copolymers with
semiflexible segments in a constant force field as a model of the behavior of biopolymers under
tension. The degree of semiflexibility of individual blocks, which is characterized by a persistence
lengthl, may range from values that correspond to complete flexibility of the block to values that
correspond to nearly complete rigidity. The distribution of blocks is described by a two-state
Markov process that generates the statistics governing the process of living polymerization in the
steady state. Force-extension curves for this model of the polymer are calculated as an average over
the chains conformationsvhich are described by a finitely extensible Gaussian mpdslwell as

over both quenched and annealed distributions of the sequentarmd B blocks along the chain
backbone. The results are sensitive to the nature of the sequence distribution: in the annealed case,
the force-extension curves are sigmoidal for essentially all values of the parameters that characterize
the conformational properties of theand B blocks and their statistical correlations, while in the
quenched case, the curves exhibit plateau regions that are reminiscent of various kinds of transitions
in proteins and DNA.

I. INTRODUCTION ondary structural elements by suitable choice of the

) ) ) parameters that control the conformational properties of the
Experimental techniques to apply carefully calibratedindividual blocks.

forces to isolated molecules have now made it possible t0  This idea forms the basis for the model developed re-
explorein vitro many of the mechanical events that in living cently by Buhot and Halperinto study the response of
systems govern the pathways of different biochemicalionolymers to stretching. Here, the polymer is represented
p.rocesseé*. The applied forces can vary in size from a few 55 g jinked chain of rods and coils arranged at random along
piconewtons to several hundreds of piconewtons, and cage hackbone. Two distinct sequence distributions are consid-
induce several different kinds of response, ranging from the,req: one where the randomness is quenched, and the other
simple disentanglement associated with the loss of entropigere it is annealed. The force-extension profiles for these
freedom to more complex transitions associated with the apy,o scenarios are found to be quite different; the quenched
pearance of morphologically distinct conformational phases.,se shows a pronounced change in slope, while the an-
~ Many of these responses can be understood in t€rms Qfeajed case is sigmoidal. The predictions are in qualitative
simple models of the macromolecdtespecially if the mu- agreement with certain experimental results, but they are

tual interactions betwee!w a small number of distinct_ Struc1argely derived from phenomenological considerations, and
tural elements are the principal controlling factors behind the;q 516 not easily justified microscopically.

observed behavidrlt is often adequate under such circum- We have recently formulated a similar model of

stances to represent the molgcgle as a random' conpected Bfopolymers® In our approach, the macromolecule is repre-
quence of two or more pointlike residues with different genteq as a random linked sequence of two different kinds of
strengths of interaction. These so-called rand@_an het_— _ “prepolymer,” A or B, which may span a range of different
eropolymer models have been very successful in identifyingjegrees of flexibility, from completely flexible to almost
many of the broad features of the _E%%Ing pathways ingompletely stiff. Each prepolymer, itself a chain of identical
biopolymers like proteins and polypeptidesBut, they also  yegiques, is modeled as an inextensible curve using the path
ignore many of the structural mo.tn‘s that are kn_own to '”ﬂu'integral formalism of SaftoTakahashi, and YunoRiWithin
ence certain kinds of conformational change in these mMOlgis anproach, and in the absence of excluded volume inter-
ecules.a-helices ands-sheets are just two such motifs, and ytigns and stretching forces, the mean size of the chain,
they can seldom be modeled successfully within the eX'St'”%veraged over the sequencefofind B prepolymers using a
formulations of A-B heteropolymers. However, somewhat yq_state Markov procesg,can be determined exactly as a
more faithful representations of biopolymers with secondary ,ction of the overall length of the heteropolymer, the rela-

structural elements can be developed along the same liN€$e amounts ofA to B components in the chain, and the
starting from randonblock copolymermodels. Block co- degree of stiffness of these components. ’

polymers, by virtue of containing subunits that are them- “rpis model is based on a well-defined microscopic
selves polymeric, can be made to mimic some of these Segyamjjtonian that is easily generalizefymally, to the case
where a nonzero forcé acts at either end of the polymer.
*Electronic mail: cherayil@ipc.iisc.ernet.in Unfortunately, the generalization no longer admits of an ex-




act analytical solution under the original constraint of finite =r(iN)=r((i—1)N) ®)
extensibility that must be imposed on the Hamiltonian. As
we show in this paper, an exact solution of the problem can =l —fi-1- (4)
still be derived if this constraint is relaxed. As mentioned in the Introduction, this model of the het-
The general features of the model are introduced in th%ropo|ymer is different from our earlier mO&éWthh was
fO||OWing section. The model is then applled to the Ca'CU'a'based on the approach of gait'ﬁakahashi, and Yuno?(i
tion of the mean square end-to-end distance of a randonsTY), and which used the set dangent vectors u(7)
block copolymer that is acted on by a force. The calculation=dr(7)/dr at the pointsr, and not the position vectorg )
involves an average over the conformational degrees of freehemselves, to define the trajectory of the continuum chain.
dom of the chain as well as over the sequence distribution oAlthough the STY approach can be implemented exactly to
A andB prepolymer segments. The sequence average is Cagalculate the mean square end-to-end distance of the random
ried out for both quenched and annealed randomness USimﬁgteropdymer wherf=0, the Corresponding calculations
the same two-state Markov process mentioned above, whicghenf=0, are highly nontrivial. The present model, defined
was introduced by Fredrickson, Milner, and Leibler in their by Eq (1), is an attempt to retain the basic structure of the
study of microphase ordering in block copolymers mélts. earlier approach without rendering it analytically intractable.
The calculation of the average size of the chain is complete¢h particular, we shall treat the constraint of inextensibility,
by enforcing the requirement of inextensibility. This is doneexpressed earlier by the requirement thatr)| =1 every-
approximately(but self-consistentlyusing a conformation- where, in an alternative self-consistent approximation to be
dependent spring constant to connect near-neighbor mongiscussed later.
mers along the chain. The results of the calculation are pre- |f the random block copolymer defined above contained
sented in Sec. lll, along with a discussion of theirjyst a singleflexibleblock, of, say, typed, the bond strength
implications. b, would be 3/2,, and the Hamiltonian of Eq1) would
reduce to the well-known Hamiltonian of the continuum
Gaussian chaift
1l. THEORY It proves convenient to eliminate the Kronecker deltas in
Eq. (1), and to rewriteH identically as

A. Definitions
n . n
In these calculations, the heteropolymer is modeled as a H=> AiJIN dri(r)2—f > R (5)
random block copolymer of “prepolymers” (to use the =1 J(-1N =1

terminology of Fredrickson, Milner, and Leiby of con-

tour lengthN. Each prepolymer is a semiflexible homopoly-

mer made up of eithef or B residues that is characterized ~ Ai=3(ba+bg)+3(ba—bg)6;, (6)

by a persistence length, or |5, and that is represented as —D.+D.6 7)
. . . . . i l 2 [

the continuum limit of a discrete set of coupled harmonic

oscillators with bond strengths, or bg . In this continuum  This is the form of the Hamiltonian that will be used in the

representatioftt the prepolymer is the locus of a curve de- subsequent calculations.

scribed by the set of distancegr). These distances are the

vectorial locations of the monomers that are imagined to lie

at the pointsr defining the backbone of the chain. The total B. End-to-end distance

contour length of the heteropolymerl, is denoted, so, in A useful measure of the radial dimensions of the poly-

general, the parametewaries from 0 toVl. Aconstant force o g piect to the forckis its mean square end-to-end dis-
f is assumed to act at either end of the chain. In units Wher?ance defined as

the thermal energkgT is 1, the Hamiltonian of this het-
eropolymer is given by

n
H = bAZL 50i‘1f

(i-1

where

(R=3, 3, ((R-R));

n-1 n

=2 (RD)s+22 2 (ReRY)s (B

iN
dTI"(T)2
)N

iN n
1)Nd7r(7) f Z‘l Ri. @ where the outer brackets, with subscsptienote the average

n
+ bBZ,l 84 —1 f
over the sequence &s andBs along the backbone, which

Here, 6; is a dichotomous random variable that is defined tomay either be quenchegubscriptg) or annealedsubscript
be +1 if the ith prepolymer is made up & residues, and

) , 4 : : a), while the inner brackets, without a subscript, denote the
that is defined to be-1 if theith prepolymer is made up of o\ arage over the conformational degrees of freedom alone.

B residues. The symbof(r) stands for the derivative g0 gistinct averages are defined, respectively, by
dr(7)/d7, while R; defines the end-to-end distance of the

prepolymer, and is given by

1
(0= PO 77y [ ptrex

iN
Ri:f(il)NdTr(T) @ xexp(—H[{6;},r(7)]), ©



 ZpPEODSDLr(n X exp(—HI{6i},r(1)])

where

X
WX S0 P01RU6]) ERL .
(10) 1= Z_Ai+_4Ai2 , (19
In these two equation is any sequence and conformation- N
dependent property of the chaip({6;}) is the probability = N i (20)
that the first prepolymer is of type,, the second is of type 444,
#,, and so on, an@({6;}) is the chain partition function, From these equations. one sees that
defined as g '
n n n
Q{eh)= J Dlr(n)]exp—HI{6}r(7)]). (11 (R)q=2, (01)s+22, 2, (O2)s, (21)

The symbolfD[r(7)] stands for the functional integral over 1 n non
the continuous conformations of the chain, while the sum  ((R?)),=-—=— E (QO )+ 22 2 (QOL)s|. (22
2y, stands for the sum over the values@f,6,,....0; . (Q)s|=1 =17

The functional integrals in Eq$9) and(10) that define  The sequence averages in E@) and(22) are calculated in
the average over chain conformations can be rewritten ifhe next section.
terms of ordinary integrals over a product of chain “propa-
gators” according to the general prescriptions outlined in, for

instance, Ref. 11. In this way, one can show that

f Dlr(7)]R;-Rje "

:Jdef dRz"'dei"'Jde"'Jan—l

Xf dRyRi-RjG(R1,N)---G¢(R;,N)- -

XG¢(Rj,N)---Gt(R,-1,N)G¢(R,,N), (12
where

r(kN)y=r

Gf<Rk,N>EJ < D]

r(k=1N)=ry_q

kN
xex;n(—Akj dri(m)?+fR,| (13
(k—1)N

Ak 3/2
:(m) GXK—AKRE/N"‘f’Rk)- (14

In the same way, the partition functigp can be reduced to
the following product of ordinary integrals:

Q({aib:l;[ J dRy G¢(Ry,N). (15)

From the definition of the propagator in E44), this expres-
sion for the partition function is easily evaluated as

. (16)

n
Q=ex+‘2N2 > 1/4A,
k=1

The simple Gaussian integrals in EQ.2) are also easily
carried out to produce

| Prrnize=qo,, i

f Dlr(n)]IR;-Rie "=Q0,, i#] (18

C. Sequence average

The average over the distribution 8f and B prepoly-
mers can be carried out once the functp({ 6;}) is speci-
fied. If one makes the Markovian assumption that the iden-
tity of the ith prepolymer in the chain is determined only by
the identity of the preceding prepolymer, then, as Fredrick-
son, Milner, and LeiblefFML) have showrt? the probabil-
ity of realizing a given sequence 8k andBs is determined,
in general, by a set of four conditional probabilitigg, , K,
L=A,B, wherepg, is the conditional probability of observ-
ing K given L. If one further assumes that this sequence
results from the process of living polymerization under
steady-state conditions, then tpg, can be related to the
mole fractionse and 1- ¢ that define the composition &
and B in the chain so generated. When combined with the
Markov condition, these two assumptions imply that only
two parameters are needed to fix the overall sequence distri-
bution in the chain: one ig itself, and the other may be
chosen to be the nontrivial eigenvalueof the matrix of
conditional probabilities. The conditional probabilitieg,
can now be expressed in terms of these parameters as

Paa=@(1—=N)+N, (23
Pee=¢(A—1)+1, (24)
Pas=1—Pes. (25)
Pea=1—Paa- (26)

The parametek, which lies between-1 and +1, controls

the degree of correlation betwe@randB prepolymers in the

chain; when\ — —1, the A and B prepolymers tend to suc-

ceed each other in alternation, when- + 1, theAs tend to

succeedAs, andBs tend to succeeBs, and, finally, when

A=0, As andBs follow each other entirely randomly.
From these considerations, one can show that

p({6i})6=2¢—1, (27)
161}



n
{;} PO} 60m= (20— 1)?+4p(1—\I'"M. (29 E:<exp(—xz ek)> , (35)
i k=1
S
Results for higher moments of the varialsleare also easily
determined. " n
T,=>, { 6ex —ka Ol ) - (36)
i=1 =1
S

1. Quenched disorder o ] .
Similarly, the second sum on the right-hand side of §)

For this case, referring to E¢21), and using EQ(27),  can be written in the form

one may verify that

. 2 2 ! > n (QO,) 1 n(n—1)a2f2N2—if2N2

Zl <®1>s:n[€0<RA>+(l_(P)<RB>]1 (29 <Q>si:1 iZi 2/s—g 4=
where(R3%) and (R3) are the mean-square end-to-end dis- X[aB(T+Ta)+B°T4], (37
tances of theth prepolymer averaged over the conforma- h
tions of the remaining—1 prepolymers when thigh pre- where
polymer is of typeA and when it is of typeB, respectively. n-1 n n
From the definitions of quenched and annealed averages in 1,— > < 0, exp( -xX> 0k)> ' (39)
Egs.(9) and(10), one can show that when a given prepoly- =1 j=i+1 k=1 s
mer is of adefinitetype (A or B), the sequence average over
the remainder of the chain yields the same factor of unity for n-1 . n n
both the quenched and annealed operations. TR, and Ts= = Z . 0; ex _Xk21 O] | (39
(R2) actually correspond to the dimensions of a homopoly- i - s
mer of lengthN as calculated from the Hamiltonian of Eq. o1 n N
(5) in whichn=1 and the variabl®; in Eq. (6) is assigned _ " B
the value+1 (for a chain ofA residueg or the value—1 (for Ta= 2‘1 i< 0:6; ex Xgl Ok S' (40

a chain ofB residues.

Returning to Eq(21), we have, similarly

C F2N?
=7 7.5 — — 2
2, & (O3 prpzpliDa (26~ 1D,
T4¢(1-¢)D3Sy], (30
with S; and$S, given by
n—-1 n 1
S22 2 =300, (31)
i=1 j=i+1
n—-1 n
= li-il= _ 5
> i=21j:i+1)\ 1—n|" 1_7\}- (32

2. Annealed disorder

The sequence averages in the express@®nd;, T,, Ts,
andT, as well as the associated summations are easily cal-
culated following the matrix methods described in detail in
our earlier paper, Ref. 8, which we do not repeat here. A
summary of the principal results of these calculatiomkich

are extremely lengthyis provided in the Appendix. Graphs
of the fractional extension of the heteropolymer as a func-
tion of different chain parameters are presented later, after
a discussion, in the next section, of the treatment of
inextensibility.

D. Inextensibility

In polymer models where the bonds between adjacent
residues act effectively like Hookean springs, the chain can

This case 1s ac_tuaIIy harder to treat than the case Ofy gyerched indefinitely when a constant force is applied to
guenched disorder, in contrast to most other related calculae—ither end. This produces, among other results, an unphysical
tions in condensed matter. Fortunately, it still admits an exac) olecular weight dependence of the mean-square end-to-end
result. Referring now to E¢22), the first sum on the right-  yiciance at large values of the forde2and seriously limits
hand side can be re-expressed as the model’s ability to treat problems in which the polymer is
n not unperturbed. However, without invoking the constraint

1 3 1
@Z <Q@1>s:§ naN+ 7 nf2N%(a?+ B?) lu(7)| =1, finite extensibility at all values of the force can be
si=1 ensured in Gaussian chains by making the spring depend
3 1 nonlinearly on the applied force in such a way that an effec-
el N,B( 1+3 af?N|Ty, (33 tively infinite force is required to stretch the chain beyond its
contour length. This is the principle used in the so-called
where finitely extensible nonlinear elasticFENE) models of a

D, D, 1 polymer!* and it is used here, in modified form to achieve

a= ﬁ B= ﬁ X= 1 BIN?, (34  the same ends. The idea is to replace the spring congtants

or bg in the present model by the following spring

and constant:?



3 1= (RD)o/(R)m
"2l 1-(RO)/(R)m
Here,(R?)o, (R%),, and(R?) denote the mean-square end-
to-end distances of thih prepolymer when it is, respec-

i=A,B. (41)

tively, unperturbed, fully stretched, and under the action of a

constant forcd. The rationale behind this definition of is
the following: when f—0, (R®)—(R?,, so bj—3/2;,
which is the “spring constant” for the Gaussian chain,
whereas wherf -, (R?)—(R?),,, so bj—=, implying
that an infinite force is required to extend the chain to its full

contour length. In this way, the chain segment cannot be

unphysically extended beyoridl
Equation(41) is now solved self-consistently fdiR?)
by calculating(R?) from the following Hamiltonian:

iN

Hi:bi de'(T)2+f'Ri . (42)
(i—1)N
The result is
2 3N 2
<Ri>:E[1+f N/6b;]. (43
i

Substituting the expression fdy; from Eg. (41) into Eq.
(43), and introducing the definitionse;=(R%)q/(R*)m
=NI;/N?=I;/N and z;=(R?)/(R?,=(R?/N?, one finds
that the mean-square end-to-end distance of ttihg@repoly-
mer under the forcé is obtained from the solution to the
following quadratic equation ig; :

2= (17 14— f2N2(1-7)
! — : 9(l—ai) v
i=A,B. (44)
From this equation, it is easily shown that
R?)1/2 9(1—a;
JZ—FL: +LT|;
N 2aif*N
4 1/2
x{l—\/1+§ai2f2N2” . (45)

The above expression f& is now used in Eq(41) to de-
termine the spring constabt

~ |2
3[V1+412£2/9-1]"

As is easily confirmed, the above result produbes>3/2;
asf—0, while bj—« asf—o,

A,B. (46)

Ill. RESULTS AND DISCUSSION

A. Homopolymer case

Before proceeding to a discussion of the behavior of the

random heteropolymer under the action of the fofceve

first consider the results for the case of a single homopoly-
mer to test the utility of the FENE approach against literature
data. As it happens, these results need not be derived sepa-

rately; they are already contained in E¢5) for the frac-
tional extension of théth prepolymer, which is nothing but a

o.sf B/

o

=
N
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0.2f

10 10 10
fA

FIG. 1. Fractional extensionz of a homopolymer as a function of the

dimensionless forcé A=fl/2 for different chain models. Curves 1 and 4

correspond to the Marko—Siggia and freely jointed chain models, respec-

tively. Curves 2 and 5 and the curve defined by the symbdturve 3 are

calculated from Eq.32) with, respectively,|/N=3.24x10°, 0.5, and

3.24x1073.

homopolymer of contour lengtN. N is essentially arbitrary,
and it is useful to let it be large, whilg is kept fixed. In this
limit, Eq. (45) simplifies to
<R2>1/2
N =

1/2

1+ ° 1 1+ 4 f212 4

2 f2| 2 9 ’ ( 7)
where we have omitted the subscripsince it is no longer
necessary to distinguish between #hend B prepolymers.
The above expression has two further interesting analytic

limits. Whenf— 0, the fractional extension becomes
RZ 1/2 1
(RY ~ —fl.
N 3

(48)

This result is identical to the smdllprediction of a highly
successful model of the elastic response of DNA to an ap-
plied force by Marko and Siggtausing an analytic interpo-
lation formula derived from a Kratky—Porod representation
of a semiflexible chain.
The second limit of interest correspondsfte>«; here,

Eq. (45) reduces to

}1/2

<R2>1/2 3
N T fl
This result may be compared with the lafgpredictions of
the above Marko—Siggi@MS) model, and another prediction
based on the freely jointed cha{#JO model® which are
given, respectively, by

(49

<R2>1/2 1 (50
N Zn )
<R2>1/2 1
N BT FJC. (51

Figure 1 shows the variation af'?=(R?)Y?N with the
logarithm of a dimensionless forceA=fl/2 for different



models of the chain. Curve 1 corresponds to the results of the 1
Marko—Siggia calculation, in which the contour lengtfand

the persistence lengtthave been estimated from experiment

to be 32.8um and 106 nm, respectively. This curve provides %8
an excellent fit to experimental measurements of DNA
stretching'® Curve 4 corresponds to the results of the FIC
model. Curves 2 and 5 and the curve defined by-thsigns
(curve 3 are derived from Eq45), in which the parameters =,
f, N andl have been grouped into the dimensionless combi-
nationsfA and I/N. In curve 3,I/N is assigned the value
3.24x 10 2 based on the estimates foandN determined by
Marko and Siggid® As is clear, with this assignment for g,
[/N, our model reproduces the smélimit of the MS model
(and hence of the experimental datmewhat poorly. In
curve 2,1/N is arbitrarily assigned the value 3.240°, 0 - - L

which significantly improves the agreement with the MS 10 10 1foN 10

model. In all subsequent calculations involving the het-FIG > Eractional exteni torce for th hed random het |
. . . . 2. Fractional extension vs force for the quenched random heteropoly-
eropolymer, this value fo/N will be aSSIQned to one of the mer at different values of the correlation parameteihe curves are cal-

components of the copolymer. Curve 5 shows the results ofyjated from Eqs(21), (29), (30), and(45) at theX values of 0.0(curve 2,
yet another choice fdiN, in this case the choice 0.5, which 0.8 (curve 3, and 0.99(curve 4 at fixed values of (50), ¢ (0.5), [5/N

makes the polymer relatively stiff to begin with, even in the (0.99, andlg /N (3.24x10°%). Curve 1 is the corresponding result for a
absence of the force homopolymer of contour lengthl, obtained from the heteropolymer results

: - . by settingl o /N=15/N=3.24x10"5.
The results depicted in Fig. 1 do indeed demonstrate that o oA ?

our FENE approximation provides a useful approach to the
behavior of semiflexible polymers under tension. We nowm ,/N=15/N=3.24x10 . The notable feature of curves

0.6

10

turn to a discussion of the heteropolymer case. 2-4 is, of course, the appearance of a plateau region for
certain values of the force. Numerous experiments and simu-
B. Heteropolymer case lations on polypeptides and polynucleotides have revealed
similar plateaus! and they have been generally ascribed to
1. Quenched disorder the existence of transitions between distinct conformational
Equations(29), (30), and (45), when used in Eq(21), ~ substates of the polymer.
determine the force-extension behavior of the randoaB In Fig. 3, the stages by which the plateau develops are

block copolymer as a function of the following parameters:More clearly seen. Here,"? is plotted against the logarithm

(i) the number of prepolymens in the chain(which is kept of fN at the following fixed values of,/N: 3.24x10°°
fixed); (i) the contour lengtiN in a given prepolymetas- ~ (curve D, 0.001(curve 3, 0.01(curve 3, and 0.5(curve 4
sumed to be the same for bothandB and also kept fixed &t fixedn (50), ¢ (0.9), Ig/N (3.24x 10°°) andA(0.0.. So,
(iii ) the fractiong of A in the polymer;(iv) the persistence
lengthsl , andlg of the two prepolymers; an@/) the degree
of statistical correlatiorh betweenA andB along the chain
backbone. The nature of this behavior is best illustrated
graphically. oaf
Figure 2 is a plot of the fractional extension'?
=((R?)3IM vs the forcefN for the following fixed values
of the parametei: 0.0 (curve 2, 0.8 (curve 3, and 0.99 o6}
(curve 9. In each of these curves, the parameters, | 5 /N, s
andlg/N are kept fixed at these respective values: 50, 0.5, "
0.99, and 3.2410 °. Curves 2—4 therefore describe the  o4f
behavior of a moderately long copolymer with roughly equal
amounts ofA andB in which theA prepolymer is quite stiff
(N/1,~1), theB prepolymer is very flexibleN/lIz>1) and
the arrangement ok andB becomes increasingly random in
the direction of decreasing. (A can also assume negative
values, withA=—1 corresponding to an arrangement in N 10° 10
which A andB alternate with each other in perfect regularity.
The force-extension curves for a chain with<0 at the FIG. 3. Fractional extension vs force for the quenched random heteropoly-
above values of,, ¢, |,/N, andlg/N are almost indistin- mer at different values of the degree of stiffnégéN of one of the copoly-
uishable from curve 2, and are therefore not shp@nirve mer components. The curves are c?;culated from E2f8, (29), (30), and
g . ; (45) at thel,/N values of 3.24 10 ° (curve 1, 0.001 (curve 2, 0.01
1 is the force-extension curve for a homopolymer of contourcyrve 3, and 0.5(curve 4 at fixed values o (50), ¢ (0.5), I5/N (3.24
lengthM, obtained from the heteropolymer results by settingx10-°), andx (0.0.

02p

10* 10° 10
fN
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FIG. 4. Fractional extension vs force for the quenched random heteropolyFIG. 5. Fractional extension vs force for the annealed random heteropoly-
mer at different values of the fractiop of one of the copolymer compo- mer at different values of the correlation parameteihe curves are cal-
nents. The curves are calculated from EG9), (29), (30), and(45) at theep culated from Eqs(22), (33), (37) and results from the Appendix at the
values of 0.2(curve 2, 0.4 (curve 3, 0.6 (curve 4, and 0.8(curve 5 at values of 0.0(curve 2, 0.8 (curve 3, and 0.99(curve 4 at fixed values of
fixed values of (50), | ,/N (0.99, |5 /N (3.24<1075), andx (0.6). Curve n (50), ¢ (0.5), 1,/N (0.99, andlg/N (3.24x107%). Curve 1 is the corre-

1 refers to the homopolymer of contour lendh obtained from the het-  sponding result for a homopolymer of contour lenythobtained from the
eropolymer results by settig /N=15/N=3.24x 105, heteropolymer results by settitig/N=1g5/N=3.24X 10" 5.

the curves describe a completely random copolymer witlFig. 5, which contrasts with the steplike behavior of the
equal amounts oA andB in which one component is flexible curves in Fig. 2, is in qualitative agreement with the trends
and the other becomes increasingly stiff in the right to leftohserved in the more phenomenological model of Buhot and
direction. The increase of stiffness in one component thereralperin, and may be the result of equilibrium between con-
fore tends to produce greater chain extension for a giveformational intermediates that could otherwise have formed
force, but thereafter, as the force continues to increase, thf the absence of annealing. Figure 5 also suggests that the
further increase in chain extension is less for those Chalnﬁeg||g|b|e dependence f/2 on\a may have a similar origin_
with the more rigid component. Figure 6 shows the variation af*’? with fN at 4 fixed
Figure 4 is a plot ofz"? againstfN for the following  values ofl ,/N: 3.24x 1075 (curve 1, 0.001(curve 2, 0.01
fixed values of the parameter 0.2 (curve 2, 0.4(curve 3,  (curve 3, and 0.5(curve 4 at constant values afi (50),
0.6 (curve 4, and 0.8(curve 3 at fixedn (50), [a/N (0.99, ¢ (0.5), Ig/N (3.24x107%) and A (0.0). The curves here

lg/N (3.24<107°) and \ (0.6). So, the curves describe a represent the annealed analogs of the curves in Fig. 3.
moderately “blocky” copolymer As tend to followAs, on

average, an@s tend to followBs) in which one component
is flexible and the other relatively stiff, and the proportion of 1
stiff to flexible increases from curves 2 to 4. Curve 1 corre-
sponds to a homopolymer of contour length obtained

from the heteropolymer results by setting /N=Ig/N o8
=3.24x 10 °. (Had the persistence length of the homopoly-
mer corresponded to a stiff chain, the resulting curve would
have been essentially a straight throwji=1 for all fN.)

0.6}
;N
2. Annealed disorder o4t

When the distribution ofA andB along the heteropoly-
mer corresponds to annealed disorder, the force-extensiol
curves are calculated from E2) using Eqs(33) and(37) 02r
and the results given in the Appendix. Figure 5 is a plot of
the fractional extension*?=((R?))Y?M vs the forcefN for
3 values of\: 0.0 (curve 2, 0.8(curve 3, and 0.99curve 4
at fixed values ofn (50), ¢ (0.5, I5/N (0.99 andIg/N
(3.24x 10 °.) For these parameter values, the curves in FigFIG. 6. Fractional extension vs force for the annealed random heteropoly-
5 represent the annealed analogs of the curves in Fig. 2ner at different values of the degree of stiffnég$N of one of the copoly-

mer components. The curves are calculated from E283, (33), (37), and
Curve 1 corresponds to a homopolymer of contour legth results from the Appendix at tHg /N values of 3.24 10~ ° (curve 9, 0.001

obtained from the heteropolymer results by settindN  (curve 2, 0.01(curve 3, and 0.5(curve 4 at fixed values of (50), ¢ (0.5),
=|g/N=3.24x 10 °. The sigmoidal nature of the curves in I5/N (3.24<10°5), andx (0.0).

0



nealed cases, with=>50, ¢=0.5,A=0.0,1,/N=0.01, and
lg/N=3.24x10"°. Curve 1 corresponds to a homopolymer
of contour lengthM, obtained from the heteropolymer results
by settingl ,/N=15/N=3.24x10"°.

In summary, then, the stretching of random block het-
eropolymers under quenched and annealed averaging leads
to distinct force-extension curves. The results for the
quenched case suggest that as a chain unfolds under the ac-
tion of increasingly large forcei@ventually reaching full ex-
tension, it may pass through apparently distinct conforma-
tional intermediates. The effect depends in detail on the
statistical features of the heteropolymer, but is qualitatively
the same for all such polymers. The results for the annealed
case provide no evidence for the existence of similar confor-
10° mational transitions; all annealed heteropolymers respond to

the applied force in essentially the same way as a homopoly-
FIG. 7. Fractional extension vs force for the annealed random heteropolyMer of comparable size.

mer at different values of the fractiop of one of the copolymer compo-

nents. The curves are calculated from E@®), (33), (37), and results from  ACKNOWLEDGMENT

the Appendix at thep values of 0.2curve 2, 0.4 (curve 3, 0.6 (curve 9,

and 0.8(curve 5 at fixed values ofn (50), I,/N (0.99, Ig/N (3.24 One of the authoréP.D) gratefully acknowledges finan-
X107°), and\ (0.6). Curve 1 refers to the homopolymer of contour length cial support from the Council of Scientific and Industrial
M, obgained from the heteropolymer results by setlipgN=15/N=3.24 Research, India.

xX10°.

APPENDIX: PRINCIPAL FORMULAS FOR THE
] ) ] CALCULATION OF ANNEALED AVERAGES
Figure 7 is a plot o2 vs fN at 4 fixed values ofp: 0.2

(curve 2, 0.4 (curve 3, 0.6 (curve 4, and 0.8(curve 5 at Referring_to the equations in Sec. Il @), and introduc-

constanh (50), 1 ,/N (0.99, 15/N (3.24x 10°5) and (0.6). N9 the following matrices:

The curves here represent the annealed analogs of the curves Paan  Pag e X 0

in Fig. 4. Curve 1 corresponds to a homopolymer of contour P=( ) =( 0 )

lengthM, obtained from the heteropolymer results by setting

In/N=1g/N=3.24<10°. e X 0
Finally, Fig. 8 provides a comparison, in the same graph, F—( 0 ) ;

of z*2 vs N for the annealed, quenched, and homopolymer

results for one representative set of parameter values. Curvéiscan be shown, using the methods described in Ref. 8, that

Psa Pss €

_ X (A1)

2 and 3 correspond, respectively, to the quenched and an- P
E=(1 1)E(PE)“1( ok (A2)
Ps
1 and that
n
N YiE< 0, exp( —xgl 0k)>
S
=(1 1)(EP)""'F(PE)' ! pA) (A3)
o} Ps/’
'g'n where p, and pg are the probabilities, respectively, that a

given prepolymer is either of typ& or typeB, and have the
valuesg and 1—- ¢. The functionY; (the complete form of
which will not be shown in the interests of brevitgan be
calculated from

04

0.2

1
C

1

XF c,

ATIB+ —AL B, , (A4)

1 . 1 .
Yi:(l, 1)|:C_1A2 IA1+ C_zAg IA2
Pa

FIG. 8. Comparison of fractional extension vs force for a homopolymer Ps
(curve ) and quenched and annealed heteropolyrfars/es 2 and B For
the heteropolymersp=50, ¢=0.5,\=0.0, |,/N=0.01, andlz/N=3.24 where
X 1075, The homopolymer of contour lengii, is obtained from the het- 1 _x X — 7
eropolymer withl , /N=15/N=3.24x 10"°, and withn, ¢, andx set to the Ayo=3[pane” "+ Pppe€” = V(pane X+ pgge®)?—4n],
above values. (A5)




the plus sign referring td ; and the minus sign td.,. The
parameter$; andC, are defined by

N (Pane "= A))?

Ci=1 , i=1,2 (AB)
PasPBB
while the matriced\,, A,, B;, andB, are given by
1 —¢7 1 —¢;
A1: * | A2: * (A?)
—¢1 P17 —¢s D3
( 1 =y ) ( 1 = )
B,= , By= . (A8)
S PR Y A e Y/
The elements of these matrices are
(Pane *=Ay)
=, =12 A9
b= s (A9)
(Pane *=Ay)
PO =12 Al10
¢| pBAeX ( )
(Pane *—A)
=_—— =12 All
'JII pABeX ( )
(Pane *—A)
e — o i=1,2. Al2
i pBAe X ( )

In terms of the above results, the expressidps T,, Tg,
andT, that appear in Sec. IIC 2 are calculated from

=2, Vi, (A13)
i=1
n—-1 n

T,=> X Y, (A14)
i=1 j=i+1

and

n—-1 n

T=2 > Y (A15)
i=1 j=i+1

The summations in these expressions can all be obtainedﬁ
analytically. The expression fdfF, is somewhat more com-

plicated. It is obtained from

n-1 n

1 . 1 .
T,=2> > (1 1)[—A2'A1+—A2’A2}
E S C, C,

1 i 1 i1
XF C_lAl Bl+C_2A2 BZ
1 . 1 P
XPFX|—A"1B, + — AL (A.
PRX| &AL Bt AL By | (A16)

The summations in this expression can also be obtained in
closed form.
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