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ABSTRACT. In this paper, we study the semifree Z     actions on homo-m
topy sphere pairs. We show that in some cases the equivariant normal bun-
dle to the fixed point set is equivariantly stably trivial. We compute the rank
of the torsion free part of the group of semifree actions on homotopy sphere
pairs in some cases. We also show that there exist infinitely many semifree
Z.    actions on even dimensional homotopy sphere pairs.

0. Introduction. Let G be a compact Lie group. A differentiable group
action of G on a differentiable manifold M" is a homomorphism ip: G —»
Diff (M), where Diff (M) is the group of diffeomorphisms of M. Let F    be the
submanifold of fixed points. A group action is semifree if the only isotropy
subgroups are the trivial subgroup and the group itself. Under these restric-
tions, the action is linear in some neighborhood of F   in M    in the sense
that there is an equivariant vector bundle v normal to F    in M" such that
the action restricts on each fiber of v to a linear automorphism. In this pa-
per, we are only interested in the differentiable semifree actions on homotopy
sphere pairs, namely, the actions on homotopy spheres such that the fixed
point sets are homotopy spheres. The action G = S    defines a complex struc-
ture on v (the action on  v is just that induced by the complex multiplication).
In [2], Browder proved that for a semifree S    action on a homotopy sphere
pair, the normal bundle of the fixed point set is stably trivial as a complex
vector bundle. The first question which interests us is the following:

Problem 1. Is it true that the equivariant normal bundle to the fixed point

set of a semifree Z    action on a homotopy sphere pair is equivariantly stably
trivial?

If G = S   or Zm, it is known (see [2], [6]) that there are infinitely many
semifree G actions on odd dimensional homotopy sphere pairs. As to semi-
free S    actions on even dimensional homotopy sphere pairs, there are only
finitely many [3J.-
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322 KAI WANG

Problem 2. Is it ture that there are only finitely many semifree actions

of Z     on even dimensional homotopy sphere pairs?

There is a natural group structure on the set of semifree actions on the
homotopy sphere pairs with the same local representation. The classification
scheme has been given by Browder and Pétrie [3] and Rothenberg ui. Through
use of this scheme the rank of the torsion free part of the group of semifree
S    actions (Z2 actions, respectively) on homotopy sphere pairs has been
computed in [3].

Problem 3. Calculate the rank of the torsion free part of the group of
semifree Z    actions on homotopy sphere pairs.

It turns out that these three problems are related by the exact sequence
of Rothenberg (see §1). We show that if m £ 0 (mod 4), then, at least for a
large family of Zm actions on homotopy sphere pairs, the answer to Problem
1 is positive. This, in turn, yields solutions to Problems 2 and 3. As for the
case m = 0 (mod 4), the answers to Problems 1 and 2 are, in general, nega-
tive; but we still are able to solve Problem 3, at least for a large family of

groups of Zm actions on homotopy sphere pairs.   These solutions are the
main results of this paper.

This paper is organized as follows: In §1, we describe the geometric
situation, and we quote the results of Browder, Pétrie, and Rothenberg. In

§2, we will show how to compute the determinant of some matrices that oc-
cur in the G-signature formula. In §3, we study the functions $¿(0) which
occur as coefficients in the G-signature formula. In §4, we prove our main
results.

I would like to thank Professor R. Schultz for providing me the estima-
tion of when det 0f 4- 0 [8], the referee for several valuable suggestions, and
Professor N. D. Kazarinoff for reading the manuscript.

1. Known results. Let G be a compact Lie group. A G-manifold M" is
a manifold with a fixed G action on it. Let F    be the submanifold of fixed

.... kpoints. The action is semifree if it acts freely on the complement of F . Let
v be the G-equivariant normal bundle to F    in M". The action on each fiber
of v is linear and represents an (n — £)-dimensional representation p of G.
The conjugacy class of this representation is constant on the connected
component of F . We always assume that F    is simply-connected. Let
C(G, p) be the centralizer of p{G) in 0(n - k). Then there is a reduction of
the structural group of the bundle v from  0(n — k) to C(G, p), and this in
turn induces a reduction of the group of TM|F    to the connected component
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SEMIFREE ACTIONS ON HOMOTOPY SPHERES 323

of the identity of CÍG, p) x Oik). Note that if F    is simply-connected, such
a reduction always exists. A (G, p)-manifold Al" is a G-manifold such that
the local representation is equivalent to p and which is furnished with a
specific reduction of the group of TAl|F    to the identity component of CiG,p)
x Oik).  Two (G, p)-manifolds Al", Nn are equivalent if there is a G-equivari-
ant diffeomorphism /: Al" —• Nn which preserves the (G, p)-orientation. On
the set of equivalence classes of (G, p)-manifolds we can define a (G, p)-
oriented connected sum in a manner formally the same as that for the ordinary
oriented connected sum. With this in mind, let S"(G, p) be the set of equiv-
alence classes of semifree (G, p)-manifolds Al" such that Al" and F    are
homotopy spheres.

Proposition 1.1 [6\  For k > 1, S"(G, p) under the (G, p)-oriented con-
nected sum is an abelian group.

Let aj  and «2 represent elements of S"(G,p). We say aj is A-cobord-
ant to a2 if there is a semifree (G, pVmanifold W"      which is homotopy
equivalent to S" x [O, l] and F(G; W) is homotopy equivalent to S* x [O, l]
in such a way that d.W (z = 1, 2) as a (G, p)-manifold is equivalent to a¿.
Let Cn(G, p) be the set of A-cobordism classes of S"(G, p). It is routine to
check that the (G, p)-oriented connected sum preserves Ä-cobordisms, and
hence C"(G, p) is a quotient group of S"(G, p). An element of $"(G, p) is
an equivalence class of objects, where an object is

(a) a (G, p)-oriented homotopy sphere 2",
(b) a (G, pVoriented imbedding xfi: Sk x Rn~k — 2"

such that G acts freely on 2" - ipiSk x 0) and G acts on Sk x R"~k by
g(x, y)= ix, pig)y). An equivalence of two objects (2", ^j), (2", ip2) is an
equivariant diffeomorphism d: 2" —» 2" that preserves the (G, pVorientation
and such that ^2 = yj^ • a*. iRra(C7, p) is a group under the (G, p)-oriented con-
nected sum. Let b. (i = 1, 2) represent an element of 5\"(G, p). We say b.
is A-cobordant to i>2 is there is a (G, p)-manifold W"      which is homotopy
equivalent to Sn x [O, l] and a (G, pVoriented imbedding if>: Sk x [0, l] x
Rn-k _ uyn+1 such that G acts freely on w«+l _ 0(S* x [0> !] x o) and G
acts on Sk x [O, l] x Rn~    by g(x, r, y) = (x, t, pig)y) in such a way that

<9.W"+1 (z = 1, 2) as an element of %niG, p) is equivalent to hf Let ÍR"(G, p)
be the set of A-cobordism classes of %"ÍG, p). It is easy to check that
5\"(G, p) is a group under the (G, p)-oriented connected sum. There is a map
(ú: %niG, p) -» Ç"iG, p) defined in the obvious way. Let y: (?"(G, p) -» TA
+ 7T¡t_y\CÍG, p)) be defined as follows. Since the elements of n¿_ j(C(G, p))
classify the equivariant bundles over S , the map y assigns to each element
in C"(G, p) its fixed point set and the equivariant normal bundle.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



324 KAI WANG

Theorem 1.2 (Rothenberg [5]).  The following sequence

-íR"(g, p) -^ etc, p) JL rk + nk_ j(c(g, p)) M %"- Kg, p)-
z's exact, where the map p z's defined in [5].

Theorem 1.3 (Rothenberg). (i) // 72 z's even,

iRn(G, p)®CsR        © 77.    ,(0{n - k)) ® C,

where R       C C[Z   1 //?e complex group ring, is the subspace generated by

\g{ + (-l)V«-'"i (:""= 1, 2.[m/2]); and
(ii) p®C = A©i/f®C, where p z's z/>e map z« Theorem 1.2, 3«^ i^:

77,    .(C(Z   , p)) —» 77, _ j(0(« - &)) is the map induced by the inclusion with
A defined as follows.  For f: S        —» C(Z   , p), let rj be the vector bundle
over S    with   f as characteristic map.  Let Z    act on rj via p.   Then A(/)
= 2?. cr[S(r)), g^g1, where o is the Atiyah-Singer invariant [l].

These results were also proved by Browder and Pétrie (which were an-
nounced in [3]) in the special case where the equivariant normal bundles are
equivariantly trivial. The general case appeared in unpublished work of

Rothenberg.
Remark 1.4. The rank Rn m, which has been computed in [7], is given

as follows:

(m - l)/2    if m is odd,
rank R       = I m/2 if m is even and 72 is even,

n,m       I
(772 - 2)/2    if m is even and n is odd.

2. Computation of determinants. In this section we show how to compute

the determinants of some matrices which will be useful in §3.
Let m > 2 and  x be positive integers such that (x, 77z) = 1, We define

am(x) by 0 < am(x) < 772/2 and am(x) ± x = 0 (mod 772) if m ¿ 0 (mod 4), and
0 < a   (x) < ml4 and amix)± x = 0 (mod 772/2) if m = 0 (mod 4). It is easy
to see that  a (x) is well defined. Let

!\k\0 <k< m/2 and (k, m) = 11 if 772 4 0    (mod 4),
\k\Q <k< m/4 and (k, m) = li if m = 0    (mod 4).

Proposition 2.1. A(r7z) z's an abelian group with multiplication x o y =

ajxy).

Proof. Note that  (m, m - l) = 1. If m 4 0 (mod 4), A(zn) with the multi-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SEMIFREE ACTIONS ON HOMOTOPY SPHERES 325

plication a   (xy) may be identified in the obvious way with Z*/Í1, m — l|,

where Zx  is the group of units of Zm% If m = 0 (mod 4), it is easy to see
that im, m/2 - l) = im, m/2 + l) = 1. Aim) with the multiplication am(xy)
may be identified with Z^/jl, m/2 - 1, m/2 + 1, m - lj. In either case, am:
Zx —» Aim) is the projection map. D

By the fundamental theorem of finite abelian groups, there exist cyclic
subgroups A.(m) (j = 1,..., s) of Aim) such that Aim) is a direct product
II?. A.On). Let e. e A.(m) be generators that are fixed once and for all. Let
t. be the order of A.im). For each x e A(»z), there are well defined <¿,(x) e
Z.   such that x = a  (II?  , e.1     ). The following lemma is obvious.tj m     j = l   ) °

Lemma 2.2. For x, y £ Aim), <p.iamixy)) = <pix) + <p.iy) (mod /;.).

Let r be a positive integer, which will be fixed throughout this section;

and let x be a positive integer such that (x, m) = 1. We define 8mix) as

follows:
Case i. m £ 0 (mod 4),

( 0 (mod 2)    if x - \x/m\m < m/2,
om(x) = i

( r (mod 2)    otherwise.

Case ii. m = 0 (mod 4),

0 (mod 2) if 0 < x - [x/m]m < m/4,

r - 1 (mod 2) if m/4 < x - [x/m]m < m/2,

1 (mod 2) if m/2 < x - [x/m]m < lm/4,

r        (mod 2) if 3m/4 < x - \x/m\m < m.

8 (x)

From now on, in order to simplify notation, we shall write A = Aim),

a(x) = a   (x), etc., when m is understood.m

Lemma 2.3. For positive integers a, b such that (a, m) = ib, m) = 1,

Siaaib)) = 8iab) + Sib) (mod 2).

Proof. Case i. m é 0 (mod 4). Observe that a(x) = x or -x (mod m) ac-

cording as Six) = 0 (mod 2), or r (mod 2), respectively. Thus aa(2>) = ab or

-aè (mod w) according as 8ib) = 0 (mod 2) or r (mod 2), respectively. The
lemma is now clear.

Case ii. m = 0 (mod 4). The same method applies in this case. D
Let IA -j, j = 1,...,/, be the maximal family of factors of A = Ils=jA.

that have the property that either t. 4 0 (mod 4) or 8(e.') m 0 (mod 2). Let

A   = nj=1 A.. We will define a map tp: A   —» Z4 as follows: For ; ■ 1,...,
r, let ifrie.) be a solution, which will be fixed once and for all, of
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<2-4) t.i¡j(e)^2b\e.i)    (mod 4).

Then define

(2.5) 0(a(e*)) h ki/¿e}) + 2b\ep    (mod 4).

Lemma 2.6. t/r: A. —» Z4 z's w/e// defined.

Proof. Since a(e^    ) = a(e* ),

0(a(t?'.'+*)) » (i + z-.)^(e.) + 28(e/+*)   (mod 4),

*«#«•■) + 26teV) + 2Ä«!/+ )    (mod 4)
by (2.4),

/..

by Lemma 2.3,

= kifi(e.) + 2SU*a(ej.y))   (mod 4)

= A«¿(e ) + 28(e*)   (mod 4),

= ip(a(e*))   (mod 4),

as required. D
For x e A*, x = a(I]'=jX.), x. e A.. Define

(2.7) 0W h ¿ #*y) + 28 ( fi */]     <m°d 4)-

It is obvious that ifj; h   —* Z^ is well defined.

Lemma 2.8. For j = 1,..., /,

ifj(a(ep + «)) = 0(aUp) + i¡>(a(e¿)) + 2«5(a(eJ)a(.*))    (mod 4).

Proof. By (2.5),

xfj(a(ep*«)) m (p + ?)0(ey) + 2ôXe? + 9)    (mod 4),

0(a(e?)) = p(/»(e.) + 28(ep)    (mod 4),

i>(a(e?)) = #(*.) + 2S(e?)   (mod 4).

Therefore
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ipiaieP.*«)) - (0(a(e*)) + #a(e«))) = 28(eJ) 4- 2S(e«) + 25(ef + «)    (mod 4),

= 25(ep + 2fi(ef a(e«))    (mod 4)

by Lemma 2.3,

2Sia(ep)a(eJ))    (mod 4)

by Lemma 2.3 again, as required. □

Proposition 2.9. For x, y e A*, ^(a(xy)) = ^(x) + xjjiy) + 28ixy) (mod 4).

Proof. Let x = aOlj^Xy), y = a(nj=jy;.). Then

i
^(a(xy)) = i£  a   II V;

V=1

■ ¿ <A(a(x .y.)) + 25( fl a(x .y.)j    (mod 4)
7 = 1 V=l /

by (2.7),

- Z (#*y) + 0(yy) + 2Äx .y.)) + 2s( n a^Vp)    (mod 4)

by Lemma 2.8; while

0(x) + xpiy) = £ (0Uy) + 0Cy;-)) + 2S( u *J + 25Í u yj    (mod 4).

Consequently,

0(a(xy)) - (0(x) + tpiy))

= 2 ¿ Six .y.) + 2SÍ fi <*(*/;>) + 2SÍ fl *y) + 2s( fl >,)    (mod 4).
By Lemma 2.3,

25   u a<V7->) = 25(  u ^(x;yy)a(xjyj)

= 25 ((x jy j u a(x .y.)) + 5(x ̂  j))    (mod 4);
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and by successive applications of Lemma 2.3,

■ 25Í fj x.y.J + 2 ¿ 5(x.y.)    (mod 4).

Thus

0(a(xy)) - (<p(x) + tf,(y)) = 2sl fj *y) + 2SÍ {\ y\ + 2ôï {\ x.yy)    (mod 4),

= 251n*j+Àu*Ànyjl (m°d4)

by Lemma 2.3,

■ •»Wn^Wnyyj) ̂d4)
by Lemma 2.3 again,

■23Uy),

as required. D

Theorem 2.10. For each p e A  , let a    be any complex number corre-
sponding to p, then

*>«-«8<"Wm.»-* n (z «Wn*ÍW*
i,eA*\9eA* \/=l

where co. is a primitive t.th root of unity.

Proof. Let Ah) be defined by the equation a(hr(h)) = 1. Regard the
a 's as in determinants, and let

A-U-1J fla(W*.*eA*,fc,.l-

Fix p £ A*, and add ¿^(n^ta*/^^) times the ath column to the first
column. Then
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qe\* \,= 1 /

329

he\*

We now compute

ge A* \, = i

f T7 JjlPrtjMWi n «
V-i   ' /VeA*

_ ,-</<»■(*)),

*- W VA,Hl^)'''(,)) is a factor of detU-D^a^^..
It is easy to see that, in general, for p  4 p,

9^A* \, = i J     qeA* \y=i
Thus

detU-l)8****« )
UCCU   X' aa{hk)>h,keA* ..   ,    «.    -a

peA*\«eA*
- n  z v0(?) nÍ»      <p.(p)<p,(q)

CÚ 1       1

u»l
for some constant c, which is easily seen to be  ±1. D

Let Im (x + z'y) = y, where x and y are real.

Proposition 2.11. Suppose for all q eA  , /Ae a    are real. Then if peA*,

qeA* \; = 1 /

=   2   (aq. (. i)*^)^4i ¿*> n „v'^AY
9 6A*;9<r(9) \     \ /•] JJ
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Proof. Let A(q) = z^>lT;.= 1 af^^'^jad let A(q) be the complex
conjugate of A(q). It is easy to check that A(q) = (-l)^-q>>A(r(q)). Thus

Z   %A(q)-   Z    \A(q)
qeA* qe\*

-    Z    V(i)+    2:    «r(iy4(r(?))
<?<?"(<?) 3 <?"(«)

_    ^   (-l)^^A(r(?))-    £   (-D^a^M?)
9<T(.q) q<r(q)

=    E    fl9(A(a)-(-l)^)A(r(a)))-(-l)^«))
q<T(q)

■     £    aTiq)(A(q)-(-ï)W«»A(r(q)))
q<r(q)

=    Z    (aq-(-l)^«\(q))(A(q)-Alq))-    O
9<r(«)

Remark 2.12. If r is even, then 5(x) = 0 (mod 2) for all x e A. Hence
A* = A, and ip(x) = 0 for all xeA.

Remark 2.13» If 772 is an odd prime, then A is cyclic.
Remark 2.14. If A is cyclic and r is even, then

det(W*.*eA=±n(èvA
Í>=1\9=1 /

where A = |A|  and 0 is a primitive Ath root of unity.
The following example shows the necessity of restricting the definition

of fp to A*.
Example 2.15. If 772 = 17 and r is odd, there exists no map ip: A —» Z.

such that Proposition 2.9 holds.
Proof. Suppose there were tfi: A —* Z^ such that Proposition 2.9 holds.

Let e € A be a generator, then

£  ip(a(xe)) =  £ tfj(x) + 80(e) + 2^  ôtxe)    (mod4).
xeA xeA xeA

Consequently,

£ bXxe) = 0    (mod 2).
xeA
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But

7 7
£ 8(xe) = £ 8iaie')e) = £ (5(e' + 1) + 5(e')) = Sie8)    (mod 2).

xeA i=0 <=0

Thus 5(e ) = 0 (mod 2). It can be easily checked that if e is a generator of
A, e8 =-1 (mod 17). Hence Sie8) = 1 (mod 2). This contradiction demon-
strates the nonexistence of if). □

3. Coefficients in the G-signature formula. Let the functions $¿(0), 0 £
[0, n], be defined by the equation

^(^pyw c, + decomposable terms,

where c,  is the &th Chern class.

Lemma 3*1«

(i) $2r_ .(*) = (- Dr—-Í-— P(cos 2 0),
sin2'-^

(Ü) O2r(ö) = (-ir+1-S£il0(cos2ö),
sin2r0

where P and Q are some polynomials with nonnegative coefficients.

Proof. By a result of F. Hirzebruch [4],

~¿ > dz \tanh(U + id)/2)}

- 1 + z csch(z + id).

The lemma can now be proved easily by induction.

The following corollaries follow easily by elementary calculations.

Corollary 3.2. (i) 4/t7- 0) = (-l)r-'4/0),
(ii) 4/tt + 0) = -4/0),
(iii) 4/2t7-0)=(-1)'4(0).

Corollary 3.3. (i) 4.,(0) is monotonie increasing on [O, 77];

(ii) 44£+j(0)z z's monotonie decreasing on [O, 77/2], and monotonie in-
creasing on [77/2, 77];

(iii) 44/fe+2(0) is monotonie decreasing on [O, 77];
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(iv) í^t+j^z' zs monotonie increasing on [O, 77/2], and monotonie de-

creasing on [it/2, 77];

(v) |$ (0)|  z's monotonie decreasing on [O, 77/2] aTza" monotonie increas-

ing on [77/2, 77].

Corollary 3.4. For each integer m > 2, |$r(27r/772)| < 2~r(sec (77/m))|<ï>r(j7/r«)|.

Let 772 > 2 be an integer.

Corollary 3.5. There exist integers s and t such that s 4 t, 0 < s, t <
m/2, and (s, 772)= (r, 772)= 1 and such that <b(.2sTr/m) = {-ÏY~l$r(2tir/m) if
and only if m = 0 (mod 4).

Proof. It is easy to see that 2s + 2f = m, so 772 is even. Since (s, 772) =
(f, 772) = 1, s, t must be odd. Hence 772 = 0 (mod 4).

Conversely, suppose m = 4k, and choose 0 < s < 2k such that (s, 772) =
1. Then s is odd and (s, k) - 1. There exist p, q such that ps + qk = 1. So
(2p - q)k - p(2k - s) = 1. Thus  ((2k - s), k) = 1. It is obvious that 2k - s
is odd, 2k-s 4 s, and ^(2577/772) = (-lV- l<í>T(2(2k - 5)77/772). Ü

Consider the following matrix

*-W*L«
where A is defined in §2. $r plays the dominant role in the G-signatures
of cyclic group actions on homotopy sphere pairs.

For any positive integer x such that (722, x) = 1, let a(x), 5(x) be de-
fined as in §2. It is easy to see that

O fe^) = (-l)S^\(2a{,fn\

where h, k e A. As a special case of Theorem 2.10 we have the following

Theorem 3.6.  Lcr A*, i/j(q), <p"¿(q), and a>i be defined as in §2.  Then

det(^L^-saU^HS^-
Corollary 3.7. Let A = |A*|.  // r> In ((A- l)sec (77/772))/^ 2. then

det(*r(2AW«))AffceA« ¿0.

Proof. It is easy to see that if 6 ., ßi (i = 0,..., n) ate complex num-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SEMIFREE ACTIONS ON HOMOTOPY SPHERES 333

bers such that  |í>0| > 2y1=1 |èy| and  |jS¿| = 1 (z = 0.72), then 2?=0 bß{
4 0. Thus Corollary 3.7 is an easy consequence of Corollary 3-4 and Theo-
rem 3*6. D

For small m's, we may compute directly to get

Corollary 3.8. det (4/2/^77/77?))^fe6A, ¿ 0 for m < 12.

Remark 3.9. Based on these observations, it is reasonable to conjecture
that det (4 (2hkn/m)), ke/jf 4 0. In fact, Rothenberg conjectured in his talk
at the Second Conference on Transformation Groups that det 4r 4 0 for each
odd prime 772.

Remark 3.10. The first estimation of r for a fixed odd prime ttz for which
det 4r 4 0 was given by Schultz fe]. His method can also be applied for ttz
which are not necessarily odd primes. However, it appears to us that Schultz's
method cannot be used to show that det 4r ^ 0 for all ttz and all  r. Our ap-
proach is different from his and is, perhaps, a hopeful way to prove the con-
jecture.

4. The main results. For a positive integer ttz 4 2, let A' = \k\0 < k <
m/2, (k, 7tz)= 1}. Let (22", F2r; Z   ) be a semifree Zm action on a homo-* m m
topy sphere pair. The equivariant normal bundle v to F r in 2      splits

equivariantly into a Whitney sum v= ©jeA« V. so that each factor v. is in-
variant under the Z__ action, and the restriction of the action to each fiberm *
of v. is just complex multiplication by exp(2jni/m). Let g be a generator
of Zm. By the Atiyah-Singer G-signature Theorem [l, 6.12], we have

Sign(g*, 22") / /        \ \
= 2'   u   iitanihkn/m))-nk   \\     2$/*  c.(J O [F2']

keh' keA'\ j        \  m   I J

for h £ A' and where tt^ = dimc vk. Note that since F r is a suspension,
products of positive dimensional classes are zero. Hence

Sign(g', 22") = J £ * (^)C>j) n LF2'],

where h £ A' and Kh are constant depending only on h.

By definition, Sign (g*, 22") is defined on the Zm module H"(22", Q),
which is zero. So Sign (gh, 22") = 0 for all h £ A'. If ttz i 0 (mod 4), A' =
A, where A is as in §2. If det 4f 4 0, where 4r is as in §3, it is easy to
see that cr(vk) = 0 for all k £ A. Since the stable complex vector bundles
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over spheres are determined by their Chern classes, the v. are stably trivi-
al as complex vector bundles. Thus we have proved the following

Theorem 4.1. For m 4 2 and m 4 0 (mod 4), let (l2n, F2r; Z  ) be a
f\j m

semifree Z     action on a homotopy sphere pair.  If det $  4 0, then the equi-
variant normal bundle v to F     in 2 n is equivariantly stably trivial.

Remark 4.2. We say a Z  , m 4 2, equivariant bundle is trivial if each
equivariant factor is trivial as a complex vector bundle.

Remark 4.3. This result has also been discovered and proved by Schultz
[8] by a different argument.

Let p: Zm —* U(n — r) be a fixed unitary fixed point free representation
of complex dimension n — r. If m 4 0 (mod 4), and det í>  4 0, one sees, as
an easy consequence of Theorem 4.1, that the image of y in Theorem 1.2 is
r"2r, a finite group. It has also been proved in [5] that ÍR n(^m-> p) is finite.
Hence we have

Theorem 4.4. For m 4 2 and m 4 0 (mod 4), let p: Z    —» U(n - r) be a
fixed unitary fixed point free representation of complex dimension n — r.  If

det $   4 0. then £2n(Z   , p) is finite.r m    ' '

As an easy consequence of Theorems 1.2, 1.3 and 4.4, we have

Corollary 4.5. Let m, p be as in Theorem 4.4. // det 0^0, then

rank t2n~ \Z  , p) ® C = rank R       + rank 77,     .(0(272 - 2r)) ® Cm   r n,m ¿r— l

- rank Tr2r- l(C(Zm' P)) ® C,

where rank R is as in Remark 1.4; and p= 1..kn.t],n,m ' r j e A    ;

rank n2r_ j(C(Zm, p)) ® C = Card\n.\n.> r\.

Remark 4.6. Corollary 3»7 shows that for fixed m and r even and suf-

ficiently large, det $>r 4 0.
In the rest of this section, we will consider the case m = 0 (mod 4). Let

722 = 4s, If 72 > 37, we consider p = 72 j/ + n2t for 72 j > r, n2 > r. Then

C(Zm,p) & I/(n j)x U(n2), and 772r_ 1(t/(«1) x (/(«.,)) = Z © Z. The map A:
i72r_ j((/(t2 j) x í/(t22)) —» C[Zm - l] in Theorem 1.3 can be computed explicitly

as follows: By tl, 6.15], Mfv f2)(g2s) = Sign ((S2r)2)= 0, and
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where h 4 2s and /7c   is the Chern class of the complex vector bundle in-
duced by the map /.: 5 —» U(n{) (i = 1, 2). It is clear that dimc ker A =
1. Note that if r is odd, the map *P in Theorem 1.3 vanishes. Hence we have,

by Theorem 1.3,

Theorem 4.7. There exist infinitely many inequivalent semifree Z.

actions on S2n with fixed point set S2r for n > 3r and r odd.

If r is even, 72 > 5r and s > 3, let p = «ji + T22rs_1 + nj5*1 +«4i2s~1

for 72. > r (i = 1, 2, 3, 4). A similar computation shows that dimc ker A = 2
and dim- OP | ker A) = 1. Hence we have, by Theorem 1.3,

Theorem 4.8. There exist infinitely many inequivalent semifree Z.
actions on S " with fixed point set S T for n > 5r, s > 3 and r even.

Remark 4.9. This is the first known family of infinitely many semifree

actions on even dimensional spheres. It should be noted that the previous at-

tempt to prove this sort of result which was announced in [9J is false.
Remark 4.10. Let p be the representation as in the proof of Theorem

4.7 (Theorem 4.8, respectively). By the proof of Theorem 4.7 (Theorem 4.8,

respectively), dimc ker p ® C = 1. By Theorem 1.2, dimc Im y ® C = 1
where y: C n(Z^s, p) —» T2k + 7r2k_ l^^s' P^ ls c^e classifying map of
the equivariant normal bundles to the fixed point sets of semifree Z^s ac-
tions on homotopy sphere pairs. Thus, in general, the equivariant normal bun-
dle to the fixed point set of a semifree Z^s action on a homotopy sphere pair
is not equivariantly stably trivial. Nevertheless, we have the following:

Theorem 4.11. Let (2 ", F   ; Z. ) be a semifree Z.    action on a hono-
rs, '4s '4s

topy sphere pair.  If det 4^0, then the normal bundle of F2r in 22" is

stably trivial as a complex (real, respectively) vector bundle if r is odd
(even,  respectively), where 4   is as in §3.

Proof. Note that 4/2A(2s - k)n/4s) = i-l)T$fi2hkn/4s) and A' = \k\k e
A or 2s - k £ A\, where A is as in §2. Observe that since F2r is a homo-

topy sphere, the only nonzero classes are in dimension 2r, and, since F2r

is a suspension, products of positive dimensional classes are zero. Hence

Sign (g\ 22") = K7 £   %(^)criA O [F2T

®i-lY-lv2s_k))n[F2'].
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By the argument used to prove Theorem 4.1, it follows that the direct sums

vk © (-l)r~  v2s_k (k e A) are stably trivial as complex vector bundles. If
r is odd,

fee A' ke\

Thus v is stably trivial as a complex vector bundle. If r is even, v,  is sta-

bly equivalent to v2s_k, and

v =   ©   v, = 2  © v,.
ke\' jfceA

Note that 77, .(0) = Z2 or 0. Thus v is stably trivial as a real vector bundle. D
Remark 4.12. The above argument also shows that for a semifree Z.

action on a homotopy sphere pair (S n, F r), with a local representation p =

S.€ A» 72.r7 such that either 72   < r or «2s- ■ < r ioi j e A', the equivariant
normal bundle to F r is equivariantly stably trivial under the assumption

det Or 4 0.
Finally we can prove the following theorem by an argument similar to the

one we used to prove Corollary 4.5.

Theorem 4.13» // det $. 4 0, then rank £2n(Z4s, p) ® C = r(p) and

rank Ç.2n~Kz.. p) ® C = rank R    .   + rank 77,     ,(0(2b - 2r)) ® C

- rank 772r_j(C(Z4s, p)) ® C + r(p),

where

r(p) = Card{?2.|72. > r\ - CardÍ72.|72. > r, «2*_i - r^*

Remark 4.14. Again Corollary 3.7 shows for fixed 772 and r even and suf-

ficiently large, det 0  4 0.
Remark 4.15.  Our Theorems 4.1, 4.11 and Remark 4.10 to Theorems 4.7

and 4.8 settle Problem 1 for a large class of cases. Theorems 4.4, 4.1 and

4.8 do the same to Problem 2. Finally, Corollary 4.5 to Theorem 4.4 and Theo-
rem 4.13 are related to Problem 3.
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