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Abstract. Event sequences are ubiquitous, e.g., in finance, medicine,
and social media. Often the same underlying phenomenon, such as tele-
vision advertisements during Superbowl, is reflected in independent event
sequences, like different Twitter users. It is hence of interest to find com-
binations of temporal segments and subsets of sequences where an event
of interest, like a particular hashtag, has an increased occurrence proba-
bility. Such patterns allow exploration of the event sequences in terms of
their evolving temporal dynamics, and provide more fine-grained insights
to the data than what for example straightforward clustering can reveal.
We formulate the task of finding such patterns as a novel matrix tiling
problem, and propose two algorithms for solving it. Our first algorithm
is a greedy set-cover heuristic, while in the second approach we view the
problem as time-series segmentation. We apply the algorithms on real
and artificial datasets and obtain promising results. The software related
to this paper is available at https://github.com/bwrc/semigeom-r.
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1 Introduction

Phenomena that evolve over time appear in a wide range of application domains
including finance (e.g., stock markets [16]), process monitoring (e.g., telecommu-
nications systems [19]), medicine (e.g., biosignals or electronic patient records,
[2]), geoscience (e.g., weather or geological measurements [26]), and mobile sen-
sors [15]. Data from such domains can often be represented as event sequences,
i.e., sequences of labels that correspond to various events associated with
a timestamp of the occurrence of the event. Many processes generate such
sequences naturally, or a low level signal can be discretised into an event sequence
by applying some suitable method, such as SAX [25].

Given multiple time-aligned event sequences, an important problem is to find
similarities between them, allowing the detection of underlying higher-level pat-
terns in the data. This problem has been approached using several different tech-
niques, such as segmentation [3], motif detection [29], and clustering [12,14,31].
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Finding similarities becomes more challenging when the event sequences are non-
stationary,which is often the case in real application domains, such as volatile stock
markets or rapidly changing social media streams. In a collection of non-stationary
event sequences, interesting local patterns emerge as subsets of event sequences
synchronise and desynchronise over short periods of time. Hence, different event
sequences are related to each other during different time periods, forming group-
ings of intra-related sequences. More importantly, these groupings are not static,
but they can also evolve over time.

In this paper, we study the following problem: given multiple event sequences,

identify continuous time segments where subgroups of these sequences exhibit

similar behaviour. This formulation is generic and goes beyond state-of-the-art
sequence clustering and segmentation problems, since the objective is to iden-
tify subgroups of sequence segments that share dominant local trends. Such
subgroups can reveal local temporal similarities and dependencies between the
sequences belonging to the same subgroup, which would otherwise be hidden by
the global trends and structure of the sequences. Our problem is applicable to
several domains. For example, in stock market analysis, we may want to identify
subgroups of stocks that exhibit similar trends within different time periods.
Identifying such groupings of trends and dependencies can provide insights and
reveal potential underlying socio-economic events partly affecting the market.

We approach our problem as a matrix tiling problem, where event sequences
are compactly represented as a matrix, where each row holds an event sequence
and each column corresponds to a time point. Hence, our task now becomes
equivalent to finding tiles in the matrix. A tile consists of a consecutive range of
columns (time points) and an arbitrary set of rows (event sequences) of the input
matrix. Unlike tiles that are fully geometric (both rows and columns must be
consecutive), or combinatorial (both rows and columns can be chosen arbitrar-
ily), we call our tiles semigeometric, since only one dimension (time) must form
a contiguous segment. A semigeometric tile, thus, represents a group formed by
a subset of event sequences sharing the same dominant feature for the duration
of the tile. We illustrate our approach with an example using stock index data.

Example. Figure 1 shows daily closing values of ten stock market indices during
1995–2000. Segments representing patterns of economic decline are shown in (a)
while segments of economic growth are shown in (b). The discretisation process
used for this dataset is described in detail in Sect. 4. Each of the four panels
shows a tiling of the stock indices using the MaxTile and GlobalTile algorithms
presented in this paper. Vertically aligned segments with the same colour belong
to the same tile and represent a region where the event series share the dominant
feature; here economic growth or decline. More precisely, the coloured tiles in
(a) represent segments of economic decline, whereas in (b) the tiles represent
segments with economic growth. Applying the proposed tiling method allows us
to discover interesting temporal patterns in the data that can be explained by
econo-political events. For instance, all algorithms here detect the concurrent
economic decline due to the Russian economic crisis in the autumn of 1998 (and
the concurrent rebound later the same year).
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Fig. 1. (a) Periods of economic decline (stock indices (decline)) and (b) growth
(stock indices (growth)) for 10 different stock indices. The coloured regions are
identified using the algorithms presented in this paper. The horizontal axis shows days
between the years 1995–2000. Vertically aligned segments with the same colour are
part of the same tile. Note that the tiles during decline in Figure (a) do not overlap
with the tiles during growth in Figure (b). (Color figure online)

Related Work. The problem of finding regions in data matrices with character-
istic properties has been extensively studied in multiple contexts; e.g., bicluster-
ing (e.g., [5,14]), segmentation (e.g., [12]), tiling (e.g., [10,11,21,33]) and data
streams (e.g., [22]). The problem studied in this paper differs from the tradi-
tional biclustering and tiling problems in the sense that while we are interested
in simultaneously clustering dimensions (rows) over time (columns) based on a
given similarity feature of the data, we require the columns in a tile to be con-
secutive. As discussed below, the temporal ordering has significant impact on
the computational efficiency and implementation of the algorithms. In previous
work on column-coherent biclusters (see, e.g., [23,27,34]) a specific structure is
enforced on the structure column structure of the clusters. The problem of local
correlation patterns discussed in [32] is related, but relates to local correlations
in time and not precision of tiles. In contrast to these, we define the quality of
our tiles in terms of precision and recall, and frame the task of finding a tiling
as a covering problem that allows us to build upon existing efficient algorithms.

Contributions. In this paper, we introduce and formulate the novel problem
of semigeometric tiling of event sequences and present two algorithms for solving
it. The first algorithm, called MaxTile is a greedy approach based on the set-
cover problem, while the second algorithm, called GlobalTile, employs dynamic
programming. In addition, we introduce three metrics to assess the quality of a
tiling. We also discuss the complexity of the problem and show its connection to
two well-known NP-hard problems. Finally, we demonstrate the utility of the
proposed methods through an extensive empirical evaluation on both real and
synthetic datasets.
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2 Problem Definition

In this section we introduce the notation used in the paper and formalise the
problem we address. We consider an n×m matrix X with elements from a finite
alphabet Σ. The rows of X are event series and the columns correspond to time
instances. With Xij we denote the element of X on row i and in column j.
For real-valued event series we assume that some suitable discretisation method
(e.g., using Fourier coefficients or wavelets [1,4], linear or non-linear piecewise
approximations [6,17] or symbolic representations [25]) has been applied in a
pre-processing step. Unless otherwise specified, we assume that Σ = {0, 1}, i.e.,
X is a binary matrix. Generalisation to larger alphabets is rather straightforward
and is discussed below, though for simplicity we focus on binary alphabets.

Given a matrix X, our objective is to identify tiles. These are consecutive
segments in which a subset of the rows of X contain mostly 1s. Formally, a tile
t is a three-element tuple (R, a, b) where R is a set of rows of X, and a and b
are endpoints of the tile, i.e., column indices corresponding to the beginning and
end of the tile, respectively. Below, we use Rt, at, and bt to refer to the tuple
elements for a tile t. The coverage of the tile t, denoted C(t), is a set of matrix
elements belonging to the tile, i.e.,

C(t) = {(i, j) | i ∈ Rt and at ≤ j ≤ bt}.

Tiles t and t′ overlap unless their intersection C(t) ∩ C(t′) is empty. Finally, a
tiling T is a set of possibly overlapping tiles. The coverage of T , denoted C(T ),
is the union of the covers of each tile in T , and the weight W (T ) of T is the sum
of the elements in C(T ), i.e., C(T ) =

⋃

t∈T C(t) and W (T ) =
∑

(i,j)∈C(T ) Xij .

Intuitively, a tiling is good if it (a) has a large weight (covers mainly ones and
only a few zeros), (b) covers as many of the ones in X as possible, and (c) uses
as few tiles as possible. Requirement (c) is easily achieved by constraining the
cardinality of the tiling, while (a) and (b) can be naturally formalised in terms
of precision and recall. Precision is the fraction of ones in the coverage C(T ) and
recall is the fraction of all ones in X belonging to C(T ), i.e.,

precision(T ) =
W (T )

|C(T )|
, and recall(T ) =

W (T )
∑

i

∑

j Xij

.

Optimising both precision and recall simultaneously requires formulating a
bicriteria optimisation problem, or using some aggregate objective function, such
as the F1-measure. Here we opt for maximising recall with a lower bound con-
straint on precision and an upper bound constraint on the cardinality of the
tiling T . This is a natural definition, as it aims to find a tiling that explains as
much of the 1s in X as possible without using tiles that are too noisy (precision
constraint), nor is too complex (cardinality constraint). Importantly, in most
practical situations the constraint on precision is easy for the user to set given
that the density of X (i.e., fraction of 1s) is known. It should be noted that the
parameters could also be chosen using an approach based on, e.g., the minimum
length description (MDL) principle.

We now formulate the main problem studied in this paper:
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Problem 1. Semigeometric Tiling Given an n×m binary matrix X, an integer
k, and a real number α ∈ [0, 1], find the tiling T maximising recall(T ) subject
to the constraints precision({t}) ≥ 1 − α for each tile t ∈ T and |T | ≤ k.

Problem Complexity. Upon first inspection Semigeometric Tiling seems
very similar to two well-known problems: the nongeometric tiling problem (i.e.,
the combinatorial tiling problem) [10,11], where both rows and columns are

unordered, and to the rectilinear picture compression problem [9, problem SR25],
where both columns and rows have a fixed order. In the semigeometric case, the
smallest tiling covering all 1s in the input matrix can be found in polynomial
time.

Theorem 1. A minimum-cardinality semigeometric tiling for an n × m binary

matrix X with perfect precision and recall can be found in polynomial time.

The proof follows from known results for the problem of covering a vertically
convex polygon with rectangles [8,13,20].

Hence, the problem of semigeometric tiling is computationally different from
the nongeometric and fully geometric tiling problems. Notice, however, that
Theorem 1 does not imply that Semigeometric Tiling is tractable; it merely
suggests that the complexity of this problem is not trivially NP-hard. There
are also other reasons to argue why this might be the case. Namely, for the
nongeometric tiling problem it is easy to establish that merely finding the largest
tile is NP-hard. In our case this sub-problem is also easy, as we discuss below.
However, the actual complexity of Problem 1 is an open question.

Generalisation to Multi-letter Alphabets. It is important to note that
generalisation to multi-letter alphabets follows directly from the above given
definitions. Multi-letter tilings are constructed by first finding the individual
tiling for each letter, after which recall is found by selecting k tiles from the
individual tilings, such that recall is maximised. If different precisions are used
for different alphabet letters, the minimum precision of the multi-letter tiling
corresponds to the smallest single-letter precision.

3 Algorithms

In this section we describe in detail two algorithms (MaxTile and GlobalTile)
for solving the Semigeometric Tiling problem (Problem 1).

3.1 Overview

We approach Problem 1 using two slightly different, yet standard strategies that
make use of the property that the columns of the input matrix X are ordered.
An example of how our algorithms work on a small example dataset containing
three overlapping tiles is shown in Fig. 2.
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Original Data
MaxTile

k: 3     P: 1.00     R: 1.00
GlobalTile

k: 5     P: 1.00     R: 1.00

Fig. 2. Example comparing the output between the two algorithms. k stands for car-
dinality, P for precision and R for recall. The maximum cardinality was set to 5 and
the lower bound for precision to 0.95. The solution found by GlobalTile (rightmost
figure) is also equal to the vertical decomposition (see Sect. 3.3 and Proposition 2) of
the original tiling.

Both MaxTile and GlobalTile algorithms are based on the simple observa-
tion that given X and two endpoints a and b, we can easily find the maximum

recall tile (R, a, b) satisfying the precision constraint:

Definition 1. Given the n × m binary matrix X and the precision constraint

α, the maximum recall tile with endpoints a and b is defined as (R∗, a, b), where

R∗ is found by maximising recall subject to the precision constraint α.

We can find the maximum recall tile for every choice of a and b in O(n log n)
time by using cumulative sums of rows to find the number of ones within a row
for a given interval and by sorting the rows by the number of ones. Some choices
of a and b may result in an empty maximum recall tile, e.g., if there are no rows
with enough 1s to satisfy the precision constraint. We omit such tiles, and obtain
the set T of at most

(

m
2

)

candidate tiles.
MaxTile and GlobalTile differ in the way the tiling is constructed from can-

didate tiles. MaxTile greedily solves a cardinality-constrained set-cover problem,
while GlobalTile treats the problem as a time-series segmentation task and finds
the tiling using dynamic-programming, a side effect of which is that GlobalTile
cannot produce overlapping tilings. MaxTile has no such constraint. This is seen
in Fig. 2, where the MaxTile tiling is overlapping and the GlobalTile tiling
consists of vertical non-overlapping stripes.

3.2 MaxTile

The MaxTile algorithm is based on a straightforward mapping of the tiling
problem to a set cover problem. MaxTile first finds all maximum recall tiles
(Definition 1) in the data matrix X with a precision of at least 1 − α. A subset
of k, possibly overlapping, tiles maximising recall is then chosen from these tiles.
The MaxTile algorithm is presented in Algorithm 1 and has a complexity of
O

(

m2n log n
)

. The algorithm maintains a tiling T , and always adds a tile t �∈ T
maximising the marginal gain, i.e., recall(T ∪ t) − recall(T ).
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input : n × m binary matrix X, precision threshold α, max no of tiles k.

1 Let T ← ∪1≤a≤b≤mtab, where tab = (R, a, b) is a tile with R ⊆ [n] with the highest recall
and precision ≥ α

2 Greedily find the tiling T ⊆ T , | T |= k maximising recall of X.
3 return The tiling T .

Algorithm 1. MaxTile

input : n × m binary matrix X, precision threshold α, max no of tiles k.

1 Use dynamic programming to compute all l-segmentations Sl up to l = 2k + 1.
2 T ← ∅
3 for l = k to 2k + 1 do

4 Tl ← all tiles from Sl

5 if Tl has more than k tiles then

6 Tl ← the k tiles t ∈ Tl having highest W (t)
7 end

8 insert Tl into T

9 end

10 return The tiling T ∈ T that has the highest W (T )

Algorithm 2. GlobalTile

Proposition 1. The function recall(T ) is submodular, i.e., when T ′ ⊂ T , and

t is some tile not in either T or T ′,

recall(T ′ ∪ t) − recall(T ′) ≥ recall(T ∪ t) − recall(T ).

The proof follows the usual argument for covering functions.
Since recall(T ) is submodular, we can employ the same optimisation as in,

e.g., [24]: we maintain a priority queue of known marginal gains for every tile
and only recompute the marginal gain for a given tile if it is larger than the best
marginal gain observed for the current T .

Also, note that recall(∅) = 0, and that recall(T ) increases monotonically as
T grows. This, together with the submodularity of recall(T ) and well-known
results from [28], yields that the greedy algorithm has a constant approximation
factor of 1 − 1/e, i.e., the recall of the MaxTile tiling is at least 1 − 1/e times
the optimal recall with k tiles.

3.3 GlobalTile

To design the GlobalTile algorithm we view the Semigeometric Tiling prob-
lem as a time-series segmentation task, the objective of which is to partition a
given time-series into l non-overlapping, contiguous intervals, called segments.
The partition is found by optimising the sum of segment-wise scores. We call
this partition an l-segmentation. The input matrix X can be viewed as a mul-
tidimensional time-series, where a contiguous range of columns from column a
to column b forms a segment. The segment-specific score is defined as the recall
of the maximum recall tile (R∗, a, b). The mapping between an l-segmentation
and a tiling is thus straightforward. Every segment in an l-segmentation has
two endpoints, a and b, given which we can compute the maximum recall tile
(R∗, a, b) as specified in Definition 1. Since (R∗, a, b) may be empty for some
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choices of a and b, some segments may correspond to empty tiles. Therefore,
every l-segmentation maps to a tiling of cardinality at most l. In summary, given
the matrix X and the integer k, the idea of GlobalTile is to (a) compute an
optimal l ≥ k-segmentation of X, and (b) turn this l-segmentation into a tiling
of size k ≤ l.

Importantly, an optimal l-segmentation can be computed in polynomial time
with dynamic programming [3]. Unfortunately this does not give a polynomial
time algorithm for Problem 1, because the parameters l and k do not match one-
to-one, and the resulting segmentation must be non-overlapping. This constraint
is not present in Problem 1. However, we can still use an l-segmentation as a
building block in our algorithm as follows. Given the input X and the integer k,
the GlobalTile algorithm first finds all l-segmentations of X from l = k up to
l = 2k + 1. Let Tl denote the tiling corresponding to a given l-segmentation.
Since Tl may contain up to l ≤ 2k + 1 tiles, the algorithm keeps only the k
largest tiles of every Tl to maximise recall. This pruning step is repeated for
every tiling Tl with l ∈ {k, . . . , 2k + 1}, and the algorithm returns the tiling Tl

having the highest recall. Pseudocode of GlobalTile is shown in Algorithm 2.
Next we discuss some properties of the GlobalTile algorithm. In the follow-

ing we call a tiling T of cardinality k a k-tiling. In any k-tiling, tiles (R1, a1, b1)
and (R2, a2, b2) are vertically non-overlapping if b1 < a2 and b2 < a1. A tiling
is vertically non-overlapping if all of its tiles are non-overlapping. The vertical

decomposition of T is the vertically non-overlapping tiling T ′ with smallest car-
dinality that has exactly the same cover as T . See the rightmost panel of Fig. 2
for an example of a vertical decomposition. We make the following observation:

Proposition 2. Any tiling T of cardinality k has a vertical decomposition of

cardinality at most 2k − 1.

The aim of computing the l-segmentation is to find the vertical decomposition
of the underlying tiling. First, observe that if the underlying optimal k-tiling is
vertically non-overlapping, the dynamic programming algorithm finds it directly
(provided l is set appropriately). For other k-tilings, we know from Proposition 2
that their vertical decompositions correspond to segmentations with at most
2k+1 segments (including possible empty segments before and after the leftmost
and rightmost tile, respectively). For inputs with optimal noise-free tilings (i.e.,
tilings with precision equal to 1), we obtain the following:

Proposition 3. Given an input matrix X containing a noise-free k-tiling T ∗

and the integer k, the dynamic programming algorithm finds a k′-tiling T ′, with

recall(T ′) = recall(T ∗), and k ≤ k′ ≤ 2k − 1.

Since the GlobalTile algorithm is given the cardinality constraint k, it may
not return the entire vertical decomposition of size k′ ≥ k. In the worst case
all 2k − 1 tiles in the vertical decomposition T ′ have exactly the same weight,
and GlobalTile drops k − 1 of these, i.e., recall(T ) ≥ k

2k−1 recall(T ∗). Hence,

GlobalTile finds a tiling T with recall(T ) ≥ 1
2 recall(T ∗). Notice that in practice

GlobalTile can perform even better, as it looks for the best k-tiling from all



Semigeometric Tiling of Event Sequences 337

segmentations up to size 2k + 1, and the vertical decomposition may in practice
contain fewer than 2k − 1 tiles.

Propositions 2 and 3 above imply in practice that the GlobalTile algorithm
can find tilings with recall very close to optimum, at the cost of using at most
twice the amount of tiles used in an optimal solution.

4 Experiments

In this section we empirically investigate the relationship between (i) precision
and recall and (ii) between recall and cardinality. We test the performance and
behaviour of both tiling algorithms on four real and two synthetic datasets. We
also compare the tilings we find for real data with tilings of a randomised version
of the data having the same row marginals. The purpose of this comparison is
to establish that the tilings we have found indeed reflect meaningful structure
instead of noise.

The algorithms are implemented in R and are released as the semigeom R-
package. This package and all source code used for the experiments is available
for download1.

4.1 Datasets

We consider four real and two synthetic datasets, described in detail below.
Properties of the datasets are summarised in Table 1.

1. Stock indices The stock indices data contains daily stock exchange clos-
ing index data from 1995 to 20002 for 10 stock exchanges. We discretised the
data into a two-letter alphabet by first calculating the gradient of the linear
trend of each stock index in a 30-day windows and assigning 1 if the trend was
rising (gradient positive) and −1 if the trend was decreasing (gradient nega-
tive). Since both labels are of interest, stock indices (growth) will denote
the dataset when the label of interest is 1, and stock indices (decline)

will denote the dataset when the label of interest is −1.
2. Stock prices The stock prices dataset contains daily closing prices

between 03.01.2011–31.12.2015 (1257 trading days) for 400 randomly selected
stocks. The data was discretised by calculating the change (in %) in closing
price from the previous day. Instances for which the closing price dropped
more than −6% were set to 1 and all other instances were set to zero.

3. Paleo data The paleo dataset is a binary 139 × 124 matrix describing the
presence or absence of species (139) of Cenozoic mammals in different sites
(124) [7,30]. The sites in the dataset have a temporal order determined by
specialists.

1 https://github.com/bwrc/semigeom-r.
2 Data from http://www.economicswebinstitute.org/data/stockindexes.zip.

https://github.com/bwrc/semigeom-r
http://www.economicswebinstitute.org/data/stockindexes.zip


338 A. Henelius et al.

4. EEG dataset The EEG dataset is part of the ISRUC-Sleep dataset [18], con-
sisting of EEG polysomnography recordings from 10 healthy people. There
are six EEG channels located on the frontal (channels F3, F4), central (chan-
nels C3, C4), and occipital (channels O1, O2) parts of the scalp, all sampled
at 200 Hz. We chose to use data from the first 6.5 hours of sleep, where data
from all subjects was available, giving a total of 4680000 samples per channel.
The data was discretised by calculating the EEG frequency spectrum in four-
second windows, and for each window determining which of the following 5
frequency bands was dominant (delta: 1–4 Hz, theta: 4–7 Hz, alpha: 8–15 Hz,
beta: 16–31 Hz, and gamma: 16–100 Hz). Each window was then assigned a
letter corresponding to the dominant band. After the discretisation the data
contains 5850 samples for each of the six channels.

5. Synthetic data The synthetic datasets are randomly generated binary
matrices containing a given number of randomly inserted segments with a
fraction p of ones. We used two types of synthetic datasets; (i) k randomly
inserted tiles of size l × l and (ii) tiles formed from k randomly inserted
varying-width segments spanning l rows.

Table 1. Properties of the datasets used in the experiments. Size is the number of
rows and columns in the original data and the discrete size are the dimensions of the
discretised data used as input to the algorithms. Density is the fraction of 1 s in the
input matrix.

Dataset Size Size discrete Density

Stock indices (growth) 10 × 1353 10 × 45 0.62

Stock indices (decline) 10 × 1353 10 × 45 0.37

Stock prices 400 × 1258 400 × 1257 0.02

Paleo 139 × 124 139 × 124 0.11

EEG subject 4 6 × 4680000 6 × 5850 0.14

EEG subject 7 6 × 4680000 6 × 5850 0.21

Synthetic 1 50 × 100 50 × 100 0.28

Synthetic 2 50 × 100 50 × 100 0.16

4.2 Basic Results

Precision-Recall Trade-Off. We first study the precision-recall trade-off of
the algorithms. Precision-recall curves for two different cardinalities (3 and 7) are
shown in Fig. 3 for the synthetic1, paleo, stock prices, and stock indices

(decline). The curves were computed by modifying the precision constraint
parameter. The results suggest that both MaxTile and GlobalTile perform
similarly in terms of balance between precision and recall.
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Fig. 3. Precision-recall curve for the algorithms for different datasets using cardinalities
of 3 and 7.

Recall in Original vs. Randomised Data. To study if the found tilings
reflect meaningful structure, we compare the recall of the tiling of the original
data with the recall of a tiling for randomised data, using otherwise the same
parameters. The randomised data are generated by shuffling the original values of
every data row uniformly at random. This simple randomisation scheme breaks
any temporal connections the event sequences may have, and thus any tiling
found after randomisation only contains meaningless structure. Tilings found in
the original unshuffled data should have a higher recall.

The cardinality-recall curves for the algorithms on the paleo, stock prices,
stock indices (growth), and stock indices (decline) datasets are shown
in Fig. 4. The precision constraint was set to the value Pmin in Table 2. The
CR-curves show that for every dataset, both algorithms find a tiling with higher
recall than what can be found in the randomised data. This indicates that tilings
of the original data indeed contain meaningful structure. Moreover, although the
algorithms perform quite similarly, MaxTile in general achieves a higher recall
for a given cardinality, as expected, since the algorithm allows overlapping tiles.
The performance of the algorithms on the paleo dataset is very similar. The
structure of the dataset fits well with the assumption of vertical segments of
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Fig. 4. Cardinality-recall curve for the algorithms for different datasets.

GlobalTile and hence GlobalTile achieves a higher recall than MaxTile for
the same cardinality.

Running Times. Typical wall-clock running times (using unoptimised R-code
running on a 1.8 GHz Intel Core i7 CPU) as well as examples of recall and
cardinality for a given precision constraint for all datasets and both algorithms
are shown in Table 2.

4.3 Example Tilings

Paleo dataset. The analysis results of the synthetic1 and paleo datasets are
shown in Fig. 5. Both algorithms manage to successfully capture the structure
in the synthetic1 dataset. Notice the difference in terms of selected tiles, due
to allowance of overlapping tiles by MaxTile. The paleo dataset is very sparse,
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Table 2. Numerical results from the experiments. P, R, and k stand for precision, recall,
and cardinality, respectively. The time-column gives the calculation time in seconds.

Dataset Algorithm Pmin kmax P R k time [s]

stock indices GlobalTile 0.85 5 0.87 0.62 5 0.12

(growth) MaxTile 0.85 5 0.87 0.66 5 0.03

stock indices GlobalTile 0.85 5 0.90 0.33 5 0.11

(decline) MaxTile 0.85 5 0.91 0.38 5 0.03

stock prices GlobalTile 0.30 10 0.32 0.16 10 112.90

MaxTile 0.30 10 0.30 0.19 10 104.41

paleo GlobalTile 0.30 3 0.30 0.85 3 1.32

MaxTile 0.30 3 0.30 0.82 3 0.60

EEG GlobalTile 0.60 10 0.60 0.79 10 1451.61

(alpha, subject 4) MaxTile 0.60 10 0.60 0.79 10 461.38

EEG GlobalTile 0.60 10 0.60 0.94 10 1456.06

(alpha, subject 7) MaxTile 0.60 10 0.60 0.94 10 473.34

synthetic1 GlobalTile 0.75 5 0.76 0.99 5 0.47

MaxTile 0.75 5 0.75 1.00 4 0.21

synthetic2 GlobalTile 0.75 5 0.80 1.00 5 0.48

MaxTile 0.75 5 0.76 1.00 5 0.22

so a precision threshold of 0.3 was used. The structure in the three geological
epochs in the data are clearly visible in the tilings and both algorithms achieve
a high recall already with three tiles. The performance of the two algorithms is
similar in terms of precision, and the discovered structure is also equivalent. The
middle tile (in red) is wider for MaxTile, since the algorithm allows overlapping
tiles.

Fig. 5. Tiling of the synthetic1 and paleo datasets. (Color figure online)

EEG dataset. We chose to consider only one letter corresponding to the alpha
band from each channel and calculated the tilings with a maximal cardinality
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(a) Subject 4 (b) Subject 7

Fig. 6. Tiling of the EEG activity in the alpha band for subjects 4 and 7. (Color figure
online)

of 10 and a precision threshold of 0.60. This analysis, hence, reveals whether
there are segments with similarly dense alpha activity on the different chan-
nels. It is expected that neighbouring channels in the same front-back location
(frontal, central, and occipital) should be similar and channels in different front-
back locations should be somewhat different. We omitted singleton tiles, i.e.,
tiles with a cardinality less than two, since we are interested in the relationships
between different channels. Figure 6 shows the tiling obtained for the two sub-
jects with prominent patterns. The MaxTile and GlobalTile tilings are very
similar, with some small differences. In MaxTile tiling of subject 4 there is a rel-
atively wide segment (green tile), where the neighbouring occipital channels and
the C3 channel share a similar pattern of alpha activity. Both algorithms find
a similar pattern of alpha activity in all channels of subject 4 (red tile at right
end) and subject 7 (red tile at left end). Information regarding the relationships
and spatiotemporal distributions of different EEG rhythms could be useful, e.g.,
when investigating the neural correlates of sleep patterns.

5 Discussion

In this paper we studied the problem of finding segments with similar properties
in a collection of event sequences. We formalised the problem as a tiling problem
and presented two algorithms for finding a tiling maximising the recall of a
dataset discretised into an alphabet.

We empirically demonstrated the performance of the algorithms on real
datasets from different domains; economics, palaeontology, and medicine, as well
as on synthetic datasets. Using the methods described in this paper it is possible
to uncover temporal phenomena in the data and the results provide meaningful
insight into the interpretation of the underlying processes. The two algorithms
emphasise slightly different properties of the data. For instance, the tilings found
by the MaxTile algorithm consist of large, overlapping, submatrices satisfying
the precision requirement, whereas the tilings produced by the GlobalTile algo-
rithm are always non-overlapping.



Semigeometric Tiling of Event Sequences 343

Different datasets require different choices of parameters. The cardinality
and precision threshold must be set depending on factors, such as the data
density. As shown in the experimental evaluation, the proportion of the dataset
explained by the tiles (i.e., the recall) varies depending on both the cardinality
and precision. A reasonable heuristic for setting the precision constraint is to
consider the overall data density, and set α to a smaller value so that the tiles
indeed reflect denser regions in the input matrix.

Interestingly, we here showed that the special case of semigeometric tiling of a
dataset, where we find a minimum full cover with perfect precision is tractable in
polynomial time despite the related problems of combinatorial and fully geomet-
ric tiling being NP-hard. However, our main problem of covering a data matrix
with a precision of 1 − α with k tiles appears to be challenging, and we suspect
it is NP-hard. The proof of this, however, remains an open question. Another
important direction for future work is to consider the significance of the tilings
found. In this paper we use a simple sanity check where the recall of the resulting
tiling is compared against the recall of a tiling of the randomised data matrix.
Methods to evaluate the significance of individual tiles are also of interest.
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13. Györi, E.: A minimax theorem on intervals. J. Comb. Theor. Ser. B 37(1), 1–9
(1984)

14. Hartigan, J.A.: Direct clustering of a data matrix. J. Am. Stat. Assoc. 67(337),
123–129 (1972)

15. Hemminki, S., Nurmi, P., Tarkoma, S.: Accelerometer-based transportation mode
detection on smartphones. In: SenSys 2013, p. 13 (2013)

16. Huang, C.F.: A hybrid stock selection model using genetic algorithms and support
vector regression. Appl. Soft Comput. 12(2), 807–818 (2012)

17. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction
for fast similarity search in large time series databases. Knowl. Inf. Syst. 3(3),
263–286 (2001)

18. Khalighi, S., Sousa, T., Santos, J.M., Nunes, U.: Isruc-sleep: a comprehensive public
dataset for sleep researchers. Comput. Methods Program. Biomed. 124, 180–192
(2015)

19. Klemettinen, M., Mannila, H., Toivonen, H.: Rule discovery in telecommunication
alarm data. J. Network Syst. Manage. 7(4), 395–423 (1999)

20. Knuth, D.E.: Irredundant intervals. J. Exp. Algorithmics (JEA) 1 (1996)
21. Kontonasios, K.N., De Bie, T.: An information-theoretic approach to finding infor-

mative noisy tiles in binary databases. In: SDM 2010, p. 153 (2010)
22. Lam, H.T., Pei, W., Prado, A., Jeudy, B., Fromont, É.: Mining top-k largest tiles
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