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1. Introduction 

In this paper we revisit the problem of stabilizing a general linear system which is subject 

to input saturation. Over the last few years, there has been rather strong interest in this 

problem, possibly due to a wide recognition of the inherent constraints on the control in

put. As a result, several important results have appeared in the open literature. In the 

continuous-time setting, a recent result due to Sontag and Sussmann ([8]) shows that only 

linear stabilizable systems having no open-loop poles with positive real parts can be globally 

asymptotically stabilized by a bounded control. Another interesting aspect of this problem 

was shown by Fuller ([ID and more recently by Sussmann and Yang ([10)). They showed 

that, for a system consisting of a chain of integrators of length n where n ~ 3 which is 

subject to input saturation, there does not exist a linear control law that globally asymp

totically stabilizes the given system. The implication of the results of [1], [8] and [10] is 

apparent and can be summarized as follows: Given a linear system which is subject to input 

saturation, the global asymptotic stabilization can be achieved if and only if all the poles of 

the given system are in the closed left half plane, and, even then, in general one must use 

nonlinear control and only very simple cases can be handled via linear feedback control laws. 

(An interesting nonlinear control law of the nested saturation type for global asymptotic 

stabilization of a chain of integrators subject to input saturation was proposed in [11] which 

was later extended to the general class of systems in [9].) In the discrete-time setting, an 

analogous result that a linear discrete-time system subject to input saturation can be glob

ally asymptotically stabilized via feedback if and only if all its poles are located inside or on 

the unit circle has recently been established by Yang [13]. A nonlinear globally stabilizing 

control law for such a system is also explicitly constructed in [13]. More recently, we have 

learned that an analogy of the "negative result" for continuous time systems with saturating 

input ([1], [10]) has also been established in the discrete-time case ([14]). Namely, it is shown 

that similar to the continuous-time case, in general, for global asymptotic stabilization one 

must resort to nonlinear control laws. 

Recently in [2] and [3], we have introduced the concept of semi-global analysis and design 

for linear systems subject to input saturation, in continuous-time as well as in discrete-time. 

The semi-global framework for analysis and design deals with techniques and methods of 

analysis and designs that are valid in an a priori given region of operation. This is in 

contrast with the traditional global viewpoint of analysis and design which requires methods 

and design techniques that are valid globally. The semi-global approach to the design of a 

system with saturating inputs is a very appealing concept since every plant model is valid 

only on a specific finite region of operation. We should emphasize that a key notion in semi-
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global design techniques is that the region of operation is a priori specified and this region 

can be chosen arbitrarily large. 

A surprising result obtained in our work [2] and [3J is that linear feedback laws can be 

used for semi-global stabilization of linear continuous-time (discrete-time) systems subject 

to input saturation as long as the linear system in the absence of saturation is stabilizable 

and detectable and all its open loop poles are located in the closed left half plane (inside or 

on the unit circle). This is in contrast with global stabilization which cannot be achieved 

in general by linear feedback. In [2J and [3J, we explicitly constructed such semi-globally 

stabilizing linear feedback laws with the use of a low-gain feedback design technique. These 

low-gain feedback laws were constructed in such a way that the control input does not 

saturate for any a priori given (arbitrarily large) bounded set of initial conditions. As a 

result, the closed-loop system operates as a linear system. The low-gain design technique 

introduced in [2] and [3] is based on eigenstructure assignment and is referred to as a direct 

design of low-gain controllers. More recently, for continuous-time case, methods utilizing H2 
and Hoc optimal control theory for designing low-gain controllers have been proposed in [4] 

and [12] respectively. These methods are referred to as algebraic Riccati equation (ARE) 

based design of low-gain controllers. While the direct method is numerically superior, the 

ARE-based method is more compact and conceptually appealing. The goal of this paper is 

to provide an ARE-based design for low-gain controllers that semi-globally stabilize the same 

class of linear systems subject to input saturation as in [3] as well as relaxing the requirements 

on the saturation characteristic as imposed in [3]. We would like to mention that this work is 

not a simple translation of its continuous counterpart [12] into the discrete-time language. As 

a matter of fact, much effort has been made in relaxing the requirements on the saturation 

characteristic (1. In comparison with [12], we only require that in a neighborhood of the 

origin, each component of (J lies inside any linear sector of first and third quadrant. Hence 

differentiability of (J at the origin is not required. Moreover, only the knowledge of this linear 

sector is needed in the design. 

The rest of this paper is organized as follows. In Section 2 we define the problems at 

hand. The solutions to these problems are the main results of this paper and are presented 

in Section 3. An example is given in Section 4 to demonstrate our state feedback results. 

We draw a brief concluding remark in the final Section 5. 

2. Problem Statement 

We consider a class of nonlinear discrete-time systems commonly knQwn as linear systems 

subject to input saturation. These systems are formed by cascading linear systems with 



memory-free input nonlinearities of saturation type, 

x(k + 1) = Ax(k) + Ba(u(k)) 

y(k) Cx(k) 
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(2.1) 

(2.2) 

where x E Rn is the state, u E Rm is the control input to the saturater, y E RP is the 

measurement output, and a: Rm 
-+ Rm is a saturation function defined as follows, 

Definition 2.1. A function a : Rm 
-+ Rm is called a saturation function if 

2. sai(S) > 0 whenever s =I 0 and a(O) = OJ 

3. There exist .6. > 0 and b > bi > 0 such that 

Remark 2.1. Graphically, the saturation function resides in the first and third quadrants 

and there exist .6. > 0 and b > bI > 0 such that for lsi::; .6., the saturation function lies in 

the linear sector between the graphs graphs (s, bIS) and (s, bs), which implies that, 

(2.3) 

(2.4) 

For notational simplicity, but without loss of generality, we will assume throughout this 

paper that bI = 1. 

Remark 2.2. It follows directly from Definition 2.1 that the functions a(s) = 5, arctan(s), 

tanh(s) and the standard saturation function a(s) = sign(s) min{lsl, 1} are all saturation 

functions as defined in Definition 2.1. Moreover, functions like a(s) = 2s + 5sin(1/s) with 

a(O) = 0, which are not even one-sided differentiable at the origin, also satisfy the conditions 

given in Definition 2.1. 

Definition 2.2. The set of all saturation functions that satisfy Definition 2.1 with a fixed 

triple of constants .6., bI = 1 and b is denoted by 8(.6., b). 

We also make the following assumptions on the matrix triple (A, B, C), 

Assumption 2.1. All the eigenvalues of A are located inside or on the unit circle. 



4 

Assumption 2.2. The pair (A, B) is stabilizable; 

Assumption 2.3. The pair (A, C) is detectable. 

We now define the problems to be solved in this paper. 

Definition 2.3. For the system (2.1)-(2.2) with (1 E S(6., b), where 6. and b are some known 

positive constants, the semi-global exponential stabilization problem via linear state feedback 

is defined as follows. For any a priori given (arbitrarily large) bounded set W c Rn
, find a 

state feedback law u(k) = -Fx(k) such that, for each (1 E S(6.,b), the equilibrium x = 0 

of the closed-loop system is locally exponentially stable and W is contained in its domain of 

attraction. 

Definition 2.4. For the system (2.1)-(2.2) with (1 E S(6., b), where 6. and b are some known 

positive constants, the semi-global exponential stabilization problem via linear measurement 

feedback is defined as follows. For any a priori given (arbitrarily large) bounded set W C R2n
, 

find a linear dynamic measurement feedback control law: 

z(k + 1) = Gz(k) + Hy(k), z E Rn 

u(k) = MZ(k) + Ny(k) 

(2.5) 

(2.6) 

such that for each (1 E S(6., b), the equilibrium (O,O) of the closed-loop system consisting of 

the system (2.1)-(2.2) and the controller (2.5)-(2.6) is locally exponentially stable and W is 

contained in its domain of attraction. 

3. Main Results 

Our main results on semi-global stabilization of the system (2.1)-(2.2) and their proof will be 

based on the following two lemmas regarding the properties of the algebraic Riccati equation 

(3.1). 

Lemma 3.1. Let Assumptions 1 and 2 hold. Then, for any c > 0, there exists a unique 

matrix P(c) > 0 which solves the following algebraic Riccati equation: 

P = A'PA +cl - A'PB(B'PB + 1)-IB'PA (3.1) 

and is such that A - B(B' P(c)B + 1)-1 B' P(c}A is asymptotically stable. Moreover, 

lim P(c) = 0 
e-->O 

(3.2) 
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Proof. Existence and uniqueness of such a solution for e > 0 follows from [5]. For e = 0, 
it is trivial to see that (3.1) has a solution P = 0 which is semi-stabilizing. Again from [5], 
this semi-stabilizing is unique. Finally, the fact that lime ..... o P( e) = 0 follows readily from 

the standard continuity arguments. 0 

Lemma 3.2. Let Assumptions 1 and 2 hold. Then, there exists an e* > 0 such that, for 

e E (0, e*], 
(3.3) 

Proof. Pre- and Post-multiplying both sides of the ARE (3.1) by p-i(e), we obtain 

p-i(e)A'pi(c) [I - pi (e)B(B'P(e)B + I)-IB' pi (e)] pt(e)Ap-i(e) = I - cp-i(e) 

(3.4) 

By Lemma 3.1, lime_oP(e) = 0, hence it follows from (3.4) that there exists an c* > 0 such 

that for all e E (0, e*J, 

(3.5) 

which implies that 

(3.6) 

and completes the proof. 0 

Our main results in this paper are now formulated in the following two theorems. 

Theorem 3.1. Consider the system (2.1)-(2.2) with (J E S(~, b), where ~ and b are arbi

trary positive constants. If Assumptions 2.1 and 2.2 hold, then the semi-global exponential 

stabilization problem via linear state feedback, defined in Definition 2.3, is solvable by the 

state feedback laws u(k) = -(B'P(e)B + I)-lB'P(e)Ax(k), where P(e) > 0 is the unique 

solution of the algebraic Riccati equation (3.1). More specifically, for any a priori given (arbi

trarily large) bounded set W eRn, there exists an e* > 0 such that, for each e E (O,e*] and 

for each (J E S(~, b), the equilibrium x = 0 of the closed loop system is locally exponentially 

stable and W is contained in its domain of attraction. 

Proof. With the given state feedback laws, the closed-loop system takes the form of 

x(k+l) = Ax(k)+B(J(u(k)) = (A - B(B'PB + I)-IB'PA) x(k)+B[(J(u(k»-u(k)] (3.7) 

where, for notational brevity, we have dropped the dependency on e of the matrix pee). 
It follows from (3.1) that 

(A - B(B'PB + I)-IB'PA)' P (A - B(B'PB + I)-IB'PA) - P = -eI - Qo (3.8) 
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where Qo:= A'PB(B'PB + I)-2B'PA ~ 0. 

We now pick a Lyapunov function 

V(x(k)) = x'(k)Px(k) (3.9) 

and let c be a strictly positive real number such that 

c ~ sup x'Px (3.10) 
XEW,cE(O,I] 

The right hand side is well defined since limc-+o P( c) = ° by Lemma 3.1 and W is bounded. 

Let ci be such that for all c E (O,ci], x E Lv(c) implies that II (B'PB + I)-I B'PAxll ~~, 

where the level set Lv(c) is defined as Lv(c) = {x E Rn 
: V(x) ~ c}. Such an ci exists 

because of Lemma 3.2 and the fact limc-+o P( c) = 0. 

The evaluation of the deference of V along the trajectory of the closed-loop system (3.7), 

using (3.8) and Remark 2.1, shows that for all x E Lv(c), 

V(x(k + 1)) - V(x(k)) = -x'(k)(c1 + Qo)x(k) + [O"(u(k)) - u(k)]'B'PB[O"(u(k)) - u(k)] 

+2x'(k) (A - B(B'PB + 1)-1 B'PA)' PB[O"(u(k)) - u(k)] 

~ -cx'(k)x(k) - u'(k)u(k) + [O"(u(k)) - u(k)]'B'PB[O"(u(k)) - u(k)] 

+2x'(k)A' PB(B' P B + I)-I [O"(U(k)) - u(k)] 

= -cx'(k)x(k) - u'(k)u(k) + [O"(u(k)) - u(k)l'B'PB[O"(u(k)) - u(k)] 

-2u'(k)[0"(u(k)) - u(k)] 

~ -cx'(k)x(k) - u'(k)u(k) + (b -1)2>"max(B'PB)u'(k)u(k) (3.11) 

Again recalling that limc-+o P = 0, we easily see that there exists an c* E (0, ci] such that, 

for all c E (O,c*], (b -l)2>"max(B'PB) -1 ~ 0. This shows that for any c E (O,c*], 

x E Lv(c) ==} V(x(k + 1)) - V(x(k)) ~ -cx'(k)x(k) 

which in turn shows that, for any c E (0, c*], the equilibrium x = ° of the closed-loop system 

is locally exponentially stable and its domain of attraction contains the set Lv (c). This 

completes our proof of Theorem 3.1 since We Lv(c). • 
Theorem 3.2. Consider the system (2.1)-(2.2) with 0" E S(~, b), where ~ and b are arbi

trary positive constants. If Assumptions 2.1, 2.2 and 2.3 hold, then the semi-global expo

nential stabilization problem via linear measurement feedback, defined in Definition 2.4, is 

solvable by the following family of linear measurement feedback laws 

x(k + 1) = (A - LC - B(B' P(c)B + I)-I B'PA) x(k) + Ly(k) (3.12) 

u(k) = -(B'P(c)B+I)-I B'PAx(k) (3.13) 
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where P(c) > 0 is the unique solution of the algebraic Riccati equation (3.1) and L is any 

matrix such that A - LC is asymptotically stable. More specifically, for any a priori given 

(arbitrarily large) bounded set We R2n , there exists an c* > 0 such that, for each c E (0, c*] 

and for each cr E SeA, b), the equilibrium (x, x) = (0,0) of the closed loop system is locally 

exponentially stable and W is contained in its domain of attraction. 

Proof. With the given measurement feedback laws, the closed-loop system takes the follow

ing form 

x(k + 1) = Ax(k) + Bcr (-(B'PB + I)-lB'P AX(k)) (3.14) 

x(k + 1) = (A - LC - B(B'PB + I)-I B'PA) x(k) + LCx(k) (3.15) 

where for the notational brevity, we have dropped the dependency on c of the matrix P(c). 

Letting e = x - x, we rewrite the closed-loop system (3.14)-(3.15) as 

x(k + 1) = (A - B(B' PB + I)-I B' PA) x(k) - BUe(k) + B[cr(u(k)) - u(k)] (3.16) 

e(k + 1) (A - LC)e(k) + B[cr(u(k)) - u(k)] (3.17) 

where we have defined Ue E Rm as ue(k) = -(B'PB + I)-lB'PAe(k). For later use, we also 

define Ux E Rm as ux(k) = -(B' PB + I)-I B' PAx(k). Clearly, u(k) = ux(k) - ue(k). 

Let Pe > 0 be the unique solution to the Lyapunov equation 

Pe = (A - LC)'Pe(A - LC) + I (3.18) 

Such a unique solution exists since A - LC is stable. We then choose a Lyapunov function 

V(x(k),e(k)) = x'(k)Px(k) + J>'max(P)e'(k)Pee(k) (3.19) 

Let c be a strictly positive real number such that 

(3.20) 

The right hand side is well defined since lime_o P(c) = 0 by Lemma 3.1 and W is bounded. 

Let ci be such that for all c E (O,ciL (x, e) E Lv(c) implies that IICB'PB + I)- IB'PA(x

e)1I < A, where the level set Lv(c) is defined as LvCc) = {(x, e) E R2n 
: Vex) ~ c}. Such an 

ci exists because of Lemma 3.2 and the fact lime-+o P( c) = O. 

The evaluation of the deference of V along the trajectory of the closed-loop system 

(3.16)-(3.17), using (3.8), (3.18) and Remark 2.1, shows that for all (x, e) E Lv(c), 



V(x(k + 1), e(k + 1» - V(x(k), e(k») 

= -u~(k)ux(k) + [u(u(k» - u(k)]'B'PB[u(u(k» - u(k)] 

-ex'(k)x(k) + 2x'(k) (A - B(B'PB + I)-IB'PA)' PB[u(u(k)) - u(k)] 

-2x'(k) (A-B(B'PB+I)-IB'PA)' PBueue(k) 

+u~(k)B'Bue(k) - 2u~(k)B'B[u(u(k» - u(k)] 

-y'>'ma.x(P)e'(k)e(k) + 2y'>'ma.x(P)el (k)(A - LC), PeB[u(u(k» - u(k)] 

+y'>'ma.x(P)[u(u(k» - u(k)J'B'PeB[u(u(k» - u(k)] 

< -u~(k)ux(k) + (b -l?Ama.x(B'PB)u'(k)u(k) - 2u~(k)[u(u(k» - u(k)] 

+u~(k)B'Bue(k) - 2u~(k)B'B[u(u(k» - u(k)] - y'Ama.x(P)e'(k)e(k) 

-ex'(k)x(k) + 2y'Ama.x(P)e'(k)(A - LC)'PeB[u(u(k» - u(k)] 

+2u~(k)ue(k) + y'Ama.x(P)[u(u(k» - u(k)l'B'PeB[u(u(k)) - u(k)] 

::; -ex'(k)x(k) u~(k)ux(k) + 2(b - 1)2>'ma.x(B'PB)[u~(k)ux(k) + u~(k)ue(k)] 

+2(b-l) (1 + Ama.x(B' B» ue(k)'ue(k) + 4(b-l? (1 +>'ma.x(B' B»2 u:(k)ue(k) 
1 

+4u~(k)ux(k) + 4u~(k)ue(k) + Ama.x(B'B)ue(k)'ue(k) - y'>'ma.x(P)e'(k)e(k) 

1 3 

+4u~(k)ux(k) + 20:Aba.x(P)IIAIIIIBlle'(k}e(k) + 40:2 >'ma.x(P)e'(k)e(k) 

1 
+4u~(k)ux(k) 2(b - 1)2y'Ama.x(P)Ama.x(B' PeB)[u~(k)ux(k) + u~(k)ue(k)] 

= -ex'(k)x(k) - y'Ama.x(P) (1 - 40:2y'Amin(P) - 20:Ama.x(P)IIBIlIIAII) e'(k)e(k) 

- [~- 2(b - 1)2 Ama.x(B1PB) - 2(b -1)2y'Ama.x(P)Ama.x(B'PeB)] u~(k)ux(k) 
+ [2(b-l)2 A(B' P B) +4(b-l )2(1 + Ama.x(BB,»2 + 2(b-l )(1 + Ama.x(B' B» 
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+4 + Ama.x(B' B) 2(b - 1)2 y'Ama.x(P) Ama.x (B' PeB)] u~(k)ue(k) (3.21) 

where we have denoted 0: := (b - l)II(A - LC), PeBII. 
Recalling that lime-+o P = 0 and 0: is independent of e, we easily verify that there exists 

an e* E (0, ei] such that for all e E (0, e*J, the following hold, 

and 

~ - 2(b -1)2>'ma.x(B'PB) - 2(b -l?y'Ama.x(P)Amax(B'PeB) 2:: 0 

1 
40:2 y'Amin(P) + 20:Ama.x(P)IIBIlIiAIl < 4 



+>'ma:x(B'B) +2(b -1)2J>'ma:x(P)>'ma:x(B'PeB)] u~(k)ue(k) :::; J>'m;(P) e'(k)e(k) 

Hence, it follows from (3.21) that for all c: E (0, c:*], 

9 

(x, e) E Lv(c) =? V(x(k+ 1), e(k+ 1)) - V(x(k), e(k)) :::; -c:x'(k)x(k) - J>.m;(P) e'(k)e(k) 

which shows that, for any c: E (0, c:*], the equilibrium (x, e) = (0,0) of the closed-loop system 

is locally exponentially stable and its domain of attraction contains the set Lv(c). This 

completes our proof of Theorem 3.2 since (x, x) E W implies that (x, e) E Lv(c). • 

4. An Example 

In this section we want to present a simple example to illustrate some of the results in this 

paper. Consider the following system: 

o 0 1 0 0 

(

0 1 0 0) (0) x(k + 1) = 0 0 0 1 x(k) + 0 u(u(k)). 

-1 2v2 -4 2v2 1 

which has repeated open loop poles at {"{} + if, "{} + i4-, 4- - i4-, 4- - i"{}}. The only 

knowledge we have about u is that u E S(l, 5). By Theorem 3.1, the problem of semi-global 

stabilization via linear state feedback is solvable. For example, for the a priori given set 

we first choose a c that satisfies (3.10). Since P is increasing in c: it is sufficient to choose: 

We next pick c:i as 

c = sup x' P(l)x ~ 1875.46 
xEW 

c:r = SUp{e E (0,1] III(B' PB + I)-I B' PAx II :::; 1 "Ix E Lv(c)} ~ 9.33 . 10-9 

Finally we pick c:* to be 

e* = SUp{e E (O,er] I 16>'max(B'PB) :::; 1 } = c:r ~ 9.33 .10-9 

It then follows from the proof of Theorem 3.1 that, for each e E (0, e*], the equilibrium 

x = 0 of the closed-loop system under the linear state feedback u = -(B' P B + I)-I B' P Ax 
is locally exponentially stable with W contained in its domain of attraction. For e = 5· 10-9 , 

we have 

u = (0.0235 -0.0501 0.0474 -0.0168)x 
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5. Conclusions 

In this paper we have studied the problem of stabilizing discrete-time linear systems subject 

to input saturation. We have shown that low-gain linear feedback controllers can achieve 

semi-global stabilization. Moreover, the resulting controller can be obtained using very little 

information of the precise structure of the saturation. The latter is very important since in 

practice we often only know a region where the actuator will behave approximately linear. 

Our controller is very robust with respect to changes in the saturation function. 
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