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Abstract. Formulation is given for the Gibbs-Duhem integration (GDI) method in the semigrand
canonical (SGC) ensemble, in which the total number of particles N is fixed with the specified
chemical potential differences between species Al (SU-AW,;i=2,3,...). Demonstration of the SGC
Monte Carlo simulation with the GDI technique is given for a pseudo-binary semiconductor alloy,

In Ga, N.

1. INTRODUCTION

Phase diagrams are inevitable materials in materi-
als processing. We look into the phase diagrams
when we determine the condition of chemical syn-
theses, crystal growth, device fabrication, and so
on. Nothing can be started without knowing the
melting temperature in the crystal growth from the
melt. Without appropriate phase diagrams one can-
not process materials successfully. To control the
composition of material so that expected proper-
ties are realized, the phase boundary in the alloy
phase diagram must be sufficiently accurate. In
recent development of nano-technologies require-
ment to accurate phase diagrams is increasing. For
some novel materials there exist no accurate phase
diagrams or its accuracy is insufficient. In such case
one may expect computational methods to make
an appropriate phase diagram. InGaN, to which we
have applied the method presented in this paper, is
a typical example; there exist several phase dia-
grams obtained on the basis of an approximate
theory such as the regular solution model. The pur-

pose of this paper is, however, to present a compu-
tational method to search the phase boundary.

Computer simulations such as molecular dynam-
ics and Monte Carlo (MC) simulations to investigate
the phase behavior have greatly been developed re-
cently. So far, thermodynamic integration (TI) method
was used to calculate the phase equilibrium condi-
tion. In Tl a free energy is calculated by integration
along a path connecting a reference state to states
of interest. Hoover and Ree [1] early proposed the
single-occupancy cell method; a system composed
of cells in each of which a particle lies was em-
ployed as a reference. This method was success-
fully applied to locate the hard-sphere crystal-melt
phase transition point [2] and the melting line of the
Lennard-Jones system [3]. Frenkel and Ladd [4]
proposed the harmonic crystal as a reference and
applied it to the hard-sphere system.

Tl requires numbers of samplings by simulations
along a path connecting the reference state to the
states of interest. Therefore, computational task is
so heavy and accordingly the accuracy is not so
high. In this respect, the direct phase equilibrium
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simulation without two-phase interface, the Gibbs
ensemble MC (GEMC) method, devised by
Panagiotopoulos [5] in 1987 was a progress; com-
putational tasks was reduced and at a same time
accuracy was increased. GEMC simulations are,
thus, extensively used even now. Beside its suc-
cess GEMC method has a shortcoming. One si-
multaneously performs MC runs, number of which
equals that of coexisting phases, with interaction
among coexisting phases. One of such interaction
is particle exchange among them. Therefore, one
encounters, as in the grand canonical MC simula-
tion, difficulty in insertion of a particle when the sys-
tem is dense [6].

Kofke and Glandt [7] stimulated a development
of the semigrand canonical MC (SGCMC) simula-
tion. As mentioned in a review [8] SGC formalism,
however, appeared early in 1970 in a quite general-
ized thermodynamic argument for multicomponent
systems by Griffiths and Wheeler [9]. Later but ear-
lier than Kofke and Glandt [7] SGC formalism was
given for polydisperse fluids by Bariano and Glandt
[10]. There was a development of SGCMC simula-
tion along this line [11-13].

In view of simulation of the phase coexistence
SGCMC method is an indirect one. Nevertheless, it
is recently applied to the phase coexistence involv-
ing solid phase because, unlike GEMC and the grand
canonical MC simulations, particle insertion MC
moves are not necessary. Instead, species-identity
changes are attempted, which for a binary case is
equivalent to the spin flip procedure in the kinetic
Ising model of Grauber’s dynamics. The identity
change MC moves are attempted under a given
chemical potential difference, Au, which corresponds
to the magnetic field in the Ising model. In the Ising
system below the Curie temperature the two-phase
equilibrium — equilibrium between phases of up-spin
rich and down-spin rich — condition coincides to the
zero magnetic field condition. This is due to the
symmetry with respect to up-spin—down-spin con-
version. Zero chemical potential difference, Au=0,
gives two phase equilibrium only in the molecular
systems with the intermolecular potentials possess-
ing a corresponding symmetry [@, =@, #@,, with
@, (i,j=A,B) being the intermolecular potentials be-
tween species i and j] as pointed out already [14-
17]. SGCMC simulation is, thus, convenient for such
cases. Indeed, liquid—liquid [14-20] phase equilibria
in symmetrical mixtures were investigated by
SGCMC simulation with this help. If there is not
symmetry determining the equilibrium condition prior
to the simulation, one needs a procedure which de-
termines the equilibrium condition such as Tl as

performed early for vapor-liquid phase equilibria
[7,21,22]. (Because fugacity fraction was used in-
stead of the chemical potential difference, despite
the symmetry the SGC free energies were com-
puted as functions of the fugacity fraction.) The SGC
free energies, Y’s, are to be calculated as a func-
tion of Au at fixed T and P and then equalities of
Y’s among coexisting phases are to be solved for
Ap.

Only if the coexistence region is so narrow as
its width is smaller than numerical errors, the coex-
istence region itself can be regarded as the equilib-
rium point with the error. De Miguel et al. [23] inves-
tigated ternary liquid mixture. Due to the symmet-
ric intermolecular interaction one of two chemical
potential differences vanished. Though the other was
not vanished, Tl was not performed. Discontinuity
in the equation of state was also used by Bate and
Frenkel [24] in a polydisperse system.

As mentioned in [7], unless the ensemble is of
isothermal—-isobaric SGC (if so, due to the Gibbs
phase rule, number of coexisting phases turns to
be 1), GEMC simulation is possible in SGC en-
semble. This is an alternative way of finding out the
phase equilibrium condition. GEMC in SGC en-
semble was already performed early by Stapleton
et al. [25] and recently by Bate and Frenkel [26].

There was another route along which SGCMC
was developed: as opposed to in previous para-
graphs, SGC may be organized as incorporation of
atomic moves into the Ising-type lattice gas model.
Foils [27] performed SGCMC simulation for Ni-Cu
binary alloy in 1985. He investigated how surface
segregation was enhanced relative to the segrega-
tion in the bulk; alloy phase diagram was not calcu-
lated. Later in 1989 Kelieres and Tersoff [28] per-
formed SGCMC simulation for the Si-Ge binary sys-
tem; an alloy phase diagram was obtained by de-
tecting a sufficiently small miscbility gap region as
done in [23,24]. Recently reinvestigation with this
simplified rough estimate for the same system with
large system size was carried out by Larad;ji et al.
[29]. Notable work on the alloy phase diagram was
that of Dinweg and Landau [30], who attained Tls
(those described in Secs. 2.1 and 2.2).

The other method, which also enables the simu-
lations of dense systems, developed in the last de-
cade was the Gibbs-Duhem integration (GDI) tech-
nique formulated by Kofke [31,32] (see also [8]).
GDI for the T-P phase diagram of one-component
systems is nothing other than a numerical integra-
tion of Clausius-Clapeyron's equation along a two-
phase equilibrium condition. (Therefore, GDI may
be referred to as Clausius-Clapeyron integration
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[33,34].) GDI technique has versatility; it was ap-
plied to not only the systems with difficulty in simu-
lation such as dense phases. Sturgeon and Laird
[35] accomplished adjustment of potential param-
eters by GDI technique, which inspired the present
work — GDI in SGC ensemble for the alloy phase
diagram. Potential parameter adjustment may be
regarded as an extension of previous studies [36-
39], in which the phase transition lines were traced
in the space including a potential-parameter axis.

Formalism of GDI was first extended to multi-
component systems by Mehta and Kofke [22]. They
formulated also in an "osmotic" ensemble (number
of solute particles were fixed instead of total num-
ber of molecules); MC simulations for vapor-liquid
coexistence in binary Lennard-Jones systems were
demonstrated in SGC as well as osmotic en-
sembles. Following Kofle [31,32], they proposed the
infinite dilution as a starting point of GDI; Henry's
law was to be used to predict an adjacent point.
Recently Hitchcock and Hall [40] preformed GDI for
solid-liquid coexistence of binary Lennard-Jones
mixtures with estimation of Henry's constant by
simulation. While Mehta and Kofke [22] described
a Clapeyron-type equation at constant T, Escobedo
and a co-worker [41-43] gave a general form and
then rewrote it in an isobaric form. Escobedo and
Pablo [41], however, performed GDIin NV, (grand
canonical) ensemble for liquid-liquid coexistence for
binary system of short chains with symmetric inter-
actions. Escobedo [42,43] investigated vapor-liquid
coexistence of binary and ternary mixtures by GDI
also in a grand canonical ensemble.

The remainder of this paper is organized as fol-
lows. We define SGC ensemble in Sec. 2.1 and ex-
plain GDI technique in Sec. 2.2. Formalism of GDI in
SGC ensemble is, at first, given for a c-component
isobaric SGC ensemble in Sec. 2.3. In Sec. 2.4 the
formulation is simplified for a binary case. Outline of
the simulation of In, Ga N pseudo binary semicon-
ductor alloy and its result are given in Sec. 3. Sec. 4
includes a summary and concluding remarks.

2. FORMULATION
2.1. Semigrand canonical ensemble

Let us consider a c-component system. In the grand
canonical ensemble the chemical potentials of all
components,{u, i=1,...,c}, are specified and num-
bers of particles of every components vary indepen-
dently. On the other hand, in the canonical ensemble
total numbers of particles of each component, {N;
i=1,...,c}, are fixed. SGC ensembles are defined as
a statistical ensemble lying between these. In the
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isobaric SGC ensemble Ay, (p-Ap;i=2,...,¢),P, and
T are specified with a conserved total number of
particles N(= 71 N.). Therefore, the composition
or the molar fraction {x}={N/N;i=2,...,c} varies
through {N,} varying under a constraint of
271 N, =N fixed.

The isobaric SGC partition function is defined
as

QN(A“)PT = z

N2

> jdV exp{ﬁ(i NAy, - PVHQ . M

(N—Z N,)N, ..NVT
=

where B=1/k,Tand Qu,u, nvr = Zn,.n./ n; NN

is the canonical partition function with the configu-
rational integral

Z,., =[d"rd"rexp-pu, 1, 2)

and the thermal de Broglie wavelength

A, =h/\2mk,T. Uy, x in Eq. (2) represents
the potential energy of system containing N, par-
ticles of species i(i=1,...c).

SGC free energy [7] is defined by

Y(N{AW},P,T) = =k, TINQ, - (3)

The following thermodynamic relation [9] is readily
derived by differentiating Eq. (3) with the help of Eq.

(1):

ay
o(du,)

i=2,....c,

(N,) = Nx;

i

(4)
where [+ Udenotes the isobaric SGC average:

[de 1=

o L z...zj‘dv(..)

N{ap}PT N, N,

exp[[&(i NAy, - PVﬂQ . . (5)

(N= NN, .NVT
=

Let us perform the Legendre transformation [7,10]
here. At first, we regard the Gibbs free energy G as
afunction of N,,...,N_,Pand T. Thus, we have

a c
G(N— ZN,.,NQ,...,NC,P,T) =
N,
! (6)

M, —H, =D j=2,...,c.
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iN,ui - iN,-(u,- ~H,) = N
i=1 i=2

Accordingly, SGC free energy Yis turned to be noth-
ing other than the chemical potential of species 1
itself [9].

We write the Gibbs-Duhem relation, which plays
a key role in GDI, into the form:

du, = -sdT +vdP - 5 x,d(Ap,), (8)
i=2
where s=S/N and v=V/N.

We can detect the phase equilibrium "point"
Ap*i(T,P) by the equality of SGC free energies or
H,'s among the coexisting phases. Tl based on ther-
modynamic relation is to be utilized; Eq. (4) is inte-
grated by x at a fixed T and Pto give a free energy
difference.

2.2. Gibbs-Duhem integration for
one-component two-phase
coexistence

Recalling the Gibbs-Duhem relation for single com-
ponent system [Eq. (8) without the last term] we
write Clapeyron's equation:

dP* As Ah

daT  Av  TAV'

(9)

where A denotes the difference between two coex-
isting phases | and Il. The superscript "eq" here and
hereafter indicates the equilibrium between those
coexisting phases; P* is the equilibrium pressure
of phases | and Il at temperature T. To get the last
expression we have used Au=Ah-TAs=0 at equilib-
rium with h denoting the molecular enthalpy, i.e.,
the latent heat of the phase transition per molecule.
Once one knew a point on the phase coexisting
line, say (T,P), one can predict an adjacent point
on the coexistence line, (T+dT, P+dP), with the help
of Eq. (9).

The last expression on Eq. (9) can be evaluated
by two separate simulations for coexisting two
phases. One needs no particle insertion procedure.
Predictor-corrector scheme is often used in inte-
grating Eq. (9), i.e., the adjacent point(s) may be
re-evaluated by using the Ah and Av values at the

predicted point(s). Several formulations were already
given by Kofke [31,32].

2.3. Gibbs-Duhem integration in
c-component semigrand canonical
ensemble

Remember the Gibbs-Duhem relation for the c-com-
ponent system, Eq. (8), and follow the derivation of
Clausius-Clapeyron's equation. Let us consider ¢
phase (phases |,ll,...,¢) coexistence at (T,P,{Ap})
and (T+dT,P+dP {Ap+d(Ap)}). Subtracting pJ(T,P,
{Opd)=, (TP{AW) from p(T+dT,P+dP {Ap+d(AW)})=
' (T.P.{&p+d(Ap)}) for j=II....,@we obtain the follow-
ing set of equations up to first order, where super-
scripts on y, and those on x,h, and v in Eq. (10)
represent the phase.

J

c o ah |
z A d(Ap) = - dT + Av/dP;
T (10)

j=,...,.

where Ax/=x/-x!, Ah=h-h', and Av=v-V. We have
replaced As’ by Ah//T as done in obtaining the last
expression on Eq. (9).

Eq. (10) should be treated as simultaneous equa-
tions. For isobaric (dP=0) case, for example, we
can solve them for d(Ap9) by calculating the in-
verse matrix of (Ax/). Of course, if the number of
coexisting phases, @, is less than the number of
component ¢, then these simultaneous equations
are underdetermined, and in the opposite case
overdetermined. All matrix elements Ax/ as well as
Ah/and Av/ can be evaluated by separate ¢ simu-
lations for coexisting phases. Thus, one can pre-
dict an adjacent "point" on a phase coexistence
"line." Only in the cases of isobaric SGC simula-
tions one benefits from this formulation. Or, in an
isochoric SGC case one has to determine the vol-
umes of every coexisting phase so that the me-
chanical equilibrium, i.e., equality of pressures
among phases, is satisfied at every step of GDI.

2.4. Gibbs-Duhem integration for
two-component two-phase
coexistence

Let us simplify the formulation by limiting ourselves
to a binary system, and put ourselves toward an
application. We consider coexistence between
phases | and Il in a system of components 1 and 2.
The Gibbs-Duhem relation reduces to

dy, = —=sdT +vdP - xd(Au), (11)
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where we omitted the subscript "2" under x and
Ap. Also, Eq. (10) reduces to

Ah
Axd(Auf"):—7dT+AvdP, (12)

where Ax=x"-x', Ah=h"-h', and Av=V"-V. Thus, in
the isobaric case, we have the equation to be inte-
grated in T-Ap plane:

d(Ap™)  Ah
dT TAX

(13)

The equation to be integrated in P-Ap plane, which
gives alternatively a x-P phase diagram at a fixed T,
is also readily obtained. Mahta and Kofke [22] de-
scribed this equation in terms of the fugacity frac-
tion in place of Ap. The reason why the Clapeyron-
type equation is written in terms of P may be for
convenience in applying the Henry's law.

3. DEMONSTRATION

SGCMC simulation with GDI technique has been
demonstrated for a pseudo-binary semiconductor
alloy, InGaN. We have investigated InGaN pseudo-
morphic to the basal plane of a wulzite GaN sub-
strate. In InGaN pseudo-binary case, | and Il repre-
sent the Ga-rich and In-rich phases, respectively. In
addition, we note that GaN and InN are treated as
the components 1 and 2, respectively. In Sec. 3.1
the empirical interatomic potential is given and sys-
tem investigated is described. The result of Tl at
800K, which has been used as an initial condition
of GDI, is presented in Sec. 3.2. Result of GDI and
discussion are given in Sec. 3.3.

3.1. Simulation model and system

The empirical interatomic potential [44] used in this
simulation has the form [45]

V, = Aexpl-B(r, - R )'l[exp(-6r,) -

B, exp(-A,)G(n)/ Z'1, (")

where r; is the interatomic distance between atoms
iand j,R: is the minimum distance between atoms,
Z,.=Zj exp[-B(r,.j-R,.)V] is the effective coordination num-
ber of atom i, and G(n) is the bond bending term for
tetrahedrally bonded atom pairs. (Do not confuse 3
in Eq.(14) with the reciprocal temperature.) For the
values of potential parameters, see also [46].
Excess energy, AE(x)=E(x)-[XE, *(1-X)Eg,\];
was already calculated [46]. x-AE curve is of vary
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asymmetric shape; the maximum point is significantly
shifted to In-rich side. In this calculation as well as in
the present simulation atomic positions parallel to
the substrate were fixed. Only normal positions were
allowed to move. Corresponding to the decrease of
the degree of freedom due to this constraint, the ex-
ponent 3N, on the thermal de Broglie wavelength in
the denominator of the canonical partition function
Q7 18 changed into N, In the present simulation
the vertical system size, L , was moved using ran-
dom numbers with the pseudo-Boltzmann weight at
P=1 atm. Maximum displacements of z-position
moves and L -move in the present SGCMC simula-
tion were determined so that the acceptance ratios
lay in 0.35~0.50. Lateral sizes of the basal plain (xy-
direction) were L =25.67Aand L =22.14A Periodic
boundary condition was imposed in all three direc-
tions. The total number of atoms was N, =1024. We
confirmed that AE(x) converges with N within a nu-
merical error around N,_=512 [46]. Saturation of the
system size effect on the energy does not necessar-
ily mean that on the free energy. As a possibility,
entropy may have much large system size depen-
dence. However, to reduce the computation time we
relied on our previous result [46].

3.2. Thermodynamic integration

Fig. 1 is the Ap-x relation at T=800K. All simula-
tions were started from pure GaN or InN and then
continued for 2~6-106 MC cycles (MCCs). Here,
one MCC contains one position move per atom on
average and one volume move. Each point in the
gap region for the Ga-rcih branch in Fig. 1 was ob-
tained by averaging over 5~10 independent simula-
tions. Evolution of the composition, the system size,
and the system energy with MCC were monitored.
Multi-step relaxation was sometimes observed for
the Ga-rich branch, which indicated a multi-valley
free energy structure. Suprelattice stacking along
c-axis was observed, e.g., IGGGGIGG with land G
denoting respectively In-rich and Ga-rich layers par-
allel to the basal plane. (The system includes 8 lay-
ers in z-direction.) Concerning such superlattice
structure in a finite system, we cannot distinguish
some superlattice structures of a periodicity longer
then the system size with some suprelatice struc-
tures including stacking faults. Some samples with
two or more successive In-rich layers laying in a
Ga-rich system were excluded in the sampling av-
erage, because those were not distinguished with
the phase separation. Samples including a In-rich
layer were included in the averaging, though the
superlattice periodicity may exceed the system
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Fig. 1. Indium composition x is plotted against
Au/k,T at 800K. Bistability is observed in a region
AWk, T=-26~-24. Lines are the Spline curves.

size. At apparent it seems that average was taken
over distinct (mata)stable states. It may be, how-
ever, regarded that we sampled parts with no, one,
or several In-rich layers from a long-preriodicity
superlattice structure. In this sense Fig. 1 is not
the final result. We note that an In-rich layer includes
several Ga atoms. It means that, for example, the
In composition of IGGGIGGG... is not necessarily
0.25. We will not compare the superlattice struc-
ture with the experimentally observed order [47-49].

Nevertheless, the result seems reasonable.
Bistabiltiy is clearly seen in Fig. 1. To determine
the equilibrium Ap we performed Tls. In addition to
Ap-integration (of Eq. (4))

Ay

H,(B1) = 1, (81,) = [ xdl(n), (15)

AT

along the lines in Fig. 1, we calculated the SGC free
energies at Ap=-30k,T(=Au ") for In-rich branch and
D =-20k_T (=Au ') for Ga-rich one using the harmonic
crystals [4] as references as follows. We note here,
before describing this, that Au,=Y/N with N=N, +N_
being the total number of cation-anion pairs.

Let U, be the harmonic potential. We replace

U in the equation corresponding to Eq. (2)

NGaNNInN
by
UA) =AU, , +(1=NU,. (16)

We have readily
av _
oA

where [4+[] denotes SGC average with U()) used
as the interatomic potential. Accordingly, we calcu-

W, . *U.0, (17)

Gan"Vinn

lated SGC free energies respectively at Ay, for In-
rich branch and Ay, for Ga-rich branch by the fol-
lowing equation:

1
Y(8u,) - Y(8u,0) = [W, , ~U,Qor. (18
0

where Y(Ap,;A) is Y of the system with the interac-
tion U(A). Also due to the fact that U, is the har-
monic crystal, Y(Au,'0)-Y(Au,;0) can be calculated
as a function of Apand Ap,"

Y(Bp;:0) - Y(AH,;0) =

1+/m_I'm,, exp(BAW,) (19)

1+ \/mm I m,, exp(BAW,)

Nk, T In

where m,_and m__ are the masses of In and Ga,
respectively. Suppression of the lateral degree of
freedom has affected Eq. (19). In three dimension-
ally movable cases masses should be cubed. It
should be noted that in Eqg. (19) the masses in the
square root symbols are not those of cation-anion
pairs.

w -U,0 /N, was plotted against A for
Ga-rich and In-rich branches respectively at
AWk, T=-20 and -30 (their figures are not presented
in this paper). Ten-point Gauss-Legendre quadra-
ture was employed for A-integration. Performing Ap-
and A-integrations we determined Au9/k,T=-25.19
at T=800K. For Ap-integration the Ap-x curve was fit-
ted by a Spline curve. Difference between the result of
the Spline fit and that of connecting linear interpolat-
ing lines was 0.019 in Au®9/k,T. We should note here
that Dinweg and Landau [30] made a use of values of
composition fluctuation (* 0~ kA = §(x*)) to fit the
Ap-x curves via the relation between Ap-derivative of
x and 3(x?). (Equilibrium composition fluctuation is
found to be proportional to the slope of the Ap-x
curve. Derivation is an easy exercise; one may only
differentiate Eq. (4) again.) In the present simula-
tion, however, the composition fluctuation was not
accurately evaluated.

3.3. Result of Gibbs-Duhem
integration

We performed GDI using the result of the preceding
subsection as a starting point. Predictor-corrector
scheme corresponding to the trapezoid formula was
employed. We simulated several points (for several
Ay at a temperature) around predicted one and then
made linear interpolation to the predicted point and,
in turn, to the corrected point. The linear interpola-
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Au/k, T
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Fig. 2. Au*-T relation as a result of the Gibbs-
Duhem integration. The result from the thermody-
namic integration, Ap/k,T=-25.19 at T=800K, was
used as the starting point. An almost linear relation
is seen.

tion was unfortunately not succeeded for Ga-rich
branch at T=850, 875, and 900K. (There were no
significant Ap-dependence of the composition for
In-rich branch.) Instead of linear interpolation aver-
age was taken over all simulation results at a tem-
perature for Ga-rich branch. This is indicated by er-
ror bars in x-T phase diagram (Fig. 3). Thus, the
predictor-corrector did not affect the composition
except for T=825K but T-Ap® relation (Fig. 2). If we
have numbers of samplings enough to make a his-
togram of distribution of state variables at each Ay,
we can utilize the histogram reweighting method
[50] as suggested by Escobedo [43] (also in
SGCMC simulation as Gelv et al. [18] done). Unfor-
tunately, we had not enough number of samplings.
Length of a simulation was 2~6:10* MCCs and we
repeated simulations 3~7 times for a point. Simi-
larly to the 800K samples superlattice structures
were observed. Averaging procedure was the same.
T-Ape relation and x-T phase diagram are shown in
Figs. 2 and 3, respectively. Au*/k,T increases al-
most linearly with T. On the other hand, x-T phase
diagram is highly asymmetric, which reflects the
asymmetric nature of the excess energy curve [46].
The In-rich side portion of the excess energy curve
forms deep and narrow valley. Less-sensitivity of
composition of In-rich phase on the temperature is
interpreted as the less entropy gain due to Ga incor-
poration into In-rich phase which cannot overcome
the energy gain of climbing a steep energy slope.
Shape of the Ga-rich phase boundary is not that ex-
pected from the regular solution model: the slope of
the boundary does not decreasd with T monotonicaly.
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Fig. 3. x-T "phase diagram" obtained by sampling
along the coexistence line in Fig. 2. Only terminal
compositions at simulated temperatures are plot-
ted. We see, however, clearly a shift of the two-
phase region toward the In-rich side.

A similar behavior for the InGaN binordal curve has
been obtained by Teles et al. [52] using a cluster
expansion method with a quantum mechanical cal-
culation. Not only the energy but also the number of
(meta)stable states allowed for a supercell of the
quantum mechanical calculation were evaluated.

4. CONCLUDING REMARKS

We summarize the present work as follows:

¢ Formulation of the Gibbs-Duhem integration in
the c-component semigrand canonical ensemble
has been given.

* As a demonstration alloy phase diagram of
In Ga, N/GaN has been investigated.

We discuss a remainder problem. As pointed in
Sec. 3.2 we encountered the multi-valley free en-
ergy phenomena. Why we started all simulation with
pure GaN or InN was to avoid the initial condition
sensitivity. Or, if we started a simulation with a con-
figuration obtained by a previous run, the system
must be trapped by a metastable valley near that of
the previous run. The multi-valley structure may be
interpreted by regarding the system as a huge chemi-
cal bond network. There are a lot of ways of defor-
mation when the other atoms are mixed. This re-
sembles chain molecules. We can utilize methods
in the simulations of the chain molecules.

We started the simulation with pure GaN or InN
without deformation of the lattice. A state free from
the deformation due to incorporation of other spe-
cies is a minic to a high-temperature state in which
there is no trapped state by a potential energy val-
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ley. The state point locates at a point on the free
energy surface and then moves toward a local mini-
mum in a course of a MC simulation. At a species-
identity change the state point jumps to another
place. If that place is of high energy, then accep-
tance ratio becomes low and accordingly the state
tends to be trapped by a metastable one. Imple-
mentation of such jump moves using another high-
temperature MC run devised by Frants et al. [53] is
referred to as J-Walking. J-Walking method has been
improved in a way that a jumped point is moved to
its nearest local minimum in the energy surface by
Zhou and Burne [54] and named S(Smart)-Walk-
ing. Kelires's [55] SGC simulation for Si-related al-
loy already included this idea approximately. With
the identity change the each nearest atom is moved
along the each vector connecting it and the atom
for which the identity change is attempted.

Let us view the problem globally. Most tempting
is muiti-canonical [56,57] type extended or gener-
alized ensemble simulations. If we can sample with-
out trapping by free energy local minima, of course,
the phase boundary is accurately determined. In
addition, if we can scan the whole free energy sur-
face and fund out the most of local minima, then we
can interpret experimental results in which the sys-
tem is trapped by a local minimum other than that
corresponds to the binordal line.

Let us return to the issue of the multi-valley free
energy. We pointed that this phenomenon was re-
lated to the superlattice structure. Averaging over
different lattice structures may correspond to sam-
pling average from various parts of the system. Some
speculated superlattice structure can be confirmed
by simulation for large systems. If an effective layer-
wise Hamiltonian is founded, we can perform a dif-
ferent scale simulation.
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