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Abstract

We consider the three waves interaction system and its linearization (the “pump-wave approxima-
tion”). We give some estimates on the semigroup as well as stability or instability results for the linearized
problem in suitable norms. We work in the whole space and with periodic boundary condition, and our
analysis relies on energy estimates and not on the complete integrability of the system.
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1 The three waves interaction equations

In this paper, we consider the three waves interaction system in dimension d
∂tA1 + v1 · ∇A1 + iσ1Ā2Ā3 = 0

∂tA2 + v2 · ∇A2 + iσ2Ā3Ā1 = 0

∂tA3 + v3 · ∇A3 + iσ3Ā1Ā2 = 0.

(TWI)

The amplitudes A` are complex-valued, the speeds v` are fixed vectors in Rd, and the coupling constants σ`
are real-valued. To take into account a domain with periodic condition or in the whole space, the system
(TWI) will be posed in

Ω = ΩΛ ≡
d∏
j=1

R/(2πΛjZ),

with Λ = (Λj)1≤j≤d ∈ (0,+∞]d and the convention that R/(2πΛjZ) = R if Λj = +∞.

The system (TWI) appears in various areas of physics: plasma physics, fluid mechanics, optics, acoustics,
mechanical or electrical oscillations... We refer, for instance, to the book [6] and to the paper [8]. One classical
way to derive the system (TWI) is as follows. Consider a scalar wave equation with quadratic nonlinearity

∂tu+Qu+R(u2) = 0 (1)

(for example the KdV equation, the KP equation... but this can be extended to systems). The operators
Q and R are pseudo-differential operators of symbol iQ = iQ(k) ∈ iR and iR = iR(k) ∈ iR respectively,
and the dispersion relation for the linearized equation is ω = Q(k). If some wave numbers (k1, k2, k3) form
a resonant triad, i.e.

k1 + k2 + k3 = 0, ω1 + ω2 + ω3 = 0, with ω` ≡ Q(k`), ` = 1, 2, 3,
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we can search for a solution u = u(t, x) of the wave equation (1) which is the sum of three wave packets of
small amplitude with these resonant wave numbers (k1, k2, k3) and slowly modulated. More precisely, u is
assumed to have an expansion of the form

u(t, x) = ε

3∑
`=1

A`(t = εt, x = εx)ei(k`·x−ω`t) + c.c.+O(ε2).

Notice that the lengthscale of the modulation is of the same order as the typical packet amplitude. Collecting
the terms of order ε2 and cancelling out the secular terms, we infer that, on a formal level, A1, A2, A3 satisfy
(on the scales (t = εt, x = εx)), the system (TWI), with v` = ∇Q(k`) (the velocity group for the wave
number k`) and (real-valued) coefficients σ` = R(k`) depending on the operator R. In optics, for instance,
the time coordinate can be a space coordinate.

For the system (TWI), the so-called Manley-Rowe relations give conserved quantities:

d

dt

∫
Ω

σ3|A2|2 − σ2|A3|2 dx =
d

dt

∫
Ω

σ1|A3|2 − σ3|A1|2 dx =
d

dt

∫
Ω

σ2|A1|2 − σ1|A2|2 dx = 0. (2)

Actually, a Lax pair can be found for the system (TWI) (see [13] for d = 1, [12] for d = 2 and [14] for d = 3)
thus is a completely integrable system for which inverse scattering can be used. Therefore, there exists an
infinite sequence of (formally) conserved quantities (see [1], [7]). Notice however that they do not give Hs

bounds uniform in time (as for the KdV equation for instance). Furthermore, explicit soliton solutions can
be computed, and blow-up can occur in finite time (under some conditions on the parameters, see [13]). One
can also focus on solutions depending only on time or on space (we get a system of ODE’s). In order to
use inverse scattering, we have to work with data and solutions sufficiently smooth and strongly localized in
space. In the physical literature, characteristic functions are of frequent use. The inverse scattering has been
well developed when Ω is the whole space Rd, but is always more difficult in the periodic setting. The paper
[3] deals rigorously with the inverse scattering problem in the Schwartz space on the line. It is restricted to
“generic data”, but this fact has been removed in [15]. In general, it is not always clear in which functional
spaces the data and the solution are, since the solution obtained by inverse scattering can lie in a space
larger than the one used for the initial data. The paper [16] clarifies this point for data in Sobolev spaces
with weight W s,2

m defined below. In this paper, we shall work in Lp and Sobolev spaces and shall not use
inverse scattering techniques.

1.1 A well-posedness result

We denote J ≡ {1 ≤ j ≤ d, Λj = +∞} and, for x ∈ Rd, xJ ≡ (xj)j∈J ∈ RJ ⊂ Rd. We define for s,
m ∈ N and 1 ≤ p ≤ ∞ the Sobolev space with weight

W s,p
m (Ω) ≡

{
f ∈W s,p(Ω), (1 + |xJ |2)m/2f ∈ Lp(Ω)

}
,

equipped with the natural norm∣∣∣∣f ∣∣∣∣
W s,p
m (Ω)

≡
∣∣∣∣f ∣∣∣∣

W s,p(Ω)
+
∣∣∣∣(1 + |xJ |2)m/2f

∣∣∣∣
Lp(Ω)

.

The space W s,p
0 is then the standard Sobolev space W s,p. For s > d/p, W s,p

m (Ω) is an algebra, and

∀f, g ∈W s,p
m (Ω),

∣∣∣∣fg∣∣∣∣
W s,p
m (Ω)

≤ C(s, p,Ω)
∣∣∣∣f ∣∣∣∣

W s,p
m (Ω)

∣∣∣∣g∣∣∣∣
W s,p
m (Ω)

. (3)

Furthermore, it follows from interpolation theory (see [10]) and Sobolev embedding that if k ∈ N, s > k+d/p
and f ∈W s,p

m (Ω), then (1 + |xJ |µ)∇kf ∈ Cb(Ω) for 0 ≤ µ < m(1− d/(p(s− k))). As a consequence, one has⋂
s,m∈N

W s,p
m (Ω) = S (Ω), (4)

where the Schwartz space S (Ω) is defined as the set of complex valued functions f , smooth and such that
for any α ∈ Nd and µ ∈ N,

(1 + |xJ |µ)∂αx f ∈ Cb(Ω),

endowed with the usual topology. The intersection (4) has to be understood with the induced topology.
The Cauchy problem for (TWI) is locally well-posed in the spaces W s,p

m (Ω) as well as in the Schwartz
space, where inverse scattering can be used.
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Proposition 1 We fix s ∈ N, 1 ≤ p ≤ ∞ and m ∈ N, with s > d/p. Then, for any initial data Ain =
(Ain

1 , A
in
2 , A

in
3 ) ∈ W s,p

m (Ω), there exists a unique maximal solution A = (A1, A2, A3) ∈ C([0, T ∗),W s,p
m (Ω)) to

(TWI). Moreover, T ∗ does not depend on s provided s > d/p. Finally, for some constant c > 0 depending
on p, Ω and (v`, σ`)1≤`≤3, there holds

T ∗ ≥ c∣∣∣∣Ain
∣∣∣∣
W s,p
m (Ω)

.

Consequently, the Cauchy problem for (TWI) is locally well-posed in the Schwartz space S (Ω).

Proof. We just write (TWI) under the form

A(t, x) = (A`(t, x))1≤`≤3 =
(
Ain
` (x− tv`)− iσ`

∫ t

0

Ā`′Ā`′′(τ, x− (t− τ)v`) dτ
)

1≤`≤3
,

where {`, `′, `′′} = {1, 2, 3}. Using the fact that W s,p
m (Ω) is an algebra, the easy estimate∣∣∣∣∣∣ ∫ t

0

Ā`′Ā`′′(τ, x− (t− τ)v`) dτ
∣∣∣∣∣∣
W s,p
m (Ω)

≤ Ct sup
0≤τ≤t

∣∣∣∣A(τ)
∣∣∣∣2
W s,p
m (Ω)

allows to prove by a standard fixed point argument the local well-posedness of (TWI), with the lower bound
for T ∗. Since T ∗ does not depend on s > d/2, the result in the Schwartz space follows directly from (4). N

If we want to work with data having a certain decay at infinity given by some weight $ : RJ → R∗+ (for

instance an exponential decay and $(y) = eγ|y| for y ∈ RJ and some fixed γ > 0), we may define

W s,p
$ (Ω) ≡

{
f ∈W s,p(Ω), $(xJ)f ∈ Lp(Ω)

}
,

endowed with the natural norm, which is also an algebra (satisfying an estimate like (3)) for s > d/p. The
above result also holds for W s,p

$ (Ω) (and if f ∈ W s,p
$ (Ω), s > k + d/p, with s, k ∈ N, then $µ∇kf ∈ Cb(Ω)

if 0 ≤ µ < 1− d/(p(s− k))).

1.2 The linearized problem and stability/instability results by inverse scatter-
ing

We shall focus in the sequel on the linearized problem when A1 and A2 are small compared to A3, that is
∂tA1 + v1 · ∇A1 + iσ1Ā2Ā3 = 0

∂tA2 + v2 · ∇A2 + iσ2Ā3Ā1 = 0

∂tA3 + v3 · ∇A3 = 0.

Working in the frame moving with the speed v3, replacing A2 by Ā2 and iĀ3 by A3, we are led to ∂tA1 + υ1 · ∇A1 + σ1A3A2 = 0

∂tA2 + υ2 · ∇A2 + σ2Ā3A1 = 0,
(5)

where (υ1, υ2) ≡ (v1−v3, v2−v3) and where A3 = A3(x) is a given function independent of time. The datum
A3 is called the pump-wave and (5) the pump-wave approximation. For the system (5), the Manley-Rowe
identity (2) becomes

d

dt

∫
Ω

σ2|A1|2 − σ1|A2|2 dx = 0. (6)

This suggests that the solution (A1, A2) = (0, 0) is stable for (5) if σ1σ2 < 0, which is what is expected from
inverse scattering (see [6], [8]). Note that the inverse scattering problem for the linearized system (5) is iλψ1 + υ1 · ∇ψ1 + σ1ψ2A3 = 0

iλψ2 + υ2 · ∇ψ2 + σ2ψ1Ā3 = 0,
(7)
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which is exactly the system we obtain when applying Fourier transform in time for (5), with λ the dual
variable of t (hence expected real). Here, we consider only bounded eigenvectors. For the inverse scattering
point of view, (forward in time) stability for (5) means that (7) has no nontrivial solution with Im(λ) < 0
and (forward in time) instability that (7) has at least one nontrivial solution with Im(λ) < 0. For σ1σ2 > 0,
the situation is more delicate. In dimension d = 1, with Ω = R at least, it is expected (see [8], [6]) that when

υ1υ2 < 0,

that is if among the original speeds v1, v2, v3, A3 is associated to the middle one, then if one takes A3 as the
soliton of (TWI), there is linear instability for (5). This instability leads, for the original system (TWI), to
the creation of two solitons, with respective speeds v1 and v2 whereas the soliton A3 disappears (this is called
“decay instability”). This result of soliton exchange interaction is classical (see [8], [4]), and is supported by
experiments and numerical simulation (see [2]). We would like to point out that the unstable eigenvalues
appear in the scattering problem as zeros or poles of some holomorphic functions, and come from numerical
studies or asymptotic expansions in some particular regimes. More generally, the decay instability happens
each time A3 is not too small so that the two solitons can appear. The quantities√

σ1σ2

|υ1υ2|
×
∣∣∣ ∫

R
A3 dx

∣∣∣ and

√
σ1σ2

|υ1υ2|

∫
R
|A3| dx,

called the area and the absolute area, are proportional to an upper bound for the possible number of solitons
contained in the solution of (TWI) with initial data (A1 ≈ 0, A2 ≈ 0, A3). Thus, a smallness hypothesis√

σ1σ2

|υ1υ2|

∫
R
|A3| dx < c, (8)

for some absolute positive constant c, prevents the formation of solitons. In [4] and [8], one can find various
sharp or sufficient conditions (when Ω = R) on stability in the case σ1σ2 > 0 and υ1υ2 < 0 (they depend
on the specific regime of interest), for instance c = π/2 is necessary and sufficient (for a real-valued function
A3, which never vanishes) in the WKB approximation, that is for a slowly varying amplitude A3, and in the
general case c ' 0.903 is sufficient. In the case

υ1υ2 > 0,

this phenomenon can not occur: solitons can not be created in A1 or A2. However, the question of stability
for (5) if υ1υ2 > 0 is then not very clear: the absence of solitons only means (by inverse scattering) that (5)
has no eigenvalue in the half-space {Im < 0}. Let us emphasize once again that all these results hold for
strongly localized in space data (notice that the condition (8) requires A3 ∈ L1(R) for example).

As already mentioned, the inverse scattering point of view give precise qualitative information, but the
absence of clear functional spaces makes the statements of stability/instability results quite delicate. For
the same reason, they do not give estimates for the growth of solutions in the unstable cases. Furthermore,
the inverse scattering approach is not adapted to perturbation. Our aim in this paper is to determine, in
each case, an Lp or Sobolev norm in which stability or instability occurs for (5). For a given equation
like (1), where the (TWI) system arises through asymptotic expansions, the resonant set is often compact
(i.e. the resonant triads are bounded). Therefore, we hope that our results can help for stating and proving
stability/instability results (in an adapted Lp type space) for this original problem without inverse scattering.
Indeed, since the functions involved in (TWI) will have only low frequencies, a control in any (reasonable)
norm (like L1, L2 or L∞ norms) is acceptable.

1.3 Statement of the results

We first note that if s, m ∈ N are given, the initial value problem (5) is well-posed in the spaces W s,p
m (Ω)

provided A3 ∈ W s,∞(Ω). In what follows, ΣtA
in will denote the solution A = (A1, A2) at time t ≥ 0 of (5)

with initial datum Ain = (Ain
1 , A

in
2 ). The space Lp(Ω,C2) is endowed with the norm ||F = (F1, F2)||Lp ≡

max(||F1||Lp , ||F2||Lp).
The results for (5) below depend whether the map A3 has only Sobolev regularity, that is A3 ∈W s,p(Ω),

which is a first natural context, or A3 is strongly localized in space (A3 ∈W s,p
m (Ω) with m sufficiently large),

which is natural in order to use inverse scattering. The results below concern different cases which are far

4



from being disjoint. It will be convenient in the following to distinguish the two cases
(Cper) Λj <∞ for any 1 ≤ j ≤ d such that (υ1)j 6= 0 or (υ2)j 6= 0,
(Cinf) Λj =∞ for any 1 ≤ j ≤ d such that (υ1)j 6= 0 or (υ2)j 6= 0,
which correspond to cases where we have periodic conditions all or none of the directions of Span(υ1, υ2).

The case σ1σ2 = 0 as well as the cases υ1 = 0 and/or υ2 = 0 are degenerate, and will be studied in the
end of the section. When υ1 = υ2, only one speed of propagation is involved and explicit computations can
be carried out. Moreover, if A3 ≡ 0, then Σt is trivially unitary in all the spaces W s,p(Ω). The proofs are
given in the next section.

Localized data remain localized. First, we state a result when A3 and the initial data Ain = (Ain
1 , A

in
2 )

are sufficiently localized in space, then the solution (A1, A2) of (5) remains localized in space for positive
times. However, since we work for large times, we have to take into account the transport terms in (5) with
speeds υ1 and υ2. Therefore, we denote

Γ ≡ {α1υ
J
1 + α2υ

J
2 , α1 ≥ 0, α2 ≥ 0, α1 + α2 ≤ 1}

the convex hull of 0, υJ1 , υJ2 and in RJ ; and set for t ≥ 0 and x ∈ Ω

Dt(x) ≡ dist(xJ , tΓ).

Then, we have

Proposition 2 We assume υ1 6= 0, υ2 6= 0 and that, for some ν > 1, A3 verifies

(1 + |xJ |ν)A3 ∈ L∞(Ω).

Then, there exists C > 0 and R ≥ 1, depending only on σ1, σ2, υ1, υ2, ν and ||(1 + |xJ |ν)A3||∞, such that
for any µ ≥ 0 and any initial data Ain = (Ain

1 , A
in
2 ) such that

(1 + |xJ |µ)Ain ∈ L∞(Ω),

there holds, for t ≥ 0,
||Dµ

t (x)ΣtA
in||L∞({Dt≥R}) ≤ C||(1 + |xJ |µ)Ain||L∞(Ω).

The stable case σ1σ2 < 0. From the conservation laws (6), it follows rather immediately:

Proposition 3 We assume σ1σ2 < 0 and fix s ∈ N. If A3 ∈ W s,∞(Ω), then there exists C > 0, depending
on A3, s, σ1, σ2 (but not on υ1 and υ2) such that for t ≥ 0,∣∣∣∣Σt∣∣∣∣Lc(Hs(Ω))

≤ C(1 + ts).

For functions depending only on time (hence in the periodic setting and with A3 constant), the term ts

is useless. However, it can not be removed in general, as shown by the simple example where υ1 = υ2 = 0
(recall that the constant C does not depend on the speeds υ1 and υ2), in which case (5) becomes ∂tA1 + σ1A2A3 = 0

∂tA2 + σ2Ā3A1 = 0,
(9)

thus
A1(t, x) = α(x) cos(t

√
|σ1σ2| |A3|(x)) + β(x) sin(t

√
|σ1σ2| |A3|(x))

and the estimate of Proposition 3 is optimal. Nevertheless, the case υ1 = υ2 = 0 is very degenerate, since all
the speeds are equal. However, in dimension d ≥ 3, we can argue analogously in case (Cper) with functions
(A1, A2) depending only on coordinates orthogonal to Span(υ1, υ2) (and compactly supported) to deduce
the optimality of the estimate in Proposition 3. This is also possible if d = 2 and the speeds υ1, υ2 are
collinear (still in case (Cper)). The secular term ts means that in general, oscillations in time are expected.
We do not know whether the estimate of Proposition 3 is optimal in the other cases for d ≥ 2. However,
in the one dimensional case, one can always improve the above result by showing stability in all the spaces
Hs(Ω), provided the speeds υ1 and υ2 are nonzero.
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Proposition 4 Let d = 1, fix s ∈ N and assume that σ1σ2 < 0, that A3 ∈ W s,∞(Ω) and that υ1 6= 0 and
υ2 6= 0. Then, there exists C > 0, depending on s, A3, Ω, υ1, υ2, σ1 and σ2, such that, for t ≥ 0,∣∣∣∣Σt∣∣∣∣Lc(Hs(Ω))

≤ C.

In the above Proposition, the constant C depends on A3 through some eigenvalue problem. It is clear
from these results that when σ1σ2 < 0, the scattering problem (7) has, as expected, no eigenvalue in {Im < 0}
if we require the corresponding eigenvector to belong to L2(Ω).

The case of small and localized data. We now consider strongly localized in space data, with a smallness
assumption, in the spirit of (8). Then, stability is expected for (5). Note however that the result below is
not restricted to the unstable situation σ1σ2 > 0. The hypothesis below on A3 are natural when one writes
(5) under the Duhamel form

A1(t, x) = Ain
1 (x− tυ1)− σ1

∫ t

0

A2(τ, x− (t− τ)υ1)A3(x− (t− τ)υ1) dτ

A2(t, x) = Ain
2 (x− tυ2)− σ2

∫ t

0

A1(τ, x− (t− τ)υ2)Ā3(x− (t− τ)υ2) dτ.

(10)

Proposition 5 We assume υ1 6= 0, υ2 6= 0 and consider the case (Cinf). We fix s ∈ N and we assume that
A3 ∈ Csb (Ω) is such that

∀α ∈ Nd, |α| ≤ s, sup
x∈Ω

{∫
x+Rυ1

|∂αxA3|+
∫
x+Rυ2

|∂αxA3|
}
<∞

and satisfies the smallness assumption

|σ1σ2|
|υ1| · |υ2|

(
sup
x∈Ω

∫
x+Rυ1

|A3|
)(

sup
x∈Ω

∫
x+Rυ2

|A3|
)
< 1. (11)

Then, there exists some constant C depending only on s, σ1, σ2, υ1, υ2, A3 and (11) such that for t ≥ 0,∣∣∣∣Σt∣∣∣∣Lc(W s,∞(Ω))
≤ C.

We may notice that in dimension d = 1, with σ1σ2 > 0 and υ1υ2 < 0, our smallness assumption (11) is√
σ1σ2

|υ1υ2|

∫
R
|A3| dx < 1,

which is an upper bound like (8) with c = 1, which is better than the (sufficient) value (in the general case)
c ' 0.903, but worse than the “exact” value c = π/2 for the WKB approximation. Here again, the above
result shows that (7) has no eigenvalue in {Im < 0} when A3 is both localized and small. In dimension d = 1,
(11) requires A3 to be in L1, and we would like to point out that for (1) (for (KdV) or (KP) equations, for

instance), integrability conditions can be imposed on u in order to have finite mass

∫
R
u dx (which is often

a formally conserved quantity).

The case σ1σ2 > 0. In the case σ1σ2 > 0, we first give an estimate of exponential growth.

Proposition 6 We assume σ1σ2 > 0, fix s ∈ N and let A3 ∈W s,∞(Ω), A3 6≡ 0. We define

γ ≡
√
σ1σ2||A3||L∞(Ω) > 0.

Then, for any 1 ≤ p ≤ ∞, there exists C > 0, depending on A3, p, s, σ1 and σ2 (but not on υ1, υ2) such
that for any t ≥ 0 ∣∣∣∣Σt∣∣∣∣Lc(W s,p(Ω))

≤ C(1 + ts)eγt.

We can notice (as in the analogous case discussed just after Proposition 3) that the polynomial growth
in ts can be achieved with either υ1 = υ2 = 0, either d ≥ 3, either d = 2 and υ1, υ2 collinear.

In the case (Cper), the estimate in Proposition 6 is almost optimal, as shown by the following

6



Proposition 7 We assume σ1σ2 > 0 and consider the case (Cper), with A3 ∈ L∞(Ω), A3 6≡ 0, and let

γ ≡
√
σ1σ2||A3||L∞(Ω) > 0.

(i) If Λj <∞ for every 1 ≤ j ≤ d and A3 is independent of x, then −iγ ∈ iR∗− ⊂ {Im < 0} is an eigenvalue
for (7) with multiplicity one among the functions constant in space.
(ii) If d > dim Span(υ1, υ2) and A3 ∈ Cb(Ω) depends only on the coordinates orthogonal to Span(υ1, υ2), then
for any 0 < ε < γ, there exist a ball B2rε(yε) and initial data Ain = (Ain

1 , A
in
2 ) ∈ C∞c (B2rε(yε)) such that

|Ain|∞ ≤ 1 in B2rε(yε), |Ain|∞ = 1 in Brε(yε) and

|ΣtAin|∞ ≥ e(γ−ε)t in Brε(yε).

(iii) If d > dim Span(υ1, υ2) and A3 depends only on the coordinates orthogonal to Span(υ1, υ2) and is such
that, for some ball B2r(y), we have |A3|(x) = ||A3||L∞(Ω) for x ∈ B2r(y), then −iγ ∈ iR∗− ⊂ {Im < 0} is an
eigenvalue for (7) with infinite multiplicity.
(iv) If 1 ≤ p ≤ ∞, d = 1, A3 is real-valued and υ1 = υ2 6= 0, then there exists some constant C > 0,
depending on σ1, σ2 and υ1 = υ2 such that if t ≥ 0, then

∣∣∣∣Σt∣∣∣∣Lc(Lp(Ω))
≤ C exp

(
t
∣∣∣√σ1σ2

|Ω|

∫
Ω

A3(y) dy
∣∣∣).

Moreover, the eigenvalues for (7) (with multiplicity) are the

mυ1

Λ
± i
∣∣∣√σ1σ2

|Ω|

∫
Ω

A3(y) dy
∣∣∣, for m ∈ Z.

In particular, they are simple as soon as

∫
Ω

A3(y) dy 6= 0.

We notice that in case (ii), there holds, for any 1 ≤ p ≤ ∞ and t ≥ 0,∣∣∣∣ΣtAin
∣∣∣∣
Lp(Ω)

≥ Cp
∣∣∣∣Ain

∣∣∣∣
Lp(Ω)

e(γ−ε)t,

where the constant Cp depends only on p (and A3, σ1, σ2 and d) and not on 0 < ε < γ. Consequently,∣∣∣∣Σt∣∣∣∣Lc(Lp(R))
≥ Cpe(γ−ε)t.

Furthermore, for (ii) and (iii), if d = dim Span(υ1, υ2), then we are in case (i).

We now turn to the case (Cinf). By Proposition 5, we now that stability holds in W s,∞ if A3 is suitably
small. In dimension d = 1 and without smallness assumption on A3, we can show that (7) may have some
eigenvalues in {Im < 0}.

Proposition 8 We assume Ω = R (d = 1, Λ1 = +∞), σ1σ2 > 0 and υ1υ2 < 0 (we are then in case (Cinf)).
For A3 ∈ L∞(R), we denote

γ∗ ≡ 2
√
σ1σ2

√
|υ1υ2|

|υ1 − υ2|
||A3||L∞(R) ∈

(
0,
√
σ1σ2||A3||L∞(R)

]
.

(i) Assume A3 = A31[a,b], with A3 ∈ C∗ and −∞ < a < b < +∞. Then, if

√
σ1σ2(b− a)|A3|√

|υ1υ2|
=

√
σ1σ2√
|υ1υ2|

∣∣∣ ∫
R
A3(x) dx

∣∣∣ ≤ π/2,
(7) has no eigenvalue in {Im < 0}, and if m ∈ N∗ is such that

(2m− 1)π

2
<

√
σ1σ2(b− a)|A3|√

|υ1υ2|
=

√
σ1σ2√
|υ1υ2|

∣∣∣ ∫
R
A3(x) dx

∣∣∣ ≤ (2m+ 1)π

2
,
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then (7) has exactly m eigenvalues in {Im < 0}, which are simple and lie in (0,−iγ∗).
(ii) We assume that A3 ∈ L1 ∩ L∞(R) is real-valued and satisfies√

σ1σ2

|υ1υ2|
×
∣∣∣ ∫

R
A3(x) dx

∣∣∣ > π

2
.

Then, there exists at least one eigenvalue λ0 ∈ iR∗− ⊂ {Im < 0} for (7), with corresponding eigenvector
decaying exponentially fast at infinity. Hence, for any 1 ≤ p ≤ ∞, instability holds for (5) in Lp(R).
(iii) If A3 ∈ L1 ∩L∞(R), then there exists a constant C, depending on σ1, σ2, υ1, υ2 and A3, such that, for
any t ≥ 0, ∣∣∣∣Σt∣∣∣∣Lc(L∞(R))

≤ Ceγ∗t.

Remark 1 In (i), by an appropriate choice of the area of A3, we can make the eigenvalues as close as we
want to −iγ∗, so that the estimate in (iii) is (in general) optimal. We emphasize that, comparing with
Proposition 7, the optimal rate γ∗ in (iii) does depend on the speeds υ1 and υ2. In (iii), if υ1 + υ2 = 0,

then 2

√
|υ1υ2|

|υ1 − υ2|
= 1, thus γ = γ∗ and Proposition 6 gives the same estimate in all Lp(R) spaces without

assuming A3 ∈ L1(R). The case (ii) is consistent with the (necessary and) sufficient condition (for real-
valued everywhere nonzero functions A3) in the WKB approximation c = π/2 (however, on the one hand,
we work neither in a WKB approximation, neither with a constraint on the constant sign of A3; and on the
other hand, in the WKB approximation, the condition is also sufficient). In any case, if d = 1, σ1σ2 > 0
and υ1υ2 < 0, the soliton is linearly unstable since it is in L1(R) and has area equal to π > π/2. Let us
mention that we have no result corresponding to (ii) when A3 is complex-valued. Of course, the results of
Propositions 5 and 8 leave open, when d = 1 and σ1σ2 > 0 > υ1υ2, the case where A3 is real-valued with√

σ1σ2

|υ1υ2|
×
∫
R
|A3|(x) dx ≥ 1 but

√
σ1σ2

|υ1υ2|
×
∣∣∣ ∫

R
A3(x) dx

∣∣∣ ≤ π

2
.

A numerical example is given in [8] where A3 is the characteristic function of an interval with corresponding
area between 1 and π/2: for (TWI), there is instability and blow-up in finite time (this suggests instability
for (5), but (i) shows that there is no eigenvalue for (7) in {Im < 0}). We have not been able to prove any
estimate for the solution of (5) better than the exponential growth given in (iii) when restricting ourselves to
energy methods. Even though we could locate precisely the eigenvalues in {Im < 0}, using this information
to estimate the semigroup seems a difficult task.

In the case Ω = R and υ1υ2 > 0, we do not expect eigenvalues in {Im < 0} for (7). However, the stability
for (5) is linked to some integrability conditions on A3.

Proposition 9 We assume Ω = R (d = 1, Λ1 = +∞), σ1σ2 > 0 and υ1υ2 > 0 (we are then in case (Cinf)).
(i) We assume A3 ∈ L1

loc(R) real-valued, υ1 = υ2 6= 0, and fix 1 ≤ p ≤ ∞. Then stability holds in Lp(R) for
(5) if and only if

sup
−∞<a<b<+∞

∣∣∣ ∫ b

a

A3(y) dy
∣∣∣ <∞, (12)

in which case there exists Cp, depending only on p, σ1 and σ2, such that for any t ≥ 0,

∣∣∣∣Σt∣∣∣∣Lc(Lp(R))
≤ Cp exp

(√σ1σ2

|υ1|
sup

−∞<a<b<+∞

∣∣∣ ∫ b

a

A3(y) dy
∣∣∣).

If (12) is not true, then
∣∣∣∣Σt∣∣∣∣Lc(Lp(R))

→ +∞ as t→ +∞ and there exists Cp > 1, depending only on p, σ1

and σ2, such that for any t ≥ 0,

1

Cp
exp

(√σ1σ2

|υ1|
sup
x∈R

∣∣∣ ∫ x

x−t|υ1|
A3(y) dy

∣∣∣) ≤ ∣∣∣∣Σt∣∣∣∣Lc(Lp(R))
≤ Cp exp

(√σ1σ2

|υ1|
sup
x∈R

∣∣∣ ∫ x

x−t|υ1|
A3(y) dy

∣∣∣).
(ii) There exists a constant C, depending only on σ1, σ2, υ1 and υ2 such that, if A3 ∈ L1

loc(R) and t ≥ 0,
we have ∣∣∣∣Σt∣∣∣∣Lc(Cb(R))

≤ C exp
(√σ1σ2

υ1υ2
sup
x∈R

∫ x

x−tmax(|υ1|,|υ2|)
|A3|(y) dy

)
.
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In particular, if A3 ∈ L1(R), then stability holds in Cb(R) for (5) and, for t ≥ 0,

∣∣∣∣Σt∣∣∣∣Lc(Cb(R))
≤ C exp

(√σ1σ2

υ1υ2

∣∣∣∣A3

∣∣∣∣
L1(R)

)
.

(iii) We assume1 that υ1 > 0 and υ2 > 0, that A3 ∈ C(R) is real-valued, A3 6∈ L1(R), and satisfies2

A3 = 0 in [1,+∞), −σ1A3 ≥ 0 in R, −σ1A3 is nondecreasing in R−. (13)

Then, ||Σt||Lc(Cb(R)) → +∞ as t→ +∞. More precisely, there exists a constant c > 1 depending only on σ1,
σ2, υ1 and υ2 such that, for t ≥ 0,

∣∣∣∣Σt∣∣∣∣Lc(L∞(R))
≥ c exp

(min(υ1, υ2)

max(υ1, υ2)

√
σ1σ2

υ1υ2
sup
x∈R

∣∣∣ ∫ x

x−tmax(υ1,υ2)

A3(y) dy
∣∣∣).

Remark 2 In view of the right-hand side part of the estimate in (ii), problem (7) has no eigenvalue in
{Im < 0} (for eigenvectors in L∞(R)) if A3 ∈ L2(R). However, instability can occur for (5).

In [9] (section 4), the question of the stability for (5) was studied (for d = 1) in the case υ1 = υ2: stability
was suggested when A3 ∈ L1(R) and instability was shown by an explicit example for some A3 6∈ L1(R).
This led G. Schneider to the conjecture that stability holds for (5) (if d = 1 and σ1σ2 > 0) for sufficiently
localized functions A3 (at least in L1(R)) and instability occurs for nonlocalized functions A3. As we see
from the results obtained by inverse scattering (subsection 1.2) and the above results, the situation is more
complex.

If σ1σ2 > 0 and υ1 = υ2 = 0, (5) reduces to (9), with solutions that can be written explicitly:

Σt = exp
(
− t
(

0 σ1A3(x)
σ2Ā3(x) 0

))
,

and the matrix Σt has eigenvalues exp(±t√σ1σ2|A3|(x)) hence, the estimates for Σt are as in Proposition 7.
If A3 ∈ C2(Ω), notice that in this simple case, −i√σ1σ2

∣∣∣∣A3

∣∣∣∣
L∞(Ω)

∈ {Im < 0} is not an eigenvalue for (7)

as soon as
∣∣∣∣A3

∣∣∣∣
L∞(Ω)

is a non-degenerate critical value of |A3|. In dimension d = 1, it remains to study the

degenerate case where one speed υ1 or υ2 is zero. Possibly changing x for −x and exchanging the indices 1
and 2, we do not loose generality assuming υ1 = 0 < υ2.

Proposition 10 We assume Ω = R (d = 1, Λ1 = +∞), σ1σ2 > 0 and υ1 = 0 < υ2 (we are then in case
(Cinf)).
(i) Assume that A3 ∈ L∞loc(R) is such that |A3| ≥ A3 > 0 on an interval I of length ` > 0. Then, for any
0 < ε < `, there exists a constant cε > 0, depending on ε and `, such that

∣∣∣∣Σt∣∣∣∣Lc(L∞(R))
≥ cε exp

(√σ1σ2

υ2
A3

√
(`− ε)t

)
.

(ii) Assume that A3 ∈ L∞(R) is compactly supported in an interval I of length ` > 0. Then, there exists a
constant C > 0, depending on `, σ1, σ2 and υ2, such that for any t ≥ 0,

∣∣∣∣Σt∣∣∣∣Lc(L∞(R))
≤ C exp

(√σ1σ2

υ2

∣∣∣∣A3

∣∣∣∣
L∞(R)

√
`t
)
.

Let us mention that if A3 = A31[0,`], with A3 ∈ C∗, then estimates in (i) and (ii) give the same upper
and lower bounds in the limit ε→ 0.

We now turn (in the case (Cinf)), to the higher dimensional situation.

1Otherwise, change x for −x.
2We can choose a smooth function A3 such that A3(x) = σ1(1−x)ν for x ≤ 0, with ν ∈ (1/2, 1), for instance, and A3 ∈ Hs(R)

for every s ∈ N.
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Proposition 11 We assume Ω = R2 (d = 2, Λ1 = Λ2 = ∞), σ1σ2 > 0 and that υ1, υ2 are not collinear
(we are then in case (Cinf)). We assume that A3 satisfies, for some M ≥ 0 and ν > 1, the decay estimate

∀x ∈ R2, |A3|(x) ≤ M

1 + |x|ν∞
. (14)

Then, there exists a constant C(ν,M), depending on M , ν, σ1, σ2, υ1 and υ2 such that, for any t ≥ 0,∣∣∣∣Σt∣∣∣∣Lc(Cb(R2))
≤ C(ν,M).

If υ1 and υ2 are collinear, we can reduce to one of the cases of the one-dimensional situation, with the
extra-variables as simple parameters. This is also what happens if d ≥ 3 and υ1 and υ2 are not collinear.

The degenerate case σ1σ2 = 0. We now focus on the degenerate case σ1σ2 = 0. First, if σ1 = σ2 = 0,
(5) reduces to two decoupled free transport equations with explicit solutions and conservation of all W s,p(Ω)
norms. If σ2 = 0 6= σ1, the function A2 can be computed explicitly and we obtain from (10)

A2(t, x) = Ain
2 (x− tυ2), A1(t, x) = Ain

1 (x− tυ1)− σ1

∫ t

0

A3(x− (t− τ)υ1)Ain
2 (x− (t− τ)υ1 − τυ2) dτ,

for which one infers easily the following estimates :
- if υ1 6= 0 and υ1 6= υ2, there exists C, depending on σ1, υ1 and υ2 such that∣∣∣∣ΣtAin

∣∣∣∣
L∞(Ω)×L2(Ω)

≤ C
[∣∣∣∣Ain

∣∣∣∣
L∞(Ω)×L2(Ω)

+
(

sup
x∈Ω

∫
x+Rυ1

|A3|2
) 1

2
(

sup
x∈Ω

∫
x+R(υ1−υ2)

|Ain
2 |2
) 1

2
]

and ∣∣∣∣Σt∣∣∣∣Lc(L∞(Ω))
≤ C

(
1 + sup

x∈Ω

∫
x+Rυ1

|A3|
)
,

provided the supremum in the right-hand side is finite, and otherwise∣∣∣∣Σt∣∣∣∣Lc(L∞(Ω))
≈ |σ1| sup

x∈Ω

∫
x−[0,t]υ1

|A3| as t→ +∞.

Thus, in particular, if d = 1 and A3 ∈ L2(R) but A3 6∈ L1(R), then stability holds for (5) in L∞(R)×L2(R)
but not in L∞(R).
- if υ1 = υ2 = 0, then for any 1 ≤ p ≤ ∞,∣∣∣∣Σt∣∣∣∣Lc(Lp(Ω))

≈ t
∣∣∣∣A3

∣∣∣∣
L∞(Ω)

as t→ +∞;

- if υ1 = υ2 6= 0, then, there exists C, depending on σ1 and υ1 = υ2 such that, for t ≥ 0,∣∣∣∣Σt∣∣∣∣Lc(Lp(Ω))
≤ C

(
1 +
|σ1|
|υ1|

sup
x∈Ω,τ≥0

∣∣∣ ∫
x−[0,τ ]υ1

A3

∣∣∣)
(if the supremum in the right-hand side is finite), and otherwise∣∣∣∣Σt∣∣∣∣Lc(Lp(Ω))

≈ |σ1|
|υ1|

sup
x∈Ω

∣∣∣ ∫
x−[0,t]υ1

A3

∣∣∣ as t→ +∞;

- if υ1 = 0 6= υ2, then

A1(t, x) = Ain
1 (x)− σ1A3(x)

∫
x−[0,t]υ2

Ain
2 ,

and the situation is very degenerate. We can state, for instance, that if d = 1,∣∣∣∣Σt∣∣∣∣Lc(L∞(Ω)×L1(Ω))
≤
(

1 + |σ1|
∣∣∣∣A3

∣∣∣∣
L∞(Ω)

)
and for d ≥ 2, denoting ∣∣∣∣f ∣∣∣∣

L∞⊥ L
1
υ2

(Ω)
≡ sup
x∈Ω

∫
x+Rυ2

|f |,
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we have ∣∣∣∣Σt∣∣∣∣L∞(Ω)×L∞⊥ L1
υ2

(Ω)
≤
(

1 + |σ1|
∣∣∣∣A3

∣∣∣∣
L∞(Ω)

)
.

The paper [9] (see also other papers by the same author) investigates, for a nonlinear wave equation
in dimension one in the spirit of (1), the problem of the approximation of a wavetrain by the nonlinear
Schrödinger equation. The case studied corresponds to the stable one σ1σ2 < 0. In [4], we shall study
this problem (in arbitrary dimension, replacing the nonlinear Schrödinger equation by the Davey-Stewartson
system if d ≥ 2) for a general semilinear equation, taking into account all possible cases and using the above
semigroup estimates.

2 Proofs of the results

In the sequel, A = (A1, A2) always stands for Σt(A
in
1 , A

in
2 ) = ΣtA

in. Unless otherwise stated, the Lp

norms are taken in the space variable.

2.1 Proof of Proposition 2

Let x ∈ Ω with Dt(x) ≥ R ≥ 1. Then, from (10), it comes

Dµ
t (x)|A1|(t, x) ≤Dµ

t (x)|Ain
1 |(x− tυ1) + |σ1|

∫ t

0

Dµ
t (x)|A2|(τ, x− (t− τ)υ1)|A3|(x− (t− τ)υ1) dτ

≤ |x− tυ1|µ|Ain
1 |(x− tυ1) + |σ1|

∫ t

0

a2(τ)|A3|(x− (t− τ)υ1) dτ,

with
a`(τ) ≡

∣∣∣∣Dµ
τ (·)A`(τ, ·)

∣∣∣∣
L∞({Dτ≥R})

, ` = 1, 2.

Here, we use the fact that Dt is 1-Lipschitz, hence Dt(x) ≤ Dt(x− tυ1) +Dt(tυ1) = Dt(x− tυ1), and that
Dτ (x− (t− τ)υ1) ≥ Dt(x) since, Γ being convex,

Dτ (x− (t− τ)υ1) = inf{|x− (t− τ)υ1 − τu|, u ∈ Γ}
= inf{|x− t[(1− τ/t)υ1 + (τ/t)u]|, u ∈ Γ} ≥ inf{|x− tU |, U ∈ Γ} = Dt(x).

Therefore, using the decay of A3,

Dµ
t (x)|A1|(t, x) ≤ a1(0) + |σ1|C0(A3)

(
sup
t′∈[0,t]

a2(t′)
)∫ t

0

dτ

1 + |x− (t− τ)υ1|ν
.

Similarly, we obtain for A2

Dµ
t (x)|A2|(t, x) ≤ a2(0) + |σ2|C0(A3)

(
sup
t′∈[0,t]

a1(t′)
)∫ t

0

dτ

1 + |x− (t− τ)υ2|ν
.

It suffices then to prove that if R ≥ 1 is large enough, then for t ≥ 0 and x ∈ Ω with Dt(x) ≥ R,

max
j=1,2

(
|σj |C0(A3)

∫ t

0

dτ

1 + |x− (t− τ)υj |ν
)
≤ ε < 1, (15)

with ε independent of t and x, since then, one has

max
j=1,2

aj(t) ≤ max
j=1,2

aj(0) + ε
(

max
j=1,2

sup
t′∈[0,t]

aj(t
′)
)

and this will conclude the proof. Letting sυ1, s ∈ R, be the orthogonal projection of x on Rυ1, we have

|x− (t− τ)υ1|2 = |sυ1 − (t− τ)υ1|2 + |x− sυ1|2 ≥ |sυ1 − (t− τ)υ1|2 +R2
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if s ∈ [0, t] (since then Dt(x) = |x− sυ1| ≥ R), and thus∫ t

0

dτ

1 + |x− (t− τ)υj |ν
≤
∫ t

0

dτ

1 + ([s− (t− τ)]2|υ1|2 +R2)ν/2
≤
∫
R

dσ

1 + (σ2|υ1|2 +R2)ν/2

which is as small as we want if R is large enough. When s ≥ t (the case s ≤ 0 is identical), then Dt(x) =
|x− tυ1| ≥ R and

|x− (t− τ)υ1|2 = |sυ1 − (t− τ)υ1|2 + |x− sυ1|2 = (s− (t− τ))2|υ1|2 + |x− sυ1|2

so that∫ t

0

dτ

1 + |x− (t− τ)υj |ν
≤ Kν

∫ t

−∞

dσ

[1 + |x− sυ1|+ (s− σ)|υ1|]ν
≤ Kν

|υ1|
1

[1 + |x− sυ1|+ (s− t)|υ1|]ν−1
.

Then, |x− sυ1|+ (s− t)|υ1| ≥ |x− tυ1| ≥ R and the last expression can be made as small as we want if R
is chosen sufficiently large. The proof is complete.

2.2 Proof of Proposition 3

The proof is rather immediate, and proceeds by induction on s. Using (6), we have

d

dt
N (A) = 0, where N (A) ≡ 1

2

∫
Ω

|A1|2 −
σ1

σ2
|A2|2 dx ≈

∣∣∣∣A = (A1, A2)
∣∣∣∣2
L2 ,

since σ1σ2 < 0. We then define an Hs functional N s, s ∈ N, setting (N 0 = N )

N s(A) ≡
∑
|α|≤s

N (∂αxA) ≈
∣∣∣∣A∣∣∣∣2

Hs
,

and assume
N s(A(t)) ≤ Cs(1 + ts)2

∣∣∣∣Ain
∣∣∣∣2
Hs

for some s ≥ 0. Applying ∂αx , |α| = s+ 1, to (5), we infer ∂t∂
α
xA1 − υ1∂x∂

α
xA1 + σ1A3∂

α
xA2 = −σ1[∂αx , A3]A2

∂t∂
α
xA2 − υ2∂x∂

α
xA2 + σ2Ā3∂

α
xA1 = −σ2[∂αx , Ā3]A1.

By the Leibnitz formula, [∂αx , A3]A2 is a sum of terms of the type ∗∂α−βx A2∂
β
xA3 for 0 6= β ≤ α (where the

coefficient ∗ depends only on α and β). Hence, by the induction hypothesis, we deduce∣∣∣∣[∂αx , Ā3]A1

∣∣∣∣
L2 +

∣∣∣∣[∂αx , A3]A2

∣∣∣∣
L2 ≤ C

∣∣∣∣A3

∣∣∣∣
W s+1,∞(1 + ts)

∣∣∣∣Ain
∣∣∣∣
Hs
,

where C depends only on s, σ1 and σ2. Therefore,

d

dt
N (∂αxA) ≤ C

∣∣∣∣A3

∣∣∣∣
W s+1,∞(1 + ts)

∣∣∣∣Ain
∣∣∣∣
Hs

√
N (∂αxA),

and the result follows.

2.3 Proof of Proposition 4

Let us first consider the case Ω = R/(2πΛ) with 0 < Λ1 = Λ < +∞. We define the linear operator
T : D(T ) ≡ H1(Ω) ⊂ L2(Ω)→ L2(Ω) by

T

(
ψ1

ψ2

)
≡
(
iυ1ψ

′
1 + iσ1A3ψ2

iυ2ψ
′
2 + iσ2Ā3ψ1

)
.

Since σ1σ2 < 0, we can consider the scalar product, for ψ = (ψ1, ψ2) and φ = (φ1, φ2),

〈ψ, φ〉 =
〈( ψ1

ψ2

) ∣∣∣( φ1

φ2

)〉
≡
∫

Ω

ψ1φ̄1 −
σ1

σ2
ψ2φ̄2 dx,
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which is equivalent to the standard scalar product in L2(Ω) and for which T is self-adjoint. Furthermore, T
has compact resolvent. Indeed, for µ ∈ C with Im(µ) 6= 0 and |µ| sufficiently large and f = (f1, f2) ∈ L2(Ω),
we may write the equation (T − µ)ψ = f for the unknown ψ = (ψ1, ψ2) under the form

ψ̂(n) = (ψ̂1, ψ̂2)(n) =
( iÂ3 ∗ ψ̂2(n)− f̂1(n)

µ+ υ1n/Λ1
,
i ˆ̄A3 ∗ ψ̂1(n)− f̂2(n)

µ+ υ2n/Λ1

)
where the (ψ̂(n))n∈Z are the Fourier coefficients of ψ. This last equation is easily solved by a contraction
argument (for |µ| large enough) in `2(Z), and the easy estimate ||ψ||H1(Ω) ≤ Cµ||f ||L2(Ω) allows to conclude
to the compactness of (T −µ)−1 by compact Sobolev embedding. By standard theory, there exists a Hilbert
basis (for the scalar product 〈 · | · 〉, equivalent to the standard scalar product in L2(Ω)) of eigenvectors of
T , denoted (en)n∈N, with corresponding real eigenvalues (λn)n∈N, with |λn| → +∞ as n → +∞. As a
consequence, if ψ = (ψ2, ψ2) ∈ H1(Ω) and if we denote cn ≡ 〈ψ|en〉, n ∈ N, we have

〈Tψ|Tψ〉 =
〈∑
n∈N

λncnen

∣∣∣∑
n∈N

λncnen

〉
=
∑
n∈N

λ2
n|cn|2.

Since A3 ∈ L∞(Ω), we have

||(A3ψ1, Ā3ψ2)||2L2(Ω) ≤ C||ψ||
2
L2(Ω) ≤ C〈ψ|ψ〉 = C

∑
n∈N
|cn|2

and thus, since υ1, υ2 are nonzero by hypothesis, we infer

||ψ′||2L2(Ω) ≈ 〈(iυ1ψ
′
1, iυ2ψ

′
2)|(iυ1ψ

′
1, iυ2ψ

′
2)〉 = 〈Tψ|Tψ〉+O(||(A3ψ1, Ā3ψ2)||2L2(Ω)) =

∑
n∈N

λ2
n|cn|2+O

(∑
n∈N
|cn|2

)
and consequently, we have the equivalence of (squared) norms

||ψ||2H1(Ω) ≈
∑
n∈N

(1 + λ2
n)|cn|2.

More generally, by Leibnitz formula (recall that A3 ∈W s,∞(Ω)), we deduce analogously that for any s ∈ N,
we have the equivalence of (squared) norms

||ψ||2Hs(Ω) ≈
∑
n∈N

(1 + λ2s
n )|cn|2. (16)

We now turn to the proof of Proposition 4. For any initial data Ain = (Ain
1 , A

in
2 ) ∈ Hs(Ω), we may write

Ain =
∑
n∈N
〈Ain|en〉en =

∑
n∈N

cnen

in Hs(Ω), and the solution A = (A1, A2) of (5) is

A(t) =
∑
n∈N

eitλncnen.

Hence, we have, using (16),

||A(t)||2Hs(Ω) ≤ C
∑
n∈N

(1 + λ2s
n )|eitλncn|2 = C

∑
n∈N

(1 + λ2s
n )|cn|2 ≤ C||Ain||2Hs(Ω)

as required.

We now turn to the case Ω = R, i.e. Λ = Λ1 = +∞. The point is also to expand on eigenvectors, replacing

in the expansion ψ =

+∞∑
n=0

cnen the series by an integral, in the same way we obtain Fourier transform from

Fourier series. The idea is naturally to let Λ → +∞ in the previous case. When T is a second order,
self-adjoint operator, this is the well-known Weyl-Stone-Titchmarsh-Kodaira theory (see, e.g. [11], Chap. 5,

13



or [5], Chap. 10). The extension to the operator T is not difficult, and we just give a few details for sake of
completeness.

For λ ∈ R, let us denote (Φ1(·, λ),Φ2(·, λ)) the solutions of

TΦ1 − λΦ1 = TΦ2 − λΦ2 = 0, Φ1(x = 0, λ) = (1, 0), Φ2(x = 0, λ) = (0, 1).

By classical results, Φ1 and Φ2 are smooth functions of λ for fixed x. For 0 < Λ < ∞, we denote (eΛ
n)n≥0

an Hilbert basis for T : H1(ΩΛ) → L2(ΩΛ), (λΛ
n)n≥0 the corresponding eigenvalues, and 〈·|·〉Λ and 〈·|·〉 will

denote the scalar product in L2(ΩΛ) and L2(R). We expand the eigenvectors eΛ
n , n ∈ N, on the basis of

solutions (Φ1(·, λΛ
n),Φ2(·, λΛ

n)):

eΛ
n =

2∑
j=1

rΛ
j,nΦj(·, λΛ

n) rΛ
j,n ∈ C.

If ψ ∈ Cc(R), we can view ψ as an element of L2(ΩΛ) provided Λ is sufficiently large so that Supp(ψ) ⊂

[−πΛ,+πΛ], say Λ ≥ Λ0. Then, the formula ψ =

+∞∑
n=0

cΛne
Λ
n in L2(ΩΛ), for Λ ≥ Λ0 can be written, in L2(ΩΛ),

ψ(x) =

+∞∑
n=0

cΛne
Λ
n(x) =

+∞∑
n=0

2∑
j,k=1

〈
ψ
∣∣Φk(·, λΛ

n)
〉
rΛ
j,nr̄

Λ
k,nΦj(x, λΛ

n) =
2∑

j,k=1

∫
R
ψ̃k(λ)Φj(x, λ) dρΛ

j,k(λ), (17)

in the sense of Stieltjes integrals, where (recall that ψ is compactly supported)

ψ̃k(λ) ≡
〈
ψ
∣∣Φk(·, λ)

〉
(k = 1, 2)

and ρΛ
j,k is a piecewise constant function, normalized so that ρΛ

j,k(0 + 0) = 0, and with discontinuities at the

λΛ
n ’s, where

ρΛ
j,k(λΛ

n + 0)− ρΛ
j,k(λΛ

n − 0) =
∑

m,λΛ
m=λΛ

n

rΛ
j,mr̄

Λ
k,m.

We observe that the right-hand side is a nonnegative hermitian matrix. The Parseval identity for ψ becomes

〈ψ|ψ〉 = 〈ψ|ψ〉Λ =

2∑
j,k=1

∫
R
ψ̃k(λ)ψ̃j(λ) dρΛ

j,k(λ). (18)

In order to prove local in space compactness for the matrix ρΛ = (ρΛ
j,k)1≤j,k≤2, we shall prove that for any

Λ0 > 0, there exists some η > 0 and a constant C(Λ0) such that, if |λ0| ≤ Λ0 ≤ Λ− 1, then

2∑
j,k=1

∫ λ0+η

λ0−η
|dρΛ

j,k|(λ) ≤ C(Λ0). (19)

First, from the definition of ρΛ, we have

2

∫ λ0+η

λ0−η
|dρΛ

1,2|(λ) ≤
∫ λ0+η

λ0−η
dρΛ

1,1(λ) +

∫ λ0+η

λ0−η
dρΛ

2,2(λ), (20)

hence, for (19), it suffices to show that∫ λ0+η

λ0−η
dρΛ

1,1(λ) +

∫ λ0+η

λ0−η
dρΛ

2,2(λ) ≤ C(Λ0). (21)

For fixed Λ0 > 0, λ0 ∈ [−Λ0,+Λ0] and Λ ≥ Λ0 + 1, we choose χ ∈ Cc((−1,+1)) with
∫
χ = 1 and for ψ the

mollifier ψε(x) = ε−1χ(x/ε)(1,−σ2/σ1). Then, we infer, by continuity of the Φk, k = 1, 2 that, as ε→ 0,

ψ̃kε (λ)→ 〈(1, 1)|Φk(0, λ)〉 = 1

for k = 1 and k = 2 locally uniformly in λ. As a consequence, there exists η > 0, independent of Λ, such
that, for ε small enough,

2∑
j,k=1

∫
R
ψ̃kε (λ)ψ̃jε (λ) dρΛ

j,k(λ) ≥ 1

2

∫ λ0+η

λ0−η
dρΛ

1,1(λ) +
1

2

∫ λ0+η

λ0−η
dρΛ

2,2(λ)− 1

4

∫ λ0+η

λ0−η
|dρΛ

1,2|(λ).
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Inserting (20) and the Parseval identity, we obtain, for ε sufficiently small, Λ ≥ Λ0 + 1 and |λ0| ≤ Λ0,

〈ψε|ψε〉 ≥
1

4

∫ λ0+η

λ0−η
dρΛ

1,1(λ) +
1

4

∫ λ0+η

λ0−η
dρΛ

2,2(λ),

which yields (21), and thus (19).
Therefore, on every bounded interval [−Λ0,+Λ0], the functions (ρΛ

j,k)1≤j,k≤2 have bounded variation,
with a uniform bound for Λ ≥ Λ0 + 1. By Helly’s compactness theorem, there exists a matrix valued

mapping ρ and a sequence Λq → +∞ such that (ρ
Λq
j,k)1≤j,k≤2 converges to ρ pointwise and weakly in BV (I)

for every bounded interval I as q →=∞. This allows to pass to the limit in (17):

ψ(x) =

2∑
j,k=1

∫
R
ψ̃k(λ)Φj(x, λ) dρj,k(λ) in L2(R)

and in (18)

〈ψ|ψ〉 =

2∑
j,k=1

∫
R
ψ̃k(λ)ψ̃j(λ) dρj,k(λ).

These formulas are extended by density if ψ ∈ L2(R). Finally, we have, for ψ ∈ H1(R),

Tψ(x) =

2∑
j,k=1

∫
R
λψ̃k(λ)Φj(x, λ) dρj,k(λ) in L2(R)

and, as in the periodic case, since υ1 and υ2 are non zero,∣∣∣∣ψ′∣∣∣∣2
L2(R)

≈ 〈(iυ1ψ
′
1|iυ2ψ

′
2〉 = 〈Tψ|Tψ〉+O

(∣∣∣∣ψ∣∣∣∣2
L2(R)

)
since A3 ∈ L∞(R). Hence,

∣∣∣∣ψ∣∣∣∣2
H1(R)

≈
2∑

j,k=1

∫
R

(1 + λ2)ψ̃k(λ)ψ̃j(λ) dρj,k(λ),

and, for s ∈ N arbitrary, ∣∣∣∣ψ∣∣∣∣2
Hs(R)

≈
2∑

j,k=1

∫
R

(1 + λ2s)ψ̃k(λ)ψ̃j(λ) dρj,k(λ).

The conclusion then follows. It can be actually shown (as in [5]) that ρ is unique up to some constant matrix
and that ρΛ converges to ρ as Λ→ +∞ (locally in space) and not only for some sequence.

2.4 Proof of Proposition 5

From the system (10), we deduce, for 0 ≤ t′ ≤ t,

|A1|(t′, x) ≤
∣∣∣∣Ain

1

∣∣∣∣
L∞

+ |σ1|
∫ t′

0

∣∣∣∣A2(τ, ·)
∣∣∣∣
L∞
|A3|(x− (t′ − τ)υ1) dτ

≤
∣∣∣∣Ain

1

∣∣∣∣
L∞

+
|σ1|
|υ1|

(
sup

0≤τ≤t

∣∣∣∣A2(τ, ·)
∣∣∣∣
L∞

)(
sup
x∈Ω

∫
x+Rυ1

|A3|
)

and similarly

|A2|(t′, x) ≤
∣∣∣∣Ain

2

∣∣∣∣
L∞

+
|σ2|
|υ2|

(
sup

0≤τ≤t

∣∣∣∣A1(τ, ·)
∣∣∣∣
L∞

)(
sup
x∈Ω

∫
x+Rυ2

|A3|
)
.

As a consequence,∣∣∣∣A1(t′, ·)
∣∣∣∣
L∞
≤
∣∣∣∣Ain

1

∣∣∣∣
L∞

+
|σ1|
|υ1|

∣∣∣∣Ain
2

∣∣∣∣
L∞

(
sup
x∈Ω

∫
x+Rυ1

|A3|
)

+ δ sup
0≤τ≤t

∣∣∣∣A1(τ, ·)
∣∣∣∣
L∞

,
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with

δ ≡ |σ1σ2|
|υ1| · |υ2|

(
sup
x∈Ω

∫
x+Rυ1

|A3|
)(

sup
x∈Ω

∫
x+Rυ2

|A3|
)
.

From the smallness assumption (11), δ < 1 and it follows

sup
0≤t′≤t

∣∣∣∣A1(τ, ·)
∣∣∣∣
L∞
≤ 1

1− δ

(∣∣∣∣Ain
1

∣∣∣∣
L∞

+
|σ1|
|υ1|

∣∣∣∣Ain
2

∣∣∣∣
L∞

sup
x∈Ω

∫
x+Rυ1

|A3|
)

and analogously for A2. Therefore, the estimate for s = 0 is proved: there exists C > 0 such that, for t ≥ 0,∣∣∣∣ΣtAin
∣∣∣∣
L∞
≤ C

∣∣∣∣Ain
∣∣∣∣
L∞

.

We now argue by induction and assume the result for s ∈ N. Let α ∈ Nd with |α| = s+ 1, and let us apply
∂αx to (10) to obtain

∂αxA1(t, x) = ∂αxA
in
1 (x− tυ1) −σ1

∫ t

0

∂αxA2(τ, x− (t− τ)υ1)A3(x− (t− τ)υ1) dτ

−σ1

∫ t

0

[∂αx , A3(x− (t− τ)υ1)]A2(τ, x− (t− τ)υ1) dτ

∂αxA2(t, x) = ∂αxA
in
2 (x− tυ2) −σ2

∫ t

0

∂αxA1(τ, x− (t− τ)υ2)Ā3(x− (t− τ)υ2) dτ

−σ2

∫ t

0

[∂αx , Ā3(x− (t− τ)υ2)]A1(τ, x− (t− τ)υ2) dτ.

Using the induction hypothesis and the Leibnitz formula, we infer, for t ≥ 0,∣∣∣ ∫ t

0

[∂αx , A3(x− (t− τ)υ1)]A2(τ, x−(t− τ)υ1) dτ
∣∣∣

≤ Cα
∣∣∣∣A2

∣∣∣∣
L∞(R+,W s,∞)

max
β≤α

∫ t

0

|∂βxA3(x− (t− τ)υ1)| dτ

≤ Cs
∣∣∣∣Ain

∣∣∣∣
W s,∞ ,

and similarly for the last integral. Then, arguing as for the case s = 0, we infer for 0 ≤ t′ ≤ t∣∣∣∣∂αxA1(t′, ·)
∣∣∣∣
L∞
≤ Cs

∣∣∣∣Ain
∣∣∣∣
W s+1,∞ + δ sup

0≤τ≤t

∣∣∣∣∂αxA1(τ, ·)
∣∣∣∣
L∞

,

and similarly for A2, which allows to conclude.

2.5 Proof of Proposition 6

We recall that, here, σ1σ2 > 0 and A3 6≡ 0, hence γ > 0. To prove the growth estimate for Σt, we argue
as for Proposition 5 by induction on s. The first point is to find a suitable norm. For the ODE part (in
time) of (5), namely

dA

dt
+

(
0 σ1A3

σ2Ā3 0

)
A = 0,

in which the matrix has eigenvalues ±√σ1σ2|A3|, it turns out that the norm

ν0(A) ≡ |A1|+
√
σ1

σ2
|A2|

is well adapted, since

ν0

(( 0 σ1A3

σ2Ā3 0

)
A
)

=
√
σ1σ2|A3|ν0(A).

Therefore, for 1 ≤ p ≤ ∞, it natural to work with the norm in Lp(Ω,C2)

Np(A) ≡
∣∣∣∣A1

∣∣∣∣
Lp

+

√
σ1

σ2

∣∣∣∣A2

∣∣∣∣
Lp
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Taking the Lp norm in (10) yields
∣∣∣∣A1(t)

∣∣∣∣
Lp
≤
∣∣∣∣Ain

1

∣∣∣∣
Lp

+ |σ1| ·
∣∣∣∣A3

∣∣∣∣
L∞

∫ t

0

∣∣∣∣A2(τ)
∣∣∣∣
Lp

dτ

∣∣∣∣A2(t)
∣∣∣∣
Lp
≤
∣∣∣∣Ain

2

∣∣∣∣
Lp

+ |σ2| ·
∣∣∣∣A3

∣∣∣∣
L∞

∫ t

0

∣∣∣∣A1(τ)
∣∣∣∣
Lp

dτ,

hence

Np(A(t)) ≤ Np(A
in) +

√
σ1σ2

∣∣∣∣A3

∣∣∣∣
L∞

∫ t

0

Np(A(τ)) dτ

and the Gronwall lemma gives as wished, for t ≥ 0,

Np(A(t)) ≤ Np(A
in)eγt.

We assume now that, for some s ∈ N, we have for t ≥ 0∣∣∣∣A(t)
∣∣∣∣
W s,p ≤ Ks(A3)

∣∣∣∣Ain
∣∣∣∣
W s,p(1 + ts)eγt.

We apply ∂αx , |α| = s+ 1, to (10):

∂αxA1(t, x) = ∂αxA
in
1 (x− tυ1) −σ1

∫ t

0

∂αxA2(τ, x− (t− τ)υ1)A3(x− (t− τ)υ1) dτ

−σ1

∫ t

0

[∂αx , A3(x− (t− τ)υ1)]A2(τ, x− (t− τ)υ1) dτ

∂αxA2(t, x) = ∂αxA
in
2 (x− tυ2) −σ2

∫ t

0

∂αxA1(τ, x− (t− τ)υ2)Ā3(x− (t− τ)υ2) dτ

−σ2

∫ t

0

[∂αx , Ā3(x− (t− τ)υ2)]A1(τ, x− (t− τ)υ2) dτ.

Using the commutator estimate∣∣∣∣∣∣ ∫ t

0

[∂αx , A3(x− (t− τ)υ1)]A2(τ, x− (t− τ)υ1) dτ
∣∣∣∣∣∣
Lp
≤ Cα

∣∣∣∣A3

∣∣∣∣
W s+1,∞

∫ t

0

∣∣∣∣A2(τ)
∣∣∣∣
W s,p dτ

and the fact that, by the induction hypothesis,∫ t

0

∣∣∣∣A2(τ)
∣∣∣∣
W s,p dτ ≤ Ks(A3)

∣∣∣∣Ain
∣∣∣∣
W s,p

∫ t

0

(1 + τs)eγτ dτ ≤ K
∣∣∣∣Ain

∣∣∣∣
W s,p(1 + ts)eγt

since γ > 0 (and similarly for the other term), we have
∣∣∣∣∂αxA1(t)

∣∣∣∣
Lp
≤
∣∣∣∣∂αxAin

1

∣∣∣∣
Lp

+ |σ1| ·
∣∣∣∣A3

∣∣∣∣
L∞

∫ t

0

∣∣∣∣∂αxA2(τ)
∣∣∣∣
Lp

dτ +K
∣∣∣∣Ain

∣∣∣∣
W s,p(1 + ts)eγt

∣∣∣∣∂αxA2(t)
∣∣∣∣
Lp
≤
∣∣∣∣∂αxAin

2

∣∣∣∣
Lp

+ |σ2| ·
∣∣∣∣A3

∣∣∣∣
L∞

∫ t

0

∣∣∣∣∂αxA1(τ)
∣∣∣∣
Lp

dτ +K
∣∣∣∣Ain

∣∣∣∣
W s,p(1 + ts)eγt.

As a consequence,

Np(∂
α
xA(t)) ≤Np(∂

α
xA

in) +K
∣∣∣∣Ain

∣∣∣∣
W s,p(1 + ts)eγt +

√
σ1σ2

∣∣∣∣A3

∣∣∣∣
L∞

∫ t

0

Np(∂
α
xA(τ)) dτ

≤K
∣∣∣∣Ain

∣∣∣∣
W s+1,p(1 + ts)eγt +

√
σ1σ2

∣∣∣∣A3

∣∣∣∣
L∞

∫ t

0

Np(∂
α
xA(τ)) dτ,

and here again, the Gronwall lemma implies, for t ≥ 0,

Np(∂
α
xA(t)) ≤ K

∣∣∣∣Ain
∣∣∣∣
W s+1,p(1 + ts)eγt + γK

∣∣∣∣Ain
∣∣∣∣
W s+1,pe

γt

∫ t

0

(1 + τs) dτ ≤ K
∣∣∣∣Ain

∣∣∣∣
W s+1,p(1 + ts+1)eγt

as claimed.
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2.6 Proof of Proposition 7

The proof of (i) follows by considering functions (A1, A2) depending only on time. Hence (5) reduces to
(9), with eigenvalues ±√σ1σ2|A3| and (i) is proved.

For (ii), we consider functions depending only on the variables x′ orthogonal to Span(υ1, υ2) (we have
dimx′ ≥ 1). Then, (5) reduces to (9) once again, and therefore

A(t, x′) = exp
(
− t

 0 σ1A3(x′)

σ2Ā3(x′) 0

)Ain(x′).

If ε ∈ (0, γ) is given, there exists some y′ε ∈ Ω such that
√
σ1σ2|A3|(y′ε) ≥ γ − ε/2, and then, by continuity

of A3, rε > 0 such that
√
σ1σ2|A3|(x′) ≥ γ − ε > 0 if x′ ∈ B2rε(y

′
ε). We then consider the eigenvector (for

fixed x′) for the eigenvalue
√
σ1σ2|A3|(x′)

Ain(x′) ≡ cχ(x′)


1

sgn(σ1)

√
σ2

σ1

Ā3(x′)

|A3|(x′)

 ∈ C∞c (B2rε(y
′
ε)),

where χ ∈ C∞c (B2rε(y
′
ε), [0, 1]) is equal to one in the ball Brε(y

′
ε) (in the variables x′), and

c ≡ 1

max(1,
√
σ2/σ1)

> 0

is just a normalization constant. Hence,

|Ain|∞(x′) ≤ 1 in B2rε(y
′
ε) and |Ain|∞(x′) = 1 in Brε(y

′
ε)

and since we have an eigenvector,

A(t, x′) = et
√
σ1σ2|A3|(x′)Ain(x′)

and the conclusion follows.
The case (iii) follows the same lines, since the hypothesis allows us to take ε = 0 and rε = r > 0. The

multiplicity is infinite since the choice of χ ∈ C∞c (B2r(y
′)) such that χ = 1 on Br(y

′) is arbitrary.

The proof of (iv) relies on an explicit computation. Let υ ≡ υ1 = υ2 and let us recall that A3 is assumed
real-valued. Then, (5) becomes, in Ω = R/(2πΛZ) (with 0 < Λ <∞), ∂tÃ1 + σ1A3(x+ tυ)Ã2 = 0

∂tÃ2 + σ2A3(x+ tυ)Ã1 = 0,

where Ãj(t, x) ≡ Aj(t, x+ tυ) (j = 1, 2).

For fixed x ∈ Ω, we can solve this ODE explicitly using the fact that the nonsingular matrix

P ≡
( √

σ1σ2 −√σ1σ2

σ2 σ2

)
is independent of t and diagonalizes the system: the vector B ≡ P−1(Ã1, Ã2)t solves

∂tB +

( √
σ1σ2A3(x+ tυ) 0

0 −√σ1σ2A3(x+ tυ)

)
B = 0,

from which we infer after straightforward computations

A1(t, x) = Ain
1 (x− tυ) cosh

(√
σ1σ2

∫ t

0

A3(x− (t− τ)υ) dτ
)

−sgn(σ1)

√
σ1

σ2
Ain

2 (x− tυ) sinh
(√

σ1σ2

∫ t

0

A3(x− (t− τ)υ) dτ
)

A2(t, x) = Ain
2 (x− tυ) cosh

(√
σ1σ2

∫ t

0

A3(x− (t− τ)υ) dτ
)

−sgn(σ1)

√
σ2

σ1
Ain

1 (x− tυ) sinh
(√

σ1σ2

∫ t

0

A3(x− (t− τ)υ) dτ
)
.

(22)
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The first statement in (iv) follows easily from this explicit formula and the fact that∣∣∣ ∫ t

0

A3(x− (t− τ)υ) dτ
∣∣∣ ≤ t∣∣∣ 1

|Ω|

∫
Ω

A3(y) dy
∣∣∣+O(1)

as t → +∞ uniformly in x. We solve the eigenvalue problem (7) in the same way. For λ = −iµ ∈ C with
Imλ = −Reµ < 0, (7) is  υψ′1 + σ1ψ2A3 + µψ1 = 0

υψ′2 + σ2ψ1A3 + µψ2 = 0.

Here again, the vector Ψ ≡ eµx/υP−1ψ solves

υΨ′ +

( √
σ1σ2A3(x) 0

0 −√σ1σ2A3(x)

)
Ψ = 0,

which yields, for some vector ζ = (ζ1, ζ2) ∈ C2,
e−µx/υψ1(t, x) = ζ1 cosh

(√σ1σ2

υ

∫ x

0

A3(y) dy
)
− ζ2sgn(σ1)

√
σ1

σ2
sinh

(√σ1σ2

υ

∫ x

0

A3(y) dy
)

e−µx/υψ2(t, x) = ζ2 cosh
(√σ1σ2

υ

∫ x

0

A3(y) dy
)
− ζ1sgn(σ1)

√
σ2

σ1
sinh

(√σ1σ2

υ

∫ x

0

A3(y) dy
)
.

(23)

Now, the periodic boundary condition implies that µ is an eigenvalue for (7) if and only if ζ is a non trivial
solution of (we recall that 2πΛ = |Ω|)

e−µ|Ω|/υζ =


cosh

(√σ1σ2

υ

∫ |Ω|
0

A3(y) dy
)

−sgn(σ1)

√
σ1

σ2
sinh

(√σ1σ2

υ

∫ |Ω|
0

A3(y) dy
)

−sgn(σ1)

√
σ2

σ1
sinh

(√σ1σ2

υ

∫ |Ω|
0

A3(y) dy
)

cosh
(√σ1σ2

υ

∫ |Ω|
0

A3(y) dy
)

 ζ.

Since the matrix on the right-hand side has eigenvalues exp
(
±
√
σ1σ2

υ

∫ |Ω|
0

A3(y) dy
)

, this happens only if,

for some m ∈ Z,

µ = ±
√
σ1σ2

|Ω|

∣∣∣ ∫ |Ω|
0

A3(y) dy
∣∣∣+ i

2πmυ

|Ω|
= ±
√
σ1σ2

∣∣∣ 1

|Ω|

∫
Ω

A3(y) dy
∣∣∣+

imυ

Λ
.

2.7 Proof of Proposition 8

We recall that here, Ω = R, σ1σ2 > 0 and υ1υ2 < 0. Possibly changing the sign of x, we may assume,
without loss of generality, that υ1 > 0 > υ2.

2.7.1 Proof of (i)

We shall first focus on statement (i), where we choose A3 to be a multiple of the characteristic function
of an interval: A3 ≡ Γ1x∈[a,b]. We could have assumed Γ ∈ R+ by just multiplying A2 by a constant phase
factor. We look for eigenvalues for (7) with λ = −iµ, Re(µ) > 0, and (ψ1, ψ2) a non-trivial weak solution of
(7), i.e.  υ1ψ

′
1 + σ1ψ2A3 + µψ1 = 0

υ2ψ
′
2 + σ2ψ1Ā3 + µψ2 = 0.

(24)

Since A3 vanishes on (−∞, a) and in view of the fact that υ1 > 0 > υ2, the subspace of bounded solutions
of (24) on (−∞, b) is exactly Cψ∗, with

ψ∗(x) ≡


(0, e−µ(x−a)/υ2) on (−∞, a]

exp
(
− (x− a)M

)
(0, 1) on [a, b],
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and where

M ≡


µ

υ1

σ1A3

υ1

σ2Ā3

υ2

µ

υ2

 .

Hence µ is an eigenvalue for (7) if and only if[
exp

(
− (b− a)M

)
(0, 1)

]
2

= 0,

so that ψ∗ can be extended to [b,+∞) by

ψ∗(x) ≡ (βe−µ(x−b)/υ1 , 0)

for some nonzero constant β. Denoting

γ ≡
√
σ1σ2|A3| and µ̂ ≡ 2γ

√
|υ1υ2|

υ1 − υ2
> 0,

the matrix M has eigenvalues

µ

2

υ1 + υ2

υ1υ2
± γ√

|υ1υ2|

√
µ2

µ̂2
− 1 = σ ± γτ,

where the last square root stands for one fixed complex-valued square root. Thus, a straightforward compu-
tation3 gives that [

exp
(
− (b− a)M

)
(0, 1)

]
2

= 0

if and only if (the fraction has value b− a if µ = µ̂)

exp
(
− (b− a)γτ

)
− sinh((b− a)γτ)

γτ

( µ
υ2
− σ − γτ

)
= 0,

or, after some algebra,

for µ 6= µ̂, exp
(

2γ(b− a)τ
)

=

µ

µ̂
−

√
µ2

µ̂2
− 1

µ

µ̂
+

√
µ2

µ̂2
− 1

; for µ = µ̂,
(b− a)γ√
|υ1υ2|

= −1. (25)

Therefore, µ = µ̂ is not an eigenvalue for (24). We assume now µ 6= µ̂. Since the mapping cosh : C → C is
onto, for µ ∈ C, there exists some y ∈ C such that

µ

µ̂
= cosh(y).

Moreover, since cosh is even and 2iπ-periodic, we can assume y = u + iv with u ∈ R, v ∈ [0, π], and since
µ = cosh(y) = cosh(u) cos(v) + i sinh(u) sin(v) has positive real part, we have v ∈ [0, π/2). Then, (25)
becomes

exp
(

2γ(b− a)τ
)

=
cosh(y)− sinh(y)

cosh(y) + sinh(y)
= e−2y,

that is, for some m ∈ Z,

γ(b− a)τ =
γ(b− a)√
|υ1υ2|

sinh(y) = −y + imπ.

3using that if A ∈M2(C) has two distinct eigenvalues (α and β) or is non diagonalizable (double eigenvalue α), the formula

eA = eα +
eβ − eα

β − α
(A− α) holds, where the fraction is eα if β = α.
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Taking real and imaginary parts, we infer

α sinh(u) cos(v) = −u, −v +mπ = α cosh(u) sin(v), (26)

where α is the absolute area:

α ≡
√
σ1σ2√
|υ1υ2|

∣∣∣ ∫
R
A3(x) dx

∣∣∣ =
γ(b− a)√
|υ1υ2|

> 0.

Since v ∈ [0, π/2), the first equation in (26) implies u = 0, so that (26) is now reduced to the single equation

−v +mπ = α sin(v), (27)

with v ∈ (0, π/2) (v = 0 is excluded since µ 6= µ̂). Here again, since v ∈ (0, π/2), it is immediate that
(27) has no solution for m ≤ 0. An elementary graphical analysis shows the following: for m = 1, (27) has
no solution (in (0, π/2)) for α ≤ π/2, and exactly one solution v ∈ (0, π/2) for α > π/2, which goes from
π/2− (for α = (π/2)+) to 0+ (for α → +∞), that is µ goes from 0+ to µ̂; for m = 2, (27) has exactly one
solution for α > 3π/2, and no solution (in (0, π/2)) for α ≤ 3π/2; for m ≥ 1, (27) has exactly one solution
for α > (2m − 1)π/2 (with corresponding µ going from 0+ to µ̂), and no solution for α ≤ (2m − 1)π/2.
When α crosses the values α = kπ/2, k ≥ 1 odd, an eigenvalue 0 crosses the real axis to go to the half-plane
{Im < 0} up to −iµ̂. Consequently, the equation (27) has no solution for α ≤ π/2, and (for m ≥ 1) exactly
m solutions for (2m− 1)π/2 < α ≤ (2m+ 1)π/2.

2.7.2 Proof of (ii)

We look for eigenvalues for (7) λ = −iµ, with µ > 0, and ψ = (ψ1, ψ2) a non-trivial, real-valued, solution
of (7), that is  υ1ψ

′
1 + σ1ψ2A3 + µψ1 = 0

υ2ψ
′
2 + σ2ψ1A3 + µψ2 = 0.

(28)

Notice that if µ > 0, the behavior of ψ at ±∞ should be given by the solutions of

υ1ψ
′
1 + µψ1 = υ2ψ

′
2 + µψ2 = 0,

which means, since υ2 < 0 < υ1, that one expects the solutions (decaying to zero at infinity) of (28) to be
such that, for some real constants α+, α−

ψ(x) = (ψ1, ψ2)(x) ≈

 (α+e
−µx/υ1 , 0) x→ +∞

(0, α−e
−µx/υ2) x→ −∞.

The first step is to construct particular solutions ψ±µ with the above mentioned asymptotic behavior at ±∞
up to µ = 0. It suffices to treat the case x→ −∞ (the other case being analogous). We use a classical fixed
point argument (see, e.g., [5]), and the point is to have some uniformity for µ ∈ [0, µ̄], with

c ≡ |σ2|
|υ2|

+
|σ1|
|υ1|

> 0, δ ≡ 1

2

( 1

υ1
− 1

υ2

)
> 0 and µ̄ ≡ c

∣∣∣∣A3

∣∣∣∣
L∞

/δ.

We set

ϕ(x) ≡ exp
(
µx

(
1/υ1 0

0 1/υ2

))
ψ(x) =

(
eµx/υ1ψ1

eµx/υ2ψ2

)
,

which transforms (28) into 
ϕ′1(x) +

σ1

υ1
A3(x)e2µδxϕ2(x) = 0

ϕ1(x) +
σ2

υ2
A3(x)e−2µδxϕ1(x) = 0.

We then consider for R > 0 that will be chosen sufficiently large, the fixed point problem in (−∞,−R)

ϕ(x) = Υµ[ϕ](x) ≡
(

0
1

)
−
∫ x

−∞

 σ1

υ1
ϕ2(y)A3(y)e2µδy

σ2

υ2
ϕ1(y)A3(y)e−2µδy

 dy (29)
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For 0 ≤ µ ≤ µ̄, we shall solve (29) in the Banach space

Eµ ≡
{
ϕ = (ϕ1, ϕ2) : (−∞,−R)→ R2, e2µδ|x|ϕ1 ∈ L∞(−∞,−R), ϕ2 ∈ L∞(−∞,−R)

}
equipped with the norm ∣∣∣∣ϕ∣∣∣∣

Eµ
≡
∣∣∣∣e2µδ|x|ϕ1

∣∣∣∣
L∞(−∞,−R)

+
∣∣∣∣ϕ2

∣∣∣∣
L∞(−∞,−R)

.

In view of the easy estimates∣∣∣ ∫ x

−∞

σ2

υ2
ϕ1(y)A3(y)e−2µδy

∣∣∣ ≤ ∣∣∣σ2

υ2

∣∣∣( ∫ x

−∞
|A3(y)| dy

)∣∣∣∣e2µδ|x|ϕ1

∣∣∣∣
L∞(−∞,−R)

(30)

and ∣∣∣ ∫ x

−∞

σ1

υ1
ϕ2(y)A3(y)e2µδy

∣∣∣ ≤ e−2µδ|x|
∣∣∣σ1

υ1

∣∣∣( ∫ x

−∞
|A3(y)| dy

)∣∣∣∣ϕ2

∣∣∣∣
L∞(−∞,−R)

, (31)

we see that Υµ : Eµ → Eµ is a well-defined affine mapping. Moreover, if R is chosen sufficiently large so that∣∣∣σ1

υ1

∣∣∣( ∫ −R
−∞
|A3(y)| dy

)
≤ 1

2
and

∣∣∣σ2

υ2

∣∣∣( ∫ −R
−∞
|A3(y)| dy

)
≤ 1

2
,

the above inequalities show that Υµ : Eµ → Eµ is 1
2 -Lipschitz. Therefore, Υµ : Eµ → Eµ has a unique fixed

point ϕµ ∈ Eµ. Furthermore,∣∣∣∣ϕµ∣∣∣∣Eµ =
∣∣∣∣Υµ[ϕµ]

∣∣∣∣
Eµ
≤
∣∣∣∣Υµ[ϕµ]−Υµ[0]

∣∣∣∣
Eµ

+
∣∣∣∣Υµ[0]

∣∣∣∣
Eµ
≤ 1

2

∣∣∣∣ϕµ∣∣∣∣Eµ + 1,

hence ∣∣∣∣ϕµ∣∣∣∣Eµ =
∣∣∣∣e2µδ|x|(ϕµ)1

∣∣∣∣
L∞(−∞,−R)

+
∣∣∣∣(ϕµ)2

∣∣∣∣
L∞(−∞,−R)

≤ 2. (32)

We then set

ψ−µ (x) ≡ exp
(
− µx

(
1/υ1 0

0 1/υ2

))
ϕµ(x) =

(
e−µx/υ1(ϕµ)1

e−µx/υ2(ϕµ)2

)
.

From (30), (31) and (32) and the fact that
∫ x
−∞ |A3| dy → 0 as x→ −∞, it follows that

ψ−µ (x) = e−µx/υ2

[( 0
1

)
+ o(1)

]
as x→ −∞, (33)

with o(1) uniform with respect to µ ∈ [0, µ̄]. Following the same lines for x → +∞, we construct, for
0 ≤ µ ≤ µ̄, a solution ψ+

µ of (28) such that

ψ+
µ (x) = e−µx/υ1

[( 1
0

)
+ o(1)

]
as x→ +∞, (34)

with here again a uniform o(1) for µ ∈ [0, µ̄].

In a second step, we use polar coordinates ψ = (ψ1, ψ2) = ρ(cos θ, sin θ), and rewrite the system (28)
under the form 

ρ′ = −µρ
(cos2(θ)

υ1
+

sin2(θ)

υ2

)
−
(σ1

υ1
+
σ2

υ2

)
ρA3

θ′ = µ
( 1

υ1
− 1

υ2

)
cos θ sin θ +A3

(σ1

υ1
sin2 θ − σ2

υ2
cos2 θ

)
.

Note that the equation for θ does not involve ρ. We shall denote ψ±µ = ρ±µ (cos θ±µ , sin θ
±
µ ), and from , we see

that we can choose θ−µ (resp. θ+
µ ) such that θ−µ (−∞) = π/2 (resp. θ+

µ (+∞) = 0 ), and that the mapping
[0, µ̄] × (−∞,−R] 3 (µ, x) 7→ θ−µ (x) ∈ R (resp. [0, µ̄] × ([+R,+∞) 3 (µ, x) 7→ θ+

µ (x) ∈ R) is uniformly
continuous. We focus then on the second equation of the above system, namely

θ′ = µ
( 1

υ1
− 1

υ2

)
cos θ sin θ +A3

(σ1

υ1
sin2 θ − σ2

υ2
cos2 θ

)
. (35)
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The point is to show that for some µ > 0, there exists m ∈ Z such that θ−µ = θ+
µ +mπ on R. Since θ−µ and

θ+
µ solve (35), it is sufficient to show that θ−µ (x) = θ+

µ (x) mod π for some x ∈ R, which will be done by using
the intermediate value theorem in [0, µ̄].

We consider first the case µ = 0. Then, we have for x ∈ R,∫ x

−∞
A3(y) dy =

∫ x

−∞

(θ−0 )′

σ2

υ2
cos2 θ−0 − σ1

υ1
sin2 θ−0

dy =

∫ θ−0 (x)

π/2

dΘ
σ2

υ2
cos2 Θ− σ1

υ1
sin2 Θ

.

The integrand in the right-hand side is π-periodic, even, of constant sign (since σ1σ2 > 0 > υ1υ2) equal to
ε ≡ sgn(σ2/υ2) = sgn(σ1/υ1) = −sgn(σ2/υ2) = ±1, and has integral over one period equal to (using the
change of variable t = tan Θ)

∀α ∈ R,
∫ α+π

α

dΘ
σ2

υ2
cos2 Θ− σ1

υ1
sin2 Θ

=

∫ +π/2

−π/2

dΘ
σ2

υ2
cos2 Θ− σ1

υ1
sin2 Θ

=

∫ +∞

−∞

dt
σ2

υ2
− σ1

υ1
t2

= επ

√
|υ1υ2|
σ1σ2

.

Since, by assumption, ∣∣∣ ∫
R
A3(y) dy

∣∣∣ > π

2

√
|υ1υ2|
σ1σ2

,

it follows that θ−0 has a finite limit at +∞ which is such that

η ≡
∣∣∣θ−0 (+∞)− θ−0 (−∞)

∣∣∣− π

2
=
∣∣∣θ−0 (+∞)− π

2

∣∣∣− π

2
> 0.

Since θ−µ and θ+
µ tend to π/2 and 0 at −∞ and +∞ uniformly with respect to [0, µ̄], we can choose some

r � 1 such that, for 0 ≤ µ ≤ µ̄,∣∣∣θ−µ (−r)− π

2

∣∣∣ ≤ π

4
,

∣∣∣θ+
µ (+r)

∣∣∣ ≤ 1

10
min(η, π) and

∣∣∣θ−0 (+r)− θ−0 (+∞)
∣∣∣ ≤ η

10
.

It then follows that∣∣∣θ−0 (+r)− θ+
0 (+r)− π

2

∣∣∣ =
∣∣∣(θ−0 (+r)− θ−0 (+∞)

)
+
(
θ−0 (+∞)− π

2

)
− θ+

0 (+r)
∣∣∣ ≥ π

2
+

4η

5
,

thus θ−0 (+r)− θ+
0 (+r) 6∈ [0, π].

Now, we focus on the case where µ = µ̄. We have

−c||A3||L∞ ≤
dθ−µ̄
dx
− 2δµ̄ cos θ−µ̄ sin θ−µ̄ ≤ c||A3||L∞

Denoting θ and θ̄ the solutions of
dθ

dx
= F (θ) ≡ 2δµ̄ cos θ sin θ − c||A3||L∞ = δµ̄(−1 + sin(2θ)) with θ(−r) = θ−µ (−r)

dθ̄

dx
= F̄ (θ̄) ≡ 2δµ̄ cos θ̄ sin θ̄ + c||A3||L∞ = δµ̄(1 + sin(2θ̄)) with θ̄(−r) = θ−µ (−r).

(for which we have global existence) we then have

θ ≤ θ−µ̄ ≤ θ̄ in [−r,+r].

It is immediate that F̄ is positive on the interval (π/4, 3π/4) and vanishes at its right end; similarly, F is
negative on the interval (π/4, 3π/4) and vanishes at its left end. We then infer, since θ−µ̄ (−r) ∈ (π/4, 3π/4),
that on [−r,+r],

π

4
≤ θ− ≤ θ−µ̄ ≤ θ+ ≤ 3π

4
.

Consequently, ∣∣∣θ−µ̄ (+r)− θ+
µ̄ (+r)− π

2

∣∣∣ ≤ ∣∣∣θ−µ̄ (+r)− π

2

∣∣∣+
∣∣∣θ+
µ̄ (+r)

∣∣∣ ≤ π

4
+

π

10
<
π

2

and θ−µ̄ (+r) − θ+
µ̄ (+r) ∈ (0, π). Since the mapping [0, µ̄] 3 µ 7→ θ−µ̄ (+r) − θ+

µ̄ (+r) ∈ R is continuous (up

to µ = 0), it follows from the intermediate value theorem that for some 0 < µ < µ̄, θ−µ̄ (+r) − θ+
µ̄ (+r) is

an integer multiple of π. For this value of µ, ψ+
µ is collinear to ψ−µ , and we have then obtained a solution

ψ = ψ−µ = Kψ+
µ (for some K ∈ R∗) to (28) which tends to 0 at ±∞ exponentially fast.
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2.7.3 Proof of (iii)

We first recall that if υ1 + υ2 = 0, then γ = γ∗ and the estimates (iii) and (iv) come from Proposition 6.
We thus assume υ1 + υ2 6= 0. We introduce the variables (close to the characteristic variables)

x̂ ≡
( 1

υ1
− 1

υ2

)
x and t̂ ≡ 2t−

( 1

υ1
+

1

υ2

)
x,

and denote
Âj(t̂, x̂) = Aj(t, x) j = 1, 2, Â3(x̂) ≡ A3(x).

Writing (5) in terms of Â = (Â1, Â2), we infer the system in (t̂, x̂)
∂t̂Â1 + ∂x̂Â1 + σ1

υ2

υ2 − υ1
Â3Â2 = 0

∂t̂Â2 − ∂x̂Â2 + σ2
υ1

υ1 − υ2
Â3Â1 = 0.

This system in variables (t̂, x̂) is of the type (5) with (σ1, σ2) replaced by (σ̂1, σ̂2) ≡
(
σ1

υ2

υ2 − υ1
, σ2

υ1

υ1 − υ2

)
,

for which σ̂1σ̂2 > 0. Thus, we may apply the result of Proposition 6 (forward and backward in time) to get

∣∣∣∣Â(t̂)
∣∣∣∣
L∞
≤ C

∣∣∣∣Â(t̂ = 0)
∣∣∣∣
L∞

exp
(
|t̂|
√
σ1σ2

√
|υ1υ2|

|υ1 − υ2|
∣∣∣∣Â3

∣∣∣∣
L∞

)
. (36)

We recall that we have assumed υ1 + υ2 6= 0, thus we can set

υ̂ ≡ 2υ1υ2

υ1 + υ2
∈ R∗,

so that the line {t̂ = 0} is the line {t = x/υ̂}. In order to be able to use (36), we need to estimate∣∣∣∣Â(t̂ = 0)
∣∣∣∣
L∞

=
∣∣∣∣θ 7→ A(θ, θυ̂)

∣∣∣∣
L∞

.

Since υ1 > 0 > υ2,
1

υ̂
=

1

υ1
+

1

υ2
∈
( 1

υ2
,

1

υ1

)
,

and then υ̂ < υ2 (if υ1 > −υ2) or υ̂ > υ1 (if υ1 < −υ2). We first treat the case υ̂ > υ1. By assumption,
A3 ∈ L1, thus there exists R > 0 such that√

σ1σ2

|υ1υ2|

∫
|y|>R

|A3|(y) dy ≤ 1

2
. (37)

We shall follow the first lines of the proof of Proposition 5 to obtain a large time estimate for

N(t) ≡
∣∣∣∣A1(t)

∣∣∣∣
L∞({x≥R+tυ1})

+

√
σ1

σ2

∣∣∣υ2

υ1

∣∣∣ ∣∣∣∣A2(t)
∣∣∣∣
L∞({x≥R+tυ1})

.

Let us fix 0 ≤ t′ ≤ t and x ≥ R+ t′υ1. Note that for 0 ≤ τ ≤ t′, we have

x− (t′ − τ)υ1 ≥ (R+ t′υ1)− (t′ − τ)υ1 = R+ τυ1 and x− (t′ − τ)υ2 ≥ x ≥ R+ t′υ1 ≥ R+ τυ1.

Hence, from (10), we infer

|A1|(t′, x) ≤ |Ain
1 (x− t′υ1)|+ |σ1|

∫ t′

0

∣∣∣∣A2(τ, ·)
∣∣∣∣
L∞({y≥R+τυ1})

|A3|(x− (t′ − τ)υ1) dτ

≤
∣∣∣∣Ain

1

∣∣∣∣
L∞

+
|σ1|
|υ1|

(
sup

0≤τ≤t

∣∣∣∣A2(τ, ·)
∣∣∣∣
L∞({y≥R+τυ1})

)(∫ +∞

R

|A3|(y) dy
)

and similarly

|A2|(t′, x) ≤
∣∣∣∣Ain

2

∣∣∣∣
L∞

+
|σ2|
|υ2|

(
sup

0≤τ≤t

∣∣∣∣A1(τ, ·)
∣∣∣∣
L∞({y≥R+τυ1})

)(∫ +∞

R

|A3|(y) dy
)
.

24



Consequently, using (37), we deduce that for 0 ≤ t′ ≤ t,

N(t′) ≤ C
∣∣∣∣Ain

∣∣∣∣
L∞

+
1

2
sup

0≤τ≤t
N(τ),

from which it comes, for any t ≥ 0,

N(t) ≤ sup
0≤τ≤t

N(τ) ≤ 2C
∣∣∣∣Ain

∣∣∣∣
L∞

. (38)

Since υ̂ > υ1, for θ ≥ R/(υ̂ − υ1), we have θυ̂ ≥ R+ θυ1. Therefore, the above estimate yields in particular∣∣∣∣θ 7→ A(θ, θυ̂)
∣∣∣∣
L∞({θ≥R/(υ̂−υ1)}) ≤ C

∣∣∣∣Ain
∣∣∣∣
L∞

.

In the case υ̂ < υ2 < 0, we deduce by similar arguments (computing the L∞ norms in {y ≤ −R+ tυ2}) that∣∣∣∣θ 7→ A(θ, θυ̂)
∣∣∣∣
L∞({θ≥R/(υ2−υ̂)}) ≤ C

∣∣∣∣Ain
∣∣∣∣
L∞

.

The estimates for θ � −1 are derived in the same way. Hence, there exists some Θ > 0, depending only on
R, υ1 and υ2, such that ∣∣∣∣θ 7→ A(θ, θυ̂)

∣∣∣∣
L∞({|θ|≥Θ}) ≤ C

∣∣∣∣Ain
∣∣∣∣
L∞

.

Since A3 ∈ L∞, the Cauchy problem (5) is locally well-posed in L∞ and it follows that∣∣∣∣θ 7→ A(θ, θυ̂)
∣∣∣∣
L∞({|θ|≤Θ}) ≤ C

∣∣∣∣Ain
∣∣∣∣
L∞

for some constant C depending on A3, σ1, σ2, υ1 and υ2. Collecting the above inequalities, it comes∣∣∣∣Â(t̂ = 0)
∣∣∣∣
L∞

=
∣∣∣∣θ 7→ A(θ, θυ̂)

∣∣∣∣
L∞
≤ C

∣∣∣∣Ain
∣∣∣∣
L∞

.

Inserting this into (36) yields for t ≥ 0 and x ∈ R

|A(t, x)|∞ = |Â(t̂, x̂)|∞ ≤ C
∣∣∣∣Ain

∣∣∣∣
L∞

exp
(∣∣∣2t− x

υ̂

∣∣∣γ∗
2

)
. (39)

This estimate is sufficient to show that eigenvalues for (7) (if they exist) lie in {Im ≥ −γ∗}. Indeed,
assume that λ ∈ C is an eigenvalue for (7) with corresponding eigenvector ψ, so that A(t, x) = eiλtψ(x)
solves (5). Then, (39) yields, for any x ∈ R,

|A(t, x)|∞ = e−tImλ|ψ(x)|∞ ≤ C
∣∣∣∣ψ∣∣∣∣

L∞
exp

(∣∣∣2t− x

υ̂

∣∣∣γ∗
2

)
.

Choosing x = x0 ∈ R such that 2|ψ(x0)|∞ ≥
∣∣∣∣ψ∣∣∣∣

L∞
, this gives

e−tImλ ≤ 2C exp
(∣∣∣2t− x0

υ̂

∣∣∣ γ∗
2

)
,

which yields the result letting t→ +∞.
To prove (iii), we use (39) only for x ∈ [−R,+R]:∣∣∣∣A(t)

∣∣∣∣
L∞(−R,+R)

≤ CR
∣∣∣∣Ain

∣∣∣∣
L∞

etγ∗ . (40)

We now derive an estimate for

N(t) ≡
∣∣∣∣A1

∣∣∣∣
L∞((0,t)×(R,+∞))

+

√
σ1

σ2

∣∣∣υ2

υ1

∣∣∣∣∣∣∣A2

∣∣∣∣
L∞((0,t)×(R,+∞))

.

For x ≥ R and 0 ≤ t′ ≤ t, we have, by (10) and since υ2 < 0,

|A2|(t′, x) ≤
∣∣∣∣Ain

2

∣∣∣∣
L∞

+
|σ2|
|υ2|

∣∣∣∣A1

∣∣∣∣
L∞((0,t)×(R,+∞))

∫ +∞

R

|A3|(y) dy. (41)

Furthermore, (38) gives in particular∣∣∣∣A1

∣∣∣∣
L∞({0≤t′≤t, x≥R+t′υ1})

≤ C
∣∣∣∣Ain

∣∣∣∣
L∞

. (42)
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Let now 0 ≤ t′ ≤ t and R ≤ x ≤ R+ t′υ1. By the method of characteristics, we obtain

A1(t′, x) = A1

(
t′ − x−R

υ1
, R
)
− σ1

∫ t′

t′− x−Rυ1

A2(τ, x− (t′ − τ)υ1)A3(x− (t′ − τ)υ1) dτ.

We use (40) to bound the first term (t′ − (x−R)/υ1 ≤ t′ ≤ t), and since x− (t′ − τ)υ1 ≥ R in the integral,
we obtain, for R ≤ x ≤ R+ t′υ1,∣∣∣∣A1

∣∣∣∣
L∞({0≤t′≤t, R≤x≤R+t′υ1})

≤ CR
∣∣∣∣Ain

∣∣∣∣
L∞

etγ∗ +
|σ1|
υ1

∣∣∣∣A2

∣∣∣∣
L∞((0,t)×(R,+∞))

∫ +∞

R

|A3|(y) dy. (43)

the combination of (41), (42) and (43) yields

N(t) ≤ CR
∣∣∣∣Ain

∣∣∣∣
L∞

etγ∗ +N(t)
(√ σ1σ2

|υ1υ2|

∫ +∞

R

|A3|(y) dy
)2

.

Possibly taking R larger if necessary, we can assume the term in parenthesis ≤ 1/
√

2, so that

N(t) ≤ 2CR
∣∣∣∣Ain

∣∣∣∣
L∞

etγ∗ .

The estimate for x ≤ −R follows the same lines, and combining with (40), we infer as claimed∣∣∣∣A(t)
∣∣∣∣
L∞
≤ C

∣∣∣∣Ain
∣∣∣∣
L∞

etγ∗ .

2.8 Proof of Proposition 9

We recall that σ1σ2 > 0. Possibly changing x for −x, we may, without loss of generality, assume that
υ1 > 0 and υ2 > 0. Moreover, if necessary, we may exchange the indices 1 and 2 so that υ2 ≥ υ1 > 0.

2.8.1 Proof of case (i)

In case (i), υ1 = υ2 > 0 will be denoted υ. We can notice that the explicit computation yielding (22) is
still valid in this case, thus

A1(t, x) = Ain
1 (x− tυ) cosh

(√σ1σ2

υ

∫ x

x−tυ
A3(y) dy

)
−sgn(σ1)

√
σ1

σ2
Ain

2 (x− tυ) sinh
(√σ1σ2

υ

∫ x

x−tυ
A3(y) dy

)

A2(t, x) = Ain
2 (x− tυ) cosh

(√σ1σ2

υ

∫ x

x−tυ
A3(y) dy

)
−sgn(σ1)

√
σ2

σ1
Ain

1 (x− tυ) sinh
(√σ1σ2

υ

∫ x

x−tυ
A3(y) dy

)
and (i) follows easily.

2.8.2 Proof of case (ii)

Let (T,X) ∈ R+×R, and assume that A solves (5). We recall that Ain ∈ Cb(R), hence A ∈ C(R+×R,C).
Due to the finite speeds of propagation υ2 ≥ υ1 > 0, the value of A(T,X) will depend only on A3 and Ain in
[X−Tυ2, X]. We wish to prove, for some constant C > 0 depending only on σ1, σ2, υ1 and υ2, the pointwise
estimate

|A(T,X)|∞ ≤ C
∣∣∣∣Ain

∣∣∣∣
C([X−Tυ2,X])

exp
(√σ1σ2

υ1υ2

∫ X

X−Tυ2

|A3|(y) dy
)
. (44)

For some given r ∈ N∗ (that will tend to +∞), we divide the interval [X − Tυ2, X] into r subintervals
[xj , xj+1], 0 ≤ j < r, with xj ≡ X − Tυ2(1 − j/r), j ∈ Z (we omit the dependency on r in the notations).
Since A3 ∈ L1

loc(R), there exists r0 ∈ N∗ (depending on T and X) such that, if r ≥ r0,

∀ 0 ≤ j < r, αj ≡
√
σ1σ2

υ1υ2

∫ xj+1

xj
|A3|(y) dy < 1. (45)
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On each subinterval (xj , xj+1) (0 ≤ j < r), A solves, in the space-time trapezoid

Dj ≡ {(t, x) ∈ R+ × (xj , xj+1), x− tυ2 ≥ X − Tυ2},

the boundary value problem ∂tA1 + υ1∂xA1 + σ1A3A2 = 0

∂tA2 + υ2∂xA2 + σ2Ā3A1 = 0,
for (t, x) ∈ Dj (46)

with the boundary conditions (since υ2 ≥ υ1 > 0, they are naturally on the left-hand side of the domain and
at the initial time)  A(t, x = xj) = A(t, x = xj), 0 ≤ t ≤ T,

A(t = 0, x) = Ain(x), xj ≤ x ≤ xj+1.
(47)

Using the method of characteristics, we find for (t, x) ∈ Dj :

A1(t, x) =1x≥xj+tυ1

{
Ain

1 (x− tυ1)− σ1

∫ t

0

A3(x− (t− τ)υ1)A2(τ, x− (t− τ)υ1) dτ
}

+ 1x≤xj+tυ1

{
A1

(
t− x− xj

υ1
, xj
)
− σ1

∫ t

t− x−xjυ1

A3(x− (t− τ)υ1)A2(τ, x− (t− τ)υ1) dτ
}

A2(t, x) =1x≥xj+tυ2

{
Ain

2 (x− tυ2)− σ2

∫ t

0

Ā3(x− (t− τ)υ2)A1(τ, x− (t− τ)υ2) dτ
}

+ 1x≤xj+tυ2

{
A2

(
t− x− xj

υ2
, xj
)
− σ2

∫ t

t− x−xjυ2

Ā3(x− (t− τ)υ2)A1(τ, x− (t− τ)υ2) dτ
}
.

Denoting tj ≡ T − (X − xj)/υ2 for 0 ≤ j ≤ r, this yields the inequalities (since υ2 ≥ υ1 > 0)

∣∣∣∣A1

∣∣∣∣
C(Dj) ≤ max

{∣∣∣∣Ain
1

∣∣∣∣
C([xj ,xj+1])

+
|σ1|
υ1

∣∣∣∣A2

∣∣∣∣
C(Dj)

∫ xj+1

xj
|A3|(y) dy;

∣∣∣∣A1(·, xj)
∣∣∣∣
C([0,tj ]) +

|σ1|
υ1

∣∣∣∣A2

∣∣∣∣
C(Dj)

∫ xj+1

xj
|A3|(y) dy

}
= max

{∣∣∣∣Ain
1

∣∣∣∣
C([xj ,xj+1])

;
∣∣∣∣A1(·, xj)

∣∣∣∣
C([0,tj ])

}
+
|σ1|
υ1

∣∣∣∣A2

∣∣∣∣
C(Dj)

∫ xj+1

xj
|A3|(y) dy (48)

∣∣∣∣A2

∣∣∣∣
C(Dj) ≤ max

{∣∣∣∣Ain
2

∣∣∣∣
C([xj ,xj+1])

+
|σ2|
υ2

∣∣∣∣A1

∣∣∣∣
C(Dj)

∫ xj+1

xj
|A3|(y) dy;

∣∣∣∣A2(·, xj)
∣∣∣∣
C([0,tj ]) +

|σ2|
υ2

∣∣∣∣A1

∣∣∣∣
C(Dj)

∫ xj+1

xj
|A3|(y) dy

}
= max

{∣∣∣∣Ain
2

∣∣∣∣
C([xj ,xj+1])

;
∣∣∣∣A2(·, xj)

∣∣∣∣
C([0,tj ])

}
+
|σ2|
υ2

∣∣∣∣A1

∣∣∣∣
C(Dj)

∫ xj+1

xj
|A3|(y) dy. (49)

Setting, for 0 ≤ j ≤ r, 
aj1 ≡ max

{∣∣∣∣Ain
1

∣∣∣∣
C([X−Tυ2,X])

;
∣∣∣∣A1

∣∣∣∣
C(Dj)

}
,

aj2 ≡
√
σ1υ2

σ2υ1
max

{∣∣∣∣Ain
2

∣∣∣∣
C([X−Tυ2,X])

;
∣∣∣∣A2

∣∣∣∣
C(Dj)

}
,

we infer from (48) and (49) that for 0 ≤ j ≤ r, aj1 ≤ aj−1
1 + αjaj2,

aj2 ≤ aj−1
2 + αjaj1.
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As a consequence, the quantity
aj ≡ aj1 + aj2

satisfies (in view of (45))

aj ≤ aj−1

1− αj
.

Therefore, for some constant C > 0 depending only on σ1, σ2, υ1 and υ2,

1

C
|A(T,X)|∞ ≤ ar ≤ a0 ×

( r∏
j=1

(1− αj)
)−1

.

Letting r → +∞, since αj → 0 uniformly for 0 ≤ j ≤ r, we have( r∏
j=1

(1− αj)
)−1

= exp
(
−

r∑
j=1

ln(1− αj)
)
→ exp

(√σ1σ2

υ1υ2

∫ X

X−Tυ2

|A3|(y) dy
)
.

Moreover, as r → +∞,

a0 →
∣∣∣∣Ain

1

∣∣∣∣
C([X−Tυ2,X])

+

√
σ1υ2

σ2υ1

∣∣∣∣Ain
2

∣∣∣∣
C([X−Tυ2,X])

,

thus (44) follows, and hence statement (ii).

2.8.3 Proof of case (iii)

We consider here A3 satisfying hypothesis (13). It is sufficient to show that if (T,X) ∈ R+ × R− and
Ain ∈ Cc(R,R2) is such that

0 ≤ Ain
1 ≤ 1, 0 ≤ Ain

2 ≤
√
σ1υ2

σ2υ1
Ain

1 = 1, Ain
2 =

√
σ1υ2

σ2υ1
in [X − Tυ2, X]

and Ain
1 and Ain

2 are nondecreasing in R−, then

|A(T,X)|∞ ≥ c exp
(υ1

υ2

√
σ1σ2

υ1υ2

∫ X

X−Tυ2

|A3|(y) dy
)

(50)

for some constant c > 0 depending only on σ1, σ2, υ1 and υ2. Indeed, (iii) will then follow from the fact
that A3 vanishes in [1,+∞), hence

sup
x≤0

∫ x

x−Tυ1

|A3|(y) dy ≥ sup
x∈R

∫ x

x−Tυ1

|A3|(y) dy −
∫ 1

0

|A3|(y) dy.

We recall that (10) is a fixed point problem A = Υ[A], where Υ = (Υ1,Υ2),
Υ1[A](t, x) ≡ Ain

1 (x− tυ1)− σ1

∫ t

0

A2(τ, x− (t− τ)υ1)A3(x− (t− τ)υ1) dτ

Υ2[A](t, x) ≡ Ain
2 (x− tυ2)− σ2

∫ t

0

A1(τ, x− (t− τ)υ2)A3(x− (t− τ)υ2) dτ.

The solution A is real-valued since Ain and A3 are. From (13) (recall that σ1σ2 > 0), −σ1A3 and −σ2A3 are
nonnegative and nondecreasing in R−. Moreover, Ain

1 and Ain
2 are nonnegative and nondecreasing in R−. As

a consequence, if A1(t) and A2(t) are nonnegative and nondecreasing in R− for every t ≥ 0, then Υ1[A](t)
and Υ2[A](t) are also nonnegative and nondecreasing in R− for every t ≥ 0 (since 0 ≤ υ1 < υ2, thus for
0 ≤ τ ≤ t, x − (t − τ)υ1 ≤ x − (t − τ)υ2 ≤ x ≤ 0). It follows that if A = ΣtA

in, then A1(t) and A2(t) are
nonnegative and nondecreasing in R− for every t ≥ 0.

As for the case (ii), for r ∈ N∗, we split [X − Tυ2, X] ⊂ R− into r subintervals [xj , xj+1], 0 ≤ j < r,
with xj ≡ X − Tυ2(1− j/r) for j ∈ Z and set tj ≡ T − (X − xj)/υ2 = T/r for 0 ≤ j ≤ r. We fix j, k ∈ N
with 0 ≤ j ≤ k < r, k ∈ N and work in the (space-time) triangle Dj,k with vertices (xj−1, tk), (xj , tk) and
(xj , tk+1). We show a bound from below for A1 and A2 at (xj , tk) depending on their values at (xj−1, tk).
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First, since A1(t) and A2(t) are nonnegative and nondecreasing in R− for every t ≥ 0, we infer as a first step
that for (t, x) ∈ Dj,k,

A1(t, x) ≥ A1(tk, x−(t−tk)υ1) ≥ A1(tk, xj−1) and A2(t, x) ≥ A2(tk, x−(t−tk)υ2) ≥ A2(tk, xj−1).

Consequently,

A1(tk+1, xj) ≥A1(tk, xj − (tk+1 − tk)υ1)− σ1

∫ tk+1

tk
A2(τ, xj − (tk+1 − τ)υ1)A3(xj − (tk+1 − τ)υ1) dτ

≥A1(tk, xj−1)− σ1

υ1
A2(tk, xj−1)

∫ xj

xj−(tk+1−tk)υ1

A3(y) dy

(since 0 ≤ υ1 ≤ υ2, we have (τ, xj − (tk+1 − τ)υ1) ∈ Dj,k), and similarly

A2(tk+1, xj) ≥A2(tk, xj − (tk+1 − tk)υ2)− σ2

∫ tk+1

tk
A1(τ, xj − (tk+1 − τ)υ2)A3(xj − (tk+1 − τ)υ2) dτ

≥A2(tk, xj−1)− σ2

υ2
A1(tk, xj−1)

∫ xj

xj−(tk+1−tk)υ2

A3(y) dy.

From the fact that 0 ≤ υ1 ≤ υ2, we deduce that the quantity

aj,k ≡ min
{
A1(tk, xj);

√
σ1υ2

σ2υ1
A2(tk, xj)

}
verifies

aj,k+1 ≥ aj−1,k
(

1 +

√
σ1σ2

υ1υ2

∫ xj

xj−(tk+1−tk)υ1

|A3|(y) dy
)
.

Therefore,

ar,r ≥ a0,0
r∏
j=1

(
1 +

√
σ1σ2

υ1υ2

∫ xj

xj−Tυ1/r

|A3|(y) dy
)

≥ exp
( r∑
j=1

√
σ1σ2

υ1υ2

∫ xj

xj−Tυ1/r

|A3|(y) dy +
C(X,T )

r

)
.

since a0,0 = 1 and
∫ xj
xj−Tυ1/r

|A3|(y) dy ≤ C0(X,T )/r. Now, since |A3| is nondecreasing in R−,

r∑
j=1

∫ xj

xj−Tυ1/r

|A3|(y) dy ≥ Tυ1

r

r∑
j=1

|A3|(xj)→
υ1

υ2

∫ X

X−Tυ2

|A3|(y) dy

as r → +∞. Hence, passing to the limit as r → +∞ in the previous inequality yields

min
{
A1(T,X);

√
σ1υ2

σ2υ1
A2(T,X)

}
≥ exp

(υ1

υ2

√
σ1σ2

υ1υ2

∫ X

X−Tυ2

|A3|(y) dy
)
.

This establishes (50) for some constant c > 0 depending only on σ1, σ2, υ1 and υ2.

2.9 Proof of Proposition 10

Here, we recall that υ1 = 0 6= υ2. Let us first recall that the telegraph equation

∂2
XY U +K2U = 0,

for U = U(X,Y ) : R2 → R and K > 0 is a constant, has a well-known particular explicit solution given by

U(X,Y ) ≡ J0(2K
√
XY ),
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where, J0 is the Bessel function defined by

J0(z) =
1

π

∫ π

0

cos
(
z sin(u)

)
du =

+∞∑
j=0

(−1)jz2j

(j!)2
.

Indeed,

∂2
XY U = −K2

(
J ′′0 (2K

√
XY ) +

J ′0(2K
√
XY )

2K
√
XY

)
and J ′′0 (z) +

J ′0(z)

z
+ J0(z) = 0.

Similarly, the above computation yields that

A2(t, x) ≡ J0

(
2|A3|

√
σ1σ2

υ2

√
x
( x
υ2
− t
))

solves, in R+ × (0, `),

∂t

(
∂t + υ2∂x

)
A2 = σ1σ2|A3|2A2.

One could then define A1 such that (A1, A2) solves (5) in R+× (0, `), with appropriate boundary and initial
data. Moreover, the Laplace method yields the asymptotic behavior of J0 on the imaginary axis:

J0(iξ) ∼ eξ√
2πξ

for ξ → +∞ (ξ ∈ R). (51)

Hence, for fixed x ∈ (0, `),

A2(t, x) ∼ c0

|A3|
√
t

exp
(

2

√
σ1σ2

υ2
|A3|
√
xt
)
,

where the positive constant c0 depends only on σ1, σ2 and υ2. Due to the fact that the boundary datum
involved in A1 is unbounded, the growth rate in the exponential has an extra factor 2.

2.9.1 Proof of case (i)

Without loss of generality, we may assume that the interval I is (0, `). Then, (10) becomes
A1(t, x) = Ain

1 (x)− σ1A3(x)

∫ t

0

A2(τ, x) dτ

A2(t, x) = Ain
2 (x− tυ2)− σ2

∫ t

0

A1(τ, x− (t− τ)υ2)Ā3(x− (t− τ)υ2) dτ.

Choosing Ain
1 ≡ 0 and Ain

2 ≡ 1, we infer

A2(t, x) = 1 +
σ1σ2

υ2

∫ x

x−tυ2

|A3|2(y)

∫ t−(x−y)/υ2

0

A2(θ, y) dθdy.

It is then clear that A1 and A2 remain non negative for t > 0. Moreover, for 0 ≤ x ≤ ` and t ≥ x/υ2,

A2(t, x) ≥ 1 +
σ1σ2

υ2
|A3|2

∫ x

0

∫ t−(x−y)/υ2

y/υ2

A2(θ, y) dθdy. (52)

This implies, as a first step, for 0 ≤ x ≤ ` and t ≥ x/υ2,

A2(t, x) ≥ 1,

Inserting this lower bound into (52) yields as a second step

A2(t, x) ≥ 1 +
σ1σ2

υ2
|A3|2

∫ x

0

∫ t−(x−y)/υ2

y/υ2

1 dθdy = 1 +
σ1σ2

υ2
|A3|2x

(
t− x

υ2

)
.
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Arguing by induction and using the fact that, for n ∈ N,∫ x

0

∫ t−(x−y)/υ2

y/υ2

yn
(
θ − y

υ2

)n
dθdy =

1

(n+ 1)2
xn+1

(
t− x

υ2

)n+1

,

it follows that, for any n ∈ N,

A2(t, x) ≥
n∑
j=0

1

(j!)2

[σ1σ2

υ2
|A3|2

]j
xj
(
t− x

υ2

)j
.

Letting n→ +∞ and in view of the power series expansion of J0, it comes

A2(t, x) ≥ J0

(
i

√
σ1σ2

υ2
|A3|

√
x
(
t− x

υ2

))
.

Hence, it follows from the asymptotic behavior (51) of J0 on the imaginary axis that for any 0 < ε < `, there
exists cε > 0 such that

A2(t, x = `) ≥ cε exp
(√σ1σ2

υ2
|A3|

√
(`− ε)t

)
provided t is sufficiently large.

2.9.2 Proof of case (ii)

We consider A3 ∈ L∞(R) and compactly supported, say in (0, `) without loosing generality. In the regions
{x < 0} and {x > `}, A3 vanishes and A2 is explicitable:

A2(t, x) = Ain
2 (x− tυ2) or A2(t, x) = A2

(
t− x− `

υ2
, `
)

if (x ≤ 0 or x ≥ `+ tυ2) or ` ≤ x ≤ `+ tυ2, thus it suffices to prove the estimate in [0, `]. As in the previous
case, (10) yields

A2(t, x) = Ain
2 (x− tυ2)− σ2

υ2

∫ x

x−tυ2

Ain
1 (y)Ā3(y) dy +

σ1σ2

υ2

∫ x

x−tυ2

|A3|2(y)

∫ t−(x−y)/υ2

0

A2(θ, y) dθdy,

thus, for 0 ≤ x ≤ `,

|A2|(t, x) ≤
∣∣∣∣Ain

2

∣∣∣∣
L∞

+
|σ2|
υ2

`
∣∣∣∣A3

∣∣∣∣
L∞

∣∣∣∣Ain
1

∣∣∣∣
L∞

+
σ1σ2

υ2

∣∣∣∣A3

∣∣∣∣2
L∞

∫ x

0

∫ t

0

|A2|(θ, y) dθdy. (53)

The idea is to construct a super solution to this inequality, using a power series expansion as in the previous
case. Let

Φ(t, x) ≡
+∞∑
j=0

[σ1σ2

υ2

∣∣∣∣A3

∣∣∣∣2
L∞

]j xjtj
(j!)2

= J0

(
i

√
σ1σ2

υ2

∣∣∣∣A3

∣∣∣∣
L∞

√
xt
)
> 0.

Then, an immediate computation yields

1 +
σ1σ2

υ2

∣∣∣∣A3

∣∣∣∣2
L∞

∫ x

0

∫ t

0

Φ(θ, y) dθdy = Φ(t, x). (54)

Therefore, for some constant K0 depending only on σ1, σ2, υ2 and `||A3||L∞ , we have, for 0 ≤ x ≤ `,{
|A2| −K0

∣∣∣∣Ain
∣∣∣∣
L∞

Φ
}

+
(t, x) ≤ σ1σ2

υ2

∣∣∣∣A3

∣∣∣∣2
L∞

∫ x

0

∫ t

0

{
|A2| −K0

∣∣∣∣Ain
∣∣∣∣
L∞

Φ
}

(θ, y) dθdy

≤ σ1σ2

υ2

∣∣∣∣A3

∣∣∣∣2
L∞

`

∫ t

0

∣∣∣∣∣∣{|A2| −K0

∣∣∣∣Ain
∣∣∣∣
L∞

Φ
}

+
(θ)
∣∣∣∣∣∣
L∞(0,`)

dθ.

Hence, by Gronwall inequality, for any t ≥ 0 and x ∈ [0, `],{
|A2| −K0

∣∣∣∣Ain
∣∣∣∣
L∞

Φ
}

(t, x) ≤ 0.
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Consequently, from the asymptotics (51),

|A2| ≤ K0

∣∣∣∣Ain
∣∣∣∣
L∞

Φ(t, x) ≤ C√
t

∣∣∣∣Ain
∣∣∣∣
L∞

exp
(√σ1σ2

υ2

∣∣∣∣A3

∣∣∣∣
L∞

√
`t
)
,

for some constant C depending on σ1, σ2, υ2, ` and ||A3||L∞ . Inserting this upper bound in the first line of
(10) yields

|A1|(t, x) ≤
∣∣∣∣Ain

1

∣∣∣∣
L∞

+ |σ1|
∣∣∣∣A3

∣∣∣∣
L∞

∣∣∣∣Ain
∣∣∣∣
L∞

∫ t

0

C√
τ

exp
(√σ1σ2

υ2

∣∣∣∣A3

∣∣∣∣
L∞

√
`τ
)
dτ

≤ C ′
∣∣∣∣Ain

∣∣∣∣
L∞

exp
(√σ1σ2

υ2

∣∣∣∣A3

∣∣∣∣
L∞

√
`t
)
.

The proof is complete.

2.10 Proof of Proposition 11

We denote (x̃1, x̃2) the coordinates in the basis (υ1; υ2) of R2. We follow closely the arguments used in
the proof of Proposition 9. We fix (T,X) ∈ R+ × R2. For r ∈ N∗ and j = (j1, j2) ∈ Z2, we denote

V j ≡ X̃1 − T (1− j1/r)υ1 + X̃2 − T (1− j1/r)υ2 ∈ R2.

We define R as the parallelogram with vertices 0, X̃2υ2 = V (0,r), X̃1υ1 = V (r,0) and X = V (r,r), and
Rj (j ∈ Z2) as the parallelogram with vertices V (j1,j2), V (j1+1,j2), V (j1,j2+1) and V (j1+1,j2+1). We then
decompose the parallelogram R into the r2 subparallelograms Rj , j ∈ Z2, 0 ≤ j1, j2 < r.

On each parallelogram Rj , A solves, in the space-time domain

Dj ≡ {(t, x) ∈ R+ ×Rj , x̃1 + x̃2 − t ≥ X̃1 + X̃2 − T},

the boundary value problem ∂tA1 + ∂x̃1
A1 + σ1A3A2 = 0

∂tA2 + ∂x̃2A2 + σ2Ā3A1 = 0,
for (t, x) ∈ Dj (55)

with the boundary conditions on the faces F j1 ≡ Dj ∩ {x̃1 = V j1 } and F j2 ≡ Dj ∩ {x̃2 = V j2 }:

A1(t, x̃1 = Ṽ j1 , x̃2) = A1(t, x̃1 = Ṽ j1 , x̃2) (t, x̃1 = Ṽ j1 , x̃2) ∈ Fj1 ,
A2(t, x̃1, x̃2 = Ṽ j2 ) = A2(t, x̃1, x̃2 = Ṽ j2 ) (t, x̃1, x̃2 = Ṽ j2 ) ∈ Fj2 ,

A(t = 0, x̃) = Ain(x̃), x̃ ∈ Rj .

By the method of characteristics, we find for (t, x) ∈ Dj :

|A1|(t, x̃) ≤1x̃1≥x̃j1+t

{∣∣∣∣Ain
1

∣∣∣∣
C(Rj) + |σ1|

∫ t

0

∣∣∣∣A3

∣∣∣∣
L∞(Rj)

∣∣∣∣A2

∣∣∣∣
C(Dj) dτ

}
+ 1x̃1≤Ṽ j1 +t

{∣∣∣∣A1|x̃1=Ṽ j1

∣∣∣∣
C(Fj1 )

+ |σ1|
∫ t

t− x̃1−x̃
j
1

|υ1|

∣∣∣∣A3

∣∣∣∣
L∞(Rj)

∣∣∣∣A2

∣∣∣∣
C(Dj) dτ

}
≤ max

{∣∣∣∣Ain
1

∣∣∣∣
C(R)

;
∣∣∣∣A1|x̃1=Ṽ j1

∣∣∣∣
C(Fj1 )

}
+ |σ1|

T

r

∣∣∣∣A3

∣∣∣∣
L∞(Rj)

∣∣∣∣A2

∣∣∣∣
C(Dj)

and similarly (here, the two quantities A1 and A2 play symmetric roles)

|A2|(t, x̃) ≤ max
{∣∣∣∣Ain

2

∣∣∣∣
C(R)

;
∣∣∣∣A2|x̃2=x̃j2

∣∣∣∣
C(Fj2 )

}
+ |σ2|

T

r

∣∣∣∣A3

∣∣∣∣
L∞(Rj)

∣∣∣∣A1

∣∣∣∣
C(Dj).

For j ∈ Z2, with 0 ≤ j1, j2 < r, we set

αj ≡ T

r

√
σ1σ2

∣∣∣∣A3

∣∣∣∣
L∞(Rj),


aj1 ≡ max

{∣∣∣∣Ain
1

∣∣∣∣
C(R)

;
∣∣∣∣A1

∣∣∣∣
C(Dj)

}
,

aj2 ≡
√
σ1υ2

σ2υ1
max

{∣∣∣∣Ain
2

∣∣∣∣
C(R)

;
∣∣∣∣A2

∣∣∣∣
C(Dj)

}
.
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Then, we have 
a

(j1,j2)
1 ≤ a

(j1−1,j2)
1 + α(j1,j2)a

(j1,j2)
2 ,

a
(j1,j2)
2 ≤ a

(j1,j2−1)
2 + α(j1,j2)a

(j1,j2)
1 ,

from which it follows 
a

(j1,j2)
1 ≤ a

(j1−1,j2)
1 + α(j1,j2)a

(j1,j2−1)
2

1− (α(j1,j2))2
,

a
(j1,j2)
2 ≤ a

(j1,j2−1)
1 + α(j1,j2)a

(j1−1,j2)
2

1− (α(j1,j2))2
,

as soon as α(j1,j2) < 1, which is the case if r ≥ 1 + T
√
σ1σ2

∣∣∣∣A3

∣∣∣∣
L∞(R2)

. Let us set

K0 ≡ max
{
a

(i,0)
` ; ` = 1, 2 0 ≤ i ≤ r

}
. (56)

By an immediate induction, we infer

a
(i,1)
1 ≤ K0δi, (57)

where the δi’s are defined by δ0 ≡ 1 and

δi ≡
1 + δi−1α

(i,0)

1− (α(i,0))2
.

It can be easily checked by induction on i that

δi =
{ i∏
h=0

(1− (α(h,0))2)
}−1[

(1− (α(0,0))2)

i∏
h=0

α(h,0) +

i−1∑
`=0

i∏
h=`+2

α(h,0) ×
∏̀
h=0

(1− (α(h,0))2)
]
.

Therefore, using that ∏̀
h=0

(1− (α(h,0))2) ≤ 1

and noticing that if C0 ≡ T
√
σ1σ2||A3||L∞(R2), then, for 0 ≤ j1, j2 < r,

α(j1,j2) ≤ C0

r
,

we infer, for 0 ≤ i < r,

δi ≤ exp
(
−

i∑
h=0

ln(1− (α(h,0))2)
)[

1 + α(i,0) +
C2

0

r2
+

i−3∑
`=0

(C2
0

r2

)i−`−1]
≤ exp

(
α(i,0) −

i∑
h=0

ln(1− (α(h,0))2) +
C ′0
r2

)
.

Reporting this into (57) yields

a
(i,1)
1 ≤ K0 exp

(
max

0≤h≤r
α(h,0) −

r∑
h=0

ln(1− (α(h,0))2) +
C ′0
r2

)
,

and, by similar arguments,

a
(1,i)
1 ≤ K0 exp

(
max

0≤h≤r
α(0,h) −

r∑
h=0

ln(1− (α(0,h))2) +
C ′0
r2

)
.

Consequently, denoting α̂(j1,j2) ≡ max
{
α(j1,j2);α(j2,j1)

}
, it comes

max
{
a

(i,1)
` ; ` = 1, 2 1 ≤ i ≤ r

}
≤ K1 ≡ K0 exp

(
max

0≤h≤r
α̂(h,0) −

r∑
h=0

ln(1− (α̂(h,0))2) +
C ′0
r2

)
,
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which is an estimate analoguous to (56). Hence, arguing by induction on the lines j1 = Cte and j2 = Cte,
we deduce

max
{
a

(j1,j2)
` ; ` = 1, 2 1 ≤ j1, j2 ≤ r

}
≤ K0 exp

( r∑
i=0

max
i≤h≤r

α̂(h,i) −
∑

0≤i≤h≤r

ln(1− (α̂(h,i))2) +
C ′0
r

)
.

We now let r → +∞ in the previous estimate (C ′0 depends on T ). We bound K0 using that (for ` = 1, 2)

a
(i,0)
` →

∣∣∣∣Ain
`

∣∣∣∣
L∞(R)

uniformly for 0 ≤ i ≤ r (since in the L∞ norm, the time interval shrinks to {0}). Moreover, in view of (14),
there holds

r∑
i=0

max
i≤h≤r

α̂(h,i) −
∑

0≤i≤h≤r

ln(1− (α̂(h,i))2) ≤ C(ν,M),

where C(ν,M) depends on ν and M (and υ1, υ2), but not on X, T or r. Therefore, for some constant C
depending only on σ1 and σ2, we have as wished

1

C
|A(T,X)|∞ ≤ max

{
a

(r−1,r−1)
1 ; a

(r−1,r−1)
2

}
≤
∣∣∣∣Ain

∣∣∣∣
L∞(R)

eC(ν,M).
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