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Abstract

We present a family of positive definite kernels on measures,characterized by the fact that the value
of the kernel between two measures is a function of their sum.These kernels can be used to derive
kernels on structured objects, such as images and texts, by representing these objects as sets of
components, such as pixels or words, or more generally as measures on the space of components.
Several kernels studied in this work make use of common quantities defined on measures such
as entropy or generalized variance to detect similarities.Given an a priori kernel on the space
of components itself, the approach is further extended by restating the previous results in a more
efficient and flexible framework using the “kernel trick”. Finally, a constructive approach to such
positive definite kernels through an integral representation theorem is proved, before presenting
experimental results on a benchmark experiment of handwritten digits classification to illustrate
the validity of the approach.

Keywords: kernels on measures, semigroup theory, Jensen divergence,generalized variance,
reproducing kernel Hilbert space

1. Introduction

The challenge of performing classification or regression tasks over complex and non vectorial ob-
jects is an increasingly important problem in machine learning, motivated by diverse applications
such as bioinformatics or multimedia document processing. The kernel methodapproach to such
problems (Scḧolkopf and Smola, 2002) is grounded on the choice of a proper similarity measure,
namely a positive definite (p.d.) kernel defined between pairs of objects ofinterest, to be used
alongside with kernel methods such as support vector machines (Boser et al., 1992). While natural
similarities defined through dot-products and related distances are availablewhen the objects lie in
a Hilbert space, there is no standard dot-product to compare strings, texts, videos, graphs or other
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structured objects. This situation motivates the proposal of various kernels, either tuned and trained
to be efficient on specific applications or useful in more general cases.

One possible approach to kernel design for such complex objects consists in representing them
by sets of basic components easier to manipulate, and designing kernels on such sets. Such basic
components can typically be subparts of the original complex objects, obtained by exhaustive enu-
meration or random sampling. For example, a very common way to represent atext for applications
such as text classification and information retrieval is to break it into words and consider it as a
bag of words, that is, a finite set of weighted terms. Another possibility is to extract all fixed-length
blocks of consecutive letters and represent the text by the vector of counts of all blocks (Leslie et al.,
2002), or even to add to this representation additional blocks obtained by slight modifications of the
blocks present in the text with different weighting schemes (Leslie et al., 2003). Similarly, a grey-
level digitalized image can be considered as a finite set of points ofR

3 where each point(x,y, I)
stands for the intensityI displayed on the pixel(x,y) in that image (Kondor and Jebara, 2003).

Once such a representation is obtained, different strategies have beenadopted to design kernels
on these descriptions of complex objects. When the set of basic componentsis finite, this repre-
sentation amounts to encode a complex object as a finite-dimensional vector ofcounters, and any
kernel for vectors can be then translated to a kernel for complex objectthrough this feature represen-
tation (Joachims, 2002, Leslie et al., 2002, 2003). For more general situations, several authors have
proposed to handle such weighted lists of points by first fitting a probability distribution to each
list, and defining a kernel between the resulting distributions (Lafferty andLebanon, 2002, Jebara
et al., 2004, Kondor and Jebara, 2003, Hein and Bousquet, 2005). Alternatively, Cuturi and Vert
(2005) use a parametric family of densities and a Bayesian framework to define a kernel for strings
based on the mutual information between their sets of variable-length blocks,using the concept of
mutual information kernels (Seeger, 2002). Finally, Wolf and Shashua (2003) recently proposed a
formulation rooted in kernel canonical correlation analysis (Bach and Jordan, 2002, Melzer et al.,
2001, Akaho, 2001) which makes use of the principal angles between thesubspaces generated by
the two sets of points to be compared when considered in a feature space.

We explore in this contribution a different direction to kernel design for weighted lists of basic
components. Observing that such a list can be conveniently representedby a molecular measure
on the set of basic components, that is a weighted sum of Dirac measures, or that the distribution
of points might be fitted by a statistical model and result in a density on the same set, we formally
focus our attention on the problem of defining a kernel between finite measures on the space of basic
components. More precisely, we explore the set of kernels between measures that can be expressed
as a function of their sum, that is:

k(µ,µ′) = ϕ(µ+µ′). (1)

The rationale behind this formulation is that if two measures or sets of pointsµ andµ′ overlap, then
it is expected that the sumµ+ µ′ is more concentrated and less scattered than if they do not. As a
result, we typically expectϕ to quantify the dispersion of its argument, increasing when it is more
concentrated. This setting is therefore a broad generalization of the observation by Cuturi and Vert
(2005) that a valid kernel for strings, seen as bags of variable-lengthblocks, is obtained from the
compression rate of theconcatenationof the two strings by a particular compression algorithm.

The set of measures endowed with the addition is an Abelian semigroup, and the kernel (1)
is exactly what Berg et al. (1984) call asemigroup kernel. The main contribution of this paper
is to present several valid positive definite (p.d.) semigroup kernels for molecular measures or
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densities. As expected, we prove that several functionsϕ that quantify the dispersion of measures
through their entropy or through their variance matrix result in valid p.d. kernels. Using entropy to
compare two measures is not a new idea (Rao, 1987) but it was recently restated within different
frameworks (Hein and Bousquet, 2005, Endres and Schindelin, 2003,Fuglede and Topsøe, 2004).
We introduce entropy in this paper slightly differently, noting that it is a semigroup negative definite
function defined on measures. On the other hand, the use of generalizedvariance to derive a positive
definite kernel between measures as proposed here is new to our knowledge. We further show how
such kernels can be applied to molecular measures through regularization operations. In the case of
the kernel based on the spectrum of the variance matrix, we show how it can be applied implicitly
for molecular measures mapped to a reproducing kernel Hilbert space when a p.d. kernel on the
space of basic components is provided, thanks to an application of the “kernel trick”.

Besides these examples of practical relevance, we also consider the question of characterizing
all functionsϕ that lead to a p.d. kernel through (1). Using the general theory of semigroup kernels
we state an integral representation of such kernels and study the semicharacters involved in this
representation. This new result provides a constructive characterization of such kernels, which we
briefly explore by showing that Bayesian mixtures over exponential modelscan be seen as natural
functionsϕ that lead to p.d. kernels, thus making the link with the particular case treated by Cuturi
and Vert (2005).

This paper is organized as follows. We first introduce elements of measurerepresentations of
weighted lists and define the semigroup formalism and the notion of semigroup p.d. kernel in Sec-
tion 2. Section 3 contains two examples of semigroup p.d. kernels, which are however usually
not defined for molecular measures: the entropy kernel and the inversegeneralized variance (IGV)
kernel. Through regularization procedures, practical applications ofsuch kernels on molecular mea-
sures are proposed in Section 4, and the approach is further extendedby kernelizing the IGV through
an a priori kernel defined itself on the space of components in Section 5. Section 6 contains the gen-
eral integral representation of semigroup kernels and Section 7 makes thelink between p.d. kernels
and Bayesian posterior mixture probabilities. Finally, Section 8 contains an empirical evaluation of
the proposed kernels on a benchmark experiment of handwritten digits classification.

2. Notations and Framework: Semigroup Kernels on Measures

In this section we set up the framework and notations of this paper, in particular the idea of semi-
group kernel on the semigroup of measures.

2.1 Measures on Basic Components

We model the space of basic components by a Hausdorff space(X ,B,ν) endowed with its Borel
σ-algebra and a Borel dominant measureν. A positive Radon measureµ is a positive Borel measure
which satisfies(i)µ(C) < +∞ for any compact subsetC ⊆ X and (ii)µ(B) = sup{µ(C)|C ⊆ B,C
compact} for anyB∈ B (see for example Berg et al. (1984) for the construction of Radon measures
on Hausdorff spaces). The set of positive bounded (i.e.,µ(X ) < +∞) Radon measures onX is de-
noted byMb

+(X ). We introduce the subset ofMb
+(X ) of molecular (or atomic) measures Mol+(X ),

namely measures such that

supp(µ)
def
= {x∈ X |µ(U) > 0, for all open subsetU s.t. x∈U}
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is finite, and we denote byδx ∈ Mol+(X ) the molecular (Dirac) measure of weight 1 onx. For
a molecular measureµ, anadmissible baseof µ is a finite listγ of weighted points ofX , namely
γ = (xi ,ai)

d
i=1, wherexi ∈ X andai > 0 for 1≤ i ≤ d, such thatµ= ∑d

i=1aiδxi . We write in that case
|γ| = ∑d

i=1ai and l(γ) = d. Reciprocally, a measureµ is said to be the image measure of a list of
weighted elementsγ if the previous equality holds. Finally, for a Borel measurable functionf ∈ R

X

and a Borel measureµ, we writeµ[ f ] =
R

X f dµ.

2.2 Semigroups and Sets of Points

We follow in this paper the definitions found in Berg et al. (1984), which we now recall. AnAbelian
semigroup(S ,+) is a nonempty setS endowed with anassociativeandcommutative composition
+ and a neutral element 0. Referring further to the notations used in Berg etal. (1984), note that we
will only use auto-involutive semigroups in this paper, and will hence not discuss other semigroups
which admit different involutions.

A function ϕ : S → R is called apositive definite(resp.negative definite, n.d.) function on the
semigroup(S,+) if (s, t ) 7→ ϕ(s+ t) is a p.d. (resp. n.d.) kernel onS × S . The symmetry of the
kernel being ensured by the commutativity of+, the positive definiteness is equivalent to the fact
that the inequality

N

∑
i, j=1

cic j ϕ(xi +x j) ≥ 0

holds for anyN ∈ N,(x1, . . . ,xN) ∈ SN and(c1 . . . ,cn) ∈ R
N. Using the same notations, and adding

the additional condition that∑n
i=1ci = 0 yields the definition of negative definiteness asϕ satisfying

now
N

∑
i, j=1

cic j ϕ(xi +x j) ≤ 0.

Hence semigroup kernels are real-valued functionsϕ defined on the set of interestS , the similarity
between two elementss, t of S being just the value taken by that function on their composition,
namelyϕ(s+ t).

Recalling our initial goal to quantify the similarity between two complex objects through finite
weighted lists of elements inX , we note that(P (X ),∪) the set of subsets ofX equipped with the
usual union operator∪ is a semigroup. Such a semigroup might be used as a feature representation
for complex objects by mapping an object to the set of its components, forgetting about the weights.
The resulting representation would therefore be an element ofP (X ). A semigroup kernelk on
P (X ) measuring the similarity of two sets of pointsA,B ∈ P (X ) would use the value taken by
a given p.d. functionϕ on their union, namelyk(A,B) = ϕ(A∪B). However we put aside this
framework for two reasons. First, the union composition is idempotent (i.e., for all A in P (X ), we
haveA∪A= A) which as noted in Berg et al. (1984, Proposition 4.4.18) drastically restricts the class
of possible p.d. functions. Second, such a framework defined by sets would ignore the frequency (or
weights) of the components described in lists, which can be misleading when dealing with finite sets
of components. Other problematic features would include the fact thatk(A,B) would be constant
whenB⊂ A regardless of its characteristics, and that comparing sets of very different sizes should
be difficult.

In order to overcome these limitations we propose to represent a list of weighted pointsz =
(xi ,ai)

d
i=1, where for 1≤ i ≤ d we havexi ∈ X andai > 0, by its image measureδz = ∑d

i=1aiδxi , and
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focus now on the Abelian semigroup(Mb
+(X ),+) to define kernels between lists of weighted points.

This representation is richer than the one suggested in the previous paragraph in the semigroup
(P (X ),∪) to consider the merger of two lists. First it performs the union of the supports;second
the sum of such molecular measures also adds the weights of the points common to both measures,
with a possible renormalization on those weights. Two important features of theoriginal list are
however lost in this mapping: the order of its elements and the original frequency of each element
within the list as a weighted singleton. We assume for the rest of this paper thatthis information is
secondary compared to the one contained in the image measure, namely its unordered support and
theoverall frequency of each point in that support. As a result, we study in the following sections
p.d. functions on the semigroup(Mb

+(X ),+), in particular on molecular measures, in order to define
kernels on weighted lists of simple components.

X

θ(δz)

θ(δz′ )θ(δz+δz′ )

δz δz′

Figure 1: Measure representations of two listsz andz′. Each element ofz (resp. z′) list is repre-
sented by a black circle (resp. a white square), the size of which represents the associated
weight. Five measures of interest are represented: the image measuresδz andδz′ of those
weighted finite lists, the smoothed density estimatesθ(δz) andθ(δz′) of the two lists of
points, and the smoothed density estimateθ(δz+δz′) of the union of both lists.

Before starting the analysis of such p.d. functions, it should however bepointed out that several
interesting semigroup p.d. kernels on measures are not directly applicable tomolecular measures.
For example, the first function we study below is only defined on the set of absolutely continuous
measures with finite entropy. In order to overcome this limitation and be able to process complex
objects in such situations, it is possible to think about alternative strategies to represent such objects
by measures, as illustrated in Figure 1:

• The molecular measuresδz andδz′ as the image measures corresponding to the two weighted
sets of points ofz andz′, where dots and squares represent the different weights applied on
each points;

• Alternatively, smoothed estimates of these distributions obtained for example bynon-parametric
or parametric statistical density estimation procedures, and represented byθ(δz) andθ(δz′)
in Figure 1. Such estimates can be considered if a p.d. kernel is only defined for absolutely
continuous measures. When this mapping takes the form of estimation among a given family
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of densities (through maximum likelihood for instance) this can also be seen asa prior belief
assumed on the distribution of the objects;

• Finally, a smoothed estimate of the sumδz+ δz′ corresponding to the merging of both lists,
represented byθ(δz+δz′), can be considered. Note thatθ(δz+δz′) might differ fromθ(δz)+
θ(δz′).

A kernel between two lists of points can therefore be derived from a p.d.function on(Mb
+(X ),+)

in at least three ways:

k(z,z′) =











ϕ(δz+δz′), usingϕ directly on molecular measures,

ϕ(θ(δz)+θ(δz′)) , usingϕ on smoothed versions of the molecular measures,

ϕ(θ(δz+δz′)) , evaluatingϕ on a smoothed version of the sum.

The positive definiteness ofϕ on Mb
+(X ) ensures positive definiteness ofk only in the first two

cases. The third expression can be seen as a special case of the firstone, where we highlight the
usage of a preliminary mapping on the sum of two measures; in that caseϕ ◦ θ should in fact be
p.d. on(Mb

+(X ),+), or at least(Mol+(X ),+). Having defined the set of representations on which
we will focus in this paper, namely measures on a set of components, we propose in the following
section two particular cases of positive definite functions that can be computed through an addition
between the considered measures. We then show how those quantities can be computed in the case
of molecular measures in Section 4.

3. The Entropy and Inverse Generalized Variance Kernels

In this section we present two basic p.d. semigroup kernels for measures,motivated by a common
intuition: the kernel between two measures should increase when the sum ofthe measures gets
more “concentrated”. The two kernels differ in the way they quantify the concentration of a mea-
sure, using either its entropy or its variance. They are therefore limited to a subset of measures,
namely the subset of measures with finite entropy and the subset of sub-probability measures with
non-degenerated variance, but are extended to a broader class of measures, including molecular
measures, in Section 4.

3.1 Entropy Kernel

We consider the subset ofMb
+(X ) of absolutely continuous measures with respect to the dominant

measureν, and identify in this section a measure with its corresponding density with respect to ν.
We further limit the subset to the set of non-negative valuedν-measurable functions onX with finite
sum, such that

Mh
+(X )

def
= { f : X → R

+| f is ν-measurable, |h( f )| < ∞, | f | < ∞}

where we write for any measurable non-negative valued functiong,

h(g)
def
= −

Z

X
glngdν,
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(with 0 ln0= 0 by convention) and|g|def
=

R

X gdν, consistently with the notation used for measures.
If g is such that|g| = 1, h(g) is its differential entropy. Using the following inequalities,

(a+b) ln(a+b) ≤ alna+blnb+(a+b) ln2, by convexity ofx 7→ xlnx,

(a+b) ln(a+b) ≥ alna+blnb,

we have that(Mh
+(X ),+) is an Abelian semigroup since forf , f ′ in Mh

+(X ) we have thath( f + f ′)
is bounded by integrating pointwise the inequalities above, the boundedness of | f + f ′| being also
ensured. Following Rao (1987) we consider the quantity

J( f , f ′)
def
= h(

f + f ′

2
)− h( f )+h( f ′)

2
, (2)

known as theJensen divergence(or Jensen-Shannon divergence) betweenf and f ′, which as noted
by Fuglede and Topsøe (2004) can be seen as a symmetrized version of the Kullback-Leibler (KL)
divergenceD, since

J( f , f ′) =
1
2

D( f || f + f ′

2
)+

1
2

D( f ′|| f + f ′

2
).

The expression of Equation (2) fits our framework of devising semigroupkernels, unlike the direct
use of the KL divergence (Moreno et al., 2004) which is neither symmetric nor negative definite. As
recently shown in Endres and Schindelin (2003) andÖsterreicher and Vajda (2003),

√
J is a metric

on Mh
+(X ) which is a direct consequence ofJ’s negative definiteness proven below, through Berg

et al. (1984, Proposition 3.3.2) for instance. The Jensen-Divergence was also recently reinterpreted
as a special case of a wider family of metrics onMb

+(X ) derived from a particular family of Hilber-
tian metrics onR+ as presented in Hein and Bousquet (2005). The comparison between twoden-
sities f , f ′ is in that case performed by integrating pointwise the squared distanced2( f (x), f ′(x))
between the two densities overX , using ford a distance chosen among a suitable family of metrics
in R+ to ensure that the final value is independent of the dominant measureν. The considered
family for d is described in Fuglede and Topsøe (2004) through two parameters, a family of which
the Jensen Divergence is just a special case as detailed in Hein and Bousquet (2005). The latter
work shares with this paper another similarity, which lies in the “kernelization” of such quanti-
ties defined on measures through a prior kernel on the space of components, as will be reviewed
in Section 5. However, of all the Hilbertian metrics introduced in Hein and Bousquet (2005), the
Jensen-Divergence is the only one that can be related to the semigroup framework used throughout
this paper.

Note finally that a positive definite kernelk is said to be infinitely divisible if− lnk is a negative
definite kernel. As a consequence, any positive exponentiationkβ,β > 0 of an infinitely divisible
kernel is a positive definite kernel.

Proposition 1 h is a negative definite function on the semigroup Mh
+(X ). As a consequence e−h

is a positive definite function on Mh+(X ) and its normalized counterpart, kh
def
= e−J is an infinitely

divisible positive definite kernel on Mh+(X )×Mh
+(X ).

Proof It is known that the real-valued functionr : y 7→ −ylny is n.d. onR+ as a semigroup endowed
with addition (Berg et al., 1984, Example 6.5.16). As a consequence the function f 7→ r ◦ f is n.d.
on Mh

+(X ) as a pointwise application ofr since r ◦ f is integrable w.r.tν. For any real-valued
n.d. kernelk and any real-valued functiong, we have trivially that(y,y′) 7→ k(y,y′)+ g(y)+ g(y′)
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remains negative definite. This allows first to prove thath( f+ f ′

2 ) is also n.d. through the identity

h( f+ f ′

2 ) = 1
2h( f + f ′)+ ln2

2 (| f |+ | f ′|). Subtracting the normalization factor1
2(h( f )+h( f ′)) gives

the negative definiteness ofJ. This finally yields the positive definiteness ofkh as the exponential of
the negative of a n.d. function through Schoenberg’s theorem (Berg et al., 1984, Theorem 3.2.2).

Note that onlye−h is a semigroup kernel strictly speaking, sincee−J involves a normalized sum
(through the division by 2) which is not associative. While bothe−h ande−J can be used in practice
on non-normalized measures, we name more explicitlykh = e−J theentropy kernel, because what
it indeed quantifies whenf and f ′ are normalized (i.e., such that| f | = | f ′| = 1) is the difference of
the average of the entropy off and f ′ from the entropy of their average. The subset of absolutely
continuousprobability measures on(X ,ν) with finite entropies, namely

{

f ∈ Mh
+(X ), s.t.| f | = 1

}

is not a semigroup since it is not closed by addition, but we can nonethelessdefine the restriction ofJ
and hencekh on it to obtain a p.d. kernel on probability measures inspired by semigroup formalism.

3.2 Inverse Generalized Variance Kernel

We assume in this subsection thatX is an Euclidian space of dimensionn endowed with Lebesgue’s
measureν. Following the results obtained in the previous section, we propose under these re-
strictions a second semigroup p.d. kernel between measures which uses generalized variance. The
generalized variance of a measure, namely the determinant of its variance matrix, is a quantity ho-
mogeneous to a volume inX . This volume can be interpreted as a typical volume occupied by a
measure when considering only its second order moments, making it hence a useful quantification
of its dispersion. Besides being easy to compute in the case of molecular measures, this quantity is
also linked to entropy if we consider that for normal lawsN (m,Σ) the following relation holds:

1√
detΣ

∝ e−h(N (m,Σ)).

Through this observation, we note that considering the Inverse of the Generalized Variance (IGV)
of a measure is equivalent to considering the value taken bye−2h on its maximum likelihood normal
law. We will put aside this interpretation in this section, before reviewing it with more care in
Section 7.

Let us define the variance operator on measuresµ with finite first and second moment ofMb
+(X )

as
Σ(µ)

def
= µ[xx>]−µ[x]µ[x]>.

Note thatΣ(µ) is always a positive semi-definite matrix whenµ is a sub-probability measure, that is
when|µ| ≤ 1, since

Σ(µ) = µ[(x−µ[x])(x−µ[x])>]+ (1−|µ|)µ[x]µ[x]>.

We call detΣ(µ) the generalized variance of a measureµ, and say a measureµ is non-degeneratedif
detΣ(µ) is non-zero, meaning thatΣ(µ) is of full rank. The subset ofMb

+(X ) of such measures with
total weight equal to 1 is denoted byMv

+(X ); Mv
+(X ) is convex through the following proposition:

Proposition 2 Mv
+(X )

def
=
{

µ∈ Mb
+(X ) : |µ| = 1,detΣ(µ) > 0

}

is a convex set, and more generally
for λ ∈ [0,1), µ′ ∈ Mb

+(X ) such that|µ′| = 1 and µ∈ Mv
+(X ), (1−λ)µ+λµ′ ∈ Mv

+(X ).
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Proof We use the following identity,

Σ
(

(1−λ)µ+λµ′
)

= (1−λ)Σ(µ)+λΣ(µ′)+λ(1−λ)
(

µ[x]−µ′[x]
)(

µ[x]−µ′[x]
)>

,

to derive thatΣ((1− λ)µ+ λµ′) is a (strictly) positive-definite matrix as the sum of two positive
semi-definite matrices and a strictly positive definite matrixΣ(µ).

Mv
+(X ) is not a semigroup, since it is not closed under addition. However we will work in this

case on the mean of two measures in the same way we used their standard addition in the semigroup
framework ofMb

+(X ).

Proposition 3 The real-valued kernel kv defined on elements µ,µ′ of Mv
+(X ) as

kv(µ,µ′) =
1

detΣ(µ+µ′
2 )

is positive definite.

Proof Let y be an element ofX . For anyN ∈ N, anyc1, ...,cN ∈ R such that∑i ci = 0 and any
µ1, ...,µN ∈ Mv

+(X ) we have

∑
i, j

cic jy
>Σ(

µi +µj

2
)y = ∑

i, j

cic jy
>
(

1
2

µi [xx>]+
1
2

µj [xx>]−

1
4

(

µi [x]µi [x]
> +µj [x]µj [x]

> +µj [x]µi [x]
> +µi [x]µj [x]

>
)

)

y

= −1
4 ∑

i, j

cic jy
>
(

µj [x]µi [x]
> +µi [x]µj [x]

>
)

y

= −1
2

(

∑
i

ciy
>µi [x]

)2

≤ 0,

making thus the functionµ,µ′ 7→ y>Σ(µ+µ′

2 )y negative-definite for anyy∈ X . Using again Schoen-

berg’s theorem (Berg et al., 1984, Theorem 3.2.2) we have thatµ,µ′ 7→ e−y>Σ( µ+µ′
2 )y is positive defi-

nite and so is the sum 1
(2π)

n
2

R

X e−y>Σ( µ+µ′
2 )yν(dy) which is equal to 1/

√

detΣ(µ+µ
2 ) ensuring thus the

positive-definiteness ofkv as its square.

Both entropy and IGV kernels are defined on subsets ofMb
+(X ). Since we are most likely to use

them on molecular measures or smooth measures (as discussed in Section 2.2),we present in the
following section practical ways to apply them in that framework.

4. Semigroup Kernels on Molecular Measures

The two positive definite functions defined in Sections 3.1 and 3.2 cannot beapplied in the general
case to Mol+(X ) which as exposed in Section 2 is our initial goal. In the case of the entropy
kernel, molecular measures are generally not absolutely continuous with respect toν (except on
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finite spaces), and they have therefore no entropy; we solve this problem by mapping them into
Mh

+(X ) through a smoothing kernel. In the case of the IGV, the estimates of variances might be
poor if the number of points in the lists is not large enough compared to the dimension of the
Euclidean space; we perform in that case a regularization by adding a unit-variance correlation
matrix to the original variance. This regularization is particularly important to pave the way to the
kernelized version of the IGV kernel presented in the next section, when X is not Euclidian but
simply endowed with a prior kernelκ.

The application of both the entropy kernel and the IGV kernel to molecular measures requires a
previous renormalization to set the total mass of the measures to 1. This technical renormalization
is also beneficial, since it allows a consistent comparison of two weighted lists even when their
size and total mass is very different. All molecular measures in this section, and equivalently all
admissible bases, will hence be supposed to be normalized such that their total weight is 1, and
Mol1+(X ) denotes the subset of Mol+(X ) of such measures.

4.1 Entropy Kernel on Smoothed Estimates

We first define the Parzen smoothing procedure which allows to map molecularmeasures onto
measures with finite entropy:

Definition 4 Let κ be a probability kernel onX with finite entropy, i.e., a real-valued function
defined onX 2 such that for any x∈X , κ(x, ·) : y 7→ κ(x,y) satisfiesκ(x, ·)∈Mh

+(X ) and|κ(x, ·)|= 1.
Theκ-Parzen smoothed measure of µ is the probability measure whose densitywith respect toν is
θκ(µ), where

θκ :Mol1+(X ) −→ Mh
+(X )

µ 7→ ∑
x∈suppµ

µ(x)κ(x, ·).

Note that for any admissible base(xi ,ai)
d
k=1 of µ we have thatθκ(µ) = ∑d

i=1aiκ(xi , ·). Once this
mapping is defined, we use the entropy kernel to propose the following kernel on two molecular
measuresµ andµ′,

kκ
h(µ,µ′) = e−J(θκ(µ),θκ(µ′)).

As an example, letX be an Euclidian space of dimensionn endowed with Lebesgue’s measure,
andκ the isotropic Gaussian RBF kernel on that space, namely

κ(x,y) =
1

(2πσ)
n
2
e−

‖x−y‖2

2σ2 .

Given two weighted listsz and z′ of components inX , θκ(δz) and θκ(δz′) are thus mixtures of
Gaussian distributions onX . The resulting kernel computes the entropy ofθκ(δz) andθκ(δz′) taken
separately and compares it with that of their mean, providing a positive definite quantification of
their overlap.

4.2 Regularized Inverse Generalized Variance of Molecular Measures

In the case of a molecular measureµ defined on an Euclidian spaceX of dimensionn, the variance
Σ(µ) is simply the usual empirical estimate of the variance matrix expressed in an orthonormal basis
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of X :

Σ(µ) = µ[xx>]−µ[x]µ[x]> =
d

∑
i=1

aixix
>
i −

(

d

∑
i=1

aixi

)(

d

∑
i=1

aixi

)>

,

where we use an admissible baseγ = (xi ,ai)
d
i=1 of µ to give a matrix expression ofΣ(µ), with all

pointsxi expressed as column vectors. Note that this matrix expression, as would beexpected from
a function defined on measures, does not depend on the chosen admissible base. Given such an
admissible base, letXγ = [xi ]i=1..d be then× d matrix made of all column vectorsxi and∆γ the
diagonal matrix of weights ofγ taken in the same order(ai)1≤ı≤d. If we write Id for the identity
matrix of rankd and

�
d,d for thed×d matrix composed of ones, we have for any baseγ of µ that:

Σ(µ) = Xγ(∆γ −∆γ
�

d,d∆γ)X
>
γ ,

which can be rewritten as

Σ(µ) = Xγ(Id −∆γ
�

d,d)∆γ(Id −
�

d,d∆γ)X
>
γ ,

noting that(∆γ
�

d,d)
2 = ∆γ

�
d,d since trace∆γ = 1.

The determinant ofΣ(µ) can be equal to zero when the size of the support ofµ is smaller than
n, the dimension ofX , or more generally when the linear span of the points in the support ofµ
does not cover the whole spaceX . This problematic case is encountered in Section 5 when we
consider kernelized versions of the IGV, using an embedding ofX into a functional Hilbert space
of potentially infinite dimension. Mapping an element of Mol1

+(X ) into Mv
+(X ) by adding to it any

element ofMv
+(X ) through Proposition 2 would work as a regularization technique; for an arbitrary

ρ ∈ Mv
+(X ) and a weightλ ∈ [0,1) we could use the kernel defined as

µ,µ′ 7→ 1

detΣ
(

λµ+µ′
2 +(1−λ)ρ

) .

We use in this section a different strategy inspired by previous works (Fukumizu et al., 2004,
Bach and Jordan, 2002) further motivated in the case of covariance operators on infinite dimensional
spaces as shown by Cuturi and Vert (2005). The considered regularization consists in modifying
directly the matrixΣ(µ) by adding a small diagonal componentηIn whereη > 0 so that its spectrum
never vanishes. When considering the determinant of such a regularized matrix Σ(µ)+ ηIn this is
equivalent to considering the determinant of1

η Σ(µ) + In up to a factorηn, which will be a more

suitable expression in practice. We thus introduce the regularized kernelkη
v defined on measures

(µ,µ′) ∈ Mb
+(X ) with finite second moment as

kη
v (µ,µ′)

def
=

1

det
(

1
η Σ
(

µ+µ′
2

)

+ In
) .

It is straightforward to prove that the regularized functionkη
v is a positive definite kernel on the

measures ofMb
+(X ) with finite second-order moments using the same proof used in Proposition 3.

If we now introduce
Kγ

def
=
[

x>i x j

]

1≤i, j≤d
,
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for thed×d matrix of dot-products associated with the elements of a baseγ, and

K̃γ
def
=

[

(xi −
d

∑
k=1

akxk)
>(x j −

d

∑
k=1

akxk)

]

1≤i, j≤d

= (Id −
�

d,d∆γ)Kγ(Id −∆γ
�

d,d),

for its centered expression with respect to the mean ofµ, we have the following result:

Proposition 5 Let X be an Euclidian space of dimension n. For any µ∈ Mol1+(X ) andanyadmis-
sible baseγ of µ we have

det

(

1
η

K̃γ∆γ + Il(γ)

)

= det

(

1
η

Σ(µ)+ In

)

.

Proof We omit the references toµ and γ in this proof to simplify matrix notations, and write
d = l(γ). Let X̃ be then×d matrix [xi −∑d

j=1a jx j ]i=1..d of centered column vectors enumerated in
γ, namelyX̃ = X(Id −∆

�
d,d). We have

Σ = X̃∆X̃>,

K̃∆ = X̃>X̃∆.

Through the singular value decomposition ofX̃∆ 1
2 , it is straightforward to see that the non-zero

elements of the spectrums of matricesK̃∆,∆ 1
2 X̃>X̃∆ 1

2 andΣ are identical. Thus, regardless of the
difference betweenn andd, we have

det

(

1
η

K̃∆+ Id

)

= det

(

1
η

∆
1
2 X̃>X̃∆

1
2 + Id

)

= det

(

1
η

X̃∆X̃> + In

)

= det

(

1
η

Σ+ In

)

,

where the addition of identity matrices only introduces an offset of 1 for all eigenvalues.

Given two measuresµ,µ′ ∈Mol1+(X ), the following theorem can be seen as a regularized equivalent

of Proposition 3 through an application of Proposition 5 toµ′′ = µ+µ′

2 .

Theorem 6 Let X be an Euclidian space. The kernel kη
v defined on two measures µ,µ′ of Mol1+(X )

as

kη
v (µ,µ′) =

1

det
(

1
η K̃γ∆γ + Il(γ)

) ,

whereγ is any admissible base ofµ+µ′

2 , is p.d. and independent of the choice ofγ.

Given two objectsz,z′ and their respective molecular measuresδz andδz′ , the computation of the

IGV for two such objects requires in practice an admissible base ofδz+δz′
2 as seen in Theorem 6. This

admissible base can be chosen to be of the cardinality of the support of the mixture ofδz andδz′ , or
alternatively be the simple merger of two admissible bases ofzandz′ with their weights divided by
2, without searching for overlapped points between both lists. This choicehas no impact on the final
value taken by the regularized IGV-kernel and can be arbitrated by computational considerations.

If we now take a practical look at the IGV’s definition, we note that it can beapplied but to cases
where the component spaceX is Euclidian, and only if the studied measures can be summarized
efficiently by their second order moments. These limitations do not seem very realistic in practice,
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sinceX may not have a vectorial structure, and the distribution of the components maynot even
be well represented by Gaussians in the Euclidian case. We propose to bypass this issue and intro-
duce the usage of the IGV in a more flexible framework by using the kernel trick on the previous
quantities, since the IGV of a measure can be expressed only through the dot-products between the
elements of the support of the considered measure.

5. Inverse Generalized Variance on the RKHS Associated witha Kernel κ

As with many quantities defined by dot-products, one is tempted to replace the usual dot-product
matrix K̃ of Theorem 6 by an alternative Gram-matrix obtained through a p.d. kernelκ defined
on X . The advantage of such a substitution, which follows the well known “kernel trick” princi-
ple (Scḧolkopf and Smola, 2002), is multiple as it first enables us to use the IGV kernel on any
non-vectorial space endowed with a kernel, thus in practice on any component space endowed with
a kernel; second, it is also useful whenX is a dot-product space where a non-linear kernel can
however be used (e.g., using Gaussian kernel) to incorporate into the IGV’s computation higher-
order moment comparisons. We prove in this section that the inverse of the regularized generalized
variance, computed in Proposition 5 through the centered dot-product matrix K̃γ of elements of any
admissible baseγ of µ, is still a positive definite quantity if we replacẽKγ by a centered Gram-matrix
K̃γ, computed through an a priori kernelκ on X , namely

Kγ = [κ(xi ,x j)]1≤i, j≤d

K̃γ = (Id −
�

d,d∆γ)Kγ(Id −∆γ
�

d,d).

This substitution follows also a general principle when considering kernelson measures. The “ker-
nelization” of a given kernel defined on measures to take into account a prior similarity on the
components, when computationally feasible, is likely to improve its overall performance in classifi-
cation tasks, as observed in Kondor and Jebara (2003) but also in Heinand Bousquet (2005) under
the “Structural Kernel” appellation. The following theorem proves that thissubstitution is valid in
the case of the IGV.

Theorem 7 Let X be a set endowed with a p.d. kernelκ. The kernel

kη
κ(µ,µ′) =

1

det
(

1
η K̃γ∆γ + Il(γ)

) , (3)

defined on two elements µ,µ′ in Mol1+(X ) is positive definite, whereγ is anyadmissible base ofµ+µ′

2 .

Proof LetN∈N, µ1, ..,µN ∈Mol1+(X ) and(ci)
N
i=1∈R

N. Let us now study the quantity∑N
i=1cic j k

η
κ(µi ,µj).

To do so we introduce by the Moore-Aronszajn theorem (Berlinet and Thomas-Agnan, 2003, p.19)
the reproducing kernel Hilbert spaceΞ with reproducing kernelκ indexed onX . The usual mapping
from X to Ξ is denoted byφ, that isφ : X 3 x 7→ κ(x, ·). We define

Y
def
= supp

(

N

∑
i=1

µi

)

⊂ X ,

the finite set which numbers all elements in the support of theN considered measures, and

ϒdef
= spanφ(Y ) ⊂ Ξ,
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the linear span of the elements in the image ofY throughφ. ϒ is a vector space whose finite
dimension is upper-bounded by the cardinality ofY . Endowed with the dot-product inherited from
Ξ, we further have thatϒ is Euclidian. Given a molecular measureµ∈Mol1+(Y ), letφ(µ) denote the
image measure ofµ in ϒ, namelyφ(µ) = ∑x∈Y µ(x)δφ(x). One can easily check that any admissible

baseγ = (xi ,ai)
d
i=1 of µ can be used to provide an admissible baseφ(γ)def

= (φ(xi),ai)
d
i=1 of φ(µ).

The weight matrices∆γ and∆φ(γ) are identical and we further havẽKγ = K̃φ(γ) by the reproducing
property, whereK̃ is defined by the dot-product of the Euclidian spaceϒ induced byκ. As a
result, we have thatkη

κ(µi ,µj) = kη
v (φ(µi),φ(µj)) wherekη

v is defined on Mol1+(ϒ), ensuring the
non-negativity

N

∑
i=1

cic j k
η
κ(µi ,µj) =

N

∑
i=1

cic j k
η
v (φ(µi),φ(µj)) ≥ 0

and hence positive-definiteness ofkη
κ .

As bserved in the experimental section, the kernelized version of the IGV ismore likely to be suc-
cessful to solve practical tasks since it incorporates meaningful information on the components. Be-
fore observing these practical improvements, we provide a general study of the family of semigroup
kernels onMb

+(X ) by casting the theory of integral representations of positive definite functions on
a semigroup (Berg et al., 1984) in the framework of measures, providing new results and possible
interpretations of this class of kernels.

6. Integral Representation of Positive Definite Functions on a Set of Measures

In this section we study a general characterization ofall p.d. functions on the whole semigroup
(Mb

+(X ),+), including thus measures which are not normalized. This characterization is based on
a general integral representation theorem valid for any semigroup kernel, and is similar in spirit to
the representation of p.d. functions obtained on Abelian groups through Bochner’s theorem (Rudin,
1962). Before stating the main results in this section we need to recall basic definitions of semichar-
acters and exponentially bounded function (Berg et al., 1984, chap. 4).

Definition 8 A real-valued functionρ on an Abelian semigroup(S,+) is called asemicharacterif
it satisfies the following properties:

(i) ρ(0) = 1

(ii) ∀s, t ∈ S,ρ(s+ t) = ρ(s)ρ(t).

It follows from the previous definition and the fact thatMb
+(X ) is2-divisible(i.e.,∀µ∈Mb

+(X ),∃µ′ ∈
Mb

+(X ) s.t. µ = 2µ′) that semicharacters are nonnegative valued since it suffices to write that
ρ(µ) = ρ(µ

2)2. Note also that semicharacters are trivially positive definite functions onS. We de-
note byS∗ the set of semicharacters onMb

+(X ), and byŜ⊂ S∗ the set of bounded semicharacters.
S∗ is a Hausdorff space when endowed with the topology inherited fromR

S having the topology
of pointwise convergence. Therefore we can consider the set of Radon measures onS∗, namely
Mb

+(S∗).

Definition 9 A function f : Mb
+(X ) → R is calledexponentially boundedif there exists a function

α : Mb
+(X ) → R+ (called anabsolute value) satisfyingα(0) = 1 and α(µ+ µ′) ≤ α(µ)α(µ′) for
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µ,µ′ ∈ Mb
+(X ), and a constant C> 0 such that:

∀µ∈ Mb
+(X ), f (µ) ≤Cα(µ).

We can now state two general integral representation theorems for p.d. functions on semigroups (Berg
et al., 1984, Theorems 4.2.5 and 4.2.8). These theorems being valid on any semigroup, they hold in
particular on the particular semigroup(Mb

+(X ),+).

Theorem 10 • A functionϕ : Mb
+(X ) → R is p.d. and exponentially bounded if and only if it

has an integral representation:

ϕ(s) =
Z

S∗
ρ(s)dω(ρ),

with ω ∈ Mc
+(S∗) (the set of Radon measures on S∗ with compact support).

• A functionϕ : Mb
+(X )→ R is p.d. and bounded if and only if it has an integral representation

of the form:

ϕ(s) =
Z

Ŝ
ρ(s)dω(ρ),

with ω ∈ M+(Ŝ).
In both cases, if the integral representation exists, then there is uniqueness of the measureω in

M+(S∗).

In order to make these representations more constructive, we need to study the class of (bounded)
semicharacters on(Mb

+(X ),+). Even though we are not able to provide a complete characterization,
even of bounded semicharacters, the following proposition introduces a large class of semicharac-
ters, and completely characterizes thecontinuoussemicharacters. For matters related to continuity
of functions defined onMb

+(X ), we will consider the weak topology ofMb
+(X ) which is defined in

simple terms through theportmanteautheorem (Berg et al., 1984, Theorem 2.3.1). Note simply that
if µn converges toµ in the weak topology then for anyboundedmeasurable and continuous function
f we have thatµn[ f ]→ µ[ f ]. We further denote byC(X ) the set of continuous real-valued functions
on X and byCb(X ) its subset of bounded functions. Both sets are endowed with the topology of
pointwise convergence. For a functionf ∈ R

X we write ρ f for the functionµ 7→ eµ[ f ] when the
integral is well defined.

Proposition 11 A semicharacterρ : Mb
+(X ) → R is continuous on(Mb

+(X ),+) endowed with the
weak topology if and only if there exists f∈Cb(X ) such thatρ = ρ f . In that case,ρ is a bounded
semicharacter on Mb+(X ) if and only if f ≤ 0.

Proof For a continuous and bounded functionf , the semicharacterρ f is well-defined. If a sequence
µn in Mb

+(X ) converges toµ weakly, we haveµn[ f ] → µ[ f ], which implies the continuity ofρ f .
Conversely, supposeρ is weakly continuous. Definef : X → [−∞,∞) by f (x) = logρ(δx). If a
sequencexn converges tox in X , obviously we haveδxn → δx in the weak topology, and

ρ(δxn) → ρ(δx),
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which means the continuity off . To see the boundedness off , assume the contrary. Then, we can
find xn ∈ X such that either of 0< f (xn)→ ∞ or 0> f (xn)→−∞ holds. Letβn = | f (xn)|. Because
the measure1

βn
δxn converges weakly to zero, the continuity ofρ means

ρ
(

1
βn

δxn

)

→ 1,

which contradicts with the factρ( 1
βn

δxn) = e
1

βn
f (xn) = e±1. Thus,ρ f is well-defined, weakly contin-

uous onMb
+(X ) and equal toρ on the set of molecular measures. It is further equal toρ on Mb

+(X )
through the denseness of molecular measures inMb

+(X ), both in the weak and the pointwise topol-
ogy (Berg et al., 1984, Proposition 3.3.5). Finally suppose now thatρ f is bounded and that there
existsx in X such thatf (x) > 0. By ρ f (nδx) = en f(x) which diverges withn we see a contradiction.
The converse is straightforward.

Let ω be a bounded nonnegative Radon measure on the Hausdorff space ofcontinuous real-valued
functions onX , namelyω ∈ Mb

+(C(X )). Given such a measure, we first define the subsetMω of
Mb

+(X ) as
Mω = {µ∈ Mb

+(X ) | sup
f∈suppω

µ[ f ] < +∞}.

Mω contains the null measure and is a semigroup.

Corollary 12 For any bounded Radon measureω ∈ Mb
+(C(X )), the following functionϕ is a

p.d. function on the semigroup(Mω,+):

ϕ(µ) =
Z

C(X )
ρ f (µ) dω( f ). (4)

If suppω ⊂Cb(X ) thenϕ is continuous on Mω endowed with the topology of weak convergence.

Proof For f ∈ suppω, ρ f is a well defined semicharacter onMω and hence positive definite. Since

ϕ(µ) ≤ |ω| sup
f∈suppω

µ[ f ]

is bounded,ϕ is well defined and hence positive definite. Suppose now that suppω ⊂ Cb(X ) and
let µn be a sequence ofMω converging weakly toµ. By the bounded convergence theorem and
continuity of all considered semicharacters (since all considered functions f are bounded) we have
that:

lim
n→∞

ϕ(µn) =
Z

C(X )
lim
n→∞

ρ f (µn) dω( f ) = ϕ(µ).

and henceϕ is continuous w.r.t the weak topology.

When the measureω is chosen in such a way that the integral (4) is tractable or can be approximated,
then a valid p.d. kernel for measures is obtained; an example involving mixtures over exponential
families is provided in Section 7.

Before exploiting this constructive representation, a few remarks shouldbe pointed out. When
using non-bounded functions (as is the case when using expectation or second-order moments of
measures) the continuity of the integralϕ is left undetermined to our knowledge, even when its
existence is ensured. However, whenX is compact we have thatC(X )=Cb(X ) and hence continuity
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on Mω of any functionϕ constructed through corollary 12. Conversely, there exist continuous
p.d. functions on(Mb

+(X ),+) that can not be represented in the form (4). Although any continuous
p.d. function can necessarily be represented as an integral of semicharacters by Theorem 10, the
semicharacters involved in the representation are not necessarily continuous as in (4). An example of
such a continuous p.d. function written as an integral of non-continuous semicharacters is exposed in
Appendix A. It is an open problem to our knowledge to fully characterize continuous p.d. functions
on (Mb

+(X ),+).

7. Projection on Exponential Families through Laplace’s Approximation

The constructive approach presented in corollary 12 can be used in practice to define kernels by
restricting the spaceC(X ) to subspaces where computations are tractable. A natural way to do so is
to consider a vector space of finite dimensions of C(X ), namely the span of a free family ofs non-
constant functionsf1, ..., fs of C(X ), and define a measure on that subspace by applying a measure
on the weights associated with each function. The previous integral representation (4) would then
take the form:

ϕ(µ) =
Z

Θ
eµ[∑s

i=1 θi fi ] ω(dθ),

whereω is now a bounded measure on a compact subsetΘ ⊆ R
s andµ is such thatµ[ fi ] < +∞ for

1≤ i ≤ s. The subspace ofC(X ) considered in this section is however slightly different, in order to
take advantage of the natural benefits of exponential densities generated by all functionsf1, ..., fs.
Following Amari and Nagaoka (2001, p.69), this requires the definition of the cumulant generating
function ofν with respect tof1, ..., fs as

ψ(θ)
def
= logν[e∑s

i=1 θi fi ],

such that for eachθ ∈ Θ,

pθ
def
= exp

(

s

∑
i=1

θi fi −ψ(θ)

)

ν,

is a probability density, which defines an exponential family of densities onX asθ varies inΘ.
Rather than the direct span of functionsf1, ..., fs on Θ, this is equivalent to considering the hyper-
surface{∑s

i=1 θi fi −ψ(θ)} in span{ f1, .., fs,−1}. This yields the following expression:

ϕ(µ) =
Z

Θ
eµ[∑s

i=1 θi fi−ψ(θ)] ω(dθ).

Following the notations of Amari and Nagaoka (2001) theη-parameters (or expectation parameters)
of µ are defined as

η̂i
def
=

1
|µ|µ[ fi ], 1≤ i ≤ s,

andθ̂ stands for theθ-parameters of̂η. We assume in the following approximations thatθ̂ ∈ Θ and
recall two identities (Amari and Nagaoka, 2001, Chapters 3.5 & 3.6):

χ(θ)
def
=

s

∑
i=1

θiηi −ψ(θ) = −h(θ), the dual potential,

D(θ||θ′) = ψ(θ)+χ(θ′)−
s

∑
i=1

θiη′
i , the KL divergence,
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where we used the abbreviationsh(θ) = h(pθ) andD(θ||θ′) = D(pθ||pθ′). We can then write

µ[
s

∑
i=1

θi fi −ψ(θ)] = |µ|
(

s

∑
i=1

θiη̂i −ψ(θ)

)

= |µ|
(

s

∑
i=1

θ̂iη̂i −ψ(θ̂)+
s

∑
i=1

(θi − θ̂i)η̂i +ψ(θ̂)−ψ(θ)

)

= −|µ|
(

h(θ̂)+D(θ̂||θ)
)

,

to obtain the following factorized expression,

ϕ(µ) = e−|µ|h(θ̂)
Z

Θ
e−|µ|D(θ̂||θ)ω(dθ). (5)

The quantitye−|µ|h(θ̂) was already evoked in Section 3.2 when multivariate normal distributions
were used to express the IGV kernel. WhenX is an Euclidian space of dimensionn, this is indeed
equivalent to definings = n+ n(n+ 1)/2 base functions, more preciselyfi = xi and fi j = xix j ,
and dropping the integral of Equation (5). Note that such functions are not bounded and thatMω
corresponds here to the set of measures with finite first and second order moments.

The integral of Equation (5) cannot be computed in a general case. Theuse of conjugate priors
can however yield exact calculations, such as in the setting proposed by Cuturi and Vert (2005).
In their workX is a finite set of short sequences formed over an alphabet, functionsfi are all pos-
sible indicator functions ofX andω is an additive mixture of Dirichlet priors. The kernel value
is computed through a factorization inspired by the context-tree weighting algorithm (Willems
et al., 1995). In the general case a numerical approximation can also be derived using Laplace’s
method (Dieudonńe, 1968) under the assumption that|µ| is large enough. To do so, first notice that

∂D(θ̂||θ)

∂θi
|θ= θ̂ =

∂ψ
∂θi

|θ= θ̂ −η̂i = 0,

∂D(θ̂||θ)

∂θi∂θ j
=

∂ψ
∂θi∂θ j

= gi j (θ),

whereGθ = [gi j (θ)] is the Fisher information matrix computed inθ and hence a p.d. matrix. The
following approximation then holds:

ϕ(µ) ∼
|µ|→∞

e−|µ|h(θ̂)
Z

Rs
ω(θ̂)e−

|µ|
2 (θ−θ̂)>Gθ̂(θ−θ̂)dθ = e−|µ|h(θ̂)

(

2π
|µ|

)
s
2 ω(θ̂)
√

detGθ̂

which can be simplified by choosingω to be Jeffrey’s prior (Amari and Nagaoka, 2001, p.44),
namely

ω(dθ) =
1
V

√

detGθ dθ, whereV =
Z

Θ

√

detGθ dθ.

Up to a multiplication byV this provides an approximation ofϕ by ϕ̃ as

ϕ(µ) ∼
|µ|→∞

ϕ̃(µ)
def
= e−|µ|h(θ̂)

(

2π
|µ|

)
s
2

.
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The η-coordinates ofµ are independent of the total weight|µ|, henceϕ̃(2µ) = ϕ̃(µ)2( |µ|
4π )

s
2 . This

identity can be used to propose a renormalized kernel for two measures as

k(µ,µ′)
def
=

ϕ̃(µ+µ′)
√

ϕ̃(2µ)ϕ̃(2µ′)
=

e−(|µ+µ′|)h(pµ+µ′ )

e−|µ|h(pµ)−|µ′|h(pµ′ )

(

2
√

|µ||µ′|
|µ|+ |µ′|

)
s
2

.

wherepµ stands forpθ̂µ
. Whenµ andµ′ are normalized such that their total weight coincides and is

equal toβ, we have that

k(µ,µ′) = e
−2β

(

h(pµ′′ )−
h(pµ)+h(pµ′ )

2

)

, (6)

whereµ′′ = µ+ µ′. From Equation (6), we see thatβ can be tuned in practice and thought of as a
width parameter. It should be large enough to ensure the consistency of Laplace’s approximation
and thus positive definiteness, while not too large at the same time to avoid diagonal dominance
issues. In the case of the IGV kernel this tradeoff can however be putaside since the inverse of the
IGV is directly p.d. as was proved in Proposition 3. However and to our knowledge this assertion
does not stand in a more general case when the functionsf1, ..., fs are freely chosen.

8. Experiments on Images of the MNIST Database

We present in this section experimental results and discussions on practical implementations of
the IGV kernels on a benchmark experiment of handwritten digits classification. We focus more
specifically on the kernelized version of the IGV and discuss its performance with respect to other
kernels. The entropy kernel performed very poorly in the series of experiments presented here,
besides requiring a time consuming Monte Carlo computation, which is why we do not consider
it in this section. We believe however that in more favourable cases, notablywhen the considered
measures are multinomials, the entropy kernel and its structural variants (Hein and Bousquet, 2005)
may provide good results.

8.1 Linear IGV Kernel

Following the previous work of Kondor and Jebara (2003), we have conducted experiments on 500
and 1000 images (28× 28 pixels) taken from the MNIST database of handwritten digits (black
shapes on a white background), with 50 (resp. 100) images for each digit. To each imagez we
randomly associate a set ofd distinct points which are black (intensity superior to 190) in the
image. In this case the set of components is{1, ..,28}× {1, ..,28} which we map onto points
with coordinates between 0 and 1, thus definingX = [0,1]2. The linear IGV kernel as described
in Section 3.2 is equivalent to using the linear kernelκ((x1,y1),(x2,y2)) = x1x2 + y1y2 on a non-
regularized version of the kernelized-IGV. It also boils down to fitting Gaussian bivariate-laws on
the points and measuring the similarity of two measures by performing variance estimation on the
samples taken first separately and then together. The resulting variancescan be diagonalized to
obtain three diagonal variance matrices, which can be seen as performingPCA on the sample,

Σ(µ) =

(

Σ1,1 0
0 Σ2,2

)

, Σ(µ′) =

(

Σ′
1,1 0
0 Σ′

2,2

)

, Σ(µ′′) =

(

Σ′′
1,1 0
0 Σ′′

2,2

)

.
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and the value of the kernel is computed through

kv(µ,µ′) =

√

Σ1,1Σ2,2 Σ′
1,1Σ′

2,2

Σ′′
1,1Σ′′

2,2
.

This ratio is for instance equal to 0.3820 for two handwritten digits in the case shown in Figure 2.
The linear IGV manages a good discrimination between ones and zeros. Indeed, ones are shaped
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Σ1,1 = 0.0552 Σ′
1,1 = 0.0441 Σ′′

1,1 = 0.0497
Σ2,2 = 0.0013 Σ′

2,2 = 0.0237 Σ′′
2,2 = 0.0139

Figure 2: Weighted PCA of two different measures and their mean, with their first principal com-
ponent shown. Below are the variances captured by the first and second principal compo-
nents, the generalized variance being the product of those two values.

as sticks, and hence usually have a strong variance carried by their first component, followed by
a weak second component. On the other hand, the variance of zeros is more equally distributed
between the first and second axes. When both weighted sets of points areunited, the variance
of the mean of both measures has an intermediary behaviour in that respect,and this suffices to
discriminate numerically both images. However this strategy fails when using numbers which are
not so clearly distinct in shape, or more precisely whose surface cannot be efficiently expressed in
terms of Gaussian ellipsoids. To illustrate this we show in Figure 3 the Gram matrix of the linear
IGV on 60 images, namely 20 zeros, 20 ones and 20 twos. Though images ofones can be efficiently
discriminated from the two other digits, we clearly see that this is not the case between zeros and
twos, whose support may seem similar if we try to capture them through Gaussian laws. In practice,
the results obtained with the linear IGV on this particular task where so unadapted to the learning
goal that the SVM’s trained based on that methodology did not converge inmost cases, which is
why we discarded it.

8.2 Kernelized IGV

Following previous works (Kondor and Jebara, 2003, Wolf and Shashua, 2003) and as suggested in
the initial discussion of Section 5, we use in this section a Gaussian kernel ofwidth σ to incorporate
a prior knowledge on the pixels, and equivalently to define the reproducing kernel Hilbert spaceΞ
by using

κ((x1,y1),(x2,y2)) = e−
(x1−x2)2+(y1−y2)2

2σ2 .
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0 1 2

0

1

2

Figure 3: Normalized Gram matrix computed with the linear IGV kernel of twenty images of “0”,
“1” and “2” displayed in that order. Darker spots mean values closer to 1, showing that
the restriction to “0” and “1” yields good separation results, while “0” and “2” can hardly
be discriminated using variance analysis.

As pointed out by Kondor and Jebara (2003), the pixels are no longer seen as points but rather as
functions (Gaussian bells) defined on the components space[0,1]2. To illustrate this approach we
show in Figure 4 the first four eigenfunctions of three measuresµ1, µ0 and µ1+µ0

2 built from the
image of a handwritten “1” and “0” with their corresponding eigenvalues, as well as for images of
“2” and “0” in Figure 5.

Settingσ, the width ofκ, to define the functions contained in the RKHSΞ is not enough to fully
characterize the values taken by the kernelized IGV. We further need to defineη, the regularization
parameter, to control the weight assigned to smaller eigenvalues in the spectrum of Gram matrices.
Both parameters are strongly related, since the value ofσ controls the range of the typical eigen-
values found in the spectrum of Gram matrices of admissible bases, whereas η acts as a scaling
parameter for those eigenvalues as can be seen in Equation (3). Indeed, using a very smallσ value,
which meansΞ is only defined by peaked Gaussian bells around each pixels, yields diagonally dom-
inant Gram matrices very close to the identity matrix. The resulting eigenvalues for K̃ ∆ are then
all very close to1

d , the inverse of the amount of considered points. On the contrary, a largevalue
for σ yields higher values for the kernel, since all points would be similar to each other and Gram
matrices would turn close to the matrix

�
d,d with a single significant eigenvalue and all others close

to zero. We address these issues and study the robustness of the final output of the k-IGV kernel in
terms of classification error by doing preliminary experiments where bothη andσ vary freely.

8.3 Experiments on the SVM Generalization Error

To study the behaviour and the robustness of the IGV kernel under different parameter settings, we
used two ranges of values forη andσ:
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0.276 0.168 0.184

0.169 0.142 0.122

0.124 0.119 0.0934

0.0691 0.0962 0.0886

Figure 4: The four first eigenfunctions of respectively three empiricalmeasuresµ1 (first column),
µ0 (second column) andµ1+µ0

2 (third column), displayed with their corresponding eigen-
values, usingη = 0.01 andσ = 0.1.
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0.146 0.168 0.142

0.141 0.142 0.122

0.127 0.119 0.103

0.119 0.0962 0.0949

Figure 5: Same representation as in Figure 4, withµ2, µ0 and µ2+µ0
2 .
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η ∈ 10−2×{0.1,0.3,0.5,0.8,1,1.5,2,3,5,8,10,20}
σ ∈ {0.05,0.1,0.12,0.15,0.18,0.20,0.25,0.3}.

For each kernelkη
κ defined by a (σ,η) couple, we trained 10 binary SVM classifiers (each one

trained to recognize each digit versus all other digits) on a training fold of our 500 images dataset
such that the proportion of each class was kept to be one tenth of the total size of the training
set. Using then the test fold, our decision for each submitted image was determined by the highest
SVM score proposed by the 10 trained binary SVM’s. To determine train and test points, we led a
3-fold cross validation, namely randomly splitting our total dataset into 3 balanced subsets, using
successively 2 subsets for training and the remaining one for testing (thatis roughly 332 images for
training and 168 for testing). The test error was not only averaged on those cross-validations folds
but also on 5 different fold divisions. All the SVM experiments in this experimental section were
run using the spider1 toolbox. Most results shown here did not improve by choosing differentsoft
marginC parameters, we hence just setC = ∞ as suggested by default by the authors of the toolbox.

102 η

σ

0.1 0.3 0.5 0.8 1 1.5 2 3 5 8 10 20

0.05

0.1

0.12

0.15

0.18

0.2

0.25

0.3

e < 19.5 % 

e < 22 % 

e < 22 % 

Figure 6: Average test error (displayed as a grey level) of differentSVM handwritten character
recognition experiments using 500 images from the MNIST database (each seen as a set
of 25 to 30 randomly selected black pixels), carried out with 3-fold (2 for training, 1 for
test) cross validations with 5 repeats, where parametersη (regularization) andσ (width
of the Gaussian kernel) have been tuned to different values.

The error rates are graphically displayed in Figure 6 using a grey-scaleplot. Note that for this
benchmark the best testing errors were reached using aσ value of 0.12 with anη parameter within
0.008 and 0.02, this error being roughly 19.5%. All values below and on the right side of this zone

1. seehttp://www.kyb.tuebingen.mpg.de/bs/people/spider/
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are below 32.5%, which is the value reached on the lower right corner. All standard deviations with
respect to multiple cross-validations of those results were inferior to 2.3%, the whole region under
22% being under a standard deviation of 1%. Those preliminary tests show that the IGV kernel
has an overall robust performance within what could be considered asa sound range of values for
bothη andσ. Note that the optimal range of parameter found in this experiment only appliesto the
specific sampling procedure that was used in this case (25 to 30 points), andmay not be optimal for
larger matrices. However the stability observed here led us to discarding further tuning ofσ andη
when the amount of sampled points is different. We simply appliedσ = 0.1 andη = 0.01 for the
remaining of the experimental section.

As in Kondor and Jebara (2003), we also compared the results obtained with the k-IGV to
the standard RBF kernel performed on the images seen as binary vectorsof {0,1}28×28 further
normalized so that their components sums up to 1. Using the same range forσ that was previously

tested, we applied the formulak(z,z′) = e−
‖z−z′‖

2σ2 . Since the RBF kernel is grounded on the exact
overlapping between two images we expect it to perform poorly with few pixels and significantly
better whend grows, while we expect the k-IGV to capture more quickly the structure of the images
with fewer pixels through the kernelκ. This is illustrated in Figure 7 where the k-IGV outperforms
significantly the RBF kernel, reaching with a sample of less than 30 points a performance the RBF
kernel only reaches above 100 points. Taking roughly all black points inthe images, by setting
d = 200 for instance, the RBF kernel error is still 17.5%, an error the IGV kernel reaches with
roughly 35 points.

Finally, we compared the kernelized-version of the Bhattacharrya kernel (k-B) proposed in Kon-
dor and Jebara (2003), the k-IGV, the polynomial kernel and the RBF kernel by using a larger
database of the first 1,000 images in MNIST (100 images for each of the 10 digits), selecting ran-
domlyd = 40,50,60,70 and 80 points and performing the cross-validation methodology previously
detailed. The polynomial kernel was performed seeing the images as binaryvectors of{0,1}28×28

and applying the formulakb,d(z,z′) = (z· z′ + b)d. We followed the observations of Kondor and
Jebara (2003) concerning parameter tuning for the k-B kernel but found out that it performed better
using the same set of parameters used for the k-IGV. The results presented in Table 1 of the k-IGV
kernel show a consistent improvement over all other kernels for this benchmark of 1000 images,
under all sampling schemes.

We did not use the kernel described by Wolf and Shashua (2003) in ourexperiments because
of its poor scaling properties for a large amount of considered points. Indeed, the kernel proposed
by Wolf and Shashua (2003) takes the form of the product ofd cosines values whered is the
cardinality of the considered sets of points, thus yielding negligible values in practice whend is
large as in our case. Their SVM experiments were limited to 6 or 7 points while we mostly con-
sider lists of more than 40 points here. This problem of poor scaling which in practice produces a
diagonal-dominant kernel led us to discarding this method in our comparison.All semigroup ker-
nels presented in this paper are grounded on statistical estimation, which makes their values stable
under variable sizes of samples through renormalization, a property shared with the work of Kondor
and Jebara (2003). Beyond a minimal amount of points needed to performsound estimation, the
size of submitted samples influences positively the accuracy of the k-IGV kernel. A large sample
size can lead however to computational problems since the value of the k-IGV-kernel requires not
only the computation of the centered Gram-matrixK and a few matrix multiplications, but also
the computation of a determinant, an operation which can quickly become prohibitive since it has a
complexity ofO(d2.3) whered is the size of the considered Gram matrix. Although we did not opti-
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Figure 7: Average test error with RBF (σ = 0.2) and k-IGV (σ = 0.1 andη = 0.01) kernels led on
90 different samplings of 500 images. The curves show an overall trendthat both kernels
perform better when they are given more points to compute the similarity betweentwo
images. If we considerd = 200, the RBF kernel error is 0.175, that is 17.5%, a threshold
the IGV kernel reaches with slightly more than 35 points. Each sampling corresponds to
a different amount of sampled pointsd, those samplings being ordered increasingly with
d. Each sampling has been performed independently which explains the bumpiness of
those curves.
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mize the computations of both k-B and k-IGV kernels (by storing precomputedvalues for instance
or using numerical approximations in the computation of the determinant), this computational cost
in the case of a naive implementation, illustrated by the running times displayed in Table 1, remains
an issue that needs to be addressed in practical applications.

Sample Size
Gaussian Polynomial k-B k-IGV
σ = 0.1 b = 10;d = 4 η = 0.01;σ = 0.1 η = 0.01;σ = 0.1

40 pixels 32.2 (1) 31.3 (1.5) 19.1 (1500) 16.2 (1000)
50 ” 28.5 (1) 26.3 (1.5) 17.1 (2500) 14.7 (1400)
60 ” 24.5 (1) 22.0 (1.5) 15.8 (3600) 14.6 (2400)
70 ” 22.2 (1) 19.5 (1.5) 15.1 (4100) 13.1 (2500)
80 ” 20.3 (1) 17.4 (1.5) 14.5 (5500) 12.8 (3200)

Table 1: SVM Error rate in percents of different kernels used on a benchmark test of recognizing
digits images, where only 40 to 80 black points where sampled from the originalimages.
The 1,000 images where randomly split into 3 balanced sets to perform crossvalidation (2
for training and 1 for testing), the error being first averaged over 5 such splits, the whole
process being repeated again over 3 different random samples of points. Running times
are indicated in minutes.

9. Conclusion

We presented in this work a new family of kernels between measures. Such kernels are defined
through prior functions which should ideally quantify the concentration of ameasure. Once such
a function is properly defined, the kernel computation goes through the evaluation of the function
on the two measures to be compared and on their mixture. As expected when dealing with con-
centration of measures, two intuitive tools grounded on information theory and probability, namely
entropy and variance, prove to be useful to define such functions. Their expression is however
still complex in terms of computational complexity, notably for the k-IGV kernel. Computational
improvements or numerical simplifications should be brought forward to ensure a feasible imple-
mentation for large-scale tasks involving tens of thousands of objects.

An attempt to define and understand the general structure of p.d. functions on measures was
also presented, through a representation as integrals of elementary functions known as semicharac-
ters. We are investigating further theoretical properties and characterizations of both semicharacters
and positive definite functions on measures. The choice of alternative priors on semicharacters to
propose other meaningful kernels, with convenient properties on molecular measures for instance, is
also a subject of future research. As for practical applications, thesekernels can be naturally applied
on complex objects seen as molecular measures. We also expect to perform further experiments to
measure the performance of semigroup kernels on a diversified sample ofchallenging tasks, in-
cluding cases where the space of components is not a vector space, notably when the considered
measures are multinomials on a finite component space endowed with a kernel.

Acknowledgments

1195



CUTURI, FUKUMIZU AND VERT

The authors would like to thank Francis Bach and Jéŕemie Jakubowicz for fruitful discussions, Imre
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Appendix A : an Example of Continuous Positive Definite Function Given by
Noncontinuous Semicharacters

Let X be the unit interval[0,1] hereafter. For anyt in X , a semicharacter onMb
+(X ) is defined by

ρht (µ) = eµ([0,t]),

whereht(x) = I[0,t](x) is the index function of the interval[0, t]. Note thatρht is not continuous for
t ∈ [0,1) by Proposition 11.

Forµ∈Mb
+(X ), the functiont 7→µ([0, t)) is bounded and non-decreasing, thus, Borel-measurable,

since the discontinuous points are countable at most. A positive definite function onMb
+(X ) is de-

fined by

ϕ(µ) =
Z 1

0
ρht (µ)dt.

This function is continuous, while it is given by the integral of noncontinuous semicharacters.

Proposition The positive definite functionϕ is continuous and exponentially bounded.

Proof Supposeµn converges toµweakly inMb
+(X ). We writeFn(t) = µn([0, t]) andF(t) = µ([0, t]).

Becauseµn andµ are finite measures, the weak convergence means

Fn(t) → F(t)

for any continuous point ofF . Since the set of discontinuous points ofF is at most countable,
the above convergence holds almost everywhere onX with Lebesgue measure. From the weak
convergence, we haveFn(1) → F(1), which means there existsM > 0 such that supt∈X ,n∈N Fn(t) <
M. By the bounded convergence theorem, we obtain

lim
n→∞

ϕ(µn) = lim
n→∞

Z 1

0
eFn(t)dt =

Z 1

0
eF(t)dt = ϕ(µ).

For the exponential boundedness, by taking an absolute valueα(µ) = eµ(X), we have

|ϕ(µ)| ≤
Z 1

0
α(µ)dt = α(µ).
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Bernhard Scḧolkopf, editors,Advances in Neural Information Processing Systems 16. MIT Press,
Cambridge, MA, 2004.
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