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Abstract

We present a family of positive definite kernels on measutesacterized by the fact that the value
of the kernel between two measures is a function of their Sthese kernels can be used to derive
kernels on structured objects, such as images and textgpogsenting these objects as sets of
components, such as pixels or words, or more generally asuresaon the space of components.
Several kernels studied in this work make use of common diemtefined on measures such
as entropy or generalized variance to detect similariti@sien an a priori kernel on the space
of components itself, the approach is further extended btatieg the previous results in a more
efficient and flexible framework using the “kernel trick”.rillly, a constructive approach to such
positive definite kernels through an integral represemtatiheorem is proved, before presenting
experimental results on a benchmark experiment of hanwwridigits classification to illustrate
the validity of the approach.

Keywords: kernels on measures, semigroup theory, Jensen diverggeneralized variance,
reproducing kernel Hilbert space

1. Introduction

The challenge of performing classification or regression tasks overlegrapd non vectorial ob-
jects is an increasingly important problem in machine learning, motivated leyséivapplications
such as bioinformatics or multimedia document processing. The kernel magipodach to such
problems (Scbilkopf and Smola, 2002) is grounded on the choice of a proper similarityureas
namely a positive definite (p.d.) kernel defined between pairs of objedtgesst, to be used
alongside with kernel methods such as support vector machines (R@erl®92). While natural
similarities defined through dot-products and related distances are avaitaéahethe objects lie in
a Hilbert space, there is no standard dot-product to compare strings, teleos, graphs or other
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structured objects. This situation motivates the proposal of variouslkegitder tuned and trained
to be efficient on specific applications or useful in more general cases.

One possible approach to kernel design for such complex objects tsoingispresenting them
by sets of basic components easier to manipulate, and designing kernelshosess. Such basic
components can typically be subparts of the original complex objects, othtaynexhaustive enu-
meration or random sampling. For example, a very common way to represnter applications
such as text classification and information retrieval is to break it into wandscansider it as a
bag of words, that is, a finite set of weighted terms. Another possibility isttaeball fixed-length
blocks of consecutive letters and represent the text by the vectounfsof all blocks (Leslie et al.,
2002), or even to add to this representation additional blocks obtaindidjbt/reodifications of the
blocks present in the text with different weighting schemes (Leslie et d&3)2®imilarly, a grey-
level digitalized image can be considered as a finite set of poinks’ efhere each pointx,y, )
stands for the intensitlydisplayed on the pixélx,y) in that image (Kondor and Jebara, 2003).

Once such a representation is obtained, different strategies havadeased to design kernels
on these descriptions of complex objects. When the set of basic companénite, this repre-
sentation amounts to encode a complex object as a finite-dimensional vecturtérs, and any
kernel for vectors can be then translated to a kernel for complex dhjectgh this feature represen-
tation (Joachims, 2002, Leslie et al., 2002, 2003). For more generdiaitsiaseveral authors have
proposed to handle such weighted lists of points by first fitting a probabilityilisivn to each
list, and defining a kernel between the resulting distributions (Laffertylatichnon, 2002, Jebara
et al., 2004, Kondor and Jebara, 2003, Hein and Bousquet, 200&xnatively, Cuturi and Vert
(2005) use a parametric family of densities and a Bayesian framework tedekiernel for strings
based on the mutual information between their sets of variable-length blasikg, the concept of
mutual information kernels (Seeger, 2002). Finally, Wolf and ShasH@3{2ecently proposed a
formulation rooted in kernel canonical correlation analysis (Bach arahdp 2002, Melzer et al.,
2001, Akaho, 2001) which makes use of the principal angles betweesubispaces generated by
the two sets of points to be compared when considered in a feature space.

We explore in this contribution a different direction to kernel design faghted lists of basic
components. Observing that such a list can be conveniently repredgngedolecular measure
on the set of basic components, that is a weighted sum of Dirac measutkat the distribution
of points might be fitted by a statistical model and result in a density on the samweesirmally
focus our attention on the problem of defining a kernel between finite mesagn the space of basic
components. More precisely, we explore the set of kernels betweemrasdisat can be expressed
as a function of their sum, that is:

K(, 1) = O (H+ ). 1)
The rationale behind this formulation is that if two measures or sets of poang/ overlap, then
it is expected that the supn+ I/ is more concentrated and less scattered than if they do not. As a
result, we typically expeab to quantify the dispersion of its argument, increasing when it is more
concentrated. This setting is therefore a broad generalization of thevatiee by Cuturi and Vert
(2005) that a valid kernel for strings, seen as bags of variable-ldnigtiks, is obtained from the
compression rate of trmncatenatiorof the two strings by a particular compression algorithm.

The set of measures endowed with the addition is an Abelian semigroup, ahkertiel (1)
is exactly what Berg et al. (1984) callsemigroup kernel The main contribution of this paper
is to present several valid positive definite (p.d.) semigroup kernels féeamar measures or
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densities. As expected, we prove that several functiptisat quantify the dispersion of measures
through their entropy or through their variance matrix result in valid p.chedsr Using entropy to
compare two measures is not a new idea (Rao, 1987) but it was recestdyerewithin different
frameworks (Hein and Bousquet, 2005, Endres and Schindelin, Fo@zde and Topsge, 2004).
We introduce entropy in this paper slightly differently, noting that it is a semigreegative definite
function defined on measures. On the other hand, the use of genexalimatte to derive a positive
definite kernel between measures as proposed here is new to our dgewi&e further show how
such kernels can be applied to molecular measures through regularizagi@tions. In the case of
the kernel based on the spectrum of the variance matrix, we show how litecapplied implicitly
for molecular measures mapped to a reproducing kernel Hilbert spaee avp.d. kernel on the
space of basic components is provided, thanks to an application of theetikeck”.

Besides these examples of practical relevance, we also consider gt®qud characterizing
all functions¢ that lead to a p.d. kernel through (1). Using the general theory of seapdernels
we state an integral representation of such kernels and study the seamtehsiinvolved in this
representation. This new result provides a constructive charadienizd such kernels, which we
briefly explore by showing that Bayesian mixtures over exponential medel$e seen as natural
functions¢ that lead to p.d. kernels, thus making the link with the particular case treatedtbyi C
and Vert (2005).

This paper is organized as follows. We first introduce elements of meesumesentations of
weighted lists and define the semigroup formalism and the notion of semigrougeme! in Sec-
tion 2. Section 3 contains two examples of semigroup p.d. kernels, whichoarevar usually
not defined for molecular measures: the entropy kernel and the inyensgalized variance (IGV)
kernel. Through regularization procedures, practical applicatioagaf kernels on molecular mea-
sures are proposed in Section 4, and the approach is further extenklehelizing the IGV through
an a priori kernel defined itself on the space of components in Secticectios 6 contains the gen-
eral integral representation of semigroup kernels and Section 7 makasktbetween p.d. kernels
and Bayesian posterior mixture probabilities. Finally, Section 8 contains ainieahpvaluation of
the proposed kernels on a benchmark experiment of handwritten digissficiatson.

2. Notations and Framework: Semigroup Kernels on Measures

In this section we set up the framework and notations of this paper, in gartite idea of semi-
group kernel on the semigroup of measures.

2.1 Measures on Basic Components

We model the space of basic components by a Hausdorff §pac®,v) endowed with its Borel
o-algebra and a Borel dominant measuré\ positive Radon measuges a positive Borel measure
which satisfieqi) u(C) < 4o for any compact subs& C X and (ii) u(B) = sup{p(C)|C C B,C
compact} for anyB € B (see for example Berg et al. (1984) for the construction of Radon mesasu
on Hausdorff spaces). The set of positive bounded (i(&) < +) Radon measures oti is de-
noted byM® (X). We introduce the subset M® (X) of molecular (or atomic) measures Mglx),
namely measures such that

SUPEM) d:ef{x € X||uU) > 0, for all open subsatl s.t.xc U}
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is finite, and we denote by, € Mol (X) the molecular (Dirac) measure of weight 1 »n For

a molecular measung anadmissible basef u is a finite listy of weighted points ofX, namely
y= (xi,a;)f':l, wherex; € X anda > 0 for 1<i <d, such thapjt= zid:laiém. We write in that case
ly| = zidzla; andl(y) = d. Reciprocally, a measuneis said to be the image measure of a list of
weighted elementgif the previous equality holds. Finally, for a Borel measurable funcfienR*
and a Borel measung we writep[f] = [, fdu

2.2 Semigroups and Sets of Points

We follow in this paper the definitions found in Berg et al. (1984), which o recall. AnAbelian
semigroup(S,+) is a nonempty seb endowed with arassociativeand commutative composition
-+ and a neutral element 0. Referring further to the notations used in Bakg#884), note that we
will only use auto-involutive semigroups in this paper, and will hence neaudis other semigroups
which admit different involutions.

A function¢ : § — R is called apositive definit€resp. negative definiten.d.) function on the
semigroup(S,+) if (s,;t) — ¢(s+t) is a p.d. (resp. n.d.) kernel ghx S. The symmetry of the
kernel being ensured by the commutativity-of the positive definiteness is equivalent to the fact
that the inequality

Gicjd (X +xj) >0

i,]=1

™Mz

holds for anyN € N, (xg,...,xy) € SN and(c;...,cy) € RN. Using the same notations, and adding
the additional condition thgt{'_; ¢ = 0 yields the definition of negative definitenesspasatisfying
now

ccjd (x+xj) <O0.
1

™Mz

iy

Hence semigroup kernels are real-valued functipuiefined on the set of interest the similarity
between two elementst of § being just the value taken by that function on their composition,
namelyd(s+t).

Recalling our initial goal to quantify the similarity between two complex objects tfirdinite
weighted lists of elements i, we note tha{?(.X),U) the set of subsets of equipped with the
usual union operatay is a semigroup. Such a semigroup might be used as a feature representation
for complex objects by mapping an object to the set of its components, foggatiout the weights.
The resulting representation would therefore be an elememt(&f). A semigroup kernek on
P(X) measuring the similarity of two sets of poiMsB € P(X) would use the value taken by
a given p.d. functiorp on their union, namelk(A,B) = ¢ (AUB). However we put aside this
framework for two reasons. First, the union composition is idempotent (ireallfé in P(X), we
haveAUA = A) which as noted in Berg et al. (1984, Proposition 4.4.18) drastically restiie class
of possible p.d. functions. Second, such a framework defined by setd Wgnore the frequency (or
weights) of the components described in lists, which can be misleading whingieith finite sets
of components. Other problematic features would include the fack{#aB) would be constant
whenB C Aregardless of its characteristics, and that comparing sets of veryediffeizes should
be difficult.

In order to overcome these limitations we propose to represent a list of tediglintsz =
(xi,a;)?zl, where for 1< i < d we havex; € X anda; > 0, by its image measufe = zi":la;{)xi, and
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focus now on the Abelian semigrogil® (X), +) to define kernels between lists of weighted points.
This representation is richer than the one suggested in the previousgmrag the semigroup
(P(X),U) to consider the merger of two lists. First it performs the union of the supp®tand
the sum of such molecular measures also adds the weights of the points comrotnrieebsures,
with a possible renormalization on those weights. Two important features afridfieal list are
however lost in this mapping: the order of its elements and the original fnegue each element
within the list as a weighted singleton. We assume for the rest of this papehithatformation is
secondary compared to the one contained in the image measure, hamely dsred@upport and
the overall frequency of each point in that support. As a result, we study in the foibpsections
p.d. functions on the semigroyM® (X), +), in particular on molecular measures, in order to define
kernels on weighted lists of simple components.

08, +8,) O

Figure 1. Measure representations of two lisendZ. Each element of (resp. Z) list is repre-
sented by a black circle (resp. a white square), the size of which ssjisgthe associated
weight. Five measures of interest are represented: the image megsamed, of those
weighted finite lists, the smoothed density estim#&gs) and6(d,) of the two lists of
points, and the smoothed density estint¥i® + 6,) of the union of both lists.

Before starting the analysis of such p.d. functions, it should howevpoimed out that several
interesting semigroup p.d. kernels on measures are not directly applicab@doular measures.
For example, the first function we study below is only defined on the sdtsaflately continuous
measures with finite entropy. In order to overcome this limitation and be able tegg@omplex
objects in such situations, it is possible to think about alternative strategigsresent such objects
by measures, as illustrated in Figure 1:

e The molecular measurég andd, as the image measures corresponding to the two weighted
sets of points o andZ, where dots and squares represent the different weights applied on
each points;

¢ Alternatively, smoothed estimates of these distributions obtained for examptebyarametric
or parametric statistical density estimation procedures, and represenéd,byand6(5;)
in Figure 1. Such estimates can be considered if a p.d. kernel is only diéfinabsolutely
continuous measures. When this mapping takes the form of estimation amoey dagnily

1173



CUTURI, FUKUMIZU AND VERT

of densities (through maximum likelihood for instance) this can also be seepras belief
assumed on the distribution of the objects;

e Finally, a smoothed estimate of the s 0, corresponding to the merging of both lists,
represented b§(d,+ 8, ), can be considered. Note tHH®, + &, ) might differ from0(d,) +
0(57).

A kernel between two lists of points can therefore be derived from afymdtion on(M® (X), +)
in at least three ways:

$(0,+0z), using¢ directly on molecular measures,
k(z,Z) =< ¢ (8(5,) +6(3,)), usingd on smoothed versions of the molecular measures
¢ (8(0;,+907)), evaluatingd on a smoothed version of the sum

The positive definiteness df on MR(X) ensures positive definiteness lobnly in the first two
cases. The third expression can be seen as a special case of thedjrathere we highlight the
usage of a preliminary mapping on the sum of two measures; in thatpcaBeshould in fact be
p.d. on(M2 (X),+), or at leas{Mol ;. (X),+). Having defined the set of representations on which
we will focus in this paper, namely measures on a set of components, wesgrin the following
section two particular cases of positive definite functions that can be dethfiwough an addition
between the considered measures. We then show how those quantitiescmanguted in the case
of molecular measures in Section 4.

3. The Entropy and Inverse Generalized Variance Kernels

In this section we present two basic p.d. semigroup kernels for measurégated by a common

intuition: the kernel between two measures should increase when the stima ofeasures gets
more “concentrated”. The two kernels differ in the way they quantify thecentration of a mea-
sure, using either its entropy or its variance. They are therefore limited ubsesof measures,
namely the subset of measures with finite entropy and the subset of dudibpity measures with

non-degenerated variance, but are extended to a broader clasasfire® including molecular
measures, in Section 4.

3.1 Entropy Kernel

We consider the subset b (X) of absolutely continuous measures with respect to the dominant
measurey, and identify in this section a measure with its corresponding density withaespe

We further limit the subset to the set of non-negative valuatkeasurable functions oXi with finite

sum, such that

MP () L' : x — R*| f is v-measurablglh(f)| < e, | f| < o}

where we write for any measurable non-negative valued fungtion

h(g)dﬁf—/xglngdv,
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(with 0In0 = 0 by convention) an¢p| def Jx9dv, consistently with the notation used for measures.

If gis such thatg| = 1, h(g) is its differential entropy. Using the following inequalities,

(a+b)In(a+b) <alna+binb+ (a+b)In2, by convexity ofx — xInx,
(a+b)In(a+b) > alna+binb,

we have thatM" (X), +) is an Abelian semigroup since fér f’ in M (X) we have thah(f + ')
is bounded by integrating pointwise the inequalities above, the boundedndss &'| being also
ensured. Following Rao (1987) we consider the quantity

f+f . h(f)+h(f)
f, )% -
I E () - m
known as thelensen divergender Jensen-Shannon divergence) betweamd f’, which as noted

by Fuglede and Topsge (2004) can be seen as a symmetrized versierkofltback-Leibler (KL)
divergenceD, since

(2)

N1 f+f . 1, f+f
3(1,1) = 5D(F]l——=) +5D(F'l—=—):

The expression of Equation (2) fits our framework of devising semigkeupels, unlike the direct
use of the KL divergence (Moreno et al., 2004) which is neither symmaeidrioegative definite. As
recently shown in Endres and Schindelin (2003) @sterreicher and Vajda (2003)J is a metric
on Mi(x) which is a direct consequence $§ negative definiteness proven below, through Berg
et al. (1984, Proposition 3.3.2) for instance. The Jensen-Diveeggas also recently reinterpreted
as a special case of a wider family of metricijh(x) derived from a particular family of Hilber-
tian metrics oriR . as presented in Hein and Bousquet (2005). The comparison betwea&®ihwo
sities f, f' is in that case performed by integrating pointwise the squared disti#i€éx), f/(x))
between the two densities ov&r using ford a distance chosen among a suitable family of metrics
in R, to ensure that the final value is independent of the dominant measufée considered
family for d is described in Fuglede and Topsge (2004) through two parametersiladawhich
the Jensen Divergence is just a special case as detailed in Hein anguBb(8005). The latter
work shares with this paper another similarity, which lies in the “kernelizatidr§ugh quanti-
ties defined on measures through a prior kernel on the space of conpoagmvill be reviewed
in Section 5. However, of all the Hilbertian metrics introduced in Hein and 8aets(2005), the
Jensen-Divergence is the only one that can be related to the semigaougnfork used throughout
this paper.

Note finally that a positive definite kernlels said to be infinitely divisible if- Ink is a negative
definite kernel. As a consequence, any positive exponentilfigh> 0 of an infinitely divisible
kernel is a positive definite kernel.

Proposition 1 h is a negative definite function on the semigroup(M). As a consequence
is a positive definite function on'MX) and its normalized counterparthf'(gfe*J is an infinitely
divisible positive definite kernel onM.X) x M ().

Proof It is known that the real-valued functiony — —yInyis n.d. onR . as a semigroup endowed
with addition (Berg et al., 1984, Example 6.5.16). As a consequence thédur — ro f is n.d.
on M (X) as a pointwise application of sincer o f is integrable w.r.v. For any real-valued
n.d. kernek and any real-valued functiogy we have trivially thaty,y’) — k(y,y') +g(y) + 9(y')
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remains negative definite. This allows first to prove ﬂh(a?t%f/) is also n.d. through the identity
h(™5%) = 1h(f + ')+ N2(|f| + | f|). Subtracting the normalization factdth(f) +h(f')) gives
the negative definiteness &f This finally yields the positive definitenesslgfas the exponential of
the negative of a n.d. function through Schoenberg’s theorem (Batg €984, Theorem 3.2.28

Note that onlye " is a semigroup kernel strictly speaking, siree involves a normalized sum
(through the division by 2) which is not associative. While beth ande™ can be used in practice
on non-normalized measures, we name more explikitlt e the entropy kernelbecause what

it indeed quantifies whef and f’ are normalized (i.e., such thit| = |f’| = 1) is the difference of
the average of the entropy éfand f’ from the entropy of their average. The subset of absolutely
continuousprobability measures oax, v) with finite entropies, namely f € M7 (X), s.t|f| =1}

is not a semigroup since it is not closed by addition, but we can nonethielfass the restriction of

and hencé, on it to obtain a p.d. kernel on probability measures inspired by semigrooafiem.

3.2 Inverse Generalized Variance Kernel

We assume in this subsection thats an Euclidian space of dimensiarendowed with Lebesgue’s
measurev. Following the results obtained in the previous section, we propose unelse tie-
strictions a second semigroup p.d. kernel between measures whichemsgalged variance. The
generalized variance of a measure, namely the determinant of its variatroe ma quantity ho-
mogeneous to a volume iki. This volume can be interpreted as a typical volume occupied by a
measure when considering only its second order moments, making it hesetubquantification

of its dispersion. Besides being easy to compute in the case of molecularresadbis quantity is
also linked to entropy if we consider that for normal la§m, Z) the following relation holds:

L gehams).
det

Through this observation, we note that considering the Inverse of ther@leed Variance (IGV)
of a measure is equivalent to considering the value takes Byon its maximum likelihood normal
law. We will put aside this interpretation in this section, before reviewing it withraraare in
Section 7.

Let us define the variance operator on measpsesh finite first and second moment b2 (X)
as

def
% (1) = 1] — X
Note that>(p) is always a positive semi-definite matrix whers a sub-probability measure, that is
when|y| < 1, since
Z(H) = M= X)) (x= X)) T+ (2= (M) DR T

We call de® () the generalized variance of a measurand say a measuges non-degeneratei
det>(p) is non-zero, meaning thayy) is of full rank. The subset d¥1? (X) of such measures with
total weight equal to 1 is denoted b¥ (X); MY (X) is convex through the following proposition:
Proposition 2 Mi(x)cj:ef{pe MP (X) : [y = 1,det=(p) > 0} is a convex set, and more generally
for A €[0,1), ¢ € M2 (X) such that{| = 1 and pe MY.(X), (1 —A)u+ A € MY.(X).
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Proof We use the following identity,

(A= N)pA+AW) = (1= NI +AZ() + AL =) (X — L) (WX —H[x)

to derive thatz((1— A)u+ AY) is a (strictly) positive-definite matrix as the sum of two positive
semi-definite matrices and a strictly positive definite mai(). [

MY (X) is not a semigroup, since it is not closed under addition. However we wik wathis
case on the mean of two measures in the same way we used their standard autligsemigroup
framework ofM® (X).

Proposition 3 The real-valued kernekdefined on elements i of MY (X) as

1
k gl [ = /
k) dets(M5¥)

is positive definite.
Proof Lety be an element ok’. For anyN € N, anyc,...,cy € R such thaty;c; = 0 and any
1, ..., N € MY (X) we have

[+ Hj 1 1
zqqy5x“Z“Uw=zpwa<5wvﬂ?+émvﬂy—
1] 5]

% (M‘ DR T+ Ry X X b X T+ [X]T) ) y

= —% > cicyy’ (uj XX+ i (X [x]T) y
1]

2
:—%<zqwum> <0

making thus the functiop, | — yTZ(%“/)y negative-definite for any € X. Using again Schoen-
e

berg’s theorem (Berg et al., 1984, Theorem 3.2.2) we havautpat— eV 25 yis positive defi-
nite and so is the surgﬁ)r{ &Y 25 Wv(dy) which is equal to 1,/detz(“5#) ensuring thus the
positive-definiteness &, as its square. |
Both entropy and IGV kernels are defined on subsetdldf.X). Since we are most likely to use
them on molecular measures or smooth measures (as discussed in Sectior D@sent in the
following section practical ways to apply them in that framework.

4. Semigroup Kernels on Molecular Measures

The two positive definite functions defined in Sections 3.1 and 3.2 canragifed in the general
case to Mol (X) which as exposed in Section 2 is our initial goal. In the case of the entropy
kernel, molecular measures are generally not absolutely continuous wfiatetov (except on
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finite spaces), and they have therefore no entropy; we solve this prdigtemapping them into
MQ(X) through a smoothing kernel. In the case of the IGV, the estimates of vasiamight be
poor if the number of points in the lists is not large enough compared to the doneoisthe
Euclidean space; we perform in that case a regularization by adding-samiance correlation
matrix to the original variance. This regularization is particularly important te pae way to the
kernelized version of the IGV kernel presented in the next sectionpnwhes not Euclidian but
simply endowed with a prior kernel

The application of both the entropy kernel and the IGV kernel to moleculasuores requires a
previous renormalization to set the total mass of the measures to 1. This tdcekenormalization
is also beneficial, since it allows a consistent comparison of two weighted Vists vehen their
size and total mass is very different. All molecular measures in this sectidrequivalently all
admissible bases, will hence be supposed to be normalized such that tHeivelgtat is 1, and
Mol (X) denotes the subset of Mal.X) of such measures.

4.1 Entropy Kernel on Smoothed Estimates

We first define the Parzen smoothing procedure which allows to map moleneksures onto
measures with finite entropy:

Definition 4 Let kK be a probability kernel onX with finite entropy, i.e., a real-valued function
defined onx? such that for any x X, K(X,-) : y+ K(X,y) satisfiex(x, -) € M (X) and|k(x,-)| = 1.
Thek-Parzen smoothed measure of y is the probability measure whose dsitlitgspect to is

O« (1), where

B :Molt (x) — M (x)
He S HOK(X).
XESUPL
Note that for any admissible baga,a)l_; of pwe have thadq () = 3¢ ; ak(x;,-). Once this
mapping is defined, we use the entropy kernel to propose the followimgeken two molecular

measuregl andyl,
K (i, ) = eI O 8c1)),

As an example, lek be an Euclidian space of dimensinendowed with Lebesgue’s measure,
andk the isotropic Gaussian RBF kernel on that space, namely

A Y
K(X,y) = I
(2ro)2

Given two weighted listg andZ of components inX, 6(5,) and 6«(d,) are thus mixtures of
Gaussian distributions oki. The resulting kernel computes the entroppfd,) andby () taken

separately and compares it with that of their mean, providing a positiveitdedimantification of
their overlap.

4.2 Regularized Inverse Generalized Variance of Molecular Measures

In the case of a molecular measyrdefined on an Euclidian spagéof dimensiomn, the variance
> () is simply the usual empirical estimate of the variance matrix expressed in anomthal basis
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of X:

d d d T
Z (1) = upoc'] — updupd :_Ziaaon—(Zam) <§la>q> :

where we use an admissible base (xi,ai)id:l of uto give a matrix expression &f(p), with all
pointsx; expressed as column vectors. Note that this matrix expression, as woergdeted from
a function defined on measures, does not depend on the chosen akintiasiéy. Given such an
admissible base, lef, = [x]i—1.4 be then x d matrix made of all column vectorg andA, the
diagonal matrix of weights of taken in the same ordéa;)1<,<q. If we write |4 for the identity
matrix of rankd and14 4 for thed x d matrix composed of ones, we have for any baeép that:

Z(H) = Xy(By — ByLa.ady) X,/

which can be rewritten as
Z(H) = Xy(lg — ByLa.a)Ay(lg — Laady) X,

noting that(Ay144)? = AyLgg Since tracé, = 1.

The determinant oE(p) can be equal to zero when the size of the suppoptisfsmaller than
n, the dimension ofX, or more generally when the linear span of the points in the suppaqrt of
does not cover the whole spade This problematic case is encountered in Section 5 when we
consider kernelized versions of the IGV, using an embeddinj ofto a functional Hilbert space
of potentially infinite dimension. Mapping an element of &I(JK) into MY (X) by adding to it any
element oMY (X) through Proposition 2 would work as a regularization technique; for laitrary
p € MY (X) and a weighh < [0,1) we could use the kernel defined as

1
dets (A%M(l—mp)'

W —

We use in this section a different strategy inspired by previous workisufRizu et al., 2004,
Bach and Jordan, 2002) further motivated in the case of covariameatops on infinite dimensional
spaces as shown by Cuturi and Vert (2005). The considered rizgtilan consists in modifying
directly the matrixz(p) by adding a small diagonal componept wheren > 0 so that its spectrum
never vanishes. When considering the determinant of such a regdlaneteix > () + nl, this is
equivalent to considering the determinant%(ﬁ(p) + Iy up to a factom”, which will be a more

suitable expression in practice. We thus introduce the regularized Keruiglfined on measures
(1, 1) € M2 (X) with finite second moment as

def 1
0 e () o)

It is straightforward to prove that the regularized functignis a positive definite kernel on the
measures o2 (X) with finite second-order moments using the same proof used in Proposition 3.
If we now introduce

def [ T
Ky = [xi X;

Lgi,de’
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for thed x d matrix of dot-products associated with the elements of a fpaemed

d d

> def
RyE 06— 5 ao) " (x5 — Y &) = (la —Ta.ady)Ky(la — AylLaa),
k=1 k=1 1<i,j<d

for its centered expression with respect to the megn ofe have the following result:

Proposition 5 Let X be an Euclidian space of dimension n. For ang Moli(x) and anyadmis-
sible basey of u we have

1. 1

Proof We omit the references tp andy in this proof to simplify matrix notations, and write
d =1(y). Let X be then x d matrix [x; — Z(jj:lanj]i:]md of centered column vectors enumerated in
y, namelyX = X(Iq — Algq). We have
T =XAXT,
KA = XTXA.
Through the singular value decompositionfm%, it is straightforward to see that the non-zero

elements of the spectrums of matridéa, Az X " XAz and are identical. Thus, regardless of the
difference between andd, we have

det(%KAJr |d> = det(%A%XTXA% + |d> = det<%)~(A)N(T + |n> = det<%2+ |n) ,

where the addition of identity matrices only introduces an offset of 1 forigdirevalues. |
Given two measurgs [ € Mol}r(x), the following theorem can be seen as a regularized equivalent
of Proposition 3 through an application of Proposition plte= “*T“

Theorem 6 Let X be an Euclidian space. The kerngl étefined on two measuresiiof Moli(x)

as
1

det( 2Ry + 1)

k) (b 1) =

wherey is any admissible base @%’ is p.d. and independent of the choiceyof

Given two objectg,Z and their respective molecular measubeandd,, the computation of the

IGV for two such objects requires in practice an admissible bagﬁé—acﬁ as seenin Theorem 6. This
admissible base can be chosen to be of the cardinality of the support of thearokd, andd,, or
alternatively be the simple merger of two admissible basesaflZ with their weights divided by
2, without searching for overlapped points between both lists. This chagao impact on the final
value taken by the regularized IGV-kernel and can be arbitrated by utatignal considerations.

If we now take a practical look at the IGV’s definition, we note that it canmalied but to cases
where the component spaggeis Euclidian, and only if the studied measures can be summarized
efficiently by their second order moments. These limitations do not seemeadigtic in practice,
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sinceX may not have a vectorial structure, and the distribution of the components©otayen
be well represented by Gaussians in the Euclidian case. We proposeatsstihis issue and intro-
duce the usage of the IGV in a more flexible framework by using the keliokldn the previous
guantities, since the IGV of a measure can be expressed only througbttheoducts between the
elements of the support of the considered measure.

5. Inverse Generalized Variance on the RKHS Associated with Kernel k

As with many quantities defined by dot-products, one is tempted to replaceubkeda-product
matrix K of Theorem 6 by an alternative Gram-matrix obtained through a p.d. kerdefined
on X. The advantage of such a substitution, which follows the well known ‘&erick” princi-
ple (Scldlkopf and Smola, 2002), is multiple as it first enables us to use the IGV lkkemany
non-vectorial space endowed with a kernel, thus in practice on any campgpace endowed with
a kernel; second, it is also useful whanhis a dot-product space where a non-linear kernel can
however be used (e.g., using Gaussian kernel) to incorporate into the t@Mputation higher-
order moment comparisons. We prove in this section that the inverse ofgthlanieed generalized
variance, computed in Proposition 5 through the centered dot-produdx rﬁ@tuf elements of any
admissible basgof |, is still a positive definite quantity if we repla&q by a centered Gram-matrix
56,, computed through an a priori kernebn X, namely

Ky = [K(%,Xj)]1<i,j<d

Ky = (la — Lgady) Ky(la — ByLag)-

This substitution follows also a general principle when considering keametseasures. The “ker-
nelization” of a given kernel defined on measures to take into accounbagimilarity on the
components, when computationally feasible, is likely to improve its overall pedoce in classifi-
cation tasks, as observed in Kondor and Jebara (2003) but also irahigiBousquet (2005) under
the “Structural Kernel” appellation. The following theorem proves thatghlsstitution is valid in
the case of the IGV.

Theorem 7 Let X be a set endowed with a p.d. kermelThe kernel
1

det(%i@AerI,(y))’

defined on two elementsyiin Mol? (X) is positive definite, whergis anyadmissible base df;—“

ke (W) =

(3)

Proof LetN € N, p, .., iy € Molt (X) and(ci)N ; € RN. Let us now study the quantity ; cicj ke (14, 1j)-
To do so we introduce by the Moore-Aronszajn theorem (Berlinet amuniBis-Agnan, 2003, p.19)
the reproducing kernel Hilbert spagewith reproducing kernet indexed onX. The usual mapping
from X to = is denoted byp, that is@: X > x+— K(X,-). We define

def N
9" = supp M| CX,
(2)

the finite set which numbers all elements in the support oNtleensidered measures, and

def

Y='sparmp(9’) C =,
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the linear span of the elements in the image)othrough@. Y is a vector space whose finite
dimension is upper-bounded by the cardinality)af Endowed with the dot-product inherited from
=, we further have that'is Euclidian. Given a molecular measyre Mol (%), let () denote the
image measure gfin Y, namely@(l) = ¥ yco H(X)9¢x). One can easily check that any admissible

basey = (x,a)", of p can be used to provide an admissible basg %' (g(x),a)d_, of @(u).
The weight matrjce&y andAyy, are identical and we further ha\zk, = Kq,(y) by the reproducing
property, whereK is defined by the dot-product of the Euclidian spaténduced byk. As a
result, we have thak (W, 1) = KJ (@), ®(1;)) whereky is defined on Mdl(Y), ensuring the
non-negativity
N N
2 GC kd (b by) = 3 cici K (@), 0(k;)) > 0

i= i
and hence positive-definitenesskff |

As bserved in the experimental section, the kernelized version of the 1G¥tiis likely to be suc-
cessful to solve practical tasks since it incorporates meaningful inf@man the components. Be-
fore observing these practical improvements, we provide a generglattite family of semigroup
kernels oan(X) by casting the theory of integral representations of positive definitditurgcon
a semigroup (Berg et al., 1984) in the framework of measures, providnwgesults and possible
interpretations of this class of kernels.

6. Integral Representation of Positive Definite Functions o a Set of Measures

In this section we study a general characterizatiomlbfp.d. functions on the whole semigroup
(M2 (X),+), including thus measures which are not normalized. This characterizatiases lon
a general integral representation theorem valid for any semigrouplkard is similar in spirit to
the representation of p.d. functions obtained on Abelian groups throaghrr's theorem (Rudin,
1962). Before stating the main results in this section we need to recall béisitidies of semichar-
acters and exponentially bounded function (Berg et al., 1984, chap. 4)

Definition 8 A real-valued functiomp on an Abelian semigrouf, +) is called asemicharacteif
it satisfies the following properties:

() p(0)=1
(i) Vs,teSp(s+t)=p(s)p(t).

It follows from the previous definition and the fact thak (X) is 2-divisible(i.e., Ve M2 (X), 3y €

MP (X) s.t. p= 2) that semicharacters are nonnegative valued since it suffices to write tha
p(p) = p(LZ‘)Z. Note also that semicharacters are trivially positive definite functionS. dive de-

note byS' the set of semicharacters ®f (X), and bySc S the set of bounded semicharacters.
S is a Hausdorff space when endowed with the topology inherited fkSrhaving the topology

of pointwise convergence. Therefore we can consider the set arRagasures o8, namely

MP (S9).

Definition 9 A function f: M2 (X) — R is calledexponentially bounde there exists a function
o M2(X) — R, (called anabsolute valupsatisfyinga(0) = 1 and a(p+ ) < a(pa(y) for
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w1 € M2 (X), and a constant G- 0 such that:
Ve MR(X),  f(W) < Ca(w.

We can now state two general integral representation theorems formpctiofus on semigroups (Berg
etal., 1984, Theorems 4.2.5 and 4.2.8). These theorems being valid oaraigy@up, they hold in
particular on the particular semigrogil® (X), +).

Theorem 10 e A function¢ : M® (X) — R is p.d. and exponentially bounded if and only if it
has an integral representation:

6(5) = [ pls)dw(p).
with w € M$(S*) (the set of Radon measures onviBth compact support).

e A function¢ : MQ(X) — R is p.d. and bounded if and only if it has an integral representation
of the form:

0(9) = [,p(s)dep)
withw e M (S).
In both cases, if the integral representation exists, then there is unigaafiehe measum in
M., (S).

In order to make these representations more constructive, we needydtstutdass of (bounded)
semicharacters ofM® (X), +). Even though we are not able to provide a complete characterization,
even of bounded semicharacters, the following proposition introducegeadtass of semicharac-
ters, and completely characterizes tdmmtinuoussemicharacters. For matters related to continuity
of functions defined oM® (), we will consider the weak topology 1% (X) which is defined in
simple terms through thgortmanteauheorem (Berg et al., 1984, Theorem 2.3.1). Note simply that
if W, converges tq in the weak topology then for aryoundedmeasurable and continuous function

f we have thapi,[f] — p[f]. We further denote b@(X) the set of continuous real-valued functions
on X and byCP(X) its subset of bounded functions. Both sets are endowed with the topology o
pointwise convergence. For a functidne R we write ps for the functionp — e'fl when the
integral is well defined.

Proposition 11 A semicharactep : M? (X) — R is continuous or{M® (X), +) endowed with the
weak topology if and only if there exists=fC°(X) such thatp = ps. In that casep is a bounded
semicharacter on IQI(X) if and only if f<O0.

Proof For a continuous and bounded functibrthe semicharacter; is well-defined. If a sequence
Hn in M2 (X) converges tqu weakly, we haveu,[f] — p[f], which implies the continuity ops.

Conversely, suppose is weakly continuous. Definé : X — [—o, ) by f(x) = logp(dx). If a
sequence, converges tax in X, obviously we havéy, — d in the weak topology, and

P(d) —  P(d),
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which means the continuity df. To see the boundednessfgfassume the contrary. Then, we can
find x, € X such that either of & f(x,) — c0 or 0> f(x,) — —oo holds. LetB, =|f(xn)|. Because
the measur%ém converges weakly to zero, the continuitypimeans

P(3:8) — 1,

which contradicts with the faq:t(ﬁ—lnéxn) _ g 100) _ g1 Thus,ps is well-defined, weakly contin-

uous onM® (X) and equal tg on the set of molecular measures. It is further equal 6o M® (X)
through the denseness of molecular measurmﬁihx), both in the weak and the pointwise topol-
ogy (Berg et al., 1984, Proposition 3.3.5). Finally suppose nowghas bounded and that there
existsx in X such thatf (x) > 0. By ps(ndy) = €"® which diverges wittn we see a contradiction.
The converse is straightforward. [ |

Let w be a bounded nonnegative Radon measure on the Hausdorff spamtiofious real-valued
functions onx, namelyw € M2 (C(X)). Given such a measure, we first define the subkgof
MP (X) as
Mo = {ne M2 (X)| sup p[f] < oo},
fesuppw
M, contains the null measure and is a semigroup.

Corollary 12 For any bounded Radon measusec M (C(X)), the following function is a
p.d. function on the semigroy,, +):

040 = [ o1 (). @

If suppw C C°(x) thend is continuous on M endowed with the topology of weak convergence.

Proof For f € suppw, pr is a well defined semicharacter dh, and hence positive definite. Since

o) <|w| sup Wf]
fesuppw

is boundedy is well defined and hence positive definite. Suppose now thatsup@®(x) and

let u, be a sequence dfl, converging weakly tql. By the bounded convergence theorem and
continuity of all considered semicharacters (since all considered funsdtiare bounded) we have
that:

n—oo Nn—oo

im 0(ko) = | o, im i () e ) = 91

and hence is continuous w.r.t the weak topology. |

When the measum@is chosen in such a way that the integral (4) is tractable or can be apptegima
then a valid p.d. kernel for measures is obtained; an example involving nextwer exponential
families is provided in Section 7.

Before exploiting this constructive representation, a few remarks sheupbinted out. When
using non-bounded functions (as is the case when using expectatienardsorder moments of
measures) the continuity of the integualis left undetermined to our knowledge, even when its
existence is ensured. However, whéis compact we have th&(_x) = CP(x) and hence continuity
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on M, of any function¢ constructed through corollary 12. Conversely, there exist continuous
p.d. functions or(ME(X), +) that can not be represented in the form (4). Although any continuous
p.d. function can necessarily be represented as an integral of seatitdrarby Theorem 10, the
semicharacters involved in the representation are not necessarily cugiasiin (4). An example of
such a continuous p.d. function written as an integral of non-continnigharacters is exposed in
Appendix A. It is an open problem to our knowledge to fully characterargiouous p.d. functions

on (M2 (X),+).

7. Projection on Exponential Families through Laplace’s Appoximation

The constructive approach presented in corollary 12 can be useddtigarto define kernels by
restricting the spadg(X) to subspaces where computations are tractable. A natural way to do so is
to consider a vector space of finite dimensswf C(X), namely the span of a free family ehon-
constant functionds, ..., fs of C(X), and define a measure on that subspace by applying a measure
on the weights associated with each function. The previous integrakesgegion (4) would then

take the form:
W= [ 201 ),
€]

wherew is now a bounded measure on a compact subsetR® andp is such thap[ f;] < +oo for

1 <i <s The subspace @(X) considered in this section is however slightly different, in order to
take advantage of the natural benefits of exponential densities gehbyaddl functionsfy, ..., fs.
Following Amari and Nagaoka (2001, p.69), this requires the definitioneo€timulant generating
function ofv with respect tof4, ..., fsas

W(8) ='logv[e2"1% )

po = exp (iei fi — UJ(9)> v,

is a probability density, which defines an exponential family of densitiex as 0 varies in©.
Rather than the direct span of functiofis..., fs on ©, this is equivalent to considering the hyper-
surface{y? 1 6i fi —W(0)} in spar f1, .., fs, —1}. This yields the following expression:

/ 321810 (g,

such that for each € O,

Following the notations of Amari and Nagaoka (2001)rjhparameters (or expectation parameters)

of pare defined as
~ def 1

fi
T

and® stands for th®-parameters off. We assume in the following approximations that © and
recall two identities (Amari and Nagaoka, 2001, Chapters 3.5 & 3.6):

Hfi], 1<i<s

S
0) d:ef_zleim — () = —h(8), the dual potential
i=

S
D(0]|6') = w(B) +X(8') — Zle‘”i/’ the KL divergence
i=
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where we used the abbreviatiom®) = h(pg) andD(8]|6’) = D(pe||pe’). We can then write

u{_iei fi— (@) = I (geiﬁi - w<e>>
~ (iéﬁm—wé)i(e B + () - w<e>>

= —|u/ (h(8) +D(8]®)).,

to obtain the following factorized expression,

(W) :e—lulh(é)/e MD®@18) ¢y dg). 5)

(©]

The quantitye M"®) was already evoked in Section 3.2 when multivariate normal distributions
were used to express the IGV kernel. Whéis an Euclidian space of dimensianthis is indeed
equivalent to defining = n+n(n+ 1)/2 base functions, more precisefy= x and fj; = xx;,
and dropping the integral of Equation (5). Note that such functions @réounded and thal,,
corresponds here to the set of measures with finite first and secosrdnoothents.

The integral of Equation (5) cannot be computed in a general caseusenef conjugate priors
can however yield exact calculations, such as in the setting proposedthyi @d Vert (2005).
In their work X is a finite set of short sequences formed over an alphabet, fundtians all pos-
sible indicator functions o andw is an additive mixture of Dirichlet priors. The kernel value
is computed through a factorization inspired by the context-tree weightingitalgo(Willems
et al., 1995). In the general case a numerical approximation can alseribedlusing Laplace’s
method (Dieudon@, 1968) under the assumption thatis large enough. To do so, first notice that

o@|e), .
ael ’6 e — ael ‘e 3] 7r]| - 07
aD(6|le) oy

5600, 6,08,  9i(®)

whereGg = [g;j(8)] is the Fisher information matrix computed@rand hence a p.d. matrix. The
following approximation then holds:

~ e—\u\h(é) w(é)e—%(e—é)TGQ(e—é)de _ e_|u|h(é) <2_T[> 2 w(9)

W —oo RS W/ /detGy

which can be simplified by choosing to be Jeffrey’s prior (Amari and Nagaoka, 2001, p.44),
namely

= \E/«/detGedB, whereV :/ \/detGg db.
©

Up to a multiplication by this provides an approximation ¢fby ¢ as

N def _|uh@) [ 2T :
o ~ BEe (M)
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The n-coordinates ofi1 are independent of the total weiglp, henced (2u) = ¢(u)2(%)§. This
identity can be used to propose a renormalized kernel for two measures as

k = =
) oms ) & W WRB | Jul+ W]

,)d_ef O(p+) e (NP ) <2 ‘“Hlﬂ)?

wherep, stands forpé“. Whenp andl are normalized such that their total weight coincides and is
equal toB, we have that

k<U7 U’) =€ ) (6)

wherepl” = p+ (/. From Equation (6), we see th@tcan be tuned in practice and thought of as a
width parameter. It should be large enough to ensure the consisten@plaice’s approximation
and thus positive definiteness, while not too large at the same time to avoichdiatgminance
issues. In the case of the IGV kernel this tradeoff can however bagilg since the inverse of the
IGV is directly p.d. as was proved in Proposition 3. However and to ouwladyge this assertion
does not stand in a more general case when the functigns fs are freely chosen.

8. Experiments on Images of the MNIST Database

We present in this section experimental results and discussions on draofid@mentations of
the IGV kernels on a benchmark experiment of handwritten digits classificath®e focus more
specifically on the kernelized version of the IGV and discuss its perfarenasith respect to other
kernels. The entropy kernel performed very poorly in the series pérxents presented here,
besides requiring a time consuming Monte Carlo computation, which is why wetdoonsider
it in this section. We believe however that in more favourable cases, notdigly the considered
measures are multinomials, the entropy kernel and its structural variantsgiirteBousquet, 2005)
may provide good results.

8.1 Linear IGV Kernel

Following the previous work of Kondor and Jebara (2003), we handwcted experiments on 500
and 1000 images (28 28 pixels) taken from the MNIST database of handwritten digits (black
shapes on a white background), with 50 (resp. 100) images for eaith Gigeach image we
randomly associate a set dfdistinct points which are black (intensity superior to 190) in the
image. In this case the set of componentd1s..,28} x {1,..,28} which we map onto points
with coordinates between 0 and 1, thus definiig= [0,1]2. The linear IGV kernel as described
in Section 3.2 is equivalent to using the linear kem@lxi,y1), (X2,¥2)) = XaX2 + y1y2 on a non-
regularized version of the kernelized-IGV. It also boils down to fitting €&@an bivariate-laws on
the points and measuring the similarity of two measures by performing variatioceagon on the
samples taken first separately and then together. The resulting varizarté® diagonalized to
obtain three diagonal variance matrices, which can be seen as perfd?@fgn the sample,

_ 2171 0 AN zél.,l 0 N Zlilf,l 0
Z(U) - ( O 2272 > ) z(l-l) - < 0 2/272 ) Z(Il ) - 0 2/2/72 .

1187



CUTURI, FUKUMIZU AND VERT

and the value of the kernel is computed through

/21122221125,

7Y
z1,122,2

kv(Ua IJ'I) =

This ratio is for instance equal to3B20 for two handwritten digits in the case shown in Figure 2.
The linear IGV manages a good discrimination between ones and zereedlnohes are shaped

511 = 0.0552 %), =0.0441 ¥}, = 0.0497
552 =0.0013 %), = 0.0237 %4 ,=0.0139

Figure 2: Weighted PCA of two different measures and their mean, with th&tipfincipal com-
ponent shown. Below are the variances captured by the first anddpdacipal compo-
nents, the generalized variance being the product of those two values.

as sticks, and hence usually have a strong variance carried by theaociinponent, followed by
a weak second component. On the other hand, the variance of zeroseismally distributed
between the first and second axes. When both weighted sets of poinisite®, the variance
of the mean of both measures has an intermediary behaviour in that rempedhis suffices to
discriminate numerically both images. However this strategy fails when usingemsmilhich are
not so clearly distinct in shape, or more precisely whose surface tharefficiently expressed in
terms of Gaussian ellipsoids. To illustrate this we show in Figure 3 the Gram méttie tinear
IGV on 60 images, namely 20 zeros, 20 ones and 20 twos. Though imagestan be efficiently
discriminated from the two other digits, we clearly see that this is not the casedre zeros and
twos, whose support may seem similar if we try to capture them through i@alsas. In practice,
the results obtained with the linear IGV on this particular task where so uteatiipthe learning
goal that the SVM’s trained based on that methodology did not convergmat cases, which is
why we discarded it.

8.2 Kernelized IGV

Following previous works (Kondor and Jebara, 2003, Wolf and Skes2003) and as suggested in
the initial discussion of Section 5, we use in this section a Gaussian kenviltbfo to incorporate

a prior knowledge on the pixels, and equivalently to define the reprogikemel Hilbert space

by using

(%)% +(y1-¥p)?
Lol Vo)

K((X1,y1), (%2, ¥2)) =€ 2
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Figure 3: Normalized Gram matrix computed with the linear IGV kernel of twentyesaf “0”,
“1" and “2” displayed in that order. Darker spots mean values closer stfidwing that
the restriction to “0” and “1” yields good separation results, while “0” a@tican hardly
be discriminated using variance analysis.

As pointed out by Kondor and Jebara (2003), the pixels are no loeger & points but rather as
functions (Gaussian bells) defined on the components gpatié. To illustrate this approach we
show in Figure 4 the first four eigenfunctions of three measpgesly and % built from the
image of a handwritten “1” and “0” with their corresponding eigenvalussyell as for images of
“2" and “0” in Figure 5.

Settingo, the width ofk, to define the functions contained in the RKHSs not enough to fully
characterize the values taken by the kernelized IGV. We further neegfiteed, the regularization
parameter, to control the weight assigned to smaller eigenvalues in theusp@ttGram matrices.
Both parameters are strongly related, since the value @introls the range of the typical eigen-
values found in the spectrum of Gram matrices of admissible bases, wheeeds as a scaling
parameter for those eigenvalues as can be seen in Equation (3). Indeepa very smalb value,
which means is only defined by peaked Gaussian bells around each pixels, yieldsdihgdom-
inant Gram matrices very close to the identity matrix. The resulting eigenvaduek/t are then
all very close to%, the inverse of the amount of considered points. On the contrary, avahge
for o yields higher values for the kernel, since all points would be similar to eadr atid Gram
matrices would turn close to the matfliy 4 with a single significant eigenvalue and all others close
to zero. We address these issues and study the robustness of thetfinalad the k-IGV kernel in
terms of classification error by doing preliminary experiments whereipathdo vary freely.

8.3 Experiments on the SVM Generalization Error

To study the behaviour and the robustness of the IGV kernel undereiff parameter settings, we
used two ranges of values farando:
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0.276 0.168 0.184

0.169 0.122

0.119

0.0691 0.0962 0.0886

Figure 4: The four first eigenfunctions of respectively three empiroedsuresy (first column),
Ho (second column) and5 (third column), displayed with their corresponding eigen-
values, using) = 0.01 ando = 0.1.

1190



SEMIGROUPKERNELS ONMEASURES

0.146 0.168 0.142

. . . . . . +
Figure 5: Same representation as in Figure 4, wthi and%.
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ne102x{0.1,0.3,0.5,0.8,1,1.5,2,3,5,8,10,20}
o € {0.05,0.1,0.12,0.15,0.18,0.20,0.25,0.3}..

For each kerndky defined by ad@,n) couple, we trained 10 binary SVM classifiers (each one
trained to recognize each digit versus all other digits) on a training foldio560 images dataset
such that the proportion of each class was kept to be one tenth of theiggtadfshe training
set. Using then the test fold, our decision for each submitted image was degdrpyirthe highest
SVM score proposed by the 10 trained binary SVM's. To determine trairtest points, we led a
3-fold cross validation, namely randomly splitting our total dataset into 3 bethaabsets, using
successively 2 subsets for training and the remaining one for testingqtloaighly 332 images for
training and 168 for testing). The test error was not only averagedase ttross-validations folds
but also on 5 different fold divisions. All the SVM experiments in this eipental section were
run using the spidértoolbox. Most results shown here did not improve by choosing diffesefit
marginC parameters, we hence just €et « as suggested by default by the authors of the toolbox.
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Figure 6: Average test error (displayed as a grey level) of diffegarfivl handwritten character
recognition experiments using 500 images from the MNIST database (eeclas a set
of 25 to 30 randomly selected black pixels), carried out with 3-fold (2 faintng, 1 for
test) cross validations with 5 repeats, where parametérsgularization) and (width
of the Gaussian kernel) have been tuned to different values.

The error rates are graphically displayed in Figure 6 using a grey-plmleNote that for this
benchmark the best testing errors were reached usingadue of 012 with ann parameter within
0.008 and 02, this error being roughly 18%. All values below and on the right side of this zone

1. seenttp://lwww.kyb.tuebingen.mpg.de/bs/people/spider/
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are below 35%, which is the value reached on the lower right corner. All standaratiens with
respect to multiple cross-validations of those results were inferior3% 2the whole region under
22% being under a standard deviation of 1%. Those preliminary tests shabwhéhIGV kernel
has an overall robust performance within what could be consideracgasnd range of values for
bothn ando. Note that the optimal range of parameter found in this experiment only appliks
specific sampling procedure that was used in this case (25 to 30 pointshagmabt be optimal for
larger matrices. However the stability observed here led us to discardihgiftuning ofc andn
when the amount of sampled points is different. We simply appdied0.1 andn = 0.01 for the
remaining of the experimental section.

As in Kondor and Jebara (2003), we also compared the results obtaittedhes k-IGV to
the standard RBF kernel performed on the images seen as binary vettfsl}?®*2® further
normalized so that their components sums up to 1. Using the same rargthfiirwas previously

=4

tested, we applied the formuldz, Z) = e TZH Since the RBF kernel is grounded on the exact
overlapping between two images we expect it to perform poorly with fewipixed significantly
better wherd grows, while we expect the k-IGV to capture more quickly the structureediniages
with fewer pixels through the kernel This is illustrated in Figure 7 where the k-IGV outperforms
significantly the RBF kernel, reaching with a sample of less than 30 pointf@mpence the RBF
kernel only reaches above 100 points. Taking roughly all black pointsdrimages, by setting

d = 200 for instance, the RBF kernel error is still.%, an error the IGV kernel reaches with
roughly 35 points.

Finally, we compared the kernelized-version of the Bhattacharrya lkéxg proposed in Kon-
dor and Jebara (2003), the k-IGV, the polynomial kernel and the RB8Rek by using a larger
database of the first 1,000 images in MNIST (100 images for each of thegit§) dselecting ran-
domlyd = 40,50,60,70 and 80 points and performing the cross-validation methodology préyious
detailed. The polynomial kernel was performed seeing the images as bawtoys of{0,1}28<28
and applying the formulé, 4(z,Z) = (z-Z +b)9. We followed the observations of Kondor and
Jebara (2003) concerning parameter tuning for the k-B kernel batifout that it performed better
using the same set of parameters used for the k-IGV. The results e sedable 1 of the k-IGV
kernel show a consistent improvement over all other kernels for thishipeark of 1000 images,
under all sampling schemes.

We did not use the kernel described by Wolf and Shashua (2003) iexp@riments because
of its poor scaling properties for a large amount of considered pointieebh the kernel proposed
by Wolf and Shashua (2003) takes the form of the produad ebsines values where is the
cardinality of the considered sets of points, thus yielding negligible valuesactipe wherd is
large as in our case. Their SVM experiments were limited to 6 or 7 points while vsdyremn-
sider lists of more than 40 points here. This problem of poor scaling whichaictipe produces a
diagonal-dominant kernel led us to discarding this method in our compadbsemigroup ker-
nels presented in this paper are grounded on statistical estimation, whick thekevalues stable
under variable sizes of samples through renormalization, a propergdsivéh the work of Kondor
and Jebara (2003). Beyond a minimal amount of points needed to pestarnd estimation, the
size of submitted samples influences positively the accuracy of the k-I@ékeA large sample
size can lead however to computational problems since the value of the-kdf®¥l requires not
only the computation of the centered Gram-matf{xand a few matrix multiplications, but also
the computation of a determinant, an operation which can quickly become jisehgiince it has a
complexity ofO(d?2) whered is the size of the considered Gram matrix. Although we did not opti-
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Figure 7: Average test error with RBB & 0.2) and k-IGV = 0.1 andn = 0.01) kernels led on
90 different samplings of 500 images. The curves show an overall themthoth kernels
perform better when they are given more points to compute the similarity between
images. If we considat = 200, the RBF kernel error isD75, that is 15%, a threshold
the IGV kernel reaches with slightly more than 35 points. Each samplingspmmels to
a different amount of sampled poirdsthose samplings being ordered increasingly with
d. Each sampling has been performed independently which explains the mamih
those curves.
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mize the computations of both k-B and k-IGV kernels (by storing precompuatiees for instance
or using numerical approximations in the computation of the determinant), thisutatigmal cost
in the case of a naive implementation, illustrated by the running times displayetlmTaemains
an issue that needs to be addressed in practical applications.

Sample Size Gaussian Polynomial k-B k-IGV
0=01|b=10;d=4|n=0.01;0=01|n=001,0=01
40 pixels 32.2(1) 31.3(1.5) 19.1 (1500) 16.2 (1000)
50" 28.5(1) 26.3 (1.5) 17.1 (2500) 14.7 (1400)
60" 24.5(1) 22.0(1.5) 15.8 (3600) 14.6 (2400)
70" 22.2 (1) 19.5(1.5) 15.1 (4100) 13.1 (2500)
80" 20.3(1) 17.4 (1.5) 14.5 (5500) 12.8 (3200)

Table 1: SVM Error rate in percents of different kernels used on ahraark test of recognizing
digits images, where only 40 to 80 black points where sampled from the origiagks.
The 1,000 images where randomly split into 3 balanced sets to performvedatation (2
for training and 1 for testing), the error being first averaged overch splits, the whole
process being repeated again over 3 different random samples ¢§.pBianning times
are indicated in minutes.

9. Conclusion

We presented in this work a new family of kernels between measures. 8unhlkare defined
through prior functions which should ideally quantify the concentration mieasure. Once such
a function is properly defined, the kernel computation goes through tieation of the function
on the two measures to be compared and on their mixture. As expected wdigg deth con-
centration of measures, two intuitive tools grounded on information theahparbability, namely
entropy and variance, prove to be useful to define such functiongir €Rkpression is however
still complex in terms of computational complexity, notably for the k-IGV kernedbmputational
improvements or numerical simplifications should be brought forward torerssteasible imple-
mentation for large-scale tasks involving tens of thousands of objects.

An attempt to define and understand the general structure of p.d. funciomeasures was
also presented, through a representation as integrals of elementargrigikmown as semicharac-
ters. We are investigating further theoretical properties and charaatteriz of both semicharacters
and positive definite functions on measures. The choice of alternative pn semicharacters to
propose other meaningful kernels, with convenient properties on mateneasures for instance, is
also a subject of future research. As for practical applications, ersels can be naturally applied
on complex objects seen as molecular measures. We also expect to penfitien €xperiments to
measure the performance of semigroup kernels on a diversified samgialtgnging tasks, in-
cluding cases where the space of components is not a vector spadsy mdtan the considered
measures are multinomials on a finite component space endowed with a kernel.
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Appendix A : an Example of Continuous Positive Definite Functon Given by
Noncontinuous Semicharacters

Let X be the unit interval0, 1] hereafter. For anyin X, a semicharacter aM® (X) is defined by

pn () = €00,

whereh (x) = ljgy (X) is the index function of the interv¢0,t]. Note thatpy, is not continuous for
t € [0,1) by Proposition 11.
Forpe M2 (), the functiort — p([0,t)) is bounded and non-decreasing, thus, Borel-measurable,
since the discontinuous points are countable at most. A positive definitediaon M (X) is de-
fined by

(W = /01 Ph (Wdt.

This function is continuous, while it is given by the integral of noncontirsueemicharacters.
Proposition The positive definite functiapis continuous and exponentially bounded.

Proof Supposg, converges tpuweakly inMP (X). We writeFs(t) = i ([0,t]) andF (t) = p([0,t]).
Becausegl, andp are finite measures, the weak convergence means

Fat) —  F(t)

for any continuous point oF. Since the set of discontinuous pointsffis at most countable,
the above convergence holds almost everywherX amth Lebesgue measure. From the weak
convergence, we havg (1) — F(1), which means there exisk8 > 0 such that syp ey Fn(t) <

M. By the bounded convergence theorem, we obtain '

1 1
lim ¢ () = lim an<t>dt:/ FOdt— ¢ (u).
0 0

Nn—oo n—oo

For the exponential boundedness, by taking an absolute s@jye= e“X) we have
1

B0 < | alWdt=a(k.

0
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