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Preface

In order to become worldly things, that

is, deeds and facts and events and

patterns of thoughts or ideas, [action,

speech, and thought] must first be

seen, heard, and remembered and then

transformed, reified as it were, into

things—into sayings of poetry, the

written page or the printed book, into

paintings or sculpture, into all sorts of

records, documents, and monuments.

The whole factual world of human

affairs depends for its reality and its

continued existence, first, upon the

presence of others who have seen and

heard and will remember, and, second,

on the transformation of the intangible

into the tangibility of things.

Hannah Arendt, The Human Condition

In March 2007 Frank Neubrander invited me to hold a lecture series on “Evolu-
tion equations on networks” at the Mathematical Department of the Louisiana State
University at Baton Rouge. At that time my interest in differential equations on net-
works was quite young and I thus structured my course mostly as an introduction
to known results on linear hyperbolic and parabolic equations. Many of the results I
mentioned had been obtained over the previous three years by a group of a few re-
searchers with a definite operator theoretical background, most of whom were then,
or had earlier been, based at the University of Tübingen. A preliminary version of
those lecture notes has been circulating over the internet ever since.

Meanwhile, the topic of differential equations on graphs, ramified spaces, and
more general network-like objects was gaining momentum and an impressive inter-
disciplinary discourse began.

Ever since then, more and more often researchers active in different fields – op-
erator theory, mathematical physics, and graph theory, in particular – have been
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meeting at conferences to discuss and exchange ideas, and many new collaborations
have begun. In my opinion, this has been one of the most fruitful examples of inter-
breeding experienced in mathematics in the last decade. It was out of this cultural
climate that I was asked by the Springer-Verlag to rework and update my Baton
Rouge notes. Indeed, this book derives from them, even if hardly a paragraph has
been consistently taken over.

While I am writing these lines, a book on the same subject has just been published
by Gregory Berkolaiko and Peter Kuchment, and another one by Pavel Kurasov is
expected to appear in the near future. There is not (yet?) such a thing as a canonical
theory of differential equations on networks, and it is fair to say that both [51, 264]
and the present book strongly reflect the mathematical tastes and interests of their
respective authors. The present book is specifically devoted to the study of evolution
equations – i.e., of time-dependent differential equations, like the heat equation, the
wave equation, or the Schrödinger equation – while I have chosen to discuss elliptic
equations and further spectral issues only superficially.

The largest part of the literature which has appeared in the last ten years on
the subject of differential equations of graphs is devoted to spectral problems. This
certainly has good reasons in view of applications to solid state physics and quan-
tum chemistry, but in this way it covers almost exclusively the theory self-adjoint
problems. While the Spectral Theorem is certainly a most efficient tool to deduce
features of evolutionary systems from their underlying spectral properties, it is nec-
essary to resort to different, perhaps more sophisticated methods whenever one is
interested in more general settings: This is particularly true because when working
on networks it is so easy to produce non-self-adjoint realizations of the relevant dif-
ferential operators simply by playing with the transmission conditions in the nodes.
One classical and elegant tool is that of operator semigroups: This book is simul-
taneously a very concise invitation to this theory, founded 75 years ago to a large
extent by Einar Hille and Marshall Stone, as well as a handbook about their appli-
cations to differential equations on networks.

Although only a few results in this book are fully proved, I have tried to keep
the book as self-contained as possible by recalling all results of abstract semigroup
theory the exposition relies upon. For this reason, this is not a classical textbook.
While it can be (and has already been) used as a synopsis for a graduate course, in
general I have tried to keep the presentation as fluid and self-contained as possible.
In particular, most proofs are only sketched, and I have rather referred to the origi-
nal papers. The audience I had in mind while writing the book consists primarily of
graduate students or young researchers with some experience in the classical func-
tional analytical theory of evolution equations. Virtually all abstract methods applied
throughout this book rely upon tools coming from operator theory and elementary
graph theory.

At this stage it would be probably premature to assert that differential operators
on networks – or quantum graphs, to use the name under which they have become
famous over the last fifteen years – have turned into an independent research field. It
seems to me more accurate to say that an increasing number of researchers with dif-
ferent backgrounds have been joining forces to study different, ever broader aspects.
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Rather than a new field of its own, this research area is probably best described as
an exceptionally convenient source of models that are easy to study by merging dif-
ferent, complementary, sometimes only loosely related mathematical theories. Yet
the obtained results are often highly non-trivial and difficult to reproduce in more
usual, higher dimensional settings.

It is difficult to foresee in which direction differential equations on networks are
heading. Nonlinear and geometric evolution equations will probably gain impor-
tance in the next ten years, while numerical analysis may suggest some new tools.
Physical developments will surely provide new interesting problems and networks
will possibly become an entrenched part of the PDE theorist’s toolbox for construct-
ing non-trivial examples or surprising counter-examples.

In any case, I feel it is a good idea to look back now, in 2013, and attempt to write
down what has happened in this field in the last few years. Others who have seen

and heard are certainly not missing; but it is only through transforming the intan-

gible into the tangibility of things that they will remember, to use Hannah Arendt’s
expression.

Structure of the book

Since the early version of these notes was completed in 2007, the theory of dif-
ferential equations on networks has gone a long way. In my opinion, the single
most significant advance has been the ever-growing consciousness that discrete and
continuous aspects of networks, and in particular the analysis of graph matrices and
differential operators on network-like structures, are two sides of the same coin. This
has led to the re-discovery of a number of notions, ideas and methods which have
been around for many years already, especially in algebraic graph theory, as well
as of some new interesting insights. While elaborating my notes, I have decided to
put particular effort in presenting both aspects in a unified framework, following the
recent revival of difference operators among analysts and mathematical physicists
who work on graphs.

In many of the recent monographs in semigroup theory, differential equations are
presented as more or less simple applications of a sophisticated abstract theory. In
this book, I try to emphasize the converse aspect: How the theories of semigroups
(and other partially related objects, like cosine operator functions and quadratic
forms) develop in a natural way from the problem of finding qualitative properties of
concrete evolution equations. This is particularly relevant in the case of networks, I
find, since many (finite or infinite) matrices originally introduced by graph theorists
can be efficiently studied along with usual differential operators by suitable unified
methods. Presenting the operators we will encounter in association with all most
usual differential equations on networks is the main aim of Chapter 2.

The large part of our investigations of evolution equations will use methods typ-
ical of Hilbert spaces. In order to apply them to our purposes, some usual classes
of function spaces have to be adapted to our setting of discrete and metric graphs:
These objects will be introduced in Chapter 3. In particular the former seem to be
not quite frequent in the literature.
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The main features of semigroups are summarized in Chapter 4, including some
results that perhaps do not belong in the canon of this theory – like the recent char-
acterization of boundedness of semigroups. The first applications of this theory to
transport equations on metric graphs are subsequently presented.

While writing this book, I have tried to provide the reader with several exam-
ples and applications, in particular to naive neuronal modeling – it is my strong
belief that theoretical neuroscience can and should be the ideal testing workbench
for many different mathematical results on graphs and networks. For this reason,
in Chapter 5 I have felt compelled for the sake of self-containedness to describe
at least superficially what is currently known about the structure of animals’ brains
and their most important region, the cerebral cortex – and how to model the ongoing
neural activities. This is meant a short interlude to mark the half of the book.

Typical diffusion processes are usually governed by special objects that enjoy
much better properties than usual semigroups and thus reflect almost all properties
of exponentials of self-adjoint operators. One of the main features of these analytic

semigroups is that their properties can be studied in a much easier manner than
in general, using the elegant theory of forms. These both complementary notions
as well as their applications to diffusion-type equations on discrete and continuous
graphs, are the topic of Chapter 6.

Most of the properties of evolution equations that can be deduced from diago-
nalization of operators have nowadays been extended to equations associated with
sectorial operators, but in Chapter 7 we mention a few results that do indeed depend
on self-adjointness. Some of them are highly non-trivial, including a characteriza-
tion of the wave equation with finite speed of propagation (which seems to be little
known outside the community of experts on abstract Dirichlet forms) and the trace
formula, arguably the deepest and most thoroughly investigated result of the theory
of operator on networks.

Chapter 8 is devoted to the interplay between symmetries of discrete graphs and
properties of evolution equations on them and their associated metric versions. We
use the word “symmetry” in a casual way, to mean a few different notions of struc-
tural regularity of the graph connectivity. In particular, we show that a rather weak
notion of symmetry (namely, the existence of so-called almost equitable partitions)
is the source of a class of non-trivial Lie groups of symmetries that boil down to the
usual gauge group U(1) in the case of a graph consisting of a single interval.

Finally, the book is concluded by two appendices devoted to reminders of general
graph theory and Sobolev spaces, respectively.
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vařík, Pavel Kurasov, Daniel Lenz, Annemarie Luger, Bojan Mohar, Konstantin
Pankrashkin, Gabor Pete, Stefan Rotter, Stefan Teufel, Lutz Weis, Wolfgang Woess.
Several discussions on mathoverflow.net have also helped the development
of this book.

Finally, I warmly thank Jacopo Bertolotti, Stefano Cardanobile, Amru Hussein,
James B. Kennedy, Matthias Keller, Stefan Keppeler, Yaroslav Kurylev, Gabriela
Malenová, Rainer Nagel, and Silvia Romanelli for their valuable comments on the
preliminary versions of this book. Of course, I am the one to blame for any remain-
ing mistakes and imprecisions.

Ulm, January 2014 Delio Mugnolo

mathoverflow.net


xii Preface

This picture was taken in Berlin during Der Berg (The Mountain), an art installation organized

in the summer of 2005 inside the Palast der Republik (Palace of the Republic), the former House

of Parliament of the German Democratic Republic. Unfortunately, Der Berg was only meant as a

swan song: In 2006 the Bundestag, the German Parliament, decided that the Palast der Republik

was to be torn down. Its demolition was completed in 2008.



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Operators on networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Difference operators on graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 The incidence matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 The degree matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 The adjacency matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 The discrete Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.5 The transition matrix and the normalized Laplacian . . . . . . . . 18
2.1.6 The Kirchhoff and advection matrices . . . . . . . . . . . . . . . . . . . 20
2.1.7 Generalized Laplacians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.8 The Dirac matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.9 Difference operators on line graphs . . . . . . . . . . . . . . . . . . . . . 28

2.2 Differential operators on metric graphs . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.1 The second derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.2 The first derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.3 The Dirac operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.4 Higher derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Hybrid operators on metric graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.1 The Dirichlet-to-Neumann operator . . . . . . . . . . . . . . . . . . . . . 40
2.3.2 The Laplacian with standard and dynamic node conditions . 41

2.4 Nonlinear operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Function spaces on networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1 The discrete setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 The continuous setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xiii



xiv Contents

4 Operator semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1 Matrix semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 First order problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Second order problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 Semigroups on discrete graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5 Advection on metric graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.6 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 And now something completely different: A crash course in cortical

modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Sesquilinear forms and analytic semigroups . . . . . . . . . . . . . . . . . . . . . . . 111
6.1 Analytic semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 General theory of elliptic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.1 Generalized elliptic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2.2 Subdifferentials of energy functionals . . . . . . . . . . . . . . . . . . . 127

6.3 Delay evolution equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.4 Matrix semigroups on networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.4.1 The discrete diffusion equation . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.4.2 The discrete advection equation . . . . . . . . . . . . . . . . . . . . . . . . 141

6.5 Diffusion on metric graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.5.1 Generalized node conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.6 Hybrid evolution equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.6.1 The Dirichlet-to-Neumann operator . . . . . . . . . . . . . . . . . . . . 160
6.6.2 The Laplacian with dynamic node conditions . . . . . . . . . . . . 161

6.7 Nonlinear parabolic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.8 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7 Evolution equations associated with self-adjoint operators . . . . . . . . . . 173
7.1 The spectral theorem and Dirichlet forms . . . . . . . . . . . . . . . . . . . . . . . 173
7.2 Self-adjoint operators on networks and evolution equations . . . . . . . . 178

7.2.1 Diffusion equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.2.2 Three Schrödinger-type equations . . . . . . . . . . . . . . . . . . . . . . 184
7.2.3 Wave equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.2.4 Beam equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.3 Quantum graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.4 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8 Symmetry properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.1 Commutation properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.2 Graph symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
8.3 Shortings of nodes and edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.3.1 General symmetries of equations on metric graphs . . . . . . . . 216
8.4 Variational symmetries via shortings . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
8.5 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221



Contents xv

A Basics on graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

B Basics on Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245





Chapter 1

Introduction

Electric phenomena have been known for centuries. When natural scientists began
to investigate them more closely in the eighteenth century, it soon became clear that
electric properties can be investigated by mathematical methods.

In 1827 G. Ohm observed a linear dependence between voltage along a wire and
current flowing through it – his famous law “V = IR”. He discovered experimen-
tally that the proportionality factor R, the resistance, increases with distance only
linearly: This paved the way for the development of electric telegraph networks on
a large scale.

In 1845 G. Kirchhoff, then aged 23, derived in [236, p. 513] (later translated in
English in [238]) two equations that relate current and voltage in electrical circuits
under constant magnetic field:

I. wenn die Drähte 1,2, . . .µ in einem Punkte zusammenstoßen,

I1 + I2 + . . .+ Iµ = 0,

wo I1, I2, . . . die Intensitäten der Ströme bezeichnen, die jene Drähte durchfließen, alle
nach dem Berührungspunkte zu als positiv gerechnet;

II. wenn die Drähte 1,2, . . .ν eine geschlossene Figur bilden,

I1 ·ω1 + I2 ·ω2 + . . .+ Iν ·ων

= der Summe aller elektromotorischen Kräfte, die sich auf dem Wege: 1,2..ν befinden;
wo ω1,ω2, . . . die Widerstände der Drähte, I1, I2, . . . die Intensitäten der Ströme bezeich-
nen, von denen diese durchflossen werden, alle nach einer Richtung als positiv gerech-
net. 1

1

I. If the wires 1,2, . . .µ touch in a point, then

I1 + I2 + . . .+ Iµ = 0,

where I1, I2, . . . denote the intensity of the currents that flow through those wires – all of them

considered as positive in the direction of the touching point;

II. if the wires 1,2, . . .ν form a closed figure, then

1



2 1 Introduction

These principles, which are nowadays universally known as Kirchhoff’s circuit

laws, can be concisely stated as follows in modern terminology:

I. At any node of a circuit, the sum of currents flowing into that node is equal to
the sum of currents flowing out of it.

II. Along any cycle inside a circuit, the sum of voltages inside the conductors that
form that cycle is zero.

They are referred to as Kirchoff’s current and voltage law, respectively, and at least
the former will be ubiquitous in this book.

The decisive step in Kirchhoff’s analysis was the intuition that an electric net-
work is fully described by an intrinsic weight attached to each conductor – nothing
but Ohm’s resistance – and by a binary relation that describes whether or not two
nodes are connected by a conductor, regardless of their three-dimensional geometry.
One hundred and ten years earlier, exactly the latter simplification had been crucial
in L. Euler’s famous solution of the Königsberg bridge problem! But while Euler’s
solution was truly combinatorial in nature, Kirchhoff exploited his formalism to
translate the problem of determining currents (and hence, by Ohm’s law, voltages)
along a circuit’s wires into the language of linear systems.

Two years later, in [237], Kirchhoff refined his own ideas by proposing a linear
algebraic algorithm to find the voltages of each conductor in an electric circuit in
which the (externally applied) electromotive forces are known. This algorithm led
to what is now known as the Matrix–Tree Theorem. His first step in this proof is the
proof of the following assertion:

Es sey µ die Zahl, welche angiebt, wie viele Drähte man bei einem beliebigen Systeme
wenigstens entfernen muß, damit alle geschlossenen Figuren zerstört werden; dann ist µ
auch die Anzahl der voneinander unabhängigen Gleichungen, welche man darch Anwen-
dung des Satzes [II.] herleiten kann. 2

In a graph theoretical jargon, cf. Lemma 2.3 below, this can be rephrased as fol-
lows: The null space of a finite oriented graph’s incidence matrix has dimension
equal to the graph’s cyclomatic number. This is arguably the oldest result in the
history of algebraic graph theory. In the same article, Kirchhoff went on to intro-
duce the quadratic form associated with what is nowadays known as the discrete

Laplacian, cf. Section 2.1.4.
Kirchhoff was ahead of his time as the contemporary mathematics could hardly

elaborate on his intuitions – in particular, matrices had not yet been formally intro-
duced and algebraically investigated.

I1 ·ω1 + I2 ·ω2 + . . .+ Iν ·ων

= the sum of all electromotive forces that are met along the path 1,2..ν; where ω1,ω2, . . .
denote the resistances of the wires and I1, I2, . . . the intensities of the currents by which these

wires are traversed – all of them considered as positive in one direction.

2 Let µ denote the minimal number of wires that have to be removed in order to break all closed

figures; then µ is also th number of mutually independent equations that can be derived by applying

the Theorem [II.].
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While calculus was of course already very well developed in the middle of the
19th century, discrete mathematics was still in its crib. One of the earliest attempts
to connect these both concepts was pursued by G. Boole in the last years of his life.
Before the notion of limit was well-understood, the derivative of a function u at x

had been defined by G. Leibniz by means of the difference quotient

u(x+∆x)−u(x)

∆x
,

where ∆x was an infinitesimal. But even if infinitesimals were passé in his day,
Boole saw that analogous definitions may also be relevant if x+∆x is interpreted as
a point at any finite distance from x. In [66] he thus studied in depth the properties of
a new kind of analysis in which limits of difference quotients are replaced by mere
differences of values of functions – he thus coined the notion of “finite differences”
that is still common in numerical analysis. His new calculus carried over some – if
not all – properties of usual, differential calculus; it proves particularly well-behaved
whenever performed over somewhat regular networks or grids; and it approximates
differential calculus efficiently if mutual distances between the network’s nodes tend
to 0.

Boole denoted by ∆ux the terms of order zero in Taylor’s expansion of a function
u at x+∆ with respect to x, i.e.,

∆ux := u(x+∆x)−u(x),

and thus wrote:

In the Differential Calculus du
dx

is not a true fraction, nor have du and dx any distinct mean-
ing as symbols of quantity. The fractional form is adopted to express the limit to which a
true fraction approaches. Hence d

dx
, and not d, there represents a real operation. But in the

Calculus of Finite Differences ∆ux
∆x

is a true fraction. Its numerator ∆ux stands for an actual
magnitude. Hence ∆ might itself be taken as the fundamental operation of this Calculus,
always supposing the actual value of ∆x to be given [...].

If “the actual value of ∆x” is taken to be the resistance of a conductor, then ∆ux
∆x

is
the current flowing through a conductor in accordance with Ohm’s law. Seemingly
unaware of Kirchhoff’s algebraic investigations, Boole replaced in the setting of
standard calculus R by N and the first order differential operator d

dx
on R by a dif-

ference operator – in fact, by the incidence matrix of the oriented graph associated
with N. Armed only with Taylor’s formula and an enviable courage to elaborate on
what were – at best – purely formal identities, Boole ventured to discretize most of
the usual differential and integral calculus and eventually envisaged to study partial
difference equations. Without even a precise notion of “operator” at his disposal, he
could for instance prove in [66, Chapter XIV] that the discrete (both in time and
space) wave equation is solved by the overlapping of two travelling waves.

Because distances are linearly proportional to resistances in electric networks,
the objects introduced by Kirchhoff could now be understood as special instances
of discrete differential operators. This, however, did not happen for decades due to
the lack of advanced graph theory, linear algebra and operator theory. It took some
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time for the mathematical community to observe that graphs – as discrete objects
– are most naturally described by means of matrices; and it took even longer to
realize that certain properties of graphs can be efficiently studied applying linear
algebraic methods to said matrices. While D. Kőnig devoted in [234] – the first
book on graph theory ever – several sections to the study of matrices (to the “matrix
theory of Poincaré–Veblen”, as he calls it), his interest mostly lies in the attempt
to deduce results in linear algebra from results in graph theory. A few years later,
however, the converse approach – the one that is usual nowadays – was initiated, see
e.g. [72, 351]. Though, as late as 1971 C.St.J.A. Nash-Williams could insert alge-
braic graph theory in his famous list of “unexplored and semi-explored territories in
graph theory” [319].

In the first half of the 20th century, many classes of dynamical systems on
discrete structures had already come to be studied. The easiest such systems are
arguably random walks: An early, beautiful instance of these investigations is
G. Polya’s celebrated result on recurrence/transience of random walks on lattice
graphs, which was first obtained in [346] and then neatly re-proved in [318] by meth-
ods of algebraic graph theory. In the 1930s a few chemists, including E. Hückel and
L. Pauling in [214, 342], respectively, tried to circumvent the mathematical difficul-
ties of the newly invented Schrödinger equations by studying quantum mechanical
properties of complicated molecules in a simplified form, where differential oper-
ators are replaced by suitable matrices. In 1944 L. Onsager extended in [333] the
naive model of ferro-magnetism proposed twenty years earlier by E. Ising – essen-
tially, a nonlinear dynamical system on a one-dimensional lattice graph – to two-
dimensional lattice graphs, proving that phase transition may occur. A few years
later, D.O. Hebb proposed in [205] a pioneering psychological model in which a
discrete dynamical system is deputed to govern the time evolution of the weights of
edges of so-called cell assemblies – graphs whose nodes are synapses of a small en-
semble of neurons. Likewise, discrete models began to be proposed, accepted, and
studied in sociology [354], ecology [282], neurobiology [352], etc. Some of these
models were mathematically refined and even subtle, albeit their justification was
seldom other than heuristic. Boole’s dream of a parallel development of two the-
ories – differential and difference calculus – was coming true, and graph matrices
were beginning to be looked at and studied as operators on finite dimensional vector
spaces.

While we will occasionally emphasize the interplay of network theory with both
differential and finite difference calculi, the present book is not devoted to these both
concurrent and complementary theories. Rather, its central topic is the interplay of
differential and difference operators with the functional analytic theory of evolution
equations – arguably one of the most lucid, elegant and successful creations of the
mathematics of the 20th century.

The earliest purely mathematical study of evolution equations associated with
difference operators – which was likely performed in [53], although comparable
ideas had already been roughly sketched in [147] – was however most probably not
influenced by any of the above-mentioned applied models. Rather, A. Beurling and



1 Introduction 5

J. Deny introduced the setting that we are going to present in detail in Section 6.4.1
with the explicit goal to provide a model that was both transparent and non-trivial
for their new theory of Dirichlet forms: It is unclear whether Beurling and Deny
were aware of the graph-theoretical interpretation of their setting, but in [52, § 8]
they explicitly remarked on its connection with Kirchhoff’s circuit formalism. They
explain as follows their motivation for introducing a discrete setting:

Nous avons jugé utile de mettre en évidence [...] quelques propriétés remarquables des
espaces de Dirichlet en traitant un cas simple: celui où l’espace de base X n’a qu’un nombre
fini de points, la mesure ξ étant constituée par la masse +1 en chacun de ces points.

Des exemples montreront que même ce cas élémentaire n’est peut-être pas sans intérêt,
mais notre but est surtout de donner un aperçu des méthodes de démonstration que nous
utiliserons dans le cas général. 3

As it is, both their abstract theory and their “elementary case” have proved most
relevant for the later development of the theory of evolution equations on network-
like objects. On the one hand, they have suggested an efficient unified framework
for the treatment of both difference and differential equations; on the other hand,
they have shown that the interplay of discrete mathematics and functional analysis
is mighty enough that the network paradigm can be used for actual mathematical
analysis of some relevant systems, and not only for merely descriptive purposes.
In particular, their elegant abstract formalism characterizes elliptic problems whose
resolvent operators are sub-Markovian.

At about the same time a relevant number of quantum chemists started elaborat-
ing on Hückel’s early theory using the less rough simplification that electrons need
not be confined in the point-like atoms of a molecule, but are allowed to move along
ideal lines corresponding to atomic bindings. These scientists – including G. Kron,
C.A. Coulson, and K. Ruedenberg in [117, 257, 360], respectively – were probably
the first to consider differential operators on linear network-like structures, and in
some of these papers some classes of self-adjoint realizations were also correctly
determined. However, it took over fifty years before also this class of operators on
discrete structures was recognized as a further source of Dirichlet forms. A few
years earlier, a sketchy investigation of differential equations on networks had al-
ready been performed by R.J. Duffin in [146].

The attention of Beurling and Deny was focused on symmetric forms, and hence
on self-adjoint problems, but twenty years earlier E. Hille had introduced in [208] a
general theory of analytic semigroups that convincingly generalized the main prop-
erties of self-adjoint semigroups. It took only a few more years for M. Itô to com-
bine both these theories, thus initiating in [217] the modern theory of non-symmetric
Dirichlet forms, and hence of non-self-adjoint sub-Markovian semigroups.

Seemingly unaware of the case study in [53], G. Lumer was among the first math-
ematicians, after Beurling and Deny, who applied pure functional analytical method

3 We have deemed useful to underline [...] a few remarkable properties of the Dirichlet spaces by

considering a simple case: the one in which the underlying space X has only finitely many points

– the measure ξ being given by a mass +1 in each point.

Some examples will show that even this elementary case is perhaps not devoid of interest, but

our goal is over all to give an overview of the proof methods that we will use in the general case.
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to operators on network-like structures. But unlike Beurling and Deny, Lumer’s
main interest in [278] was explicitly aimed at evolution equations – more precisely,
at discussing relevant properties of the operator semigroup generated by a differen-
tial operator:

We deal with the classical one-dimensional-ramified-space situation where we have a finite
or countably infinite “network” in R

n, with different differential (diffusion type) operators
on each arc. [...] The topological connecting conditions are given via “nodal spaces” [...]
and the analytical connecting conditions are imposed via local “connecting operators” [...]

If one thinks of one-dimensional differential operators, one is of course drifting
away from the coarse discretization of Boole, Beurling, and Deny. Indeed, there
is a point in preferring to allow the space to come back into the picture, even if
this contradicts Euler’s and Kirchhoff’s brilliant simplifications. Many systems – be
they physical, biological, architectural, ecological, etc. – cannot be properly inves-
tigated without embedding them in space, although maybe not the natural, three-
dimensional Euclidean space. (This turns out to be a much debated topic in contem-
porary epistemology, see e.g. the multidisciplinary contributions in [195].)

The revival of the theory of partial differential equations on networks was not
only due to Lumer, though. It seems that similar ideas have been developed al-
most simultaneously but independently in different communities: Let us mention
in particular the investigations motivated by quantum mechanical considerations
in [5, 163, 407], or by modeling of elastic systems in [97, 114, 272]. All these in-
vestigations have eventually begun to converge and to interbreed.

Even if Lumer’s axiomatic approach has subsequently been little exploited, his
work has nevertheless proved critical in paving the way for the investigations of a
new generation of analysts, mathematical physicists, probabilists, and graph theo-
rists, whose results are quoted throughout this book. These mathematicians have
greatly revived this field since the beginning of the 1980s, opening it to the fruitful
influence of harmonic analysis, spectral theory, cohomology, and other mathemati-
cal theories. The early 1990s saw the blooming of potential theory on graphs after
many results obtained in the 1970s by M. Yamasaki were first discovered and appre-
ciated outside Japan, while a large community of theoretical physicists first became
aware of networks when in 1997 T. Kottos and U. Smilansky used them to shed
new light on the Bohigas–Giannoni–Schmidt conjecture. Ten years ago, graphs had
finally become broadly popular outside graph theory, too. What kind of graphs will
be the object of our investigations?

Generally speaking, graphs are point structures consisting of isolated nodes that
may, or may not, be linked to other nodes by edges. They will be presented in the
Appendix A in more detail. The word graph was first used in this context by J.J.
Sylvester in [393], whose investigations were motivated by chemical applications;
but the program of simplifying a problem by introducing an abstract version based
on binary relations was already explicitly presented and carried out in [159], which
is therefore commonly considered to mark the birth of graph theory.

We have already stressed that our main purpose is to use graph-theoretical for-
malism with the aim of analyzing concrete models, rather than to merely provide
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a compact description of relevant systems. This difference may look subtle and the
borders are often fuzzy. Let us illustrate our point of view by considering some
elementary and admittedly simplistic, yet motivating problems.

• Model 1. Some people gather at a party. At the beginning, each of them only
knows a few other guests. Compute their degrees of separations.

• Model 2. Many cars are driving on a highway at constant (but possibly different)
speed. Analyze their flow.

• Model 3. A passenger wants to fly from an airport to another. Suggest the most
efficient way of doing so.

• Model 4. A spider has woven its web, which gets stirred by a breath of wind.
Study its vibrations.

• Model 5. A sexually transmittable disease is spreading. Determine the lowest
number of patients to be cured in order to stop the infection.

• Model 6. A black-out has occurred. Investigate its propagation through an inter-
connected electric distribution network.

• Model 7. An electron is confined by a strong potential to move approximately
only along the atomic bonds of a conjugated system. Describe its motion.

All of these models can be represented by means of a network formalism, but all
underlying problems are essentially different: On the one hand, in models 1 and 5
(and to some extent in 3) the spatial issue can be neglected. Being in touch with an
acquaintance, enjoying the possibility of flying to another town, being infected by
somebody: all these are spatially discrete phenomena. The system might be evolving
in time according to a differential equation, but the state space is usually finite-
dimensional in applications. They are typical problems of applied graph theory:
Some relevant matrices for this kind of problem will be introduced and preliminarily
investigated in Section 2.1.

On the other hand, in models 2, 4, 6, 7 the relevant processes are occurring on the
links that connect the network’s nodes. Such models are best described by partial
differential equations: by a conservation law (2), a wave equation (4), a telegraph
equation (6), or a Schrödinger equation (7). They are good examples of evolution

equations on networks. Graphs whose canonical discrete metric is enhanced by a
richer structure based on the representation of edges as one-dimensional intervals
are often referred to as metric graphs (as opposed to discrete graphs, an awkward
but occasionally useful expression whenever we want to stress that we are going to
make use only of the combinatorial properties of a graph).

Graph-theoretical abstractions of electric circuits have been called networks, too,
at least since [72]. By a network, a (discrete) graph is nowadays usually meant,
whose edges are equipped with two additional pieces of information: a (binary)
direction and a (numerical) value, sometimes called capacity – which is however
usually interpreted as a resistance, or a conductance, and which we will usually
interpret as a length. Indeed, the notions of (oriented) metric graphs and networks
tend to melt together. We will see that for many purposes the network formalism
is indeed both necessary and sufficient to capture the complexity of both difference
and differential equations on graphs. For this reason in this book we have chosen to
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use the word “network” as a generic term to refer to both discrete and metric graphs,
whenever it is not relevant to distinguish between them.

As we will see, there are relevant differences but also tight relations between the
theory of operators on discrete and metric graphs. Indeed, one aim of this book is to
affirm and emphasize that discrete and differential operators on networks are often
two sides of the same coin.



Chapter 2

Operators on networks

In this chapter we are going to review a manifold of operators defined on networks.
We will see later on that most of these operators arise in connection with some rele-
vant evolution equation on networks. However, here we are not yet going to discuss
any dynamical system or partial differential equation. Rather, our aim is to explain
the interplay between the differential operators that are relevant for partial differ-
ential equations on domains, their discrete pendants that are more usual in graph
theory, and finally their version on metric graphs that are at the basis of the the-
ory of quantum graphs. The analysis of the properties of some associated evolution
equations will be postponed to Chapter 4.

Graph theory turns out to be an essential component of our investigations. As
one can expect from a field which is almost 300 years old, it is neither possible nor
necessary for our purposes to mention all main results in the theory of graphs. We
have preferred to simply introduce the basic formalism of graphs in the Appendix A,
whereas in the first part of this chapter we follow in the footsteps of a special branch
– the so-called algebraic graph theory, which often links combinatorics and func-
tional analysis.

We are going to describe two main classes of objects: operators that act on se-
quences (matrices) in Section 2.1 and on functions defined on collections of intervals
(differential operators) in Section 2.2, respectively.

Throughout Section 2.1 we formulate our results for a graph whose weight is
γ , but of course they prevail if γ is consistently replaced by µ . The rationale for
considering both weight functions is explained in Section 2.1.4.1 below.

2.1 Difference operators on graphs

We adopt throughout the notations and notions summarized in the Appendix A and
assume that

G= (V,E,µ) is a weighted oriented graph.

9
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We use the shorthand

γ(e) :=
1

µ(e)
e ∈ E,

which is justified by the fact that a weight function takes values in (0,∞), cf. Defi-
nition A.14. We define two E×E matrices by

M := diag(µ(e))e∈E and C := diag(γ(e))e∈E. (2.1)

Unless otherwise stated we do generally not assume G to be finite. The need for ori-
entation is mostly due to technical reasons, as almost all physical and computational
phenomena described by equations considered in the next chapters do not depend
on directions.

2.1.1 The incidence matrix

All relevant information about the connectivity of an oriented graph is encoded in
a matrix that turns out to be the most fundamental object for functional analysis on
graphs. Here and in the following, due to historical reasons we have chosen to keep
the traditional representation of operators on graphs as matrices.

Definition 2.1 The incidence matrix of G is the V×E matrix1

I := I +−I −, (2.2)

where I + := (ι+ve) and I − := (ι−ve) are defined by

ι+ve :=

{

1 if v is terminal endpoint of e,
0 otherwise,

ι−ve :=

{

1 if v is initial endpoint of e,
0 otherwise.

We adopt the notations

E
+
v := {e∈E : ι+ve = 1}, E

−
v := {e∈E : ι−ve = 1}, Ev :=E

+
v ∪E−v , v∈V.

Of course, matrix multiplication of I or I T with vectors in CE or CV can be
seen as evaluation of a (possibly unbounded) operator at a function over E or V,
respectively. This is actually the point of view we will adopt throughout the book,
and we therefore prefer to use the notations

(u(e))e∈E and ( f (v))v∈V

for vectors in CE or CV, respectively. In particular,

(I T f )(e) = f (eterm)− f (einit), f ∈ C
V, e ∈ E,

1 We use this casual notation throughout this book to mean a matrix with complex entries that
defines a linear operator from E to V.
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and
(I u)(v) = ∑

v∈E+
v

u(v)− ∑
v∈E−v

u(v), u ∈ C
E, v ∈ V.

We stress that the incidence matrix is independent of the weight function µ . As
each edge has exactly two distinct endpoints, each column of I + and each column
of I − has exactly one entry, while the entries of each column of the incidence
matrix I sum up to 0.

Remark 2.2 If one thinks of G as a geometric graph (i.e., a graph whose nodes are

identified with points of R3, and whose edges e are identified with simple arcs of

length µ(e)), then 1
µ(e)I

T f (e) can be seen as a difference quotient that converges

to f ′(einit) as µ(e) goes to 0 uniformly for each e. Thus, I T f can be looked at as

a discretized version of the first derivative of a function f defined in all points of G.

This intuition goes back to G. Boole [66], cf. the Notes of Chapter 3, and has played

a relevant role in the development of functional analysis on graphs.

The sets of all functions from V to C and from E to C define vector spaces CV

and CE called node and edge space of G, respectively: Hence, the incidence matrix
defines a linear operator from CV to CE. In a less modern but equivalent formulation,
the following result appeared already in [237, § 1].

Lemma 2.3 Let G = (V,E) be a finite oriented graph with κ connected compo-

nents. Then its incidence matrix I has rank |V|−κ . Hence, I is never surjective

(and I T is never injective), while I is injective (and I T is surjective) if and only

the cyclomatic number |E|− |V|+κ of G vanishes, i.e., if and only if G is a forest.

Remark 2.4 If we discard the orientation of an oriented graph’s edges, the con-

nectivity of the underlying simple graph is completely described by the signless
incidence matrix J defined by

J := I ++I −. (2.3)

In analogy with Lemma 2.3, the most relevant property of J is that for a finite

non-oriented graph the rank of J is |V|−κ+, where κ+ is the number of bipartite

connected components, cf. [180, Thm. 8.2.1]. Hence, for a bipartite graph 0 is an

eigenvalue not only of L , but also of Q. Indeed, by [120, Prop. 2.3] the spectra of

L and Q agree if G is bipartite.

Besides the incidence matrices I +,I −,I ,J , there are several further relevant
graph matrices. Some are more rooted in the classical algebraic graph theory, others
arise in applications. In the following sections we are going to present a few of
them, before turning to study their operator-theoretic properties in connections with
difference and differential equations in the next sections.
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2.1.2 The degree matrix

In the unweighted case, in graph theory it is usual to define the outdegree/indegree/degree
of a node v as the cardinality of E+

v ,E
−
v ,Ev, respectively. In view of our interest for

weighted oriented graphs we introduce the following.

Definition 2.5 The outdegree and indegree of a node v are defined by

degout
γ (v) := ∑

e∈E
ι−veγ(e) and degin

γ (v) := ∑
e∈E

ι+veγ(e),

respectively. The degree of v is then simply degγ(v) := degout
γ (v)+degin

γ (v), i.e.,

degγ(v) := ∑
e∈E
|ιve|γ(e).

Nodes with vanishing indegree or outdegree are called sources and sinks, respec-

tively.

The degree matrix D of G is defined as D := diag(degγ(v)). We define likewise

the indegree matrix D in and the outdegree matrix Dout.

Finally, G is called regular if there exists k ≥ 0 such that D = k Id, i.e., if

degγ(v) = k for all v ∈ V. If G is bipartite, then it is called semiregular if there

exist k1,k2 ≥ 0 such that degγ(v) = ki for all v ∈ Vi, i = 1,2.

We adopt the notation deg to refer to the degree of the underlying unweighted

graph, i.e.,

deg(v) := ∑
e∈E
|ιve|. (2.4)

We stress that the conditions imposed on the connectivity of G by regularity and
semiregularity are of combinatorial nature only in the unweighted case.

Definition 2.6 The graph G is called outward or inward locally finite if for all v ∈
V there is Mv > 0 such that

degout
γ (v)≤Mv or degin

γ (v)≤Mv, respectively,

and locally finite if it is both outward and inward locally finite. If
(

degout
γ (v)

)

v∈V
or
(

degin
γ (v)

)

v∈V
are bounded sequences, i.e., if there exists M > 0 such that

degout
γ (v)≤M or degin

γ (v)≤M for all v ∈ V,

then G is called outward or inward uniformly locally finite, respectively. It is called

uniformly locally finite if it is both outward and inward uniformly locally finite.

Example 2.7 If G is unweighted, then it is locally finite if and only if each node

has only finitely incident edges; and uniformly locally finite if and only if there is a

uniform upper bound in the number of edges that can be incident to each node.
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Fig. 2.1: An infinite, uniformly locally finite graph (provided all edges have weight
1, i.e., the graph is effectively unweighted).

vr

Fig. 2.2: An infinite, locally finite but not uniformly locally finite graph (provided all
edges have weight 1, i.e., the graph is effectively unweighted). If however the graph
is oriented towards the root vr, then the graph is outward uniformly locally finite.

In the weighted case, uniform local finiteness of a function depends in an essen-

tial way on its weight function. E.g., In the case of the lattice graph Z in Figure 2.3,

cf. Example A.11, the weight function defined by µ ≡ 1 induces a uniformly lo-

cally finite (in fact, even regular) graph, whereas letting µ
(

(n,n+1)
)

:= |n|, n ∈ Z,

clearly yields a locally finite but not uniformly locally finite graph.

Fig. 2.3: The lattice graph Z.

Observe that if G is uniformly locally finite, then ℓp(V) is continuously embedded
in ℓp

degγ
(V) for all p ∈ [1,∞].

Lemma 2.1. Let G be locally finite and let f ∈ CV. Then

∑
e∈E

f (eterm)γ(e)= ∑
v∈V

f (v)degin
γ (v) and ∑

e∈E
f (einit)γ(e)= ∑

v∈V
f (v)degout

γ (v),

provided these series converge.
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Proof. Because E is the disjoint union of the sets E+
v , v ∈ V, one has

∑
e∈E

f (eterm)µ(e) = ∑
v∈V

∑
e∈E

f (eterm)µ(e)ι
+
ve

= ∑
v∈V

f (v) ∑
e∈E

µ(e)ι+ve

= ∑
v∈V

f (v)degin
γ (v),

and the other identity is proved likewise.

In particular, taking f ≡ 1 one obtains

volγ(G) := ∑
e∈E

γ(e) = ∑
v∈V

degin
γ (v) = ∑

v∈V
degout

γ (v). (2.5)

In the unweighted case one recovers the usual Handshaking Lemma in (A.2).

2.1.3 The adjacency matrix

If one is not interested in the orientation of edges but merely in the connectivity
structure, then the following offers a useful alternative to the usage of the incidence
matrix.

Definition 2.8 The V×V incoming and outgoing adjacency matrices A in := (α in
vw)

and A out := (αout
vw ) of G are defined by

α in
vw :=

{

γ(e) if e= (w,v) ∈ E,
0 otherwise,

and αout
vw :=

{

γ(e) if e= (v,w) ∈ E,
0 otherwise,

(2.6)
respectively. The (weighted) adjacency matrix A := (αvw) of G is defined by A :=
A in +A out.

Observe that A in is the transpose of A out, so that A is symmetric.

Remark 2.9 For consistency we have introduced the adjacency matrix A for ori-

ented graphs. However, given a weighted simple graph the adjacency matrix does

clearly not depend on the chosen orientation (although A in and A out do).

The following is an easy but fundamental combinatorial property of the k-th
power of A . Observe that by definition for each n-path from v to w there is also
an n-path from w to v. In the following capγ(P) we denote by the capacity of a path
P, cf. Definition A.17.

Proposition 2.10 For all k ∈ N and v,w ∈ V, the v−w-entry of A k agrees with

∑
P∈Pk

v,w

capγ(P),
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where Pk
v,w denotes the set of all paths from v to w of length k. In particular, in

the unweighted case of µ ≡ 1, the v−w-entry of A k is simply the number of paths

from v to w of length k.

Let us compute the product I +C (I −)T , for the incoming and outgoing in-
cidence matrices I +,I − introduced in Definition 2.1 and the weight matrix C :
The v−w-entry of I +C (I −)T is given by

∑
e∈E

ι+veγ(e)ι
−
we =

{

γ(e) if (w,v) ∈ E,
0 otherwise.

This and three further analogous computations yield the identities

A in = I +C (I −)T
, A out = I −C (I +)

T
,

D in = I +C (I +)
T
, Dout = I −C (I −)T

,
(2.7)

where D in,Dout are the indegree and outdegree matrices introduced above.
These simple formulae are at the basis of the definition of a manifold of operators

that we introduce in the next sections.

2.1.4 The discrete Laplacian

In view of certain applications, in particular to physics, it would be desirable to as-
sociate with any graph a semidefinite matrix. The adjacency matrix A is not a good
choice: Because its trace is always zero, one of its eigenvalues is necessarily strictly
negative (unless the graph is trivial). One may try of course shift the spectrum of
−A or A by adding a suitable diagonal matrix with real entries. How large should
this perturbation be in order to ensure positive semidefiniteness? A rough estimate
is given by Gershgorin’s theorem: The new matrix ˜A = (α̃vw) is surely positive
semidefinite if it is diagonally dominant, i.e., if

α̃vv ≥ ∑
w 6=v

|αvw| (2.8)

(and likewise in the negative semidefinite case). Choosing α̃vw to be exactly

− ∑
w 6=v

αvw or ∑
w 6=v

αvw

yields two matrices with very nice properties: the discrete Laplacian and the signless
Laplacian.

Definition 2.11 The V×V-matrix

L := I C I T (2.9)



16 2 Operators on networks

is called the Laplace–Beltrami matrix of G, and simply the discrete (or sometimes

combinatorial) Laplacian in the unweighted case, i.e., if γ ≡ 1. A function f ∈ CV is

called harmonic if L f = 0.

Using

D = D in +Dout, A = A in +A out, I = I +−I −

and (2.7) we promptly obtain the following.

Proposition 2.12 The Laplace-Beltrami matrix L of a weighted simple graph and

the incidence matrix I of an arbitrary orientation of the same graph are related by

L = D−A . (2.10)

Observe that the diagonal matrix with entries ∑w 6=v αvw, v ∈V, is nothing but the
degree matrix introduced in Section 2.1.2

We can therefore also introduce L for (simple) non-oriented graphs because nei-
ther D nor A depend on the orientation of the edges. Actually, L mirrors intrinsic
properties of the underlying (non-oriented) simple graph, cf. Remark 2.9. In other
words, all the 2|E| orientations of G have the same Laplace–Beltrami matrix.

A direct computation shows that L is equivalently given by

L f (v) = ∑
v∼w

γ
(

(v,w)
)

( f (v)− f (w)) , v ∈ V. (2.11)

Taking e.g. the graph with node set V := Z, with (n,m) ∈ E if and only if m = n+1,
and

γ
(

(n,n+1)
)

≡ 1
a
> 0, (2.12)

then one sees that L f converges to f ′′ as a→ 0.
The following can be deduced from Lemma 2.3.

Lemma 2.13 Let G be finite. Then the multiplicity of 0 as an eigenvalue of the

Laplace–Beltrami matrix L agrees with the number of connected components of G.

We have restricted to the finite case in order to avoid to deal with an unbounded
version of L , and in particular not to deal with issues related to its domain. All this
will be thoroughly discussed in Section 6.4.1.

Definition 2.14 The signless Laplace-Beltrami matrix of G is defined by

Q := D +A . (2.13)

Again, it is simply called signless Laplacian in the unweighted case of γ ≡ 1.

Computing like in the proof of Proposition 2.12 shows that for the signless inci-
dence matrix J

Q = J C J T . (2.14)
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Thus, Q does not depend on the orientation of G. We stress that the scaling limit of
Q is not a differential operator – indeed,

Q f (v) = ∑
(v,w)∈E

γ
(

(v,w)
)

( f (v)+ f (w)) (2.15)

shows that Q f (v) diverges to +∞ as a→ 0, with a defined as in (2.12).

2.1.4.1 Graphs and electric networks

The connection between the theories of graphs and of electric networks is old. There
is large consensus that it goes back to [237]. To explain this interplay, represent an
electric network as a finite, connected, weighted oriented graph G= (V,E,µ): Each
node v is a junction point, each edge e is a conductor whose resistance is of µ(e)
ohm – and hence its conductance is of γ(e) := µ(e)−1 siemens – and an orientation is
taken arbitrarily. Because the resistance of a conductor is proportional to its length, it
is natural to think of µ(e) as a metric parameter – i.e., the length of an interval: This
is exactly the idea that leads to the introduction of metric graphs, cf. Definition 3.12.

It will be sometimes convenient to regard (V,E,µ) and (V,E,γ) as two – dif-
ferent, but in some sense mutually dual – weighted oriented graphs: a resistance

network and a conductance network, to put it shortly. In this Section 2.1 we are go-
ing to focus on operators naturally associated with (V,E,γ). Instead, in Section 2.2
we will discuss operators defined on G, the metric graph over (V,E,µ).

A reference potential can be arbitrarily fixed – in terms of some node v0 which
is set e.g. at 0 – and we can thus define a (relative) electric potential in each node
of the electric network. Denote by f (v) the potential in the junction point v and
by u(e) the oriented currents along conductor e: i.e., u(e) = c > 0 (resp., c < 0)
if a current of c ampere flows from einit to eterm (resp., from eterm to einit). Ohm’s
law states that the current vector u and the voltage vector I T f , which is given by
I T f (e) = f (eterm)− f (einit), are related by

M u = I T f or equivalently u = C I T f (2.16)

where the resistance matrix M and the conductance matrix C are defined as in (2.1).
By Lemma 2.3 C I T is not injective from CV to CE, but it is indeed injective

and hence invertible from CV/C ≃ CV\{v0} to CẼ for any arbitrarily chosen v0 ∈ V

and any subgraph (V, Ẽ) that is a spanning tree of G rooted in v0 (and hence, such
that |Ẽ| = |V|−1). Knowing u one can thus reconstruct all values of f , recursively
determining the values of potentials of all nodes along the branches of the tree,
starting with the neighbors of v0, until each node is reached. Also the converse is
clearly possible.

In the classical mathematical theory of electricity, to solve an electric network

for given U ∈ CE and F ∈ CV means finding u ∈ CE and hence f ∈ CV that satisfy
both Kirchhoff’s current and voltage law, i.e.,
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I u = F (2.17)

and

∑
e∈E

z(e)
(

I T f (e)−U
)

= 0 for all cycles z in G, (2.18)

respectively, possibly under further constraints. (Here we have used the notation in-
troduced in Remark A.5.) We refer to [145, 399],[60, §§ II.1–3 and § IX.2], and [65,
Chapter 20] for details on the interplay between graph theory and electric networks.
In particular, combining (2.16) and (2.17) one sees that the potential f in the net-
work satisfies

I M−1I T f = F on V. (2.19)

Recall that the distribution of electric potential on a surface Σ satisfies the Poisson
equation

∆Σ u = φ on Σ (2.20)

for the Laplace–Beltrami operator ∆Σ and the free charge density φ . This suggests
that I C I T can be looked at as a discrete version of ∆Σ .

(If F is not orthogonal to the constant vector 1, then (2.19) can be solved in
CV/C, i.e., up to a constant: in a more common but equivalent terminology, this
means that the solution is given by the pseudo-inverse of I M−1I T . It is well-
known that analogous results hold for (2.20).)

2.1.5 The transition matrix and the normalized Laplacian

In this book we will devote most of our attention to time-continuous evolution equa-
tions and we will see in Section 4.2 that such equations display dissipation or at
least conservation of some relevant quantity whenever their numerical range is suf-
ficiently well-behaved. However, one can also consider discrete dynamical systems
associated with the powers of a matrix. If e.g. one chooses the adjacency matrix A
of G, usual physical quantities are typically not conserved. Indeed, by Gelfand’s
formula ‖A k‖ grows as ρ(A )k for k→∞, where ρ(A ) is the spectral radius of A .

Proposition 2.10 explains why a discrete dynamical system driven by (A k)k∈N
cannot converge to an equilibrium unless G is trivial. But a multiplicative perturba-
tion turns it into a more treatable random walk.

Definition 2.15 Let G have no isolated nodes. The transition matrix or random walk
Laplacian is the V×V matrix defined by

T := D−1A .

The action of T on a function f ∈ CV can be easily explained: It replaces the
value of f in v ∈ V by the average of all values in the neighboring nodes, since
the v−w-entry of T is given by
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{

γ(e)
degγ (v)

if e= (w,v) ∈ E or e= (v,w) ∈ E,

0 otherwise.
(2.21)

We will see in Chapter 4 that L is only bounded on relevant sequence spaces
if (3.2) holds. A way to avoid this dependence is to replace L by another matrix
that is always bounded – regardless of the connectivity of G – but also encodes most
information carried by L .

Definition 2.16 Let G have no isolated nodes. The normalized Laplace–Beltrami
matrix and normalized signless Laplace–Beltrami matrix are the V×V matrices

Lnorm := D−
1
2 L D−

1
2 = Id−D−

1
2 A D−

1
2

and

Qnorm := D−
1
2 QD−

1
2 = Id+D−

1
2 A D−

1
2 ,

respectively. We call them the normalized Laplacian and normalized signless Lapla-
cian if µ ≡ 1.

Remark 2.17 If G is unweighted and regular (say, of degree k), then the sets

σ(T ),σ(A ) of eigenvalues of T ,A , respectively, are clearly related by σ(T ) =
k−1σ(A ), and likewise σ(Lnorm) = k−1σ(L ). Obviously, one also has σ(L ) =
k−σ(A ).

Interestingly, the spectrum of T on a finite, connected G is strongly influenced

by several further graph-theoretic properties: For instance, −1 is an eigenvalue of

T if and only if G is bipartite - and in this case the eigenvalues are symmetric about

0, cf. [104, § 1.3].

Again, a direct matrix multiplication shows that the v−w-entries of Lnorm and
of Qnorm are given by














−γ
(

(v,w)
)

√
degγ (v)

√
degγ (w)

if v ∼ w,

1 if v = w,
0 otherwise,

and















γ
(

(v,w)
)

√
degγ (v)

√
degγ (w)

if v ∼ w,

1 if v = w,
0 otherwise,

respectively. (Recall the notation introduced in Definition A.1: we write v ∼ w if
v,w are adjacent, i.e., if there exists an edge whose endpoints are v,w.)

The difference between the Laplace–Beltrami matrix L and its normalized ver-
sion becomes clear writing down explicitly

Lnorm f (v) =
1

√

degγ(v)
∑

(v,w)∈E
γ
(

(v,w)
)





f (v)
√

degγ(v)
− f (w)
√

degγ(w)



 .

Like L ,Q also Lnorm,Qnorm have by their definition a variational structure
given by
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Lnorm = (D−
1
2 I )C (D−

1
2 I )T , Qnorm = (D−

1
2 J )C (D−

1
2 J )T . (2.22)

The main reason why we are presenting T and Lnorm,Qnorm together is that

T = D−
1
2 (Id−Lnorm)D

1
2 = D−

1
2 (Qnorm− Id)D

1
2 . (2.23)

Thus T has same eigenvalues as the Hermitian matrix Id−Lnorm – in particular, its
eigenvalues are real.

Because Lnorm +Qnorm agrees with 2Id and is hence positive definite, one con-
cludes that the largest eigenvalue of Lnorm is dominated by the smallest eigenvalue
ofQnorm.

2.1.6 The Kirchhoff and advection matrices

The following was studied by W. Tutte in [397] as an oriented version of the discrete
Laplacian.

Definition 2.18 The incoming/outgoing Kirchhoff matrices of G are the V×V ma-

trices given by

K in := I +C I T and K out :=−I −C I T . (2.24)

By (2.7) one checks that

K in = D in−A in and K out = Dout−A out.

While most of the matrices we have considered so far represent standard ways
of defining discrete analogs of second order differential operators, there seems to
be no natural, all-round pendant of first order differential operators. A possible ver-
sion will be discussed in Section 2.1.8 below. The following, different one has been
proposed in [188, § 2.5.6].

Definition 2.19 The V×V matrix defined by

−→
N :=−I C (I −)T ,

←−
N := I C (I +)T

are called advection matrices.

Example 2.20 By (2.25),
−→
N and

←−
N are circulant if G is an unweighted oriented

cycle of finite length, cf. [188, Fig. 2.27]. More generally: If G is an oriented cycle

of length n whose nodes are v1, . . .vn, then A in = (αi j) satisfies

αi j =

{

γ
(

(vi,vi+1)
)

, if j = i+1,
0 otherwise.
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If in particular all weights are equal to 1, then this matrix is a projection and same

holds for A out. It follows that
−→
N and

←−
N act as rotations along or against the

direction of the orientation, respectively.

Using (2.7) we can check that in fact

−→
N = Dout−A in,

←−
N = D in−A out. (2.25)

The Kirchhoff matrices and the advection matrices are tightly related. To begin
with, they satisfy the symmetry relations

L −K in = K out, L −−→N =
←−
N . (2.26)

Furthermore, by definition

←−
N T = K in,

−→
N T = K out. (2.27)

These relations will prove useful in the following.
Since the matrices introduced in this section are not Hermitian, their eigenvalues

are in general not easy to compute. However, these matrices satisfy an important
property. Let us first recall the following fundamental estimate on eigenvalues –
Gershgorin’s Theorem.

Proposition 2.21 Let W = (ωi j) be a square matrix of finite size. Then every eigen-

value of W lies within the balls BRi
(aii) and BCℓ

(aℓℓ) for at least one i and one ℓ,
where

Ri := ∑
j 6=i

|ωi j| and Cℓ := ∑
j 6=ℓ

|ω jℓ|.

In particular, all eigenvalues of a finite square matrix have negative real part if
the matrix’ diagonal entries are negative and either all columns or all rows sum up
to 0.

Now, the diagonal entries of D in,Dout are positive, and therefore so are the diag-
onal entries of K in,K out,

−→
N ,
←−
N . Furthermore, the rows of K in,K out clearly sum

up to 0 and so do the columns of
−→
N ,
←−
N . Thus, we immediately get the following.

Corollary 2.22 All eigenvalues of −K in,−K out,−−→N ,−←−N have negative real

part.

For our purposes, knowing the eigenvalues of an n×n matrix W is as relevant as
knowing its numerical range, i.e., the set

W (W ) := {(W x|x) ∈ C : x ∈ C
n and (x|x) = 1}.

Let us summarize some basic properties of the numerical range, cf. [273].

Proposition 2.23 Let W = (ωi j) be a square matrix of finite size n. Then the nu-

merical range W (W ) of W satisfies the following properties.
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(1) W (W ) is a compact convex set of C.

(2) W (λW +µ Id) = λW (W )+µ for all λ ,µ ∈ C.

(3) W (W +Z )⊂W (W )+W (Z ) for any further n×n matrix Z .

(4) W (W )⊂ {z ∈ C : Rez≥ 0} if and only if W +W ∗ is positive semidefinite.

(5) All eigenvalues of W are contained in W (W ).
(6) If W is normal, then W (W ) is the convex hull of the set of all eigenvalues of W .

(7) W (W ) lies within the closed convex hull of the union of all balls BNi
(aii), 1 ≤

i≤ n where

Ni := ∑
j 6=i

|ωi j|+ |ω ji|
2

.

(8) Assume ωi j 6= 0 if and only if (i, j) 6∈ {(1,2), . . . ,(n−1,n),(n,1)}. Then W (W )

agrees with the ball Br(0), where r is the largest eigenvalue of the Hermitian

matrix 1
2 (W +W ∗).

Example 2.24 The numerical range of the matrices K in,K out,
−→
N ,
←−
N need not be

contained in {z ∈ C : Rez≥ 0}, although all its eigenvalues are positive. This is not

really surprising, since these matrices are not normal. For example, consider the

oriented cycle on three edges, with weight function γ = (2,1,1). Then, its advection

matrix is given by

2

1 1 −→
N =





2 0 −1
−2 1 0
0 −1 1



 ,

whose eigenvalues are 0,2± i but which satisfies
(−→
N x|x

)

=−5 for the vector

x :=





4
6
5



 .

2.1.7 Generalized Laplacians

Definition 2.25 Let G = (V,E) be an oriented graph. A generalized Laplacian is

any V×V matrix whose off-diagonal v-w-entry satisfies

• = 0 if and only if neither (v,w) ∈ E nor (w,v) ∈ E, and

• < 0 otherwise.

The Laplace–Beltrami matrix, (minus) the adjacency matrix, the normalized
Laplacian, and (minus) the signless Laplacian are examples of (symmetric) gen-
eralized Laplacians, and so are the examples we consider below.
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2.1.7.1 The rate matrix in genetics

An application of the discrete Laplacian arose in early models of DNA evolution in
the 1960s. The idea, first suggested in [224, 235], is to discuss the possible mutations
at a given site of the DNA by means of a Markov chain.

A C

G T

Fig. 2.4: The graph of possible point mutations among nucleotides

One assigns certain probabilities to each possible change. In the early models
the transition matrix T was assumed to be symmetric (e.g., the probability of a
mutation from guanine to cytosine should be the same as that of a mutation from
cytosine to guanine), which suggests to actually interpret it as the transition matrix
of a (complete) weighted oriented graph, in the sense of Definition 2.15. In later
refinements of this model symmetry was dropped: Thus, one simply assigns cer-
tain probabilities to each possible change, thus effectively considering a weighted
(complete) graph. The construction of these weights is performed in different fash-
ions and each of them has different biological motivations, cf. [416] or [216, § 5.4],
but mathematically all of them boil down to defining a (biologically appropriate)
generalized Laplacian A of the above graph – the so-called rate matrix.

The evolution of the DNA site is then represented as a dynamical system driven
by the rate matrix – a continuous one, due to the frequency of modifications, whose
unknown is a probability distribution. Most of these models, but not all of them,
require all rows (and sometimes also all columns) of the rate matrix to sum up to 0.
Ae will see in Example 4.44 below, this algebraic condition is related to the property
that the solution defines for all time a probability distribution on CV ≡ C4.

These and similar models have become a relevant part of Darwin medalist M.
Kimura’s neutral theory of molecular evolution – one of the most important break-
throughs in modern genetics. To better appreciate the revolutionary aspect of these
ideas it suffices to recall that both discrete and continuous Laplacians are associ-
ated with dynamical systems that can be interpreted as stochastic processes. What
Kimura was therefore positing is that at a local level mutations is solely random, so
that it is primarily due to statistical fluctuations if genetic change spreads across a
population.
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2.1.7.2 The Hückel matrix

J.J. Sylvester suggested in [393] a formal identification of molecules with graphs
whose nodes regard atoms. Furthermore, each of his nodes were labeled (much like
in Definition 3.2) by a number that represented their chemical valence.

In the early 1930s the mathematical foundations of quantum mechanics had al-
ready made relevant advances, but quantum chemists had great difficulties keeping
pace. In particular, it was a great challenge to compute the spectrum of even the
simplest molecules by a formal study of the Schrödinger equation. E. Hückel pro-
posed in [214] a brilliant Ansatz for a semiempirical solution of the spectral problem
for a class of aromatic compounds. In its simplest version (much generalized ever
since), Hückel’s approach to the description of the π orbitals of a conjugated, planar
hydrocarbon that is either cyclic or linear is as follows.

Given a molecule, consider its skeletal formula, which can be regarded as a graph
(typically, with multiple edges); neglect all the hydrogen atoms and their bonds to
the carbon atoms; and finally discard all double bonds. Thus one finds the simple
subgraph induced by only those nodes corresponding to carbon atoms: Let us call it
the molecule’s Hückel graph.

Definition 2.26 Let α,β > 0. Given a Hückel graph G = (V,E) with associated

degree and adjacency matrix D and A , respectively, its Hückel matrix with param-

eters α,β is the matrix

Hα,β := αD−βA .

In the simple case of a molecule of ethylene, for instance, the eigenvalue problem
becomes

(

α β
β α

)

ψ = λψ,

where ψ is a general linear combination of atomic orbitals, and thus Hückel’s
method yields the approximated values of α ±β , and in particular the energy gap
of 2β between the highest occupied and lowest unoccupied π orbitals.

C

H

H

C

H

H

Fig. 2.5: An ethylene molecule (from wikipedia.org), its skeleton and Hückel’s
graph

Given its utter simplicity, Hückel’s Molecular Orbital theory is surprisingly ef-
fective and has some heuristic justification: In a planar molecule the σ and π orbitals
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are mutually orthogonal: One can thus assume that σ -orbitals exert little influence
on the spectral gap. In a first approximation, Hückel opted for neglecting the over-
lap integrals of distant orbitals, but a more precise description that considered all
valence electrons was given in 1963 by the extended Hückel’s Molecular Orbital

theory. There, Hückel’s matrix is replaced by the full matrix H ext = (hext
vw), with

hext
vw :=

K

2
ovw (εv+ εw) ,

where K and εv, v ∈ V, are certain physical parameters and the Hermitian ma-
trix O = (ovw) is the full overlap matrix for the given molecule.

2.1.7.3 Pageranks

The mathematics behind internet search engines is largely a well-kept trade secret,
but some early rough ideas were disclosed in [71, 337]. Let us begin with the fol-
lowing.

Definition 2.27 The head and tail transition matrices of G are the V×V matrices

defined by

−→
T := A in (Dout)−1

and
←−
T :=

(

D in
)−1

A in,

provided G has no sinks or sources, respectively.

By (2.25) one sees that

−→
T = Id−−→N

(

Dout)−1
and

←−
T = Id−

(

D in
)−1

K in.

Indeed, applying (2.7) one finds that the v−w-entries of
−→
T and

←−
T are

−→τ vw :=

{

γ(e)

degout
γ (w)

if e= (w,v) ∈ E,

0 otherwise,
and ←−τ vw :=

{

γ(e)

degin
γ (v)

if e= (w,v) ∈ E,

0 otherwise,
(2.28)

respectively. Thus,
−→
T is column stochastic and

←−
T is row stochastic. In particular, 1

is an eigenvalue of
−→
T T with an associated positive eigenvector, but the associated

eigenspace need not be one-dimensional.

Definition 2.28 Let G be finite and with no sinks. Let J denote the V×V matrix all

of whose entries are |V|−1. A Google-matrix is any V×V-matrix of the form

Gd := (1−d)J+d
−→
T , for some d ∈ (0,1).

Both J and
−→
T are positive matrices, thus each Google-matrix is positive. By

properly fitting the value of d one can furthermore enforce irreducibility of Gd and
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conclude by the Perron–Frobenius theorem that Gd has a dominant eigenvalue and
that exactly one of the associated eigenvectors, denoted by prd , is both strictly pos-
itive and normalized. This is called Perron eigenvector.

Definition 2.29 Let all nodes in G satisfy degout(v)> 0. Let d ∈ (0,1) be such that

Gd is irreducible. Then the Perron eigenvector prd of Gd is called Google-PageRank
with parameter d.

The original Google algorithms also require to deal with a huge digraph, corre-
sponding to the World Wide Web, that is not strongly connected. In particular, the
WWW does contain nodes of outdegree 0 – dangling links, in Google’s jargon: think
of most files on arXiv.org – but also several further mathematical issues had to
be solved: we refer to [269] for a detailed overview.

Google’s success relies upon a fine tuning of this basic idea – the first possible
tuning consisting, of course, in choosing a suitable value of d (accordingly to [71]
“[w]e usually set d to 0.85”). Shifting a matrix to have it satisfy the assumptions
of the Perron–Frobenius theorem may appear very artificial. In [71] S. Brin and L.
Page explain the model behind their idea as follows:

PageRank can be thought of as a model of user behavior. We assume there is a “random

surfer” who is given a web page at random and keeps clicking on links, never hitting “back”

but eventually gets bored and starts on another random page. The probability that the ran-

dom surfer visits a page is its PageRank. And, the d damping factor is the probability at

each page the “random surfer” will get bored and request another random page.

What the metaphor of the random surfer really says is that the Google-matrices
are not quite (oriented versions of) transition matrices of the graph underlying the
WWW, but rather generalized Laplacians of the complete graph K having as many
nodes as the WWW. Its actual connectivity is described by the weights of this K .

Google’s procedure essentially consists in solving a stationary problem. In fact,
by an application of the Neumann series the Google-PageRank can be computed as

prd = d
∞

∑
k=0

(1−d)k(Gd)
k1,

so that efficiency of Google’s search algorithm is related to speed of convergence to
equilibrium of the discrete dynamical systems governed by the powers of Gd . Al-
ternative pageranks have been proposed that make use indeed of partial differential
equations – i.e., of continuous dynamical system. In particular, the following has
been proposed by F. Chung in [103].

Definition 2.30 Let t ≥ 0 and f ∈ RV. The heat kernel pagerank with parameters
t, f is the vector

e
t
(−→
T −Id

)

f := e−t
∞

∑
k=0

(−t)k

k!

(−→
T
)k

f .

Let us neglect the damping term (1− d)J, which appears mostly for technical

reasons. What does the model behind the usage of
−→
T consider as particularly wor-

thy? Apparently, taking
−→
T 1 the outcome of the node v is larger (more authoritative

arXiv.org
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WWW-page) if it receives many links (i.e., large γ(e)) from preceding pages w, and
if these are otherwise not linking much (i.e., low degout

γ (w)). Thus, what this model
describes is a transfer of credibility: Each time a page links another, it loses a bit of
its opinion-making power and gives it away to the linked page.

Remarks 2.31 (1) The advective (rather than diffusive) nature of the pagerank

paradigm is even clearer if one considers the heat kernel pagerank instead. Indeed,

−→
T − Id =−

(−→
N (Dout)−1

)T

,

hence
−→
T − Id can be interpreted as a normalized version of the advection matrix−→

N .

(2) The tail transition matrix
←−
T yields yet other pageranks that measure how

much a WWW-page is likely to receive only a few endorsements, but rather strong

ones: e.g., this could be used to filter mainstream pages if one is interested in search-

ing only a rather sectorial word usage.

2.1.8 The Dirac matrix

The Dirac equation is the fundamental law of relativistic quantum mechanics. It is
an evolution equation associated with the differential operator we will introduce in
Section 2.2.3 below. Similarly to the more usual Schrödinger equation, the Dirac
equation cannot usually be solved analytically: A favorite approach is rather to dis-
cretize it and thus to study the spectrum of the emerging difference operator. Several
ways of discretizing the Dirac equation exist, each with its advantages and draw-
backs. The one we are going to present is one of the most common.

One discretizes the space-time R4 replacing R4 by the d-dimensional lattice Z4.
We turn Z4 into a weighted oriented graph introducing an edgewise constant weight
µ ≡ a, i.e., a lattice constant a that – unlike in all previous sections of this chapter –
is going to interpreted as the length of an interval, cf. Examples A.11 and A.16. The
4-dimensional lattice is bipartite with respect to the partition Z4 = Z4

+∪Z4
−, where

Z4
± correspond to all nodes x with x1 + x2 + x3 + x4 even or odd, respectively. This

naturally defines two sublattices.
Observing that by definition for each x ∈ Z4 and k ∈ {1,2,3,4} both e

+
k,x :=

(x,x+ ek) and e
−
k,x := (x− ek,x) belong to E, where ek is the k-th canonical basis

vector of R4, one sees that

f (x+ ek)− f (x− ek) = ( f (x+ ek)− f (x))+( f (x)− f (x− ek))
= ∑

y∈Z4
ιye+

k,x
f (y)− ∑

y∈Z4
ιye−

k,x
f (y)

= (I T f )(e+k,x)+(I T f )(e−k,x).

(2.29)

Therefore, one is led to introduce the following.
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Definition 2.32 Let a > 0. The operator D̃S on CZ
4

defined by

(

D̃S f
)

(x) :=
1

2a

4

∑
k=1

εk(x)( f (x+ ek)− f (x− ek))

=
1

2a

4

∑
k=1

εk(x)(I
T f )(e+k,x)+(I T f )(e−k,x)

is called staggered or Kogut–Susskind Dirac matrix on the 4-dimensional lattice

Z4, where

εk(x) :=















1 for k = 1,
(−1)x1 for k = 2,
(−1)x1+x2 for k = 3,
(−1)x1+x2+x3 for k = 4,

for all x ∈ Z
4.

Of interest for the physicists is the associated Schrödinger-type equation

D̃s f (x) = 0, x ∈ Z
4,

and in the limit a→ 0 one expects to recover the “continuous” Dirac operator D act-
ing on functions defined on R4, cf. Section 2.2.3 below. The most relevant property
of D̃s is that by (2.29)

D̃2
s f (x) =

1
4a2

4

∑
k=1

( f (x+2ek)−2 f (x)+ f (x−2ek))

=
1

4a2

(

−8 f (x)+
4

∑
k=1

(

f (x+2ek)+ f (x−2ek)
)

)

.

Apart from the scaling factor 1
4a2 , −D̃2

s may thus be interpreted as a discrete Lapla-
cian – or, more precisely, as a pair of discrete Laplacians, each acting on either of
the sublattices:

−4a2D̃2
s f (x) =

{

L
Z

4
+

f (x) if x ∈ Z4
+,

L
Z

4
−

f (x) if x ∈ Z4
−.

(Observe that these two Laplacians are not generalized Laplacians of Z4.)

2.1.9 Difference operators on line graphs

In Section 2.2 we will introduce differential operators acting on spaces of functions
defined on a metric graph’s edges. As a warm up we consider some operators acting
on functions defined on the edges of a (discrete) oriented graph G – that is, on edges
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seen as lumped, dimensionless objects. Equivalently, we can study corresponding
operators defined on the nodes of the associated oriented line graph GL, cf. Defini-
tion A.21.

Like in the case of any other graph, also the connectivity of the line graph GL of
G is of course determined by its degree matrix DL and its adjacency matrix AL. The
relevant function space is here CE = CVL . We will see that DL,AL can in turn be
described in terms of matrices of the original graph G.

Matrix multiplication yields the following.

Proposition 2.33 Let GL be the weighted oriented line graph of G. Then the inci-

dence matrices I +,I − and the weight matrix C of G as well as the adjacency

matrices A in
L ,A out

L of GL satisfy

I +T
I −C = A out

L and C I −
T
I + = A in

L . (2.30)

We will see in Section 2.2.2 that the following matrices, which have been intro-
duced in [253], play an important role for the analysis of advection processes on
metric graphs.

Definition 2.34 The head and tail normalized adjacency matrices of the line graph GL

of G are

−→
B := C I −

T
(Dout)−1I + and

←−
B := I −

T
(D in)−1I +C , (2.31)

respectively, provided G has no sinks or sources, respectively.

Remarks 2.35 (1) The name we have given to
−→
B,
←−
B can be explained observing

that their e− f-entries are

{

γ(e)

degout
γ (einit)

if fterm = einit,

0 otherwise,
and

{

γ(f)

degin
γ (fterm)

if fterm = einit,

0 otherwise,

(2.32)
respectively. That is, the e− f-entry of

−→
B vanishes unless (f,e) ∈ EL, in which case

it agrees with the proportion of γ(e) among the weights of all edges that follow f.

Likewise, the e− f-entry of
←−
B vanishes unless (f,e) ∈ EL (again!), in which case it

agrees with the proportion of γ(f) among the weights of all edges that precede e.

This shows that
−→
B is column stochastic, while

←−
B is row stochastic.

(2) As suggested in Remark 2.31 for
−→
T , one can regard

−→
B as a matrix that shifts

some quantity from one edge to the following ones, splitting it in accordance with

certain preference rules.

(3) Upon factorizing them as

−→
B =

(

C I −
T
(Dout)−1

)

I + and
←−
B = I −

T
(

(D in)−1I +C
)

, (2.33)

one is now motivated to consider the V×V matrices
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I +
(

C I −
T
(Dout)−1

)

and
(

(D in)−1I +C
)

I −
T
, (2.34)

which are in turn the matrices
−→
T ,
←−
T introduced in Section 2.1.7.3, respectively.

By (2.33)-(2.34), a well-known result in linear algebra implies that the sets of

nonzero eigenvalues of
−→
T ,
−→
B (resp.,

←−
T ,
←−
B) coincide.

(4) In view of Remark 2.4.(2), even if G is unweighted one should distinguish

between the adjacency matrix AL = A in
L +A out

L of the oriented line graph and the

adjacency matrix ˜AL of its underlying simple graph. In the non-oriented case, the

relation J T J = 2Id+ ˜AL between the signless incidence matrix introduced in 2.3

and the E×E adjacency matrix AL of GL is well-known, cf. [180, Lemma 8.2.2]. In

the light of the above caveat, one should not be surprised by the differences between

this formula and (2.30).
(5) By (2.14), λ 6= 0 is an eigenvalue of Q if and only if λ 6= 0 is an eigenvalue

of 2Id+ ˜AL.

The normalized adjacency matrices are at the basis of an object that play a fun-
damental role in scattering theory. To introduce it, we must for once abandon the
setting of simple graphs.

If e ∈ E, then we denote as in Definition A.1 by ē its reversed edge. We con-
sider the (non-simple) weighted digraph G := (V,E,µ) introduced in Remark A.12.
Recall that by Definition A.14 γ(e) = µ(ē) for all e ∈ E.

Definition 2.36 The node scattering matrix of G is the E× E-matrix S := (σef)
defined by

σef :=















2 γ(e)
degγ (eterm) −1, if e= f̄,

2 γ(e)
degγ (eterm) , if eterm = finit but e 6= f̄,

0, otherwise.

Here we are denoting by degγ the degree function in G, which is clearly iden-

tical with both the indegree and the outdegree functions in G: this shows the rela-
tion to the above normalized adjacency matrices. Roughly speaking, σef describes
how likely it is that a particle hopping between edges of G, and currently on e,
gets transmitted into a new edge (f 6= e) or reflected back into e (f̄ = e); these
probability densities sum up to 0 in each node. Thus, the likelihood of a path
(v1, . . . ,vn+1),(e1, . . . ,en) is encoded in the coefficient

σ(C) := σe1e2 · · ·σen−1en . (2.35)

2.2 Differential operators on metric graphs

We have already mentioned in Section 2.1.4.1 that in the classical matrix theory
of electric networks γ,µ are interpreted as conductance as resistance, respectively.
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In particular, µ can be regarded as (proportional to) the length. Since we want to
discuss differential properties, it seems therefore more natural to construct a

metric graph G := (V,E) over G= (V,E,µ)

(in the sense of Definition 3.12), rather than over (V,E,γ). (It is clearly only a matter
of notation, but in this way we can keep the role of the edge weight µ consistent
with our electrostatic interpretation of circuits in Section 2.1.4.1, where γ was rather
considered as inversely proportional to the length of an edge.)

In the following a function over a metric graph G will be usually denoted by u.
Its value in a point x of G may be denoted by u(x), but we will usually rather adopt
the notation

ue(x) := u(e,x) x ∈ (0,µ(e)),

whenever x is a point of the metric edge associated with e, or

u(v) :=

{

u(e,0) if v = einit,
u(e,1) if v = eterm.

Clearly, any operator that acts on functions on an interval determines an operator
acting on functions over a metric graph G = (V,E) – this is done by extending the
operator’s definition edgewise.

Example 2.37 Given a function p : G→ C, we can define a multiplication operator
Mp by

(Mpu)e(x) := pe(x)ue(x) for u : E→ C, x ∈ (0,µ(e)), e ∈ E. (2.36)

(We can likewise extend Mp to an operator acting on functions defined also in the

nodes, of course.)

Whenever we want to extend to the network setting a differential operator, how-
ever, boundary conditions have to be prescribed. The relevant issue in this section
is to determine which are the most suitable boundary conditions – or rather, node

conditions – for differential operators on metric graphs. It seems that there are es-
sentially two possible approaches:

• The first one consists of choosing exactly those node conditions that enforce
the behavior one expects on the basis of analogies with other known physical
systems: e.g., finite speed of propagation in the case of an advective problem,
parabolic maximum principle in the case of a diffusive one, etc.

• In the second one, to begin with we choose the usual discretization A of the
relevant differential operator A (say, the discrete Laplacian or an advection ma-
trix for the second or first derivative operator, respectively) and consider it on
the node space of the given metric graph. Then, we start subdividing the edges,
thus clearly obtaining more and more inessential nodes, i.e., of nodes with two
neighbors that formerly belonged to the interior of the original metric edge. If the
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discretized version is well-behaved, in the limit the values A u(v) in the inessen-
tial nodes v should converge towards the values Au(x) in the same points x ≡ v.
In the ramification nodes, however, we can usually recover a sequence of con-
ditions whose limit as the subdivision becomes finer and finer delivers a natural
node condition for the operator A.

We have begun Section 2.1 showing how to define a version of the Laplace oper-
ator for discrete graphs, and have subsequently discussed the advection matrix – the
pendant of a first order differential operator. We have chosen to progress in this or-
der since the latter operator is in a certain sense slightly less natural, as it relies upon
the non-isotropic geometry of an oriented graph. We are going to follow a similar
path in the case of differential operators on metric graphs, too, beginning with the
second derivative.

Remark 2.38 When reading the following sections, one should bear in mind that

metric graphs (in the sense of structures whose dimension is one) do not exist in the

physical world, strictly speaking. Though, they are useful idealizations of higher-

dimensional structures, if one size is largely predominant (think of a river or a wire,

or perhaps of the axon inside a neuron, cf. Chapter 5) or if all but one dimensions

are irrelevant for describing a certain system (say, a set of trains moving along a

railway network). While it is comparatively easy to study a one-dimensional opera-

tor’s behavior, as we are going to see, there is a priori no reason why this should give

precise information about the real, higher-dimensional structure one is approximat-

ing. This natural question was studied in [109] and later on it got to become very

popular after the further advances in [162, 260, 365], cf. the monograph [348] and

the long list of references therein. However, naive but ingenious forerunners of one-

dimensional approximation methods had been proposed already back in the 1940s

by G. Kron and others, see e.g. [256]. Convergence of non-self-adjoint operators is

more delicate and has been treated in [310].

2.2.1 The second derivative

Let us begin studying the paradigmatic case of a Laplacian on G: We can define a
second derivative operator edgewise by

ue 7→
d2ue

dx2 for ue : [0,µ(e)]→ C, e ∈ E.

In the case of the second derivative, the node conditions typically prescribe the
behavior of the normal derivative, and therefore depend on the metric of the graph.
We choose to rescale the graph’s edges by considering the isomorphism defined by

(Ψu)e(x) := ue

(

x

µ(e)

)

, for ue : [0,1]→ C, x ∈ [0,µ(e)], e ∈ E. (2.37)
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In this way we have effectively stretched or shortened the network’s edges in such
a way that all of them have unit length. The price we have to pay is that we have
to replace the second derivative by a more general elliptic operator. More explicitly,
we obtain

Ψ
d2

dx2Ψ−1 = C 2 d2

dx2 . (2.38)

This operator C 2 d2

dx2 acts by

ue 7→
1

µ(e)2

d2ue

dx2 ≡ γ(e)2 d2ue

dx2 for ue : [0,1]→ C, e ∈ E. (2.39)

We can now follow again the Ansatz proposed in the introduction of Section 2.2
in order to determine correct boundary conditions for this operator. To do so, we
make use of the discretization underlying the equations that describe the distribution
of potential in an electric network sketched in Section 2.1.4.1. (Even if one is not
specifically interested in diffusion of electric potential, one may regard that setting
as prototypical for physical phenomena of diffusive type.)

In view of (2.39) the correct discrete version of the diffusion operator on G is the
Laplace–Beltrami matrix with coefficients γ2, i.e.,

I C 2I T .

Given a node v and an incident edge e we will interpret the value ue(x) of a func-
tion u as the electric potential at a point x of the edge e. We will need two linearly
independent conditions for each edge, and by the Handshaking Lemma applied to
the underlying unweighted graph this amounts to imposing in each node v a number
of linearly independent conditions equal to the number of incident edges.

Ohm’s law imposes a proportionality between current and voltage (i.e., difference
of potential). Upon taking an infinitely fine subdivision of G, this can be interpreted
as a requirement of proportionality

∂γ2 ue

∂n
(v) = γ(e)2ιveu

′
e(v). (2.40)

between the current
∂

γ2 ue

∂n
(v) flowing through e into v and the voltage ιveu

′
e(v) along

e evaluated at v by a factor given by the conductance γ(e)2: (2.40) is nothing but the

definition of conormal derivative
∂

γ2 ue

∂n
, cf. Definition B.2.

Kirchhoff’s current law is just as easy to interpret: It states that in an electric
network the total incoming current flowing into each node has to be equal to the
total outgoing current flowing out of the same node, i.e., the net current has to
vanish. In our context and in view of the previous rule, this means that

∂
γ2 u(v) = 0, for all v ∈ V, (Kc)

where
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∂
γ2 u(v) := ∑

e∈Ev

∂γ2 ue

∂n
(v)≡ ∑

e∈E
ιveγ(e)

2u′e(v), v ∈ V. (2.41)

For obvious reasons, this is usually referred to as Kirchhoff condition (on the normal
derivative). Observe that the terms γ(e)2u′(v) are added or subtracted depending on
whether the node v is terminal or initial endpoint of e, hence this node condition
seems to depend on the orientation of the graph – but, just like in the discrete case,
this is only apparent, because re-orienting an edge forces the voltage to change sign.

In each v we have so far imposed only one boundary condition – using the no-
tation in (2.4), we still need deg(v)− 1. In order to complete our task, we need a
condition on the evaluations of ue at their endpoints corresponding to v. In Kirch-
hoff’s voltage law the potential function f is defined in the nodes: This suggests that
we may look for a condition that reproduces the univocal node definition of discrete
potential functions. Due to physical intuition (in the motivating example, potential
does not make jumps in a node) we decide to impose a continuity condition in the
nodes: More precisely, we assume equality of the values ue(v) for all |Ev| edges e

that are incident at v,

ue(v) = uf(v) =: u(v), for all e, f ∈ Ev, v ∈ V, (Cc)

with the notational convention

ue(v) :=

{

ue(0) if v = einit,
ue(µ(e)) if v = eterm.

(2.42)

(Denoting by u(v) the joint value of all ue at their respective endpoint corresponding
to v seems appropriate and natural, but we should bear in mind that this is solely jus-
tified by condition (Cc).) Observe that (Cc) yields at each v the |Ev|−1 conditions
we were looking for.

Remark 2.39 The Kirchhoff condition becomes a Neumann boundary condition in

each leaf – recall Definition A.3. It amounts to prescribing continuity of the first

derivative on each inessential node. Hence, we can add a new node in each interior

point of a metric edge and find that each smooth function in the original graph de-

fines a function in the new graph that automatically satisfies (Cc) and (Kc)- This

shows that the assumption of simplicity on the weighted graph underlying a metric

graph is not restrictive at all, since we can always artificially subdivide an edge

and thus produce a new simple graph that induces equivalent standard node condi-

tions. Conversely, we can always remove an inessential node, thus obtaining a new

function that is smooth on the new, longer metric edge.

Using the incidence matrices I +,I − we can re-write these conditions in a more
compact way. Condition (Cc) is equivalent to the existence of

u|V ∈ C
V

(which is then necessarily unique, by linearity) such that
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I −
⊤

u|V = u(0) and I +⊤u|V = u(1) : (2.43)

We denote in this case
u|V ≡ (u(v))v∈V.

Similarly, condition (Kc) is satisfied if and only if the weight and the incidence
matrices satisfy

I +C 2u′(1)−I −C 2u′(0) = 0. (2.44)

This suggests the generalized Kirchhoff conditions

∂
γ2 u(v)+W u|V = 0, (KRc)

where W is some linear operator on CV and ∂
γ2 u(v) has been introduced in (2.41).

Thus, we can finally introduce the following.

Definition 2.40 Let W be a linear operator on CV. The second derivative (or Lapla-
cian) on G with standard node conditions is

∆u :=
d2u

dx2 for u : [0,1]→C
E s.t.

∃u|V ∈ CV s.t. (I −)⊤u|V = u(0), (I +)⊤u|V = u(1),

and I +u′(1)−I −u′(0)+W u|V = 0.
.

A function u such that ∆u = 0 is called harmonic.

More generally, for a given function c : [0,1]→CE the elliptic operator (or some-

times Laplace–Beltrami operator) on G with elliptic coefficients c2 and standard
node conditions is

∇(c2∇u) :=
d

dx

(

c2 du

dx

)

for u : [0,1]→C
E s.t.

∃u|V ∈ CV s.t. (I −)⊤u|V = u(0), (I +)⊤u|V = u(1),

and I +c2(1)u′(1)−I −c2(0)u′(0)+W u|V = 0.
.

Example 2.41 Taking W = 0 we of course recover the node conditions (Cc)−(Kc)
(continuity and Kirchhoff).

If more generally W is diagonal, then (Cc)− (KRc) are often jointly referred

to as δ -coupling in mathematical physics, where the expression “Kirchhoff condi-

tions” is for some reasons deprecated. In analogy with the Robin boundary condi-

tions, considered in the theory of partial differential equations, we will rather refer

to them as continuity and Kirchhoff–Robin node conditions if W 6= 0.

An especially interesting case is that of W = −L , where L is the Laplace–

Beltrami matrix of the graph introduced in Definition 2.11. These conditions arise in

the Friedrichs–Krein–von Neumann theory of extensions of self-adjoint operators.

Also in view of Remark 2.48 below, ∆ with conditions (Cc)− (KRc) for W =−L
turns out to be the so-called Krein–von Neumann extension (cf. [368, § 14.8], [21])

– i.e., the largest self-adjoint, negative definite extension among those that respect

the connectivity of the graph by including the continuity node conditions (Cc) – on

L2
(

(0,1);ℓ2
µ(E)

)

of the second derivative defined on test functions over G. Some

properties of this and related realizations have been studied in [302].
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2.2.2 The first derivative

Again, we follow the latter approach discussed at the beginning of Section 2.2 and
use the ideas of Remark 2.35 in order to associate

−→
B with a boundary condition for

a differential operator that models advection, which can be defined edgewise in a
natural way by

ue 7→ k
due

dx
for ue : [0,µ(e)]→ C, e ∈ E, (2.45)

for k = +1 or k = −1. First order differential operators are routinely used for de-
scribing physical phenomena of transport or advection type. One has to assign ex-
actly one boundary condition to the first derivative on an interval, thus |E| boundary
conditions in case of a metric graph with edge set E. It turns out that for the first
derivative on an interval one cannot freely choose on which endpoint a condition
must be imposed. Indeed, the correct endpoint is the right one if k = +1, and the
left one if k =−1.

Let us for a moment restrict ourselves to the case of k =+1. On an interval (0,1)
we may for instance impose the Dirichlet boundary condition u(1) = 0. But this
choice is inappropriate on a network, as the operator would then effectively decay
into a mere collection of decoupled first derivative operators on unrelated intervals.

Instead, thinking of u(x) at each point x of the graph as a density, we would like
to push u(x) through a node into the outgoing edges. For each node v and each
edge e whose terminal endpoint is v, the most natural choice is to split the value of
ue(v) into several parts, proportionally to the weights of the outgoing edges – that
is, imposing the condition

ue(v) = ∑
f∈E+

v

←−
β efuf(v),

where
←−
B = (

←−
β ef) is the E×E normalized adjacency matrix of the line graph of G

defined in (2.31). Row stochasticity of
←−
B ensures that there is no loss of mass.

As in the previous section we prefer to rescale the arguments of functions on a
networks in order to obtain edges of unit length. This is done again by applying
the unitary transformation Ψ defined in (2.37). In this way (plus or minus) the first
derivative is transformed and we obtain

Ψ

(

± d

dx

)

Ψ−1 =±C
d

dx
:

This operator acts by

ue 7→
1

µ(e)

due

dx
≡ γ(e)

due

dx
for ue : [0,1]→ C, e ∈ E. (2.46)
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Definition 2.42 The first derivative on the metric graph G with standard boundary
conditions is the operator

←−
A defined by

←−
A u :=

du

dx
for u : [0,1]→ C

E s.t. u(1) =
←−
Bu(0).

Likewise, (minus) the first derivative on G with standard boundary conditions is

−→
A u :=−du

dx
for u : [0,1]→ C

E s.t. u(0) =
−→
Bu(1).

We stress that in this definition the orientation of G does play a role. Observe also
that the formal adjoint of

←−
A is instead given by

←−
A ∗u =−du

dx
for u : [0,1]→ C

E s.t. u(0) =
←−
BT u(µ).

Remark 2.43 Different node conditions may also be justified if one drops the as-

sumption of mass conservation – e.g., because one is modeling non-advective phe-

nomena. For instance, it turns out that for the study of traveling waves in [42, § 16]

the first derivative has to be equipped with continuity condition (Cc).
Besides the first derivative with continuity node conditions (Cc), which we de-

note by
←−
A C, one may also consider the first derivative

←−
A K with a Kirchhoff-type

condition analogous to (Kc) – this time not imposed on the normal derivatives, but

rather on the values of the function, i.e.,

∑
e∈Ev

γ(e)u(v) = 0, for all v ∈ V. (Kc’)

A direct computation shows that the second derivative ∆ with standard node condi-

tions can be factorized as

∆ =
←−
A K
←−
A C =

←−
A ∗C
←−
A C. (2.47)

Furthermore, one can check that AC,AK are mutually adjoint with respect to a nat-

ural inner product – more precisely, to the inner product of the Hilbert space L2(G)
defined in Section 3.2 below.

Also, one may consider a coefficient c ∈ iR in (2.45). In consideration of Exam-
ple B.9 we introduce the following.

Definition 2.44 For any E×E-matrix U , a momentum operator on G is defined by

Ãu := i
du

dx
for u : [0,1]→ C

E s.t. u(0) = U u(1).

It is convenient for later purposes to describe an alternative description of the
same operators. Applying the isomorphism Ψ defined in (2.37) we namely obtain
Ψ
←−
AΨ−1 = C d

dx
, i.e., Ψ

←−
AΨ−1 is the operator defined edgewise by
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ue 7→ γ(e)
due

dx
for ue : [0,1]→ C, e ∈ E,

with node conditions
u(1) =

←−
Bu(0).

This corresponds simply to a change of measurement units that forces all edges to
have unit length. Similar expressions can be obtained for

−→
A and Ã.

2.2.3 The Dirac operator

The Dirac equation is the fundamental equation of relativistic quantum mechanics.
Mathematically speaking, it is a hyperbolic system of first order partial differen-
tial equations whose unknown is a function with values in C4. Hence, the relevant
Hamiltonian – the so-called Dirac operator – can be represented as an operator ma-
trix that bears some formal similarity to the first derivative operators introduced in
the previous section.

The Dirac operator can be also defined on metric graphs as follows. Up to some
multiplicative constant (possibly different on each edge) we may as in the previous
section assume without loss of generality that all edges have unit length.

Definition 2.45 For any E× E-matrices Z1,Z2 a Dirac operator on G for two-
component spinors is defined by

Du :=−ih̄c

(

0 − d
dx

d
dx

0

)

u+mc2
(

Id 0
0 − Id

)

u for u : [0,1]→ C
E×C

E,

with node conditions

Z1u+Z2u = 0

where

u :=

(

u1(0)
u1(1)

)

, u :=

(

−u2(0)
u2(1)

)

, for u≡
(

u1

u2

)

: [0,1]→ C
E×C

E.

We have already met a discretized version Ds of the Dirac operator in Sec-
tion 2.1.8. Likewise, also D squares to an elliptic-type operator acting on vector-
valued functions u : [0,1]→ CE×CE (we have neglected for simplicity the node
condition). More precisely, one has

D2u = h̄2c2
(

Id 0
0 Id

)

u′′−2ih̄mc3
(

0 Id
Id 0

)

u′+m2c4
(

Id 0
0 Id

)

u, (2.48)

and in particular D2 is simply a Laplacian acting on C2-valued functions if h̄= c= 1
and m = 0. Operator of this kind are sometimes called Pauli operators.
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2.2.4 Higher derivatives

Partial differential operators of fourth order have been crucial in the theory of elastic
beams since the pioneering work of L. Euler. Of course, fourth order operators need
four different boundary conditions that have to be carefully chosen to reflect model-
oriented physical properties – in fact, most of them can be derived from a physically
meaningful model. For the sake of simplicity we have chosen to present only the
following simple one, see e.g. [129]. It is based on a common construction, that of
power of an unbounded operator: If A is operator with domain D(A) on a Banach
space X , its square A2 has domain

D(A2) := {u ∈ D(A) : Au ∈ D(A)} .

Thus, each Au has to satisfy the same conditions imposed on u. This leads to the
following.

Definition 2.46 For any V×V-matrix W the fourth derivative (or bi-Laplacian) on
G with standard node conditions is the operator defined by

∆ 2u := γ(e)4 d4u

dx4 for u : [0,1]→C
E s.t.

∃u|V, ũ|V ∈ CV with

(I −)⊤u|V = u(0), (I +)⊤u|V = u(1),

(I −)⊤ũ|V = u′′(0), (I +)⊤ũ|V = u′′(1),

I +C 2u′(1)−I −C 2u′(0)+W u|V = 0,

and I +C 4u′′′(1)−I −C 4u′′′(0)+W ũ|V = 0.

A function u such that ∆ 2u = 0 is called bi-harmonic.

Elliptic operators of order 2n, n≥ 3, may be of course defined likewise, but they
do not appear often in models of applied mathematics.

2.3 Hybrid operators on metric graphs

We have so far considered two classes of operators: On the one hand, those in Sec-
tion 2.1 act on sequences, i.e., on functions defined on a discrete set; on the other
hand, the operators treated in Section 2.2 deal with spatiality, as their arguments are
functions defined on a continuum of points. In this section we present two operators
that we regard as hybrid, as they combine both aspects. Neither of them is a dif-
ferential operator, but both do build on the definition of the second derivative with
standard node conditions.
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2.3.1 The Dirichlet-to-Neumann operator

Each time one considers a second order differential operator on a domain U ⊂ Rd

with smooth boundary ∂U , one can also introduce a further operator that acts on
functions defined on ∂Ω . Indeed, choosing f : ∂U → C in a suitable function space
it is possible to solve uniquely (in a weak sense) the elliptic boundary value problem

{

∇ · (c2∇u)(x) = 0, x ∈U,
u(z) = f (z), z ∈ ∂U,

(2.49)

see e.g. [160, Chapter 6]. Then the Dirichlet-to-Neumann operator DN acts on f by
taking the conormal derivative (with respect to c2) of the solution u of (2.49), i.e.,

DN f :=
∂

c2 u

∂ν
, where u is the weak solution of (2.49).

By definition, DN is a linear operator whose arguments are functions defined on ∂U ,
rather than on U .

Defining a Dirichlet-to-Neumann operator on the metric graph G does not re-
quire particular skills in partial differential equations. To begin with, we fix a node
set V0 ⊂ V which we consider as boundary of the graph. We replace the space of
functions over ∂U by CV0 and the second order differential operator ∇ · (c2∇) by
the second derivative – with a suitable elliptic coefficient that allows us to renorm
each interval [0,µ(e)] to [0,1].

Unlike in 2.2.1, we do not impose everywhere the same node conditions: (Cc)
has to hold on each v ∈ V (and hence the vector u|V of node values is well-defined),
but (Kc) is imposed only on

V
C
0 = V \V0.

Then, our aim is to impose a boundary value at each node in V0, find a piecewise
affine, twice weakly differentiable function u that additionally satisfies (Cc) in each
node and (Kc) only in V

C
0 , and finally read off its net current at each node that

belongs to V0.
More precisely, using the notation ∂

γ2 u introduced in (2.41) we consider the fol-

lowing vector-valued system, a pendant of the boundary value problem (2.49):















γ(e)2u′′e(x) = 0, x ∈ [0,1], e ∈ E,
∂

γ2 u(v) = 0, v ∈ V
C
0 ,

∃u|V ∈ CV s.t. (I −)⊤u|V = u(0), (I +)⊤u|V = u(1),
u(v) = f (v), v ∈ V0,

(2.50)

for a given f ∈ CV
0 . This problem admits always a solution.

Definition 2.47 For some V0 ⊂ V the Dirichlet-to-Neumann operator on G with
respect to the boundary set V0 is the operator defined by
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DN f :=
∂

c2 u

∂ν
, where u is the unique weak solution of (2.50).

The solution to (2.50) is necessarily a vector-valued affine function u(s) := Ps+
Q, s ∈ [0,1], for some coefficients P,Q ∈ CE that have to satisfy

(I −)T u|V = Q, (I +)T u|V = P+Q on V,

as well as
I +C 2P−I −C 2P = DN f on V0, (2.51)

by (Cc) on V and (Kc) on V0, respectively.
This amounts to deg(v) conditions – recall the notational convention in (2.4)! –

deriving from (Cc) in each v ∈V0, deg(v)−1 conditions deriving from (Cc) in each
v ∈ V

C
0 , and one condition deriving from (Kc) in each v ∈ V

C
0 . All these conditions

are linearly independent. We thus arrive at a total of

∑
v∈V0

deg(v)− ∑
v∈VC

0

(deg(v)−1)−|VC
0 | = ∑

v∈V0

deg(v)− ∑
v∈VC

0

deg(v)

= ∑
v∈V

deg(v) = 2|E|

linearly independent conditions, where the last identity follows by the Handshaking
Lemma. It is therefore always possible to recover P,Q and hence to find a solution
u of (2.50). In particular, an extension operator

E : C
V0 ∋ f 7→ u|V ∈ C

V

is well-defined and satisfies
I T E f = P.

Recalling that I = I +−I − we conclude from (2.51) that

DN f (v) := ∂
γ2 u(v) = I C 2P(v) for all v ∈ V0,

hence
DN = I C 2I T E =: L E,

where L is the Laplace–Beltrami matrix.

Remark 2.48 In particular, the Dirichlet-to-Neumann operator with respect to V0

agrees with the Laplace–Beltrami matrix L if V0 = V.

2.3.2 The Laplacian with standard and dynamic node conditions

Let V0 ⊂ V. We consider the associated metric graph G in order to work with func-
tions spatially defined on the intervals associated with the edges, but we also want to
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take into particular account their values in the nodes belonging to V0, which are re-
garded as massive enough to influence the behavior of the whole system. We define
the operator matrix

∆ :=

(

∆ 0
−∂

γ2 −W1

)

,

which acts on vectors u := (u, f ), for u : [0,1]→ CE and f := u|V0
∈ CV0 (in the

sense of (2.43)), just like a naive multiplication of a 2×2 matrix and a 2×1 matrix
would – apart from the fact that some node conditions have to be imposed. Here
W1 is some linear operator on CV0 that may or may not respect the structure of the
graph: one may, e.g., think of a diagonal matrix, or rather of a Laplace–Beltrami
matrix on the subgraph of G induced by V0.

The operator ∆ from Section 2.2.1 has too many node conditions for our current
purposes. In particular we want ∂

γ2 to be a non-vanishing entry of ∆. Therefore, we

define ∆ on pairs (u, f ), where u is a functions that is merely continuous in the nodes
(no Kirchhoff-type condition!), and f is exactly the value attained by u in the nodes.
More precisely, we introduce the following.

Definition 2.49 Let V0 ⊂ V and let W1,W2 be a V0×V0-matrix and a V
C
0 ×V

C
0 -

matrix, respectively. The hybrid Laplacian on G with standard node conditions on
V

C
0 and dynamic ones on V0 is

∆u :=

(

γ2 d2

dx2 u

−∂
γ2 u−W1 f

)

for u=

(

u

f

)

s.t.

u : [0,1]→ CE, f ∈ CV0 ,
∃u|V ∈ CV with

(I −)⊤u|V = u(0), (I +)⊤u|V = u(1),

I +
VC

0
C 2u′(1)−I −

VC
0
C 2u′(0)+W2u|VC

0
= 0,

and u|V0
= f .

.

(Here I +
VC

0
,I −

VC
0

are the V
C
0 ×E matrices consisting of those rows of I +,I −, re-

spectively, that correspond to the nodes in V
C
0 .)

The name in Definition 2.49 is justified by the evolution equation associated with
∆, which we will meet again § in 6.6.

The null space of the Laplacian with standard node conditions and the null space
of ∆ are isomorphic: Indeed, each harmonic function introduced in Definition 2.40
is the first component of some u ∈ D(∆) (and hence determines u univocally) for
which ∆u = 0.

More generally, if one takes the eigenvalue equation associated with ∆ one finds

γ2 d2

dx2 u = λu, −∂
γ2 u|V0

−W1u|V0
= λu|V0

If we assume u to be smooth enough, evaluating the first expression at the nodes in
V0 and plugging into the second equation yields
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γ2 d2

dx2 u|V0
+∂

γ2 u|V0
+W1u|V0

= 0. (2.52)

This is a special instance of so-called Feller node conditions

αγ2 d2

dx2 u|V0
+β∂

γ2 u|V0
+δW1u|V0

= 0, (2.53)

where α,β ,δ : V → C are not necessarily positive functions that satisfy certain
compatibility conditions.

2.4 Nonlinear operators

We have considered so far only linear operators, which in later chapters will be as-
sociated with linear Cauchy problems. However, in view of applications in several
different fields, and most notably in theoretical neuroscience, nonlinear phenomena
are often an important source of mathematical challenges. While discussing nonlin-
ear evolution equations goes beyond the scope of this book, it seems appropriate to
at least mention a few natural nonlinear extensions of our model.

The analysis of nonlinear operators on discrete graphs originates in the theory of
nonlinear electric networks, and in particular in G.J. Minty’s work [294]. Broadly
speaking, a network is called nonlinear if Ohm’s law is replaced by a more general
nonlinear relation, given by function γ , between current flowing through an edge
and voltage between the edge’s endpoints, say

u(e) = γ(e)
(

I T f (e)
)

= γ(e)
(

f (eterm)− f (einit)
)

.

The rougher γ , the harder the analysis of the network. Among benign nonlinear-
ities we mention the two classes considered in [383, Appendix], where γ is ei-
ther assumed to be continuous, odd, strictly monotone increasing, and satisfying
limx→∞ γ(x) = ∞; or else to be a p-th power for some p ∈ (1,∞). The former class
reflects Minty’s approach but the latter – first introduced in [317] – has a more con-
venient variational structure that leads to introducing the discrete p-Laplacian

Lp f (v) := ∑
w∈V
w∼v

| f (v)− f (w)|p−2( f (v)− f (w)), v ∈ V. (2.54)

Analogous classes of nonlinear operators play a role in the context of consensus
problems, cf. Remark 4.60 below, if one allows for nonlinear protocols, cf. [32, 330].
Also the model proposed by Y. Kuramoto in [262] in his pioneering investigations
on nonlinear oscillators has the same structure, with γ = sin.

Also nonlinear Ohm-type laws of the form

u(e) = I T (Φ f )(e) = Φ( f (eterm))−Φ( f (einit)).
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are frequent in the literature. They lead to quasi-linear operators of the form L ◦
Φ , where Φ : R→ R is suitably smooth and satisfies some appropriate additional
assumption. The analysis of their properties goes back at least to [226]. Operators
defined in a formally similar fashion arise in the theory of the filtration equation on
domains and can be studied introducing suitable Sobolev spaces of negative order. In
the case of graphs we mention the synchronization analysis performed in [223, 306]
in the case of discrete and continuous dynamical systems, respectively. Yet other
different but comparable nonlinear operators arise in some classes of neural models,
like that in (5.6) below.

Semilinear operators on metric graphs are particularly interesting: On one hand
they arise naturally in applications, in particular in neuronal models as well as in
quantum mechanics; on the other hand they may have properties that are typically
different from those of the corresponding operators on intervals. For instance, it
is proved in [415] that the stationary solutions of a certain class of equations (re-
lated in particular of the Hodgkin–Huxley model presented in Chapter 5) display
an exceptional behavior on five classes of graphs, one of which is the plain inter-
val. This is in sharp contrast to the properties of linear differential equations, which
typically extend with only minor changes from individual intervals to more gen-
eral metric graphs – at least under standard node conditions. Semilinear problems
on networks have also been studied, among many others, in [9, 41, 81] (parabolic
equations), [7, 8] (hyperbolic equations), and [2, 10, 25, 64, 311, 363] (dispersive
equations), cf. also [345] for an overview of the Soviet and Russian literature (often
in Russian language) and several sections in the monograph [42].

Unlike the above ones, many common nonlinear network models do not have
such an elementary variational structure: Let us mention e.g. the traffic flows stud-
ied in [106, 176], in which the relevant spatial operators are of type d

dx
◦Φ – a

nonlinear versions of the first derivative on an oriented graph with standard node
conditions. Here Φ is some appropriate flux function, e.g. Φ(x) := x(1−x). The as-
sociated evolution equations are hyperbolic conservation laws and have to be stud-
ied by completely different methods from those of this book, e.g. along the lines
of [160, Chapt. 11]. It is quite interesting that this, which is tightly related to the
inviscid Burgers’ equation, can be seen as the scaling limit of the Asymmetric Sim-

ple Exclusion Process (ASEP), see [355]. The ASEP is a favorite percolation-type
model for transport on Z and some further more general graphs, cf. [315]. It displays
most of the main features of the above differential model, in spite of being discrete
in both time and space, and is therefore often regarded as a discrete traffic model.
Indeed, a few rather subtle connections between percolation and diffusion processes
are known, especially on trees, cf. [343].

2.5 Notes and references

Section 2.1. A complete treatment of general graph theory can be found in several books, includ-
ing [60, 65, 139]. We are particularly interested in algebraic graph theory: We thus especially refer
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to the classical monograph by N. Biggs and by D.M. Cvetković, M. Doob, and H. Sachs [54, 121],
and to the more recent ones by C. Godsil and G. Royle, and by A. Brouwer and W. Haemers,
cf. [73, 180], for the proofs of all results we have mentioned.

Adjacency is a very natural relation. The adjacency matrix frequently appears, possibly under
different names, in applied sciences: it is e.g. dubbed “sociomatrix” in sociology and “connectivity
matrix” in neuroscience.

The study of the Laplacian matrix was initiated, already in the weighted setting, by G. Kirchhoff
(at least implicitly: matrices were to be formally defined in the same years by J.J. Sylvester).
In [237] he introduced L and proved the following result.

Theorem 2.50 Let G be a finite, connected, weighted graph. Consider an arbitrary orientation

of G. Then all minors of L agree and their common value and their common value is

∑cap(T)

where the sum is taken over the set of spanning trees T of G.

In particular, in the unweighted case of µ ≡ 1 each tree has capacity 1 and therefore then the

common value of all minors of L is the number of spanning trees of G.

This is known in graph theory as Matrix-Tree Theorem and was formally (if old-fashionedly)
stated in [72]. Several related results can be found in [180, §§ 13.1–2].

It seems that the matrix L was referred to for the first time as Laplacian in [13]. In fact,
besides the analogies with the Laplace equation of electrostatics sketched in Section 2.1.4.1, there
are further several further reasons to think of L as a Laplacian-type operator.

• Harmonic functions for L satisfy appropriate versions of several equations that are known
to hold for usual harmonic functions in the continuous case, e.g. the following mean value
property: If f ∈ C

V is harmonic, then by construction its value at a certain point v agrees with
the average value of f on the unit sphere centered in v, i.e.,

f (v) =
1

deg(v) ∑
w∼v

f (w).

• Besides the above classical introduction of the discrete Laplacian on the basis of the theory of
electric networks, one may also think of L as the discrete operator associated with a system of
second order ordinary differential equations that govern an elastic system describing a network
of springs. This observation goes back at least to [76] and is usually referred to as “electric
circuit analogy” The study of spring networks has a biological motivation, cf. [57, Chapt. 5].

• A popular problem in machine learning theory consists in recovering the Riemannian metric
of a manifold M, or rather the action of the Laplace–Beltrami operator ∆M on M. Generally,
the rule one is interested in consists in drawing a sample of points (xi)1≤i≤n ⊂ M and then
suitably defining a weight for each pair of points xi,x j , thus turning the sample into the node
set of a weighted graph Gx. The ultimate goal is to show that the Laplace–Beltrami matrix L
of Gx, or perhaps Lnorm or some other related difference operator on Gx, converge to ∆M as
n→ ∞ in a suitable, usually rather technical sense. Several results of this kind are known, cf.
e.g. [35, 107, 207]. Conversely, it is known that in some cases spectral properties of ∆M can be
studied by spectral properties of the Laplace–Beltrami matrix L on some suitable associated
graph, cf. [109].

• This is also related to the discretization scheme in (2.11). That heuristics is one of the main
motivations for introducing L : more generally, in the methods of finite differences one tries to
approximate an (unknown) Green function for a partial differential equation by a sequence of
“discrete” Green functions associated with certain difference problems. This is justified by the
well-known (see e.g. [20, § 9.1]) fact that

|∆u(x)−L u(x)|= O(a2) for all u ∈C4(U) and all x ∈ (0,1),
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where L is the discrete Laplacian of the lattice graph Z, with lattice constant a, one of whose
nodes is x. (We have seen a different but similar application of the same principle in Sec-
tion 2.1.8.) If U ⊂ R, then the condition u ∈C4(U) is not very restrictive, but in higher dimen-
sions non-convex, non-smooth domains U can easily lead to the case of u 6∈C4(U), no matter
how smooth ∆u is. This poses severe restrictions to the application of the finite difference
method in order to discretize domains of R

d for d > 1. Even if U is R
d or a smooth mani-

fold (or perhaps a metric graph), the normalized Laplacian Lnorm seems to yield often a more
convenient and flexible discretization of the usual Laplace (or Laplace–Beltrami) operator than
L .

(On the other hand, Remark 2.48 seems to contradict this point of view. Indeed, whenever U is a
smooth bounded domain of R

d , d ≥ 2, the Dirichlet-to-Neumann operator does not compare with
the Laplace–Beltrami operator on ∂U , but rather with its square root – cf. [158] for details.)

Further cases of emergence of L and its generalizations are collected in [386], the speech
delivered by D. Spielman on the occasion of the award of the Nevanlinna prize in 2010. Laplace–
Beltrami matrices have proved a particularly efficient and handy replacement for Laplace–Beltrami
(differential) operators on manifolds when it comes to produce examples of unusual spectral be-
haviors, see e.g. [381].

The signless Laplacian seems to have been introduced in [132] but its study has gained much
momentum only in the last decade, cf. the survey [120]. An estimate on the largest eigenvalue
of the normalized Laplace based on the smallest eigenvalue of the signless Laplacian has been
discovered in [239]. The Laplacian and signless Laplacian are special cases of a class of operators
defined taking σ ∈ C

V, considering Iσ = (ισ
ve) where

ισ
ve := ι+ve+σ(v)ι−ve, v ∈ V, e ∈ E,

and introducing
Lσ := Iσ I ∗σ . (2.55)

These operators can be interpreted as discrete versions of the Schrödinger operators with a mag-
netic potential and as such have been thoroughly investigated in the series of papers [111, 112, 396].
Observe that Lσ depends on the orientation of G unless σ(v)≡ eiθ . The matrix Lnorm was largely
popularized by F. Chung, cf. [104], although it .

The non-Hermitian matrices K in,K out,
−→
N ,
←−
N are less common than the different versions

of the discrete Laplacians. While one of the fascinating aspects of the Matrix-Tree-Theorem is
precisely the interplay of oriented and non-oriented graphs – that is, the possibility of finding an
invariant of a graph by studying an arbitrary orientation of it – an oriented version of the Matrix-
Tree Theorem exists, cf. [398, Thm. VI.27]. Indeed, all minors of K in agree – and so do those
of K out, by symmetry.

Advection matrices on (oriented versions of) Z act of course as left and right shifts, respectively,
but on general graphs they have been seemingly first studied in [188, § 2.5.6]. Their name is due to
their emergence in a certain discretized version of partial differential equations of advective time.

Heuristically, the relation between
−→
N and advection processes can be explained observing that if

one applies
−→
N to the constant function 1, which can be thought of as a mass distribution, then

the v-th entry of
−→
N 1 yields the quantity of mass gained or lost in transversing v.

Generalized Laplacians have been introduced by Y. Colin de Verdière in [110] in the course of
defining a graph invariant that is now known as the Colin de Verdière number, cf. [180, § 13.9].
Actually, due to his interest in their spectrum he assumed additionally the matrices to be symmet-
ric. The connection between Google PageRank and advection matrices has been stressed already
in [188, § 7.2.1.]. Random walks on suitable configurations, like that associated with the rate ma-
trix, are ubiquitous in applied sciences: Many systems where the actual strength of interaction be-
tween configurations is unknown are for simplicity modeled by complete graphs, see e.g. [55, 67]
for comparable (but much more complicated) settings in statistical physics.
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Following a pattern that is similar to the one that leads to the introduction of the general
Schrödinger matrix Lσ , one can also consider general Dirac matrices by adding general coeffi-
cients in (2.29). The non-trivial spectral properties of such matrices have been studied in [165], cf.
also [95].

A very complete overview of matrices related to random walks and further stochastic processes
on graphs can be found in [56]. Also a huge amount of interesting applications of algebraic graph-
theoretic methods for the analysis of examples from rather different fields of applied sciences is
presented therein.

Section 2.2. Several quantum chemists began in the early 1950s to investigate our ∆ , the second
derivative operator on metric graphs, and were in particular able to conceive the correct node
conditions – the same we have referred to as “standard”. Among them we mention K. Ruedenberg
and C.W. Scherr in [360], J.S. Griffith in [193], and C.A. Coulson in [117, § 4]. Especially Coulson
suggested to use the Schrödinger equation associated with ∆ especially to study the σ orbitals of a
graphite monolayer – i.e., of what is nowadays called graphene – to complement the description of
the π orbitals based on Hückel’s theory. E.W. Montroll further developed these early investigations
and studied in [300] the Hamiltonian ∆ +MV on a metric graph, where the potential potential term
MV is the multiplication by V (x) :=−sech2γx. He went on to show that, depending on the values
of γ , this Hamiltonian interpolates between ∆ and suitable Hückel matrices Hα,β .

G. Lumer has been probably the first who performed a pure mathematical analysis of second
order differential operators on metric graphs. In [278] he introduced the necessary functional set-
ting, proposed a more general class of node conditions, and characterized reality of the associated
spectra. In the 1980s several researchers extended Lumer’s results considering more and more
general node conditions, providing interesting descriptions of the spectrum, discussing nonlinear
and/or higher dimensional operators, and elaborating on the connections with quantum mechan-
ics, among others in [6, 38, 163, 321, 358] and subsequent papers. The latest wave of interest is
connected to the theory of so-called quantum graphs, which we will briefly sketch in Section 7.3.

Lumer’s general node conditions have been thoroughly studied in [248]. They can be com-
pactly formulated in several equivalent ways: We mention the alternative descriptions given
in [40, 63, 175, 340]. The factorization (2.47) motivates in particular the study of ∆̃ :=

←−
A C

←−
A ∗C , cf.

Remark 6.81 below, which is sometimes called the Laplacian with anti-Kirchhoff node conditions,
or else with δ ′-coupling or δ ′s-coupling if lower order node terms are also allowed: See e.g. the
historical discussion in [4, § 4] and Remark 6.81. It seems that the Laplacian with anti-Kirchhoff
node conditions has been first proposed in [200].

Higher dimensional generalizations of Lumer’s setting have been considered, among others, by
F. Ali Mehmeti, J. von Below, M.I. Freidlin, S. Nicaise, and A.D. Wentzell, cf. [7, 46, 49, 82, 170,
177, 324].

To the best of our knowledge, the first derivative operator on metric graphs has been first studied
in [86]. As this was interpreted as a momentum operator, hence as an observable of quantum
mechanics, the attention was devoted to describing those node conditions that yield self-adjoint
realizations. The peculiar nature of what we have called the standard node conditions, among all
possible ones, was observed in [253]. The factorization in Remark 2.35 has been observed and
exploited in [142, Chapter 3] in order to describe the spectrum of the operator A that has been
introduced in Section 2.2.2, much simplifying the approach in [253]. More generally, over the last
10 years R. Nagel’s school in Tübingen has been very active in the analysis of the first derivative
with standard node conditions and various generalizations of it, in different directions and contexts.
This group’s results are conveniently surveyed in [144].

The attention for the self-adjoint case has been so far more limited. Momentum operators have
been studied in [86] and in a few subsequent papers, including [161, 220, 370], where attention has
been mostly devoted to self-adjoint realizations: However, it is not clear which of these infinitely
many realizations has a “natural” physical interpretation – a difficulty of interpretation that is also
found in connection with the Dirac operator. First derivatives on metric graphs have also been
studied as part of mixed advection/diffusion phenomena in [215].
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A standard introduction to the classical theory of Dirac equations in R
3+1 is the mono-

graph [395]. Dirac-type operators on metric graphs have been introduced in [75]. Apart from cer-
tain more or less heuristic discretization arguments, (2.48) is the defining property of all various
Dirac-type operators and justifies the name of the matrix D̃s in Section 2.1.8. Another possible way
of introducing the Dirac operator is closer to the original 3-dimensional definition and requires to
work in spaces of C

4-valued functions. However, the similarities between these two operators, at
least under certain boundary conditions, suggest to opt for the lower dimensional approach, cf. [62,
§§ 5-6].

Further operators – often with a natural interpretation in terms of stochastic processes on graphs
– can be defined, but they are usually of non-differential nature, see e.g. the “averaging operator”
in [89], which in [271] is shown to be related to the sine operator generated by the second derivative
with standard node conditions, cf. Section 4.3.

Section 2.3. In higher dimensions the Dirichlet-to-Neumann operator is not a differential operator,
but rather a pseudo-differential operator (of order 1). Luckily, in the case of metric graphs DN is of
course simply a matrix. This significantly simplifies its study.

If one thinks of G as an electric network whose conductivities are given by γ , applying DN
to some f ∈ C

V0 amounts to applying electric potential f (v) at each v ∈ V0, letting the system
reach equilibrium and finally reading off the current that flows through the same nodes. For this
reason, the Dirichlet-to-Neumann operator is sometimes known as voltage-to-current operator. In
different models, the trace and the conormal derivative of a function have different meanings, and
so does the Dirichlet-to-Neumann operator: In elasticity, for example, the normal derivative of the
displacement is interpreted as the strain at a certain point.

Yet another derivation of the Dirichlet-to-Neumann operator can be performed via Poiseuille’s
law (a fluid-dynamic analog of Ohm’s law) for pressure in networks of pipes – say, in the lungs,
cf. [190] or [286, Chapter 3]. In this case the potential at a node v is replaced by the pressure at that
point and the current is replaced by the fluid flux (which, by Poiseuille’s law, is proportional to the
difference of pressure between adjacent nodes). The Dirichlet-to-Neumann operator can then be
interpreted as an operator whose input is the vector of flux directed towards the nodes that belong to
a certain node subset (in [190], the leaves of a tree). Just like the Laplace–Beltrami matrix, also the
Dirichlet-to-Neumann is in general not invertible if G is finite, cf. Lemma 2.13; but upon factoring
out its null space it can be inverted to yield the fluid flux at the endpoints of a tree on whose leaves
a certain pressure was applied.

Remarkably, infinite graphs may develop topological features that strongly recall those of
boundaries of manifolds in classical Riemannian geometry – the key notion in this context is that
of ends, cf. [139, Chapter 8]. It turns out that difference (rather than differential) elliptic end value
problems can also be studied, and therefore Dirichlet-to-Neumann-type operators can be defined
in this setting, too, cf. [87, 113, 287].

The eigenvalue problem for the operator matrix ∆ has a long history in mathematical physics:
In this context one usually speaks of energy (or eigenvalue) dependent boundary conditions. While
it is easy to derive evolution equations where the solution has to satisfy certain dynamic boundary
conditions, it is less clear how to interpret the action of the operator, or perhaps of the associated
Lagrangian. A physical derivation of the counterpart of this operator defined on domains (instead
of metric graphs) has been attempted in [183]. An interesting interplay with the properties of a
class of scattering problems has been pointed out in [263].

This kind of boundary conditions also appears in a different context – viz, approximation the-
ory, as discussed in Remark 2.38. It has been observed both in 2- and 3-dimensional approximation
schemes that the limiting system varies in dependence on the ratio between the area/volume of the
neighborhoods (i.e., strips/cylinders) of edges and that of the neighborhoods (i.e., disks/balls) of
nodes. In a certain critical case the sesquilinear form aW considered in Lemma 6.92 turns out to be
the natural limiting energy functional, cf. [260, § 3.3] and [162, § 7]. In the case of a metric graph,
the same arguments as in [162, 260] also suggest that the operator ∆ may be realized as a degen-
erate limit of second derivatives Aε with standard node conditions on an auxiliary family of metric
graphs Gε defined replacing each node v of G with m incident edges by m new nodes v(1), . . . ,v(n),
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each adjacent to exactly one of the former neighbors of v as well as to all nodes v(1), . . . ,v(n); as-
signing to each of these new m(m−1)/2 edges the same weight µv = µv(ε

−1); and letting ε tend
to 0. This construction has been introduced in [100] and thoroughly deployed later on in [99] also
in order to approximate a certain class of differential operators through Laplacians with standard
node conditions.

Conversely, it has been shown in [11] that a special instance of aW can be used to approximate
the sesquilinear form associated with a certain Laplacian on the Sierpiński gasket, cf. also [28, 29].
In the construction in [11] W is taken to be a suitable discrete Laplacian defined on a certain
network associated with the so-called Hanoi graph. This corresponds to allowing for a jump process
on the boundary of the considered domain.

While the case of an extension of the setting in Section 2.2.1 appears the most interesting in
view of applications, one can possibly consider dynamic node conditions for every differential
operator of Section 2.2. Indeed, this has been done e.g. in [379] as well as in several papers includ-
ing [90, 291] in the case of the first and the fourth derivative, respectively.





Chapter 3

Function spaces on networks

The first step in the study of evolution equations is the choice of suitable functions
spaces that capture the structure of the problem. In this chapter we introduce some
relevant spaces of functions on networks. We assume the theory of Lebesgue spaces
to be known to the reader, whilst the fundamental aspects of the theory of Sobolev
spaces are summarized in the Appendix B. Throughout this chapter

G= (V,E,ρ) is a weighted oriented graph.

In particular, all results of this section will be applicable to both the resistance
network (V,E,µ) and the conductance network (V,E,γ), cf. Remark 2.1.4.1.

3.1 The discrete setting

We begin by discussing some analytical properties of functions defined over a dis-
crete graph. The basic framework for our investigations comprehends two classes of
summable functions. The first arise in connection with the weights ρ associated to
all edges.

Definition 3.1 For p∈ [1,∞] we denote by ℓp
ρ(E) the space of all functions u :E→C

such that

‖u‖ℓp
ρ (E)

:=

(

∑
e∈E
|u(e)|pρ(e)

) 1
p

< ∞ for p ∈ [1,∞),

or else

‖u‖ℓ∞
ρ (E)

:= sup
e∈E
|u(e)|ρ(e)< ∞.

We will occasionally need to assign weights not only to edges, but also to nodes.
This leads to the following.

51
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Definition 3.2 Let ν : V→ (0,∞). For p ∈ [1,∞] we denote by ℓp
ν(V) the space of

all functions f : V→ C such that

‖ f‖ℓp
ν (V)

:=

(

∑
v∈V
| f (v)|pν(v)

) 1
p

< ∞ for p ∈ [1,∞),

or else

‖ f‖ℓ∞
ν (V)

:= sup
v∈V
| f (v)|ν(v)< ∞.

We simply write ℓp(V) if ν ≡ 1.

Remark 3.3 If G is unweighted, or equivalently if ρ is the function of constant value

1, we write ℓp(E) for ℓp
ρ(E).

Furthermore, ℓp(E) = ℓp
ρ(E) with equivalence of norms if the counting measure

weighted by ρ is equivalent to the usual counting measure, i.e.,

m0 ≤ ρ(e)≤ m1 for some m0,m1 > 0 and all e ∈ E. (3.1)

Likewise, ℓp(V)≡ ℓp
1(V)≃ ℓp

degρ
(V) with equivalence of norms if

n0 ≤ degρ(v)≤ n1 for some n0,n1 > 0 and all v ∈ V. (3.2)

Likewise, ℓp(V) = ℓp

degin
ρ
(V) (resp., ℓp(V) = ℓp

degout
ρ
(V)) with equivalence of norms if

n0 ≤ degin
ρ (v)≤ n1 for some n0,n1 > 0 and all v ∈ V, (3.3)

(resp., n0 ≤ degout
ρ (v)≤ n1 for some n0,n1 > 0 and all v ∈ V). (3.4)

Especially, in the unweighted case (3.2) (resp., (3.3), (3.4)) is satisfied if and only if

degρ ∈ ℓ∞(V) (resp., degin
ρ ∈ ℓ∞(V), degout

ρ ∈ ℓ∞(V)), and in particular a necessary

condition is that ρ ∈ ℓ∞(E).

As the incidence matrix I is the discrete counterpart of the first derivative, it
is tempting to introduce discrete versions of the Sobolev spaces discussed in the
Appendix B.

Definition 3.4 Let ν ∈ CV. For p ∈ [1,∞] we define the discrete Sobolev space of
order 1 by

w
1,p
ρ,ν(V) :=

{

f ∈ ℓp
ν(V) : I T f ∈ ℓp

ρ(E)
}

,

or simply w
1,p
ρ (V) if ν ≡ 1.

Remark 3.5 Let G be connected and let ν ∈CV. If f ∈CV \{0} satisfies I T f = 0,

then f must be constant – thus, f 6∈ ℓp
ν(V) unless ‖1‖ℓp

ν
< ∞, i.e., unless G has finite

surface with respect to ν in the sense of Definition A.17 (for p < ∞) or unless ν is

bounded (for p = ∞).
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Discrete Sobolev spaces keep most of the nice features of usual ones. Functions
with finite support are a discrete replacement of usual test functions on domains.

Lemma 3.6 For all p ∈ [1,∞] w
1,p
ρ,ν(V) is a Banach space with respect to the norm

defined by

‖ f‖p

w
1,p
ρ,ν

:= ‖ f‖p

ℓ
p
ν
+‖I T f‖p

ℓ
p
ρ
,

and a Hilbert space for p = 2. If p ∈ [1,∞), then w
1,p
ρ,ν(V) is separable in ℓp

ν(V). If

p ∈ (1,∞), then w
1,p
ρ,ν(V) is uniformly convex and hence reflexive.

Proof. Completeness of w
1,p
ρ,ν(V) holds because for all p ∈ [1,∞), ℓp

ν(V) and ℓp
ρ(E)

are Banach spaces. Also continuity of the embedding is clear, by definition of the
norm of w

1,p
ρ,ν(V). Considering

T : w
1,p
ρ,ν(V) ∋ f 7→ ( f ,I T f ) ∈ ℓp

ν(V)× ℓp
ρ(E),

which is an isometry if the Cartesian product on the right is endowed with the ℓ1-
norm, shows that w

1,p
ρ,ν is uniformly convex for all p ∈ (1,∞), since so is ℓp

ν(V).
Finally, since the space c00(V) of functions with finite support is dense in ℓp

ν(V), so
is w

1,p
ρ,ν(E). ⊓⊔

Definition 3.7 The distance distρ(v,w) of two nodes v,w is defined as the infimum

of the lengths of all paths from v to w.

In this way G or, to be more precise, V becomes a metric space – in general not a
complete one, unless ρ is uniformly bounded away from 0, i.e., unless ρ−1 ∈ ℓ∞(E).
The ball of radius r > 0 and center v0 with respect to distρ will be denoted by

Bρ(v0,r) :=
{

w ∈ V : distρ(v,w)< r
}

.

Proposition 3.8 If G is connected, then the following assertions hold.

(1) The space w
1,p
ρ,ν(V) is densely and continuously embedded in ℓp

ν(V) for all 1 ≤
p≤ ∞.

(2) Let additionally p < ∞. Then this embedding is compact if for every ε > 0 there

are v ∈ V and r > 0 such that

(i) Bρ(v,r) is a finite set and additionally

(ii) there holds

∑
w 6∈Bρ (v,r)

| f (w)|pν(w)< ε p

for all f in the unit ball of w
1,p
ρ,ν(V).

(3) Condition (i) on local finiteness of the neighborhoods is satisfied if ρ is uni-

formly bounded from below away from 0, and in particular if (3.1) holds. For

all ε > 0, condition (ii) is satisfied for r > volρ(G) if volρ(G) is finite.
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Observe that both conditions in (3) can only be simultaneously satisfied if E and
hence V are finite.

Proof. (1) For all p ∈ [1,∞], w
1,p
ρ,ν(V) contains the space c00(V) of functions with

finite support. Since c00(V) is dense in ℓp
ν(V), so is w

1,p
ρ,ν(V).

(2) If for a given ε > 0 we pick v ∈ V and r > 0 in such a way that (ii) is satisfied
and that Bρ(v,r) only contains finitely many nodes, we can consider the finite-rank
operator

Φ : f 7→ f|Bρ (v,r).

Then, Φ(w1,p
ρ,ν(V)) is totally bounded in the metric space CBρ (v,r) with respect to

the metric induced by the ℓp
ν -norm. Moreover for all f ,g ∈ w

1,p
ρ,ν(V) such that ‖ f −

g‖
C

Bρ (v,r) < ε we have

‖ f −g‖p

ℓ
p
ν
= ∑

w∈Bρ (v,r)

| f (w)−g(w)|pν(w)+ ∑
w 6∈Bρ (v,r)

| f (w)−g(w)|pν(w)≤ 3ε.

The conditions of the Hanche-Olsen–Holden Lemma B.7 are thus satisfied. ⊓⊔

Remark 3.9 It is known that in general c00(V) is not dense in the Banach space

D
p
ρ(V) :=

{

f : V→ C : ‖I T f‖p

ℓ
p
ρ
< ∞

}

/C,

and the canonical basis (δv)v∈V may not yield a total sequence of w
1,p
ρ,ν(V), cf. [411,

Thm. 2.12].

In the classical theory of Sobolev spaces, for an open domain U ⊂ Rd the space
W̊ 1,p(U) is defined as the closure of C∞

c (U) in the norm of W 1,p(U). We likewise
consider the closure of the space c00(V) of finitely supported functions on V in the
norm of w

1,p
ρ,ν(V): Let us denote it by ẘ

1,p
ρ,ν(V), or ẘ

1,p
ρ (V) if ν ≡ 1. Since it is a

closed subspace of w
1,p
ρ,ν(V), the following is immediate in view of Lemma 3.6.

Corollary 3.10 For all p ∈ [1,∞], ẘ
1,p
ρ,ν(V) is a Banach space with respect to the

norm of w
1,p
ρ,ν(V), and a Hilbert space for p = 2. For all p ∈ [1,∞], ẘ

1,p
ρ,ν(V) is con-

tinuously and densely embedded into ℓp
ν(V). If p ∈ [1,∞), then ẘ

1,p
ρ,ν(V) is separable

in ℓp
ν(V). If p ∈ (1,∞), then ẘ

1,p
ρ,ν(V) is uniformly convex, hence reflexive.

By definition, ẘ
1,p
ρ,ν(V) is a closed subspace of w

1,p
ρ,ν(V). In fact, the following

counterpart of Lemma B.6 holds, cf. Definition B.5 for the notion of lattice ideal.

Lemma 3.11 For all p ∈ [1,∞) ẘ
1,p
ρ,ν(V) is a lattice ideal of w

1,p
ρ,ν(V).

Proof. The first condition in Definition B.5 is clearly satisfied. In order to check the
second condition, take u∈ ẘ

1,p
ρ,ν(V) and v∈w

1,p
ρ,ν(V) such that |v| ≤ |u|. By definition

of ẘ
1,p
ρ,ν(V), u = limn→∞ un in w

1,p
ρ,ν(V) for a sequence (un)n∈N such that un has finite

support for all n. Then, it suffices to consider the sequence (vn)n∈N with
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vn := v ·1suppun , n ∈ N,

to deduce the claim.

3.2 The continuous setting

We know from Lemma A.19 that any weighted oriented graph can be embedded in
R3 in a manner that respect some natural geometric rules – in a certain sense, the
resulting embedded object should be a manifold that is singular, but not too singular.
This is done by associating each edge with a simple arc in R3 and one sometimes
speaks of a geometric graph. If the graph is weighted by a function ρ : E→ (0,∞),
then it seems natural to endow the arcs with a metric chosen in such a way that the
arc corresponding to e has a length ρ(e). This is the root of the notion of metric
graph.

Definition 3.12 Let (V,E,ρ) a weighted oriented graph. Denote

E := ∏
e∈E
{e}×

(

0,ρ(e)
)

.

Then the metric graph over G is the pair G := (V,E). A point of G is an element of

either V or E. We refer to elements of E as metric edges.

Observe that a weighted oriented graph uniquely determines a metric graph over
it and vice versa, once we adopt for all edges e the convention of identifying einit

with 0 and eterm with ρ(e).
Throughout this section we are going to adopt the notational convention that

G= (V,E) is the metric graph over G= (V,E,ρ)

as well as the shorthand in (2.42).

Definition 3.13 Let x ∈ E, i.e., x ∈ (0,ρ(e)) for some e ∈ E. The subdivision of
G at x is the metric graph G̃ := (Ṽ , Ẽ) over a new weighted oriented graph G̃ :=
(Ṽ, Ẽ, ρ̃) with node set Ṽ := V∪{x}, edge set Ẽ := (E\{e})∪{(einit,x),(x,eterm)},
and weight ρ̃ defined by

ρ̃(f) :=







ρ(f) if f 6= e,
xρ(e) if f = (einit,x),
(1− x)ρ(e) if f = (x,eterm).

If instead x ∈ V, then we stipulate that the subdivision of G at x is again G.

Observe that subdividing G first at x and then at y we find the same metric graph
obtained subdividing G first at y and then at x.
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v
′

v
′′

e v
′

w v
′′

e
′

e
′

Fig. 3.1: Subdivision of an edge.

The volume of each subdivision of G agrees with the volume of G. Because
subdivisions do not affect measure properties, without loss of generality we will
always assume all edges of a metric graph to have finite length – possibly upon
subdividing it.

We can now generalize the notion of distance in Definition 3.7.

Definition 3.14 Let x,y be two points of G. Then the distance distρ(x,y) of x,y is

defined as their distance in the oriented weighted graph underlying the subdivision

of G at x and y.

Definition 3.15 We denote by Lp(G) the space of measurable functions u : E→ C

such that

‖u‖Lp(G) :=

(

∑
e∈E

∫ ρ(e)

0
|u(e,x)|pdx

) 1
p

< ∞ for p ∈ [1,∞),

or else

‖u‖L∞(E) := inf{c ∈ R : |u(e,x)| ≤ c for a.e. x ∈ (0,ρ(e)) and all e ∈ E} .

If ρ ≡ 1, then the space of functions from E to C is isomorphic to the space of
functions from (0,1) to CE. Likewise, endowing (0,1) with the Lebesgue vector
measure ρdx we see that

Lp(G)≃ Lp
(

(0,1);ℓp
ρ(E)

)

, (3.5)

by means of the isomorphism introduced in (2.37), which is isometric for all p ∈
[1,∞) and even unitary for p = 2. Indeed, by Fubini’s Theorem

‖u‖p

Lp(G)
:= ∑

e∈E

∫ ρ(e)

0
|u(e,x)|pdx

= ∑
e∈E

∫ 1

0
|u(e, x̃)|pρ(e)dx̃

=
∫ 1

0

(

∑
e∈E
|u(e, x̃)|pρ(e)

)

dx̃ =: ‖u‖p

Lp
(

(0,1);ℓp
ρ (E)
).

That is, given a metric graph all of whose edges have unit length, endowing the
edges with weights corresponds to considering a different unit of measurement on
each metric – more explicitly,



3.2 The continuous setting 57

x→ x̃ :=
x

ρ(e)
, x ∈ (0,ρ(e)), e ∈ E.

With an abuse of notation, we will occasionally tacitly identify the spaces
in (3.5).

Following [392] we adopt the following definition.

Definition 3.16 A triple (M,d,m) is called a metric measure space whenever (M,d)
is a complete separable metric space and m is a Borel measure such that for all

x ∈M there is r > 0 small enough to have m(Br(x))< ∞ .

We hence regard G as the product measure space of (0,1) and E, endowed with
the Lebesgue measure and with the counting measure weighted by ρ , respectively:
In this way we have built a new metric and measure structure upon G. If the measure
ρ is equivalent to the usual counting measure, then the local boundedness condition
in Definition 3.16 is also clearly satisfied and we obtain the following.

Lemma 3.17 If (3.1) holds, then G is a metric measure space in the sense of Defi-

nition 3.16.

Remarks 3.18 (1) Observe that G is a finite measure space if and only if G has

finite volume.

(2) If G is finite, then the vector-valued Lebesgue space Lp
(

(0,1);CE
)

is defined

in a natural way and its dual is Lp′((0,1);CE
)

for all p ∈ [1,∞) where 1
p
+ 1

p′ = 1.

More generally, for all p,q ∈ [1,∞] Lp
(

(0,1);ℓq
ρ(E)

)

is a Bochner space – a par-

ticular space of vector-valued Lebesgue measurable functions. We thus identify

Lebesgue integrable functions on a metric graph and (vector-valued) Bochner inte-

grable functions on a single interval throughout. Observe that ‖ ·‖Lp(G) is indepen-

dent of the values of functions in the nodes.

(3) Working with Bochner spaces is delicate, but the theory becomes less tricky

if the target Banach space – some ℓq
ρ(E)-space in our case – is separable, cf. [16,

§ 1.1]. For our purposes it suffices to recall that by [138, Thm. IV.1] if p,q ∈ (1,∞),

then Lp
(

(0,1);ℓq
ρ(E)

)

is reflexive and its dual is Lp′((0,1);ℓq′
ρ (E)

)

, where 1
p
+ 1

p′ =

1 and 1
q
+ 1

q′ = 1. Furthermore, the dual of L1
(

(0,1);ℓq
ρ(E)

)

is known to agree

with L∞((0,1);ℓq′
ρ (E) if and only if ℓq′

ρ (E)) has the Radon–Nikodým property – and

unfortunately ℓ1′
ρ (E) = ℓ∞

ρ (E) does not, unless E is finite. In particular, (Lp(G))′ =

Lp′(G) if and only if p ∈ (1,∞).
(4) For p = 2 the space L2(G) is isomorphic to the tensor product space

L2(0,1)⊗ ℓ2
ρ(E) – this is not true for general p.

One important property of one-dimensional Bochner spaces is the following so-
called Aubin–Lions Lemma.

Proposition 3.19 Let E,F be Banach spaces. Let I ⊂R be a bounded open interval.

If E is compactly embedded in F, then {u ∈ Lp(I;E) : u′ ∈ Lq(I;F)} is compactly

embedded in Lp(I;F) for all 1 < p,q < ∞.
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In particular, W 1,p(I;E) is compactly embedded in Lp(I;E) for all p < ∞ if E is

finite dimensional. ⊓⊔

The following integration by parts formula is proved applying componentwise
the relations that are known to hold for scalar-valued functions.

Lemma 3.20 For all f ,h ∈W 1,2
(

(0,1);ℓ2
ρ(E)

)

there holds

∫ 1

0

(

f ′(x)|h(x)
)

ℓ2
ρ

dx = ( f (1)|h(1))ℓ2
ρ
− ( f (0)|h(0))ℓ2

ρ
−
∫ 1

0

(

f (x)|h′(x)
)

ℓ2
ρ

dx.

In order to define differential operators acting on functions defined on G, one in-
troduces the vector-valued Sobolev spaces W 1,p

(

(0,1);ℓ2
ρ(E)

)

. The choice of ℓ2
ρ(E)

instead of ℓp
ρ(E) as target space may appear bizarre, but it often proves convenient

in order to apply Hilbert space methods.

Lemma 3.21 The following assertions hold for all p ∈ [1,∞].

(1) W̊ 1,p
(

(0,1);ℓ2
ρ(E)

)

and hence W 1,p
(

(0,1);ℓ2
ρ(E)

)

are densely and continuously

embedded in C
(

[0,1];ℓ2
ρ(E)) and in Lq

(

(0,1);ℓ2
ρ(E)

)

for all q ∈ [1,∞].

(2) W 1,p
(

(0,1);ℓ2
ρ(E)

)

is a Banach space with respect to the norm defined by

‖u‖p

W 1,p
(

(0,1);ℓ2
ρ (E)
) := ‖u‖p

Lp
(

(0,1);ℓ2
ρ (E)
)+‖u′‖p

Lp
(

(0,1);ℓ2
ρ (E)
).

W 1,p
(

(0,1);ℓ2
ρ(E)

)

is separable in Lp
(

(0,1);ℓ2
ρ(E)

)

for p∈ [1,∞). W 1,p
(

(0,1);ℓ2
ρ(E)

)

is uniformly convex and hence reflexive for p∈ (1,∞). Finally, W 1,2
(

(0,1);ℓ2
ρ(E)

)

is a Hilbert space with respect to the inner products

(u|v)
W 1,2
(

(0,1);ℓ2
ρ (E)
) := (u|v)L2(G)+(u′|v′)L2(G). (3.6)

(3) If E is finite, then for p ∈ [1,∞) both the embeddings of W 1,1
(

(0,1);ℓ2
ρ(E)

)

in

Lp
(

(0,1);ℓ2
ρ(E)

)

and of W 1,p
(

(0,1);ℓ2
ρ(E)

)

in Cb

(

[0,1];ℓ2
ρ(E)) are compact,

while the embedding of W 1,2
(

(0,1);ℓ2
ρ(E)

)

in L2(G) is even a Hilbert–Schmidt

operator.

(4) If ρ ∈ ℓ∞(E), then there exists C > 0 such that

‖u‖3
L2(G)

≤C‖u′‖L2(G)‖u‖2
L1
(

(0,1);ℓ2
ρ (E)
), u∈W 1,2((0,1);ℓ2

ρ(E)
)

∩L1((0,1);ℓ2
ρ(E)

)

.

(3.7)
(5) For all p,q,r ∈ [1,∞] such that q≤ p one has

‖u‖
Lp
(

(0,1);ℓ2
ρ (E)
)≤C‖u‖a

W 1,r
(

(0,1);ℓ2
ρ (E)
)‖u‖1−a

Lq
(

(0,1);ℓ2
ρ (E)
), u∈W 1,r((0,1);ℓ2

ρ(E)
)

,

(3.8)
where

a :=
q−1− p−1

(1+q−1− r−1)
. (3.9)
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Yet another possible identification is given by the following.

Lemma 3.22 For a fixed counting {en : n= 1,2, . . .} of E and some u :E→C define

Φu(x) := uen+1

(

x−
n

∑
m=0

ρ(em)

)

if x ∈
(

n

∑
m=0

ρ(em),
n+1

∑
m=0

ρ(em)

)

.

Then Φ is an isometric isomorphism from Lp(G) to Lp(0, |E|ρ) for all p ∈ [1,∞].

e1

e3
e2 e4

e5

Φ−→ e1 e2 e3 e4 e5

Fig. 3.2: Transformation of a graph under the isomorphism Φ : Observe that Φ ig-
nores the nodes.

But whenever we are interested in metric properties this fashion of identifying
vector-valued and scalar-valued functions does not perform well on graphs with
infinite volume, because points that are close in G might become very distant in
(0, |E|ρ)≡ R. Furthermore, Φu will in general not be continuous any more, even if
u is with respect to the natural metric on G.

Thus, in order to enjoy some of the most useful properties of classical Sobolev
spaces introduced a finer construction is needed.

Definition 3.23 For p ∈ [1,∞), we consider the closed subspace

{

u ∈W 1,p((0,1);ℓp
ρ(E)

)

: ∃u|V ∈ C
V s.t. (I +)⊤u|V = u(0), (I −)⊤u|V = u(1)

}

of W 1,p
(

(0,1);ℓp
ρ(E)

)

and define Sobolev space of order 1 over G its isomorphic

image under the operator Ψ in (2.37): We denote it by

W 1,p(G).

Similarly, we consider the closed subspace

{

u ∈Ck([0,1];ℓ∞
ρ (E)) : ∃u|V ∈ C

V s.t. (I +)⊤u|V = u(0), (I −)⊤u|V = u(1)
}

of C1([0,1];ℓ∞
ρ (E)) and define space of bounded, k-times continuously differentiable

functions over G its isomorphic image under the same Ψ : We denote it by

Ck
b(G).

Finally, the space of Radon measures over G is
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M(G) :=Ψ−1M
(

(0,1);ℓ∞
ρ (E)

)

Ψ .

Roughly speaking, W 1,p(G) consists of those elements of Lp(G) that are weakly
differentiable with weak derivative in Lp(G) and such that their boundary values are
glued in accordance with the adjacency relations of G.

Remarks 3.24 (1) If G has finite volume, then G is a compact Hausdorff space,

each continuous function on G is automatically bounded, and we simply write

C0
b(G) =C(G). Then, M(G) is the dual of C(G).

(2) If G is a connected graph in the sense of Definition A.3, then the metric space

G is connected.

(3) By definition L2
(

(0,1);ℓ2
ρ(E)

)

≃ L2(G), while W 1,p(G) is in general only

(isomorphic to) a closed subspace of W 1,2
(

(0,1);ℓ2
ρ(E)

)

.

(4) If G is finite, then Lp
(

(0,1);ℓ2
ρ(E)

)

≃ Lp(G) and W 1,p(G) is (isomorphic to)

a closed subspace of W 1,p
(

(0,1);ℓ2
ρ(E)

)

.

Furthermore, we can mimic the construction of ẘ1,p(V) and introduce the fol-
lowing.

Definition 3.25 For p ∈ [1,∞),
W̊ 1,p(G)

is defined as the closure in W 1,p(G) of the set

{

u : G→ C : u ∈Ck
b(G) for all k ∈ N and u has compact support

}

.

One can easily prove the following analogon of Lemma 3.11.

Lemma 3.26 For all p ∈ [1,∞) W̊ 1,p(G) is a lattice ideal of W 1,p(G).

In the following we denote by C0(G) the vector space of all functions on the
locally compact space G such that for all ε > 0 {x ∈G : | f (x)| ≥ ε} is compact.

Lemma 3.27 The following assertions hold for all p ∈ [1,∞].

(1) W 1,p(G) is densely and continuously embedded in C0(G) and in Lq(G) for all

q ∈ [1,∞].
(2) W 1,p(G) is a Banach space with respect to the norm defined by

‖u‖p

W 1,p(G)
:= ‖u‖p

Lp(G)
+‖u′‖p

Lp(G)
.

W 1,p(G) is separable in Lp(G) for p ∈ [1,∞). W 1,p(G) is uniformly convex and

hence reflexive for p ∈ (1,∞). Finally, W 1,2(G) is a Hilbert space.

(3) Let V be finite. Then both the embeddings of W 1,1(G) in Lq(G) and of W 1,p(G)
in Cb(G) are compact for all p,q < ∞. The embedding of W 1,2(G) in L2(G) is

a Hilbert–Schmidt operator.
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(4) If G only contains a finite number of connected components, then there exists

C > 0 such that

‖u‖3
L2(G)

≤C‖u′‖L2(G)‖u‖2
L1(G), u ∈W 1,2(G)∩L1(G). (3.10)

(5) If G has finite volume and only contains a finite number of connected compo-

nents, then there exists C > 0 such that

‖u‖Lp(G) ≤C‖u‖a
W 1,r(G)

‖u‖1−a
Lq(G), u ∈W 1,r(G), (3.11)

for all p,q,r ∈ [1,∞] such that q≤ p, where a is defined as in (3.9).
(6) If V is finite and G is connected, then for all v ∈ V there exists C > 0 such that

‖u‖L∞ ≤C
(

‖u′‖L1 + |u(v)|
)

, u ∈W 1,1(G). (3.12)

In order to prove Lemma 3.27.(4) one would of course like to apply the 1-
dimensional Nash inequality (B.3), but it is a priori not clear why this holds for
functions defined on a set that is not an interval. Naively mapping G to an interval
via the isomorphism Φ of Lemma 3.22 is not a solution, as Φu is in general not
a W 1,2-function any more, so that the Nash inequality cannot be applied to it. The
doubling trick presented in our proof below has been suggested in [349].

Proof. (1) and (2) are direct consequences of Lemma 3.21.(1)–(2).
(3) The assertion follows directly from Proposition 3.19.
(4) Let us consider the doubling G

‖ of G, cf. Definition A.12, and define a metric
graph over it. In particular, ρ(ē) = ρ(e) whenever e and hence ē are edges of G.
Because each pair of twin edges has same length, one can define a new metric graph
G‖ = (V,E‖) over G‖.

Now, take u‖ ∈W 1,2(G) and a define a function u‖ :G‖→C by uē(x)= ue(1−x).
Because e and its twin ē are directed in opposite directions, it follows from uē(0) =
ue(1) that uē(v) = ue(v) whenever v is either endpoint of e, and in particular u ∈
W 1,2(G‖). Now, G‖ is Eulerian by Theorem A.10 and we can “unfold” u‖ along the
Eulerian tour, representing it as u‖ ∈W 1,p(R;C). One can thus apply (B.3) to this
function obtaining

‖u‖‖3
L2(G‖) ≤C‖(u‖)′‖

L2(G‖)‖u‖‖2
L1(G‖). (3.13)

Accordingly,

‖u‖3
L2(G)

= 23‖u‖‖3
L2(G‖) ≤ 23C‖(u‖)′‖

L2(G‖)‖u‖‖2
L1(G‖) ≤ 28C‖u′‖L2(G)‖u‖2

L1(G),

as G‖ has twice as many edges as G. This procedure yields the sought-after estimate
on each connected component. If there are only finitely many connected compo-
nents, then one can certainly find a global bound for the whole graph.

(5) The assertion can be proven likewise, applying again the doubling trick and
the Gagliardo–Nirenberg inequality (B.6). ⊓⊔
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In the scalar case (i.e., if E is a singleton) it is known that lattice ideals of
L2
(

(0,1);C
)

are exactly those spaces of the form L2(ω;C) for a Borel set ω ⊂ (0,1).
Invariance of such subspaces under the flow of a dynamical system is usually re-
ferred to as reducibility of the system and is known to have interesting consequences
(among others, its failure implies a parabolic strong maximum principle). The fol-
lowing shows how the characterization of closed lattice ideals of scalar-valued func-
tion spaces can be generalized to the vector-valued case?

Theorem 3.28 Every orthogonal projection PL onto a closed lattice ideal L of

L2
(

(0,1);ℓ2
ρ(E)

)

is of the form

(PL f )(x) = Px( f (x)) for a.e. x ∈ (0,1) and all f ∈ L2(0,1;ℓ2
ρ(E)), (3.14)

for some family (Px)x∈(0,1) of orthogonal projections onto closed lattice ideals of

ℓ2
ρ(E) such that x 7→ Px is strongly measurable.

Conversely, consider a family (Px)x∈(0,1) of orthogonal projections onto closed lat-

tice ideals of ℓ2
ρ(E) such that x 7→ Px is strongly measurable. Then the bounded

linear operator PL defined via (3.14) is an orthogonal projection onto the closed

lattice ideal

L := { f ∈ L2(0,1;ℓ2
ρ(E)) : f (x) ∈ RgPx for a.e. x ∈ (0,1)}.

3.3 Notes and references

Section 3.1. Although spaces of sequences are obviously a special class of Lebesgue spaces,
Sobolev spaces on discrete graphs seem to have been considered in the literature only seldom
– this has certainly to do with the fact that in fact, as we will see later, operator theory on infinite
graphs first began to be systematically developed only at the end of the 1970s. Actually, apart from
the introductory study by M. Yamasaki and his coauthors begun in [317, 413, 414] the only explicit
study we are aware of appears in [334]. However, many inequalities typical of Sobolev spaces can
be seen as properties of certain relevant functionals, or rather as geometric issues for singular man-
ifolds. In these contexts, much attention has been devoted in particular to Hardy- and Poincaré-type
inequalities that hold for certain Sobolev-type seminorms, cf. e.g. [23, 104, 136, 152, 411].

Among the most interesting uses of discrete Sobolev-type spaces there is surely the possibility
of producing discrete versions of some of the most important results of vector analysis: We refer
the reader to [356, § 1] for a concise exposition of fundamental results, to [188] for a recent detailed
collection of applications, and to [399, Chapter 5] for an overview of the more general interplays
between graph theory and combinatorial topology.

Throughout [188], the basic rule of thumb is to replace scalar functions and vector fields on a
domain U by functions on V and E, respectively. In particular, integral equations over U turn into
summed equations over V. There is a rationale for this choice, but in our context it collides with
the convention at the root of Definition A.17.

Also the metric properties of discrete graphs are very well-known. Certain classes of graphs,
however, support distance functions with much finer properties: A typical example is that of trees,
which yield a typical example of ultrametric spaces, cf. [48].

Section 3.2. Metric graphs are natural objects and they have been considered for many years in
applied sciences, as we have seen in the historical notes on Section 2.2 at the end of Chapter 2.
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They have also occasionally appeared in pure mathematics: R. Diestel points out in [139, § 8.5] that
the construction of the Freudenthal compactification of an infinite graph G relies essentially upon
the passage from G to the associated metric graph G, and in particular from dimensionless edges
e to what he calls topological edges (0,1) – or rather (0,ρ(e) in the weighted case. (Freudenthal’s
procedure, presented in [171], has the goal of embedding discrete objects (like locally finite graphs)
into compact Hausdorff spaces in a way that is overall more natural and descriptive than under
either the Alexandroff or the Stone–Čech compactification.) Indeed Freudenthal’s compactification
of G, denoted |G|, has an interesting structure: One has G⊂ |G| and the “points at infinity” of G are
the elements of |G| \G, called ends. In fact, one can regard the set of ends also as the boundary of
G, and unsurprisingly this paves the road for the development of a rich potential theory on graphs,
cf. [411, Chapt. IV] and [384].

Probably because of the natural interpretation of a resistive electric network as a graph whose
edges are assigned a length (recall that resistance of a wire is proportional to its length), metric
graphs G have been often dubbed networks, in particular during the 1980s. Indeed, a favorite notion
in the early investigations of differential equations on graph-like ramified structures was that of ck-

networks, i.e., of geometric graphs whose edges are identified with simple arcs parametrized by
k-times continuously differentiable functions, see e.g. [6, 38, 278, 321].

A first version of the Aubin–Lions Lemma has been proved in [22]. Fully general versions are
much more technical. It is known to be sharp in several senses, cf. [98]. Theorem 3.28 is taken
from [83].





Chapter 4

Operator semigroups

It is well-known from elementary linear algebra that the solution of the linear
Cauchy problem

{

dx
dt
(t) = Ax(t), t ∈ R,

x(0) = x0 ∈ Cn,

associated with an n× n matrix A is given by x(t) := etAx0, where the exponential
matrix etA is

ezA :=
∞

∑
k=0

zk

k!
Ak, z ∈ C. (4.1)

This series converges in norm also if A is, more generally, a bounded linear operator
on a Banach space. Furthermore, (4.1) also satisfies the group law etAesA = e(t+s)A

for all t,s ∈ C.

Example 4.1 (1) If A is a diagonal matrix on CN , say A = diag(an)1≤n≤N , then

ezA = diag(ezan)1≤n≤N , z ∈ C. (4.2)

(2) If P is a projector on a Banach space X, i.e., a bounded linear operator on X

such that P2 = P, then

ezP =
∞

∑
k=0

zk

k!
Pk = P0 +

∞

∑
k=1

zk

k!
P = Id+(ez−1)P, z ∈ C.

If a weighted oriented graph G = (V,E,ρ) is finite, then all matrices introduced
in Section 2.1 represent of course bounded operators on ℓ2

ρ(V), and we will see in
Section 4.1 that the same holds under suitable connectivity conditions for infinite
graphs, too. Hence, (4.1) can be applied to yield a solution of the associated linear
dynamical system. But the differential operators introduced in Section 2.2 are typ-
ically unbounded, though; and even matrices can give rise to unbounded operators
– it has e.g. been proved by M. Fiedler in [167] in the unweighted case that L is
unbounded on ℓ2(V) if G is not uniformly locally finite. Besides, even for matrices
of finite but large size the exponentiation can easily become a hard task, cf. [299].

65
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How can existence and uniqueness of a solution to the above Cauchy problem be
shown in the unbounded case? And can we deduce relevant properties of (ACP) if
we cannot or do not want take the hassle of actually computing the exponential of
a large matrix? These questions can be answered in the framework of the classical
theory of operator semigroups, which we survey in the next section.

4.1 Matrix semigroups

We assume throughout this section that

G= (V,E,γ) is a locally finite, weighted oriented graph without isolated nodes.

A direct computation yields the following and suggests a convenient weighting
of the node space.

Lemma 4.2 For all p ∈ [1,∞) the matrix D
1
p := diag

(

degγ(v)
1
p

)

is an isometric

isomorphism from ℓp
degγ

(V) to ℓp(V), and hence on ℓp(V) if (3.2) is satisfied.

Lemma 4.3 The following assertions hold for p ∈ [1,∞].

(1) I + (resp., I −, I ) is an isometry from ℓp
γ (E) to ℓp

degin
γ
(V) (resp., ℓp

degout
γ
(V),

ℓp
degγ

(V)). In particular, all these operators have closed range.

(2) Thus, if G is outward uniformly (resp., inward uniformly, uniformly) locally fi-

nite, then I + (resp., I −,I ) is bounded from ℓp
γ (E) to ℓp(V), and in particular

w
1,p
γ (V) = ℓp(V).

(3) The converse implication holds for p ∈ [1,∞). It also holds for p = ∞ if addi-

tionally γ ∈ ℓ∞(E).

Proof. Take f : V→ C and observe that for all e ∈ E there exists exactly one v ∈ V

s.t. ι+ve 6= 0, hence

∑
v∈V

ι+ve| f (v)|p = | f (eterm)|p = sup
v∈V

ι+ve| f (v)|p for all e ∈ E and all p ∈ [1,∞),

Take first p ∈ [1,∞). By Fubini’s theorem

‖I +T f‖p

ℓ
p
γ
= ∑

e∈E
| f (eterm)|pγ(e)

= ∑
e∈E

(

∑
v∈V
| f (v)|pι+ve

)

γ(e)

= ∑
v∈V
| f (v)|p ∑

e∈E
ι+veγ(e)

= ∑
v∈V
| f (v)|pdegin

γ (v) = ‖ f‖p

ℓ
p

degin
γ

.
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This shows that I +T is an isometry from ℓp

degin(V) to ℓp
γ (E), hence it is bounded

from ℓp(V) to ℓp
γ (E) if G is inward uniformly locally finite.

For p = ∞ one has

‖I +T f‖ℓ∞
γ
= sup

e∈E
| f (e+)|γ(e)

= sup
e∈E

sup
v∈V

ι+ve| f (v)|γ(e)

≤ ∑
e∈E

sup
v∈V

ι+ve| f (v)|γ(e)

= sup
v∈V
| f (v)|∑

e∈E
ι+veγ(e)

= sup
v∈V
| f (v)|degin

γ (v) = ‖ f‖ℓ∞

degin
γ

.

Again, if G is inward uniformly locally finite this inequality suffices to say that I +T

is bounded from ℓ∞(V) to ℓ∞
γ (E).

(3) Take a sequence (vn)n∈N ⊂ V s.t.

n≤ degin
γ (vn)

and consider the functions un : E→ C defined for all n ∈ N by

un(e) := 1
E
+
vn
,

where as usual E+
vn

= {e ∈ E : ι+vne
6= 0}, the set of edges outgoing from vn. Then

‖un‖ℓ∞
γ
≤ ‖γ‖ℓ∞ for all n ∈ N, but

‖I +un‖ℓ∞ = sup
v∈V

∣

∣

∣

∣

∣

∑
e∈E

ι+veun(e)

∣

∣

∣

∣

∣

≥ ∑
e∈E+

vn

(

ι+vne
γ(e)

) 1
‖γ‖ℓ∞

= deg(vn)
1
‖γ‖ℓ∞

≥ n

‖γ‖ℓ∞

n→∞→ +∞.

The remaining assertions can be proved likewise. ⊓⊔

Applying Lemma 4.2–4.3 to (2.7) and the further “variational” definitions of the
various operators introduced Section 2.1 we obtain the following.

Lemma 4.4 Let γ ∈ ℓ∞(E) and p ∈ [1,∞]. Then the following hold.

(1) L ,Q,K in,K out,
−→
N ,
←−
N are bounded on ℓp

degγ
(V).

(2) Lnorm,Qnorm are bounded on ℓ2(V).
(3) T is bounded on ℓ2

degγ
(V).
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(4) If (3.3) holds, then both K in,
←−
N are bounded from w

1,p
γ (V) to ℓp(V).

(5) If (3.4) holds, then both K out,
−→
N are bounded from w

1,p
γ (V) to ℓp(V).

(6) If (3.2) holds, then D ,A ,L ,Q,K in,K out,
−→
N ,
←−
N are bounded also on ℓp(V).

(7) If (3.2) holds, then
←−
B,
−→
B are bounded on ℓ1

γ(E) while T ,
←−
T ,
−→
T are bounded

on ℓ1(V).

Proof. (1) By its definition (cf. (2.9)) we can represent L as the composition

ℓp
degγ

(V)
I T

−→ ℓp
γ (E)

C−→ ℓp
γ (E)

I−→ ℓp
degγ

(V) or rather ℓp(V)
I T

−→ ℓp
γ (E)

C−→ ℓp
γ (E)

I−→ ℓp(V),

and analogous relations hold for the remaining matrices replacing I by J or I ±.
(2) Boundedness of Lnorm follows from (2.22), Lemma 4.2, and (1) represent-

ing Lnorm as the composition

ℓ2(V)
D−

1
2−→ ℓ2

degγ
(V)

L−→ ℓ2
degγ

(V)
D

1
2−→ ℓ2(V),

and likewise for Qnorm.
The remaining assertions can be proved likewise. ⊓⊔

Remarks 4.5 (1) A result similar to Lemma 4.4.(2)–(3) can be proved replacing

ℓ2
degγ

(V) by ℓp
degγ

(V), but this would require defining a new normalized Laplacian

with D−
1
p in lieu of D−

1
2 .

(2) Lemma 4.4 shows that even in the case of an infinite Hückel graph, Hα,β is

bounded on ℓ2(V) provided that (3.1) holds – e.g., if G is unweighted and regular,

like in the case of graphene, and so is the Kogut–Susskind Dirac operator D̃S.

(3) The in/outdegree of e = (v,w) in GL is degin(v) and degout(w), respectively.

Hence, GL is uniformly locally finite if so is G. Combining this observation and (2)

one deduces that the degree matrix of the line graph GL is a bounded operator on

ℓp(VL) for all p ∈ [1,∞] whenever G is uniformly locally finite. If (3.1) holds and

γ ∈ ℓ∞(E), then by (2.30) AL is a bounded linear operator on ℓp
γ (E) for all p∈ [1,∞].

4.2 First order problems

Our approach to the study of difference and differential equations on networks
is based on strongly continuous semigroup (shortly: C0-semigroup) of operators.
Whenever we want to discuss an evolution equation by semigroup methods, the
first step is to hide the spacial dependence by transforming this partial differential
equation into an abstract Cauchy problem, i.e., into a Cauchy problem

{

dξ
dt
(t) = Aξ (t), t ≥ 0,

ξ (0) = x0 ∈ X ,
(ACP)
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whose unknown ξ is a function taking values in an appropriate Banach space X .
Here, A is typically an unbounded operator. If boundary conditions were imposed
on the evolution equation, they have typically to be incorporated into the domain
D(A) of A.

Definition 4.6 A classical solution of (ACP) is a solution x ∈C1(R+,X) such that

x(t) ∈ D(A) for all t ≥ 0 and such that (ACP) is satisfied.

Definition 4.7 A C0-semigroup is a family (T (t))t≥0 of bounded linear operators

on a Banach space X such that the semigroup law

T (t)T (s) = T (t + s), t,s≥ 0, and T (0) = Id,

is satisfied and moreover

lim
t→0+

T (t)x = x for all x ∈ X .

Its generator is the operator A with domain D(A) defined by

D(A) :=

{

x ∈ X : lim
t→0+

T (t)x− x

t
exists

}

,

Ax := lim
t→0+

T (t)x− x

t
.

In the bounded case we already know that (etA)t≥0 is given by (4.1). Analytic

vectors, i.e., those

x ∈
∞
⋂

k=0

D(Ak) such that
∞

∑
k=0

tk

k!
Akx has positive radius of convergence

form however only a proper subset of X in the case of general operators A.

Definition 4.8 Let X be a Banach space. A linear operator T : D(T )→ X is called

closed if for any ( fn)n∈N ⊂ D(T ) such that both ( fn)n∈N and (T fn)n∈N converge –

say, towards some f and g, respectively – there holds f ∈ D(T ) and T f = g.

Equivalently, a linear operator T on X is closed if

Graph(T ) := {(x,T x) ∈ X×X : x ∈ D(T )}

is a closed subset of X×X .

Remark 4.9 If A is a closed operator on X, then its domain D(A) becomes a Ba-

nach space when endowed with the graph norm

‖x‖A := ‖x‖X +‖Ax‖X :

we denote it by [D(A)].
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Definition 4.10 Let A be a closed operator on a Banach space X, λ ∈ C. If λ Id−A

is an invertible operator, then one says that λ is in the resolvent set ρ(A) of A. The

inverse of λ Id−A is denoted by R(λ ,A), the resolvent operator of A at λ . The spec-
trum σ(A) of A is C\ρ(A). The point spectrum σp(A) of A is the subset consisting

of all λ ∈ σ(A) such that λ Id−A is not injective. The spectral bound s(A) of A is

sup{Reλ : λ ∈ σ(A)}.

A direct computation shows that the resolvent operators of a closed operator
satisfy

R(λ ,A) =
(

Id−(λ −µ)R(λ ,A)
)

R(µ,A), λ ,µ ∈ ρ(A).

By the Closed Graph Theorem, resolvent operators of closed operators are always
bounded. If ρ(A) 6= /0, then in view of the ideal property of compact operators
R(λ0,A) is compact for some λ0 ∈ ρ(A) if and only if R(λ ,A) is compact for any
λ ∈ ρ(A), and in this case A is said to have compact resolvent.

The relation between C0-semigroups and abstract Cauchy problems is shown in
the following.

Proposition 4.11 Let A be a closed operator on a Banach space X. The following

are equivalent.

(a) A generates a C0-semigroup (T (t))t≥0.

(b) A has nonempty resolvent set and for all x0 ∈D(A) the abstract Cauchy problem

(ACP) has a unique solution ξ ∈C1(R+;X)∩C
(

R+; [D(A)]
)

.

(c) A is densely defined, for all x0 ∈ D(A) (ACP) has a unique solution ξ ∈
C1(R+;X) ∩C

(

R+; [D(A)]
)

, and furthermore for each sequence (x0n)n∈N ⊂
D(A) that tends to 0 with respect to ‖ · ‖X also the sequence (ξn)n∈N of so-

lutions to the corresponding (ACP) tends to 0 with respect to ‖ · ‖X , uniformly

in compact intervals of R+.

If any of these conditions hold, then the solution to (ACP) is given by ξ (t) := T (t)x0,

t ≥ 0, and (ACP) is said to be well-posed..

One can see that a linear operator cannot generate more than one C0-semigroup.
This suggests the notation (etA)t≥0 for the semigroup generated by A, which we
adopt throughout.

One of the main motivations to study C0-semigroups is given by the following.

Proposition 4.12 Let a linear operator A generate a C0-semigroup on a Banach

space X. If x0 ∈ D(A), then

ξ : R+ ∋ t 7→ etAx0 ∈ X

defines a classical solution to (ACP), i.e.,

d

dt
etAx0 = AetAx0, t ≥ 0,

and in fact ξ (t) ∈ D(A) for all t ≥ 0.
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Remark 4.13 Among the important consequences of Proposition 4.12 we mention

that

AetAx0 = etAAx0 for all t ≥ 0, x0 ∈ D(A),

that at most one C0-semigroup can be generated by a given operator, and that if A,B
are C0-semigroup generators with D(A)⊂D(B) and Ax= Bx for all x∈D(A) – then

necessarily A = B. In other words, a strict restriction of a C0-semigroup generator

cannot yield a further C0-semigroup generator.

This explains the reason why adding further boundary conditions to a well-posed

evolution equation can only result in an overdetermined problem.

Several interesting properties follow already from the semigroup law. E.g., all
C0-semigroups (etA)t≥0 are exponentially bounded, i.e., there exist constants M ≥ 1
and ω ∈ R such that

‖etA‖L (X) ≤Meωt for all t ≥ 0. (4.3)

This justifies the introduction of the growth bound ω0(A) of (etA)t≥0

ω0(A) := inf{ω ∈ R : ∃M ≥ 1 s.t. (4.3) holds}.

Example 4.14 In order to study the 1-dimensional heat equation

∂u

∂ t
(t,x) =

∂ 2u

∂x2 (t,x), t ≥ 0, x ∈ I, (4.4)

for I = (0,1) with Dirichlet boundary conditions

u(t,0) = u(t,1) = 0, t ≥ 0,

we transform it into an abstract Cauchy problem

u̇(t) = ∆ Du(t), t ≥ 0,

on the complex Hilbert space Lp(0,1), where the operator ∆ D is defined by

D(∆ D) := W 2,p(0,1)∩W
1,p
0 (0,1),

∆ Du := u′′.

We will show in Examples 4.24 and 6.34 that ∆ D generates a C0-semigroup on

Lp(0,1).

Example 4.15 Let d ∈N and p ∈ [1,∞). Consider the d-dimensional Gaussian ker-
nel Gd : (0,∞)×Rd → (0,∞) defined by

Gd : (t,x) 7→ 1

(4πt)
d
2

e−
‖x‖2

4t (4.5)
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Then for d = 1

etAu(x) := (G1(t, ·)∗u)(x) =
1

(4πt)
1
2

∫

R

e−
‖x−y‖2

4t u(y)dy, t > 0, x ∈ R, (4.6)

can be extended by the identity to a family indexed in R+ which defines a C0-

semigroup on Lp(R) – the so called Gaussian semigroup – whose generator is

D(A) := W 2,p(R),
Au := u′′.

This C0-semigroup yields the solution of (4.4) for I = R. Likewise, the convolution

with Gd defines a C0-semigroup on Lp(Rd) whose generator is the d-dimensional

Laplacian.

Example 4.16 Let c > 0. The family (T (t))t≥0 of right shift operators defined by

T (t) f (x) := f (x− c−1t), t ≥ 0, x ∈ R,

defines a C0-semigroup on Lp(R) for all p∈ [1,∞) – in fact, even a C0-group: By this

we mean that (T (t))t≥0 embeds in a family of bounded linear operators (T (t))t∈R
that additionally satisfies

T (t)T (s) = T (t + s), t,s ∈ R.

(It is easy to see that a linear operator A generates a C0-group if and only if both A

and −A are C0-semigroup generators.)

The generator is

D(A) := W 1,p(R),
Au := −cu′.

Example 4.17 Let (U, µ̃) be a σ -finite measure space and let q : U → C be a mea-

surable function such that

|q(x)| ≤M for some M ∈ R and a.e. x ∈U.

Then the family (etMq)t≥0 defined by

etMq f (x) := etq(x) f (x), t ≥ 0, x ∈U,

defines a C0-semigroup on Lp(U, µ̃) for all p ∈ [1,∞). Its generator is the multipli-
cation operator

D(Mq) := {u ∈ Lp(U, µ̃) : q ·u ∈ Lp(U, µ̃)},
Mqu := q ·u.

By the Hölder inequality, this operator is bounded if and only if q ∈ L∞(U, µ̃).
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Corollary 4.18 Let A generate a C0-semigroup on a Banach space X. If x0 ∈ D(A)
and f ∈W 1,1(R+;X) or f ∈C0(R+; [D(A)]), then

ξ (t) := etAx0 +
∫ t

0
e(t−s)A f (s)ds, t ≥ 0,

defines the unique classical solution of the inhomogeneous abstract Cauchy problem

{

dξ
dt
(t) = Aξ (t)+ f (t), t ≥ 0,

ξ (0) = x0,
(iACP)

i.e., the unique ξ ∈C1(R+;X) with ξ (t) ∈ D(A) for all t ≥ 0 that satisfies (iACP).

If in particular A is bounded, then (etA)t≥0 agrees with (or, more precisely, em-

beds in) the C0-semigroup given by (4.1).

Definition 4.19 A C0-semigroup (T (t))t≥0 on a Banach space X is said to be

• bounded if for some M > 0

‖T (t)‖L (X) ≤M for all t ≥ 0,

and contractive if M can be taken to be 1.

• ω-quasi-contractive if there exists ω ∈ R such that

‖T (t)‖L (X) ≤ eωt for all t ≥ 0

and quasi-contractive if (T (t))t≥0 is ω-quasi-contractive for some ω ∈ R;

• uniformly exponentially stable if there exist M,ε > 0 such that

‖T (t)‖L (X) ≤Me−εt for all t ≥ 0.

Since ‖etAx‖X usually represents some relevant quantity of a physical system
with initial data x∈X at time t (e.g., total mass of a diffusive system if ‖·‖X is an L1-
norm, or total energy of an elastic system at time t if ‖ ·‖X is a W 1,2-norm), in many
cases one actually expects that it is non-increasing in time. Generators of contractive
C0-semigroups are characterized by the following Hille–Yosida Theorem.

Theorem 4.20 Let A be a linear operator on a Banach space X. Then the following

are equivalent.

(a) A generates a contractive C0-semigroup (etA)t≥0.

(b) A is closed, densely defined, and furthermore λ ∈ ρ(A) with

λ‖R(λ ,A)‖L (X) ≤ 1 for all real λ > 0.

A few years after Theorem 4.20 was proved, it became clear that an ingenious
rescaling argument allows for a generalization to the general, non-contractive case
as follows.
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Theorem 4.21 Let M,ω ∈R. Let A be a linear operator on a Banach space X. Then

the following are equivalent.

(a) A generates a C0-semigroup such that ‖etA‖L (X) ≤Meωt for all t ≥ 0.

(b) A is closed, densely defined, and furthermore λ ∈ ρ(A) and

∥

∥

∥

(

λ −ω)R(λ ,A)
)n∥
∥

∥

L (X)
≤M for all real λ > ω and all n ∈ N.

If X is a Banach space, then for each x ∈ X there exists by the Hahn–Banach
Theorem at least one element J(x) of the dual space X ′ such that ‖x‖2 = 〈x,J(x)〉=
‖J(x)‖2, where 〈·, ·〉 denotes the duality between X and X ′. Then J : X ∋ x 7→
{J(x)} ∈ 2X ′ is called duality mapping: J is in general nonlinear and indeed even
multi-valued, but it is single-valued if X has strictly convex dual.

Definition 4.22 A linear operator A on a Banach space X is called dissipative if

Re〈Ax,J(x)〉 ≤ 0 for all x ∈ D(A) and all J(x) ∈ J(x). (4.7)

It is called ω-quasi-dissipative if A−ω Id is dissipative, and ω-quasi-m-dissipative
if additionally Rg(λ Id−A) = X for all λ > ω . It is called quasi-dissipative (resp.,

quasi-m-dissipative) if A is ω-quasi-dissipative (resp., ω-quasi-m-dissipative) for

some ω ∈ R.

On Hilbert spaces there holds even J(x) = {J(x)} = {x}, hence A is dissipative
if and only if

Re(Ax|x)≤ 0 for all x ∈ D(A) :

The following Lumer–Phillips Theorem relates dissipativity and generation prop-
erty.

Theorem 4.23 Let A be a closed, densely defined operator on a Banach space X.

Then for ω ∈ R the following are equivalent.

(a) A generates an ω-quasi-contractive C0-semigroup.

(b) A is ω-quasi-m-dissipative.

(c) Both A and its adjoint A∗ are ω-quasi-dissipative.

If in particular a C0-semigroup is ω-quasi-contractive for some ω < 0, then it
is uniformly exponentially stable. Because of the similarities between (4.7) and the
definition of numerical range, the Lumer–Phillips theorem can be regarded as a
stability theorem of Lyapunov type.

Example 4.24 We review the setting of Example 4.14 for p = 2. For u ∈ D(A)

Re(Au|u)L2 = Re
∫ 1

0
u′′(x)u(x)dx

= Re
(

u′(1)u(1)−u′(0)u(0)
)

−
∫ 1

0
|u′(x)|2dx

= −
∫ 1

0
|u′(x)|2dx≤ 0
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using the boundary conditions. Hence, A is dissipative. One checks that A = A∗

and generation of a contractive C0-semigroup thus follows from the Lumer–Phillips

Theorem.

Example 4.25 Let us consider the first derivative on L2(0,1), and more precisely

D(A) := {u ∈W 1,2(0,1) : u(1) = βu(0)},
Au := u′

and its adjoint

D(A∗) := {u ∈W 1,2(0,1) : u(0) = β̄u(1)},
A∗u := −u′.

Then for all u ∈ D(A)

Re(Au|u)L2 = Re
∫ 1

0
u′(x)u(x)dx

= |u(1)|2−|u(0)|2−Re
∫ 1

0
u′(x)u(x)dx

=
(

|β |2−1
)

|u(0)|2−Re
∫ 1

0
u′(x)u(x)dx.

A similar computation can be performed for A∗ and one concludes that both A,A∗

with boundary conditions u(1) = βu(0) are dissipative provided that |β | ≤ 1, hence

A generates a dissipative C0-semigroup on L2(0,1), and so does A∗. More generally,

one sees that they generate a C0-semigroup on Lp(0,1) which for β = 0 are the left
and right shift semigroup

etA f (x) :=

{

f (x+ t) if x+ t ∈ [0,1],
0 otherwise,

etA∗ f (x) :=

{

f (x− t) if x− t ∈ [0,1],
0 otherwise,

respectively.

What about characterization of those operators that generate bounded, but not
contractive, C0-semigroups? A.M. Gomilko has provided the following sufficient
condition.

Theorem 4.26 Let A be a densely defined closed linear operator on a Banach space

X. If σ(A)⊂ {z ∈ C : Rez≤ 0} and

sup
δ>0

δ

∫ δ+i∞

δ−i∞

∣

∣

∣

∣

〈

d

dλ
R(λ ,A)x,y

〉∣

∣

∣

∣

|dλ |< ∞ for all x ∈ X , y ∈ X ′,

then A generates a bounded C0-semigroup. If X is a Hilbert space, then also the

converse is true.

Observe that boundedness of a C0-semigroup is in principle already fully charac-
terized by Theorem 4.21. However, that characterization involves infinitely many
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conditions on derivatives of the resolvent operators. Thus, before [186] virtually all
concrete applications of the Hille–Yosida Theorem dealt with the quasi-contractive
case, when the estimate in Theorem 4.21.(b) has to be checked for n = 1 only. In
practice, even after [186], instead of checking Gomilko’s condition it is often easier
to introduce an equivalent norm with respect to which the Lumer–Phillips condition
is satisfied: An example is given in Section 4.5.

It is often convenient to investigate whether a linear operator generates a C0-
semigroup by representing it as a sum of several well-behaved terms. The follow-
ing is the most elementary result in the perturbation theory of generators of C0-
semigroups.

Lemma 4.27 Let X be a Banach space and let B be a bounded linear operator on

X. If A is the generator of a C0-semigroup (etA)t≥0 on X, then so is A+B, with same

domain as A. Define recursively a sequence (Sn(t))n∈N of bounded linear operators

on X by

S0(t) := etA and Sn+1(t) :=
∫ t

0
e(t−s)ABSn(s)ds, t ≥ 0, n ∈ N.

Then the C0-semigroup generated by A+B is given by the Dyson–Phillips series

et(A+B) =
∞

∑
n=0

Sn(t), t ≥ 0,

which converges in operator norm, uniformly in t on compact intervals of R+. Al-

ternatively, the same semigroup is given by the Lie–Trotter product formula

et(A+B) = lim
n→∞

(

e
t
n Ae

t
n B
)n

, t ≥ 0,

with strong convergence.

In particular, A is a generator if and only if so is A+ω Id for some/all ω ∈ C, and
the semigroup generated by A+ω Id satisfies

et(A+ω Id) = etω etA, t ≥ 0.

C0-semigroups are tightly related to resolvent of their generators by means of the
Laplace transform and of the backward Euler scheme.

Proposition 4.28 Let A be the generator of a C0-semigroup on a Banach space X.

Then the following hold.

(1) There is ω0 > 0 such that for λ ∈ C with Reλ > ω0 one has λ ∈ ρ(A) and

R(λ ,A)x = lim
t→∞

∫ t

0
e−λ sesAx ds, x ∈ X

(2) For t ≥ 0 one has
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etAx = lim
n→∞

R
(

1,
t

n
A
)n

x, x ∈ X .

(3) If additionally X is reflexive and A−ω0 Id is dissipative for some ω0 ∈ R, then

for t ≥ 0 and ω > ω0

etAx = lim
k→∞

∫ k

−k
e(ω+is)tR(ω + is,A)x ds, x ∈ X .

As a consequence of Proposition 4.28, the following holds.

Proposition 4.29 Let (etA)t≥0 be a contractive C0-semigroup on a reflexive Banach

space X with generator A. Let C be a closed convex subset of X. Then the following

are equivalent.

(a) C is invariant under (etA)t≥0, i.e., etAC ⊂C for all t > 0;

(b) λR(λ ,A)C ⊂C for all λ > 0.

If C is a closed subspace, then the above conditions are also equivalent to the fol-

lowing.

(c) R(λ ,A)C ⊂C for some λ > 0.

While a C0-semigroup yields in principle a solution of an evolution equation,
finding an explicit expression for its operators is usually hopeless. Though, their
qualitative properties can be often discussed in a rather simple way by means of
Proposition 4.29.

We assume in the remainder of this section that

(U, µ̃) is a σ -finite measure space.

Definition 4.30 A bounded linear operator T on H := L2(U, µ̃) is called

• real if T f (x) ∈ R for µ̃-a.e. x ∈U, whenever f (x) ∈ R for µ̃-a.e. x ∈U;

• positive (or sometimes positivity preserving) if T is real and T f (x)≥ 0 for µ̃-a.e.

x ∈U, whenever f (x)≥ 0 for µ̃-a.e. x ∈U;

• stochastic if T is positive and
∫

U T f (x)dµ̃ =
∫

U f (x)dµ̃ for all f ∈ H;

• L∞-contractive if ‖T f‖L∞ ≤ ‖ f‖L∞ for all f ∈ H ∩L∞(U, µ̃), or equivalently if

|T f (x)| ≤ 1 for µ̃-a.e. x ∈U, whenever | f (x)| ≤ 1 for µ̃-a.e. x ∈U;

• sub-Markovian if T is positive and L∞-contractive; and

• Markovian if T is positive and an isometry for the L∞-norm; and

• irreducible if it does not leave invariant any non-trivial closed ideal.

For a further bounded linear operator S on H one says that

• S dominates T (in the sense of positive operators) if |T f | ≤ S| f | for all f ∈ H.

A C0-semigroup (T (t))t≥0 on L2(U, µ̃) is called real (resp., positive, stochastic,

L∞-contractive, sub-Markovian, irreducible) if so is each operator T (t), t ≥ 0.

All above properties can be described in terms of invariance (or non-invariance)
of suitable closed convex subsets of L2(U, µ̃) under all operators of a C0-semigroup.
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Proposition 4.31 Let C⊂H be a closed convex subset of a Hilbert space H and PC

be the orthogonal projector onto C. Let A be an ω-quasi-m-dissipative operator on

H. Then C is invariant under (etA)t≥0 if and only if

Re(Au|u−PCu)H ≤ ω‖u−PCu‖2
H for all u ∈ D(A). (4.8)

Corollary 4.32 Let C ⊂ H be a closed convex subset of a Hilbert space H and PC

be the orthogonal projector onto C. Let A be an ω-quasi-m-dissipative operator on

H. Then the following assertions hold.

(1) Under the assumptions of Proposition 4.31, let D(A) be invariant under PC, i.e.,

PCu ∈ D(A) whenever u ∈ D(A). If

Re(APCu|u−PCu)H ≤ 0 for all u ∈ D(A),

then C is invariant under (etA)t≥0.

(2) If additionally C is a subspace of H and

Re(APCu|u−PCu)H = 0 for all u ∈ D(A), (4.9)

then C is invariant under (etA)t≥0, and the converse is true if A is dissipative.

The observation in Corollary 4.32.(1) is valuable because it shows that (4.8) can
be checked without having to determine ω .

Proof. (1) The assertion follows because

Re(Au|u−PCu)H =Re(APCu|u−PCu)H +Re(A(u−PCu)|u−PCu)H ≤ω‖u−PCu‖2
H

for all u ∈ D(A). ⊓⊔

In order to appreciate the power of Proposition 4.31, one clearly needs both to
express some relevant qualitative property in term of invariance of some subset C;
and to show that the orthogonal projector PC onto this subset, which is uniquely
determined by the condition

Re(x−PCx|y−PCx)H ≤ 0 for all y ∈C,

can be explicitly expressed.

Lemma 4.33 A bounded linear operator T on H := L2(U, µ̃) satisfies the following.

(1) T is real if and only if C := { f ∈H : f (x) ∈ R for a.e. x ∈U} is invariant under

T ; the orthogonal projector onto C is given by PC f := Re f .

(2) Let T be real. Then T is positive if and only if C := { f ∈H : f (x)≥ 0 for a.e. x∈
U} is invariant under T ; the orthogonal projector onto C is given by PC f :=
Re f+.

(3) Let µ̃(U)<∞ and T be positive. Then T is stochastic if and only if
∫

U T f (x)dµ̃ =
0 whenever

∫

U f (x)dµ̃ = 0, i.e., if and only if C := { f ∈ H : ( f |1)H = 0}
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is invariant under T ; the orthogonal projector onto C is given by PC f :=
f − ( f |1)H1.

(4) T is L∞(U, µ̃)-contractive if and only if C := { f ∈ H : | f (x)| ≤ 1 for µ̃-a.e.x ∈
U} is invariant under T ; the orthogonal projector onto C is given by PC f :=
min{| f |,1}sgn f , where

sgny :=

{ y
|y| if y 6= 0,

0 otherwise.

(5) T is irreducible if and only if it does not leave invariant CU0 := { f ∈H : f (x) =
0 for µ̃-a.e. x 6∈U0} for any measurable subset U0 of U with U0 6= /0 and U0 6=U;

the orthogonal projector onto CU0 is given by PC f := 1U0 f , where 1U0 denotes

the characteristic function of U0.

Example 4.34 Consider the operator A on L2(0,1) of Example 4.25 with β =
0, i.e., (minus) the first derivative with Dirichlet boundary condition in 1. By

Lemma B.12.(2), D(A) is invariant under PC, where C := {w ∈ L2(0,1) : w(x) ≥
0 for a.e. x ∈ (0,1)}, so that PCu = u+. Furthermore,

Re(APC,u−PCu) =−Re
∫ 1

0
(u+)′(x)u−(x)dx = 0,

as the intersection of the supports of u+,u− and hence of of (u+)′,u− has zero

Lebesgue measure. We conclude by Corollary 4.32 that the semigroup generated by

A is positive.

Growth bound of a semigroup and spectral bound of its generator do in general
differ, but are related by

−∞≤ s(A)≤ ω0(A)< ∞. (4.10)

This is unpleasant, because ω0(A) is the quantity one is usually interested in but –
unlike s(A) – it can be seldom determined. Indeed, s(A) and ω0(A) may sometimes
agree – this is e.g. always the case if A is bounded – but it is known that the inequality
may as well be strict, see e.g. [155, § IV.2.7]. The following enhancement of (4.10),
due to L. Weis, is therefore quite remarkable.

Theorem 4.35 Let A generate a positive C0-semigroup on Lp(U, µ̃) for some p ∈
[1,∞). Then

s(A) = ω0(A),

and in particular (etA)t≥0 is uniformly exponentially stable if and only if s(A)< 0.

Definition 4.36 For p ∈ (1,∞) we call a projector P on Lp(U, µ̃) rank-1 if it is of

the form

Pu :=
∫

U
φ(y)u(y) dµ̃(y) · v
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for some v ∈ Lp(U, µ̃) and φ ∈ L
p

p−1 (U, µ̃) such that
∫

U φ(x)v(x) dx = 1. Addition-

ally, P is called strictly positive if φ > 0 µ̃-a.e..

Proposition 4.37 Let A generate a positive, irreducible C0-semigroup on Lp(U, µ̃)
for some p ∈ [1,∞). If et0A is compact for some t0 > 0, then the spectrum of A is

nonempty, hence s(A) > −∞, and there exists a strictly positive rank-1-projector P

and constants M ≥ 0 and ε > 0 such that

‖e−s(A)tetA−P‖L (Lp) ≤Me−εt for all t ≥ 0.

The following is another typical example of the results yielded by the Perron–
Frobenius theory, this time combined with the Jacobs–Deleeuw–Glicksberg decom-

position from ergodic theory.

Proposition 4.38 Let A generate a positive, irreducible C0-semigroup on Lp(U, µ̃)
for some p∈ [1,∞). If A has compact resolvent, then (etA)t≥0 converges to a periodic

group (U(t))t≥0; this means that there exist spaces L
p
0 ,L

p
ap such that

• Lp(U, µ̃) = L
p
0 ⊕L

p
ap and both L

p
0 and L

p
ap are invariant under (etA)t≥0;

• there exists a periodic group (U(t))t≥0 on L
p
ap such that etA ≡U(t) on L

p
ap, t ≥ 0;

•
(

etA
|Lp

0

)

t≥0
is uniformly exponentially stable.

When one thinks of diffusive processes, it is more natural to consider the L1- and
L∞-norms (corresponding to the system’s total mass and maximal pointwise density,
respectively) are more natural to consider than the L2-norm.

Definition 4.39 Let p,q ∈ [1,∞). A C0-semigroup (Tp(t))t≥0 on Lp(U, µ̃) is said to

extrapolate to Lq(U, µ̃) if there is a (so-called extrapolated) C0-semigroup (Tq(t))t≥0

on Lq(U, µ̃) that is consistent, i.e.,

Tp(t) f = Tq(t) f for all f ∈ Lp(U, µ̃)∩Lq(U, µ̃) and all t > 0.

Then, L∞-contractivity is particularly important because, jointly with L2-(quasi)-
contractivity, it yields by the interpolation theorem of Riesz–Thorin the following.

Proposition 4.40 Let (T (t))t≥0 be a C0-semigroup that is quasi-contractive with

respect to the norms of L2(U, µ̃) and L∞(U, µ̃). Then (T (t))t≥0 extrapolates to

Lp(U, µ̃) for all p ∈ [2,∞] and all t ≥ 0. All such extrapolated C0-semigroups are

positive if so is (T (t))t≥0. If moreover (T (t))t≥0 is also quasi-contractive with re-

spect to the norm of L1(U, µ̃) (i.e., if (T (t)∗)t≥0 is L∞-quasi-contractive), then it

also extrapolates to Lp(U, µ̃) for all p ∈ [1,2].
All these semigroups are strongly continuous, with the only exceptions of (T∞(t))t≥0

(never strongly continuous) and (T1(t))t≥0 (which by [406] is indeed strongly con-

tinuous if e.g. (T (t))t≥0 is contractive with respect to all the Lp-norms, if it is posi-

tive, or if µ̃(U)< ∞).

Especially, one is sometimes interested in invariance of some (either dense or
closed) subspace (etA)t≥0. One may then restrict the semigroup to this space and
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study the Cauchy problem solved by the restricted semigroup: Does it have anything
to do with the original Cauchy problem associated with A? The next result shows
that this is often the case. Recall that given a linear operator A on a Banach space X ,
its part in a subspace Y of X is

D(A|) := {x ∈ D(A) : Ax ∈ Y},
A|x := Ax.

Lemma 4.41 Let A generate a C0-semigroup on a Banach space X. If Y is a sub-

space of X that is left invariant under (etA)t≥0 and such that the restriction of

(etA)t≥0 to Y is strongly continuous, then its generator is the part of A in Y .

This can be applied to identify the generator of an extrapolated semigroup.

Corollary 4.42 Let (T (t))t≥0 be a C0-semigroup on Lp(U) that extrapolates to

Lq(U), in the sense of Definition 4.39, for some p < q < ∞. Then the generator

of the extrapolated semigroup is the part in Lq(U) of the generator of (T (t))t≥0

whenever it is known that there exists a Banach space V , with respect to whose

norm the restriction of (T (t))t≥0 is strongly continuous, and such that

‖ f‖Lq ≤Mα‖ f‖α
V ‖ f‖1−α

Lp f ∈V,

for some M > 0 and some α ∈ (0,1).

Let us also observe that if A,B are generators, then the operator matrix

diag(A,B) :=

(

A 0
0 B

)

generates the C0-semigroup defined by

diag(etA,etB) :=

(

etA 0
0 etB

)

, t ≥ 0.

Lemma 4.43 Given two bounded linear operators S,T on a Hilbert space H =
L2(U, µ̃), S dominates T if and only if C := {( f ,g)∈H×H : | f (x)| ≤ g(x) for a.e. x∈
U} is invariant under diag(T,S), if H := L2(U, µ̃); the orthogonal projector onto C

is given by

PC( f ,g) :=

{

( f ,g) if | f | ≤ g,
1
2

(

(| f |+min{| f |,Reg})+ sgn f ,(max{| f |,Reg}+Reg)+
)

otherwise.

Let us propose some classical applications of Proposition 4.31 to the case of a
finite matrix.

Example 4.44 Let S be a finite set and W = (ωi j) be an S× S-matrix, which is of

course always ‖S‖-quasi-dissipative.
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(1) According to Corollary 4.32, each e−tW is a real and positive operator if and

only if

0≥ Re(−W Rex|i Imx)
CS =− Im ∑

i, j∈S

ωi j Rex j Imxi for all x ∈ C
S

along with

0≥ Re(−W x+|− x−)
CS = Re ∑

i, j∈S

ωi jx
+
j x−i for all x ∈ C

S

or rather, considering the canonical basis vectors, if and only if all entries of W
are real (for reality) and additionally the off-diagonal entries of W are negative

(for positivity). (This criterion also holds for matrices W that are merely quasi-

dissipative, because etω etW is positive if and only if etW is.) In particular, W
and −W cannot both generate a positive semigroup unless W is diagonal.

(2) By Corollary 4.32.(2), the space C in Lemma 4.33.(3) is invariant under (e−tW )t≥0

if

0 = Re(−W x|1)
CS =−Re(x|W ∗1)

CS for all x ∈ C
S,

i.e., if W ∗1 = 0. Hence, if (e−tW )t≥0 is positive, then it is stochastic if Id−W is

column stochastic; and by Proposition 4.31, the converse implication provided

W is dissipative.

(3) Likewise, (e−tW )t≥0 is sub-Markovian if and only if it is positive and W 1 ≥ 0.

In particular, (e−tW )t≥0 is Markovian and stochastic if and only if Id−W is

doubly stochastic.

(4) Define a new matrix W♯ = (ω♯
i j) by

ω♯
i j :=

{

Reωii if i = j,
−|ωi j| if i 6= j.

By (1), (e−tW♯)t≥0 is positive: it is called the modulus semigroup of (e−tW )t≥0

and one can check that (e−tW♯)t≥0 dominates (e−tW )t≥0 and is dominated by

any other positive semigroup that dominates (e−tW )t≥0.

(5) Likewise, (e−tW )t≥0 is ℓ∞(S)-contractive if and only if

Reωii ≥∑
j 6=i

|ωi j| for all i ∈ S. (4.11)

Indeed, this condition states that W♯1 ≥ 0, and hence the modulus semigroup

(e−tW♯)t≥0 is sub-Markovian – and in particular ℓ∞-contractive. But then also

(e−tW )t≥0, which is dominated by (e−tW♯)t≥0, has to be ℓ∞-contractive. Con-

versely, if (e−tW )t≥0 is ℓ∞-contractive, and hence its adjoint (e−tW ∗)t≥0 is

ℓ1-contractive, then also the dominating semigroup (e−tW ∗♯ )t≥0 has to be ℓ1-

contractive, hence its adjoint (e−tW♯)t≥0 is ℓ∞-contractive, i.e. W♯1≥ 0.

In particular, W and−W cannot both generate an ℓ∞(S)-contractive semigroup

unless W is diagonal and its (diagonal) entries are purely imaginary.
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(6) One shows analogously that irreducibility as in Definition 4.30 is equivalent to

the condition that W is not similar via a permutation to a block upper triangular

matrix – a formulation of the notion of irreducibility that is more usual for

matrices.

It seems to be unknown whether Proposition 4.31 has a Banach space pendant.
However, at least the following Phillips’ Theorem holds, with the notation of the
Lumer–Phillips Theorem.

Definition 4.45 A linear operator A on Lp(U, µ̃) is called dispersive if it maps real-

valued functions in real-valued functions and

Re〈Ax,y〉 ≤ 0 for all x ∈ D(A) and some y ∈ J(x+).

It is called m-dispersive if it is dispersive and the range Rg(λ Id−A) of λ Id−A

agrees with Lp(U, µ̃) for all λ > 0.

Proposition 4.46 Let A be a closed, densely defined operator on Lp(U, µ̃). Then

the following are equivalent.

(a) A generates a contractive, real positive C0-semigroup.

(b) A is m-dissipative and dispersive.

(c) A is m-dispersive.

4.3 Second order problems

We denote again by [D(A)] the Banach space obtained by endowing the domain of
closed, densely defined operator A on a Banach space X with the graph norm. In
order to investigate well-posedness of the second-order abstract Cauchy problem

{

d2ξ
dt2 = Aξ (t), t ≥ 0,

ξ (0) = x0,
dξ
dt
(0) = x1,

(ACP2)

a classical approach is to introduce a reduction operator matrix along with an aux-
iliary unknown

A :=

(

0 Id
A 0

)

and u :=

(

ξ
dξ
dt

)

, (4.12)

respectively, and then re-write the problem as






u̇(t) = Au(t), t ≥ 0,

u(0) = u0 :=

(

x0

x1

)

.
(4.13)

(The operator matrix A is thus used to reduce the second order equation to a system
of first order equations.)
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If A generates a C0-semigroup, then its first coordinate yields the unique clas-

sical solution of (ACP2), i.e., a function u ∈ C2(R+,X)∩C(R+, [D(A)]) that sat-
isfies (ACP2). If A is a matrix on a finite dimensional space, or more generally a
bounded linear operator on X , then in analogy with the second order linear ordinary
differential equations one considers the operator families

C(t,A) :=
∞

∑
k=0

t2k

(2k)!
Ak, S(t,A) :=

∫ t

0
C(s,A)ds, t ≥ 0, (4.14)

respectively, so that the solution of (ACP2) is given by

ξ (t) :=C(t,A)x0 +S(t,A)x1, t ≥ 0. (4.15)

If especially A is a diagonal matrix all of whose eigenvalues are negative, then the
power series C(t,A) agrees with cos(t

√
−A). This suggests to introduce the follow-

ing.

Definition 4.47 A C0-cosine operator function is a family (C(t))t≥0 of bounded lin-

ear operators on a Banach space X such that

2C(t)C(s) =C(t + s)+C(t− s)), t,s≥ 0, and C(0) = Id,

and moreover

lim
t→0+

C(t)x = x for all x ∈ X .

Its generator is

D(A) :=

{

x ∈ X : lim
t→0+

C(t)x− x

t2 exists

}

,

Ax := 2 lim
t→0+

C(t)x− x

t2 .

Each C0-cosine operator function has exactly one generator. We adopt the notation
(C(t,A))t≥0 throughout. The following relates all these objects.

Lemma 4.48 Let A be a closed operator on a Banach space X. The following are

equivalent.

(a) A generates a C0-cosine operator family on X.

(b) A is densely defined, for all x0,x1 ∈ D(A) (ACP2) has a unique solution

ξ ∈ C2(R+,X)∩C(R+, [D(A)]), and furthermore for each pair of sequences

(x0n)n∈N,(x1n)n∈N ⊂D(A) that tend to 0 with respect to ‖·‖X also the sequence

(un)n∈N of solutions to the corresponding (ACP) tends to 0 with respect to ‖·‖X ,

uniformly in compact intervals of R+.

(c) There exists a Banach space V , with [D(A)] →֒ V →֒ X, such that the operator

matrix

A :=

(

0 Id
A 0

)

, D(A) := D(A)×V,
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generates a C0-semigroup (etA)t≥0 on V ×X.

In this case there holds

etA =

(

C(t,A) S(t,A)
AS(t,A) C(t,A)

)

, t ≥ 0. (4.16)

If any of these conditions hold, then the solution to (ACP2) is given by (4.15) and

(ACP2) is said to be well-posed..

If such a space V exists, then it is unique and is called Kisyński space associated
with A, as its fundamental properties were first proved in [240]. The Kisyński space
does not agree with X unless A is bounded.

Remarks 4.49 (1) A direct computation shows that λ ∈ ρ(±A) and the resolvent

operator of the reduction matrix A is given by

R(λ ,±A) =

(

λR(λ 2,A) ±R(λ 2,A)
±AR(λ 2,A) λR(λ 2,A)

)

(4.17)

whenever λ is a complex number such that λ 2 ∈ ρ(A).
(2) By an application of Lemma 4.27 one sees that the each of the conditions in

Lemma 4.48 is also equivalent to the following one.

(c’) There exists a Banach space V , with [D(A)] →֒ V →֒ X, such that the operator

matrix

Ã :=

(

0 IV
A+B C

)

, D(Ã) := D(A)×V, (4.18)

generates a C0-semigroup (etÃ)t≥0 on V ×X for all bounded linear operators

B,C from V to X and on X, respectively.

The first order abstract Cauchy problem associated with Ã on V×X is equivalent

to the damped second order abstract Cauchy problem

{

d2ξ
dt2 = (A+B)ξ (t)+C

dξ
dt
(t), t ≥ 0,

ξ (0) = x0,
dξ
dt
(0) = x1.

(4.19)

Example 4.50 For all c > 0 the family (C(t))t≥0 given by

C(t) f (x) :=
1
2
( f (x+ ct)+ f (x− ct)) , t ≥ 0, x ∈ R, (4.20)

defines a C0-cosine operator function on Lp(R) for all p ∈ [1,∞). Its generator is

D(C) := W 2,p(R),
Cu := c2u′′,

the square of A introduced in Example 4.16.
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The following shows that the setting of Example 4.50 is just a special case of a
typical behavior.

Proposition 4.51 Let B generate a C0-group on a Banach space X. Then A := B2

generates a C0-cosine operator function on X with Kisyński space [D(B)]. This is

given by

C(t,A) =
1
2

(

eitB + e−itB
)

, t ≥ 0.

Furthermore, if λ 2 ∈ ρ(A), then λ ∈ ρ(B)∩ρ(−B) and the resolvent operators of

±B are given by

R(λ ,B) = (λ Id+B)R(λ 2,A), R(λ ,−B) = (λ Id−B)R(λ 2,A).

Clearly, one expects from a solution of a wave equation different properties than
from solutions of a heat equation. We only mention two.

Definition 4.52 A C0-cosine operator function (C(t))t≥0 on a Banach space X is

called bounded if there exists M > 0 such that ‖C(t)‖L (X) ≤ M for all t ≥ 0. It is

called periodic if there is a period τ > 0 such that C(t + τ) =C(t) for all t ≥ 0.

Proposition 4.53 Let A generate a bounded C0-cosine operator function on a Ba-

nach space X. Then C(t,A)t≥0 is periodic of period τ if and only if its spectrum

σ(A) consists of simple poles of the R(·,A), the set of eigenvectors of A is total in

X, and finally

σ(A)⊂
{

−4k2π2

τ2 : k ∈ Z

}

. (4.21)

The D’Alembert formula (4.20) for the solution of the one dimensional wave
equation is the prototypical cosine operator function and suggests the properties
one expects from a well-behaved second order Cauchy problem.

Definition 4.54 Let A generate a C0-cosine operator function on X = Lp(U, µ̃),
p ∈ (1,∞), and hence (ACP2) be well-posed. Then (ACP2) is said to enjoy finite
speed of propagation if there exists c0 > 0 such that

〈C(t,A)u,v〉= 0

for all ω1,ω2 ⊂U, all u∈ Lp(U, µ̃) and v∈ Lq(U, µ̃) (p−1+q−1 = 1) with suppu⊂
ω1, suppv⊂ ω2, and all t ∈ (0, 1

c0
dist(ω1,ω2)).

4.4 Semigroups on discrete graphs

Besides the analogy with electric networks there are further reasons for regarding
L as a Laplacian. The following justification was suggested in [188, § 2.5.5] and
turns out to be particularly compelling in the viewpoint of this book.
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When modeling diffusive phenomena for an isolated system in an open domain
U , in the continuous case the conservation law

d

dt

∫

U
ϕ(t,x)dx =−

∫

U
div j(t,x)dx

has to be enforced. Likewise, in the discrete case we have the conservation law

d

dt
∑
v∈V

ϕ(t,v) =−∑
v∈V

(I j)(t,v),

where ϕ represents e.g. a temperature or a density of a chemical substance and j is
the flux function. Then, Fick’s law of diffusion can be written in a discrete form as

j(t,e) = c
(

I T ϕ(t,e)
)

,

for a suitable function c : R→ R. It can in fact be used to derive a differential equa-
tion governing a flow on G: Choosing c to be the identity we finally obtain the
discrete diffusion equation

d

dt
∑
v∈V

ϕ(t,v) =−∑
v∈V

I I T ϕ(t,v). (4.22)

In view of the above derivation, we regard (4.22) as a linear, homogeneous heat
equation – and hence think of I I T as a discrete version of the Laplacian. (Ob-
serve that, unlike its spatially continuous counterpart, (4.22) is a backward evolu-
tion equation.) If c is more generically a linear mapping we recover instead a general
Laplace–Beltrami matrix.

Let us consider again the operators introduced in Section 2.1. The case of hermi-
tian matrices is easy to treat.

Proposition 4.55 Let G be a finite weighted graph. Then−L ,−Q,−Lnorm,−Qnorm

generate contractive C0-semigroups.

Proof. Because each bounded operator generates a group by (4.1), it suffices to
check that these matrices are dissipative: Indeed, −L ,−Q,−Lnorm,−Qnorm are
dissipative by their definition. ⊓⊔

Also in the infinite case, in order to show that these matrices are C0-semigroup
generators one could apply the Lumer–Phillips theorem by showing that they are in
fact m-dissipative, i.e., checking a condition on their range. This boils down to solve
an infinite system of algebraic equations. However, in Section 6.4.1 we will prove a
sharper result with less effort applying the theory of elliptic forms.

What about the non-Hermitian matrices in Section 2.1? We have seen in Exam-
ple 2.24 that the advection matrices −−→N ,−←−N need not be dissipative, in sharp
contrast to the first derivative on an interval, cf. Example 4.25. In which sense, then,
the semigroups generated by −−→N and −←−N can be considered discrete pendants of
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the shift semigroups? We can make sense of this analogy at least in a very special
case.

Lemma 4.56 Let G a be a finite unweighted graph. If G is an oriented cycle, then

(e−t
−→
N )t≥0 is contractive. If G is an oriented path, then (e−t

−→
N )t≥0 is uniformly ex-

ponentially stable.

Proof. We begin by writing
−→
N = Dout−A in. We are going to estimate W (

−→
N ) by

W (Dout)−W (A in). In order to describe W (A in), we observe that A in +(A in)∗ =
A in +A out = A is a tridiagonal Toeplitz matrix with vanishing diagonal and with
all off-diagonal entries equal to 1. Hence its largest eigenvalue is 2. On the other
hand, Dout = Id and therefore W (Dout) = {1}. Accordingly, by Proposition 2.23.(7)

the numerical range of
−→
N is contained in the ball B1(1). Accordingly,

−→
N is dissi-

pative and the assertion follows by the Lumer–Phillips’ Theorem.
Likewise, a trivial application of the Lie–Trotter product formula yields

e−z
−→
N = e−z(Dout−A in) = e−zDout

ezA in
= e−zezA in

, z ∈ C.

For a finite path Dout = Id and hence e−zDout
= e−z Id. Also, a direct computation

shows that

ezA in
=





















1 z z2

2!
z3

3! . . .

0 1 z z2

2!

. . .

0 0 1 z
. . .

0 0 0 1
. . .

...
. . .

. . .
. . .

. . .





















, z ∈ C,

i.e., (etA in
)t≥0 has polynomial growth. The claim thus follows. ⊓⊔

In order to treat these matrices in the case of infinite graphs, we first need to
introduce suitable form methods: This will be done in Chapter 6. For this reason,
for the time being we refrain from discussing the generator property of any matrix
in the case of infinite graphs and only focus on finite graphs. Because in this case it
is already clear that all operators from Section 2.1 are generators by (4.1), we rather
focus on deducing some qualitative properties of solutions by semigroup methods.

If S is the node set of a graph, we can specialize the criteria found in Exam-
ple 4.44 to the case of difference operators on graphs introduced in Section 2.1. We
thus find the following.

Lemma 4.57 Let G = (V,E,µ) be a finite weighted oriented graph. Then the fol-

lowing assertions hold.

(1) (e−tL )t≥0 is sub-Markovian and stochastic – hence contractive with respect

to the ℓp(V)-norm for all p ∈ [1,∞]. (etL )t≥0 is neither positive nor ℓ∞(S)-
contractive.
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(2) (e−tQ)t≥0 is ℓ∞(V)- and ℓ1(V)-contractive – hence contractive with respect to

the ℓp(V)-norm for all p ∈ [1,∞]. It is not positive, unlike (etQ)t≥0. It is domi-

nated by (e−tL )t≥0.

(3) Both (e−tLnorm)t≥0 and (e−tQnorm)t≥0 are contractive. Also (e−tQnorm)t≥0 is dom-

inated by (e−tLnorm)t≥0. Furthermore, (e−tLnorm)t≥0 is positive but in general

not ℓ∞(V)-contractive.

(4) (et(T T−Id))t≥0 is contractive and stochastic.

All the above semigroups are irreducible if and only if G is connected.

(5) (e−t
−→
N )t≥0 and (e−t

←−
N )t≥0 are stochastic, whereas (e−tK out

)t≥0 and (e−tK in
)t≥0

are sub-Markovian.

(6) (et(
−→
T T−Id))t≥0 and (et(

←−
T −Id))t≥0 are stochastic.

All the semigroups in (5)–(6) are irreducible if and only if G is strongly con-

nected.

If G has finite volume (or more generally if the condition in Proposition 3.8.(2)

is satisfied) and additionally G is strongly connected, then (e−t
−→
N )t≥0, (e−t

←−
N )t≥0,

(e−tK out
)t≥0, (e−tK in

)t≥0 converge towards a periodic group.

(Indeed, also (e−tL )t≥0,(e
−tLnorm)t≥0,(e

t(T T−Id))t≥0) converge towards a peri-
odic group if G is connected, but in their case the limiting periodic group is trivial,
as the stable subspace ℓp

0(V) has codimension 1.)
In particular, (6) justifies Definition 2.30, since – like any other pagerank –

Chung’s heat kernel pagerank needs to be a probability distribution for all parame-
ters t, if so is f .

Proof. (1) (Minus) the discrete Laplace–Beltrami operator −L is dissipative in
view of (2.9), hence the semigroup it generates is contractive by the Lumer–Phillips
Theorem. It has real entries that are negative off-diagonal and sum up to 0 both
row-wise and column-wise. Furthermore, −L is dissipative by (2.10).

(2) Similar considerations hold for Q, the signless discrete Laplace–Beltrami
operator. Again, −Q is dissipative by (2.14). Because its off-diagonal entries are
positive, (e−tQ)t≥0 is not positive. By construction of Q, (e−tL )t≥0 is the modulus
semigroup of (e−tQ)t≥0 (and (etQ)t≥0 is the modulus semigroup of (etL )t≥0), hence
(e−tQ)t≥0 is dominated by (e−tL )t≥0. In particular, by (1) (e−tQ)t≥0 turns out to be
both ℓ∞-contractive and (by duality, as Q is symmetric) ℓ1-contractive.

(3) Again, dissipativity of both operators follows directly from their definition.
The assertion on domination is proved in the same way. Moreover, Lnorm has real
entries that are negative off-diagonal – unlike Qnorm. That (e−tLnorm)t≥0 is generally
not ℓ∞-contractive can be seen taking G to be an unweighted star with more than
two nodes and checking that condition (4.11) does not hold if one takes i to be the
center of the star.

(4) By (2.23) also−(Id−T ) =−D
1
2 LnormD−

1
2 is dissipative. Since T T is col-

umn stochastic, the semigroup generated by T − Id is stochastic, too.
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(5) We can likewise deduce all properties of the semigroups generated by
−K in,−K out,−−→N ,−←−N from (2.26) and (2.27).

(6) Both
−→
T T and

←−
T are row stochastic.

The assertion about convergence toward a periodic group follows from Proposi-
tion 4.38 and the fact that a linear operator has compact resolvent if and only if its
domain is compactly embedded in the ambient space. By ⊓⊔

Example 4.58 Let us consider the abstract Cauchy problem associated with the ad-

jacency matrix A : This is usually known as the master equation in applied natural

sciences. Let us represent A as

A = L −D .

We already know from Lemma 4.4 that if (3.2) holds, then A ,L ,D are bounded on

ℓp(V), hence the master equation is surely well-posed on all ℓp(V)-spaces.

How to show that (e−tA )t≥0 is positive on all these spaces? Although Lemma 4.57

only holds in Hilbert spaces, it is clear that all extrapolated semigroups inherit pos-

itivity of the extrapolating semigroup (like (e−tL )t≥0) defined on the given Hilbert

space. In this case (e−tA )t≥0 is not sub-Markovian and hence it is not clear whether

the master equation is well-posed on all ℓp(V)-spaces. But this follows indeed ap-

plying Lemma 4.27 to the bounded operator D , if (3.2) holds.

Furthermore, (e−tL )t≥0 is positive and so is D: We conclude that from Lemma 4.57

that also (e−tA )t≥0 is positive on ℓp(V) for all p. Indeed, the series representation

of (et(A+B))t≥0 in Lemma 4.27, which goes back to F. Dyson, shows in particular

that (et(A+B))t≥0 is positive if (etA)t≥0 and B are positive, too.

Example 4.59 We will briefly discuss the notion of connectome in Chapter 5.

In [401] the authors express their criticism of this notion advocating the view that

the statistics of the degree distributions and metric properties of a network are not

quite significant, whereas more insight may be gained modeling both networks of

all neurons connected by electrical and chemical synapses by means of parabolic

equation associated with the discrete Laplacian Lele and the incoming adjacency

matrix A in
chem associated with the respective subgraph, respectively. After some sim-

plification and ad-hoc hypotheses, they thus find a system of two equations

{

d f
dt
(t,v) = −Lele f (t,v), t ≥ 0, v ∈ V,

d f
dt
(t,v) = A in

chem f (t,v), t ≥ 0, v ∈ V,

whose unknown is the vector of the membrane potentials. They can then be combined

to obtain
d f

dt
(t,v) =

(

−Lele +A in
chem

)

f (t,v), t ≥ 0, v ∈ V.

As a brain contains finitely many neurons, well-posedness follows already by (4.1).
Furthermore, −Lele +A in

chem has positive off-diagonal entries but generally neither

its rows nor its columns sum up to 0. Thus, the semigroup
(

et(−Lele+A in
chem)

)

t≥0
is
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positive, but in general neither stochastic nor sub-Markovian: This seems in accor-

dance with the triggering of action potentials.

Example 4.60 Given a (possibly oriented) finite graph with node set V, a famous

class of problems in the theory of distributed systems consists in finding an appropri-

ate operator W on ℓ2(V) such that either the continuous or the discrete dynamical

system associated with W converges to a prescribed consensus.

In our language, this amounts to finding a suitable generalized Laplacian W
such that for a certain class of functions f ∈ RV

e−tW f or W k f

converge as t → ∞ or k→ ∞ to some given vector in the node space – this is typ-

ically the constant function 1 if the graph is finite (one calls this specific instance

synchronization or average consensus). The survey paper [329] provides a good

introduction to this subject.

It was observed in [331] that the discrete Laplacian yields a protocol for reach-

ing average consensus on a non-oriented, connected graph, and so does the out-

going Kirchhoff matrix, if the graph is oriented and strongly connected. Indeed,

we have seen in Example 4.57 that both (e−tL )t≥0 and (e−tK out
)t≥0 are positive

and irreducible. Moreover, s(L ) = 0 and by Proposition 4.37 (e−tL )t≥0 converges

exponentially towards the projector onto the subspace spanned by 1. Likewise, if fol-

lows that −K in,−K out and hence their transposes −−→N ,−←−N have zero spectral

radius, thus we deduce by Proposition 4.37 that they generate semigroups that con-

verge exponentially toward a projector. In the case of (e−tK in
)t≥0,(e

−tK out
)t≥0, this

projector corresponds to the average consensus, whereas the system may generally

converge to a different consensus if we adopt −−→N or −←−N as protocols.

We already know that
−→
T − Id is dissipative, hence so is

−→
T T − Id. Because

−→
T

is column stochastic,
(−→
T T − Id

)

1 = 0, hence the spectral bound of both
−→
T T − Id

and its adjoint
−→
T − Id is 0. The higher the speed of convergence towards the rank-

1-projectors is, the more efficient the protocol is considered.

If one focuses on the discrete dynamical system, then the so-called Metropolis
algorithm introduced in [292] shows that for any given probability distribution on

V it is always possible to find a suitable weight function µ : E→ [0,∞) and hence

an associated normalized Laplacian Lnorm in such a way that the solutions, which

are given by (L n
norm f )n∈N of the discrete dynamical system converge to the given

probability distribution.

4.5 Advection on metric graphs

Throughout this section
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G= (V,E) is the metric graph associated with
a locally finite, weighted oriented graph G= (V,E,µ).

We are going to study advection problems on G, i.e., abstract Cauchy problems asso-
ciated with the first derivative operator introduced in Section 2.2.2. More precisely,
we study an advective process

∂ue

∂ t
(t,x) =

∂ue

∂x
(t,x), t ≥ 0, x ∈

(

0,µ(e)
)

, e ∈ E, (4.23)

taking place on each edge e of a metric graph G. We already know that upon con-
sidering the isometric isomorphism Ψ defined in (2.37) we can equivalently assume
all edges to have unit length, i.e. µ(e)≡ 1, and weight the state space by µ instead.

This leads to considering the operator Mγ
←−
A , where

←−
A is the first derivative op-

erator

(
←−
A u)e(x) :=

due

dx
(x), x ∈

(

0,1
)

, e ∈ E, (4.24)

with standard boundary conditions as in Definition 2.42 and Mγ is the multiplica-
tion operator associated with the edgewise constant function γ introduced in Exam-
ple (2.37).

Actually, in this section we are going to discuss the abstract Cauchy problem
(ACP) associated with the more general operator

Mc
←−
A +Mp,

complemented by standard boundary conditions

u(1) =
←−
Bu(0),

where
←−
B is the matrix defined as in (2.31) and c, p : (0,1)→ CE are general func-

tions such that ce(x), pe(x) are strictly positive for all x∈ (0,1) and all e∈ E. (Again,
Mc,Mp are the multiplication operators introduced in Example (2.37).)

It was observed by B. Dorn that, whenever c ≡ 1 and p ≡ 0, the formula in
Example 4.25 can be extended to yield the following, where row stochasticity of

←−
B

plays an important role.

Proposition 4.61 Let (3.2) hold. Then the first derivative
←−
A with standard bound-

ary conditions generates on L1
(

(0,1);ℓ1
µ(E)

)

a positive, contractive C0-semigroup

given by

et
←−
A u(x) :=

←−
Bku(t +x−k) if t +x ∈ [k,k+1), k ∈N, x ∈ (0,1), t ≥ 0. (4.25)

In view of Lemma 4.4.(7) condition (3.2) ensures that
←−
B is bounded on ℓ1

µ(E) –

thus in particular that the standard boundary condition u(1) =
←−
Bu(0) is well defined

– and hence that each operator et
←−
A is bounded on L1

(

(0,1);ℓ1
µ(E)

)

.



4.5 Advection on metric graphs 93

Formula (4.25) explicitly shows the influence of the graph’s connectivity on the
evolution of the system. The general case of c 6≡ 1, p 6≡ 0 can however also be
treated, by abstract semigroup methods. That is, we want to prove that Mc

←−
A +Mp

is a generator, where

(

Mc
←−
A +Mp

)

u(x) := diag

(

ce(x)
due

dx
(x)− pe(x)ue(x)

)

e∈E
, x ∈ (0,1),

with same domain as D(
←−
A ), i.e.,

{

u ∈W 1,1((0,1);ℓ1
µ(E)

)

: u(1) =
←−
Bu(0)

}

.

Proposition 4.62 Let (3.2) hold and let

0 < k0 ≤ ce(x)≤ K0 for some k0,K0 > 0 and all x ∈ (0,1).

Then Mc
←−
A +Mp generates a C0-semigroup on L1

(

(0,1);ℓ1
µ(E)

)

. If in particular

0≤ pe for all e ∈ E, then (et
←−
A )t≥0 is contractive and real. It is positive if G is finite.

Proof. It is easy to see that
←−
A is closed and densely defined, and so is Mc

←−
A +Mp.

Let us first discuss the case of 0 ≤ pe for all e ∈ E, endowing L1(G) with the
equivalent norm

‖|u|‖ := ∑
e∈E

∫ 1

0
|ue(x)|

µ(e)

ce(x)
dx, u ∈ L1(G).

If u ∈ D(Mc
←−
A −Mp) and v ∈ L1(G) with R(λ ,A)v = u, then whenever Reλ > 0

one has

λ |ue(x)|− ce(x)
d

dx
|ue(x)|+ pe(x)|ue(x)|= sgnue(x) · ve(x), x ∈ (0,1), e ∈ E.

Multiplying by µ(e)/ce, integrating over (0,1), and summing over e one obtains

λ‖|u|‖ = ∑
e∈E

∫ 1

0

d

dx
|ue(x)|µ(e)dx− pe(x)

ce(x)
|ue(x)|µ(e)dx+ ∑

e∈E

∫ 1

0

sgnue(x)

ce(x)
ve(x)µ(e)dx

≤ ‖u(1)‖ℓ1
µ
−‖u(0)‖ℓ1

µ
+ ∑

e∈E

∫ 1

0

sgnue(x)

ce(x)
ve(x)µ(e)dx,

since the functions pe are positive. Owing to the node conditions satisfied by u one
concludes that



94 4 Operator semigroups

λ‖|u|‖ ≤ ‖←−Bu(0)‖ℓ1
µ
−‖u(0)‖ℓ1

µ
+ ∑

e∈E

∫ 1

0

sgnue(x)

ce(x)
ve(x)µ(e)dx

≤ (‖←−B‖−1)‖u(0)‖ℓ1
µ
+ ∑

e∈E

∫ 1

0

|ve(x)|
ce(x)

µ(e)dx

= (‖←−B‖−1)‖ue(0)‖ℓ1
µ
+‖|v|‖= ‖|v|‖,

where the last equality holds because the matrix
←−
B is row stochastic and thus has

norm 1 as a linear operator on ℓ1
µ . The claim now follows from the theorem of

Hille–Yosida.
The case of general p follows from Lemma 4.27, as P defined a bounded operator

on L1(G).
In order to prove positivity, by Phillips’ Theorem 4.46 it suffices to check disper-

sivity of
←−
A . We have to face the problem that, by Remark 3.18.(3), L1(G)′ 6= L∞(G)

unless G is finite. However, in the finite case we may take for all u ∈ D(
←−
A ) a

v := J(u+) ∈J (u+) defined by

ve :=
1
ce

1{ue≥0}, e ∈ E.

Now, reasoning as above we find

〈

(Mc
←−
A −Mp)u,v

〉

= ∑
e∈E

∫ 1

0

(

ceu
′
e1{ue≥0}− peue1{ue≥0}

) µ(e)

ce
dx

≤ ∑
e∈E

∫ 1

0

(

u′e1{ue≥0}
)

µ(e)dx

≤ ‖
(←−
Bu(0)

)+
‖ℓ1

µ
−‖(u(0))+ ‖ℓ1

µ

≤ ‖←−B (u(0))+ ‖ℓ1
µ
−‖(u(0))+ ‖ℓ1

µ
= 0,

due to row stochasticity of
←−
B. This concludes the proof. ⊓⊔

Similar computations show that also (et
−→
A )t≥0, (et

←−
A ∗)t≥0, (et

−→
A ∗)t≥0 are contrac-

tive.

Remarks 4.63 (1) If G is finite, then by Remark 3.18.(3) L1
(

(0,1);ℓ1
µ(V)

)

is the

dual space of L∞
(

(0,1);ℓ∞
µ (V)

)

, and we conclude that both (et
−→
A )t≥0,(e

t
←−
A )t≥0 ex-

trapolate to a C0-semigroup on Lp
(

(0,1);ℓp
µ(V)

)

≡ Lp(G) for all p ∈ [1,∞). The

case of p = 2 has been considered in particular in [242]: It has been shown therein

that the growth bound of the semigroup on L2(G) is at most

min
e∈E

ce log‖←−B‖2
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if all ce are constant, where ‖ · ‖2 denotes the spectral norm; and that this estimate

is sharp in the sense that the semigroup is contractive if and only if ‖←−B‖2 = 1.

Furthermore, even when a formula like (4.25) is not available, one can prove that←−
A generates a C0-group (resp., a unitary C0-group) if and only if

←−
B is invertible

(resp.,
←−
B is unitary).

(2) This last result shows that the abstract Cauchy problem (ACP) associated

with
←−
A is in general not backward well-posed. This is intuitively due to the fact that

(Kr) only prescribes the behavior at each outgoing edge, but not at each incoming

one. If the flow would be naively reversed, the backward evolving system would

then in general lack proper node conditions. The correct way of reversing time is to

consider
−→
A instead, but this does in general not yield standard boundary conditions

(unless
−→
B =

←−
B−1 of course, like in the case of a cycle).

(3) If we want this backward evolving system to coincide with the system asso-

ciated with
←−
A ∗, and if we simultaneously require the node conditions to be local

(i.e., only relating the boundary values of functions that converge in the same node

of the network), then
←−
B has to be a block-matrix with each block corresponding to

a certain node. The dimension of the block associated with the node v is the number

of edges, incoming in v, on whose terminal endpoint a condition is imposed in the

forward evolving system; and also the number of edges, outgoing from v, on whose

initial endpoint a condition is imposed in the backward evolving system. In other

words, each node has the same number of incident outgoing and incoming edges.

Hence, a self-adjoint realization in L2(G) of the momentum operator with local con-

ditions can exist if and only if the graph is orientedly Eulerian, cf. Theorem A.10.

If G is finite, then by Lemma 3.27 Mc
←−
A has compact resolvent. In some special

cases it is even possible to write down its resolvent operators explicitly.
For Reλ > 0, let us denote by Eλ (s) the E×E matrix

Eλ (s) := diag

(

e
λ (s−1)

ce

)

e∈E
, s ∈ [0,1],

and by Dλ : CV→ D(
←−
A ) the operator defined by

(Dλ d)(s) := Eλ (s)MI −
T
(Dout)−1d, d ∈ C

V, s ∈ (0,1).

Finally, C := diag(ce)e∈E, while M : D(
←−
A )→ CV is the operator defined by

M f := I + f (0), f ∈ D(
←−
A ).

Proposition 4.64 If G is finite and each ce is a constant function, e ∈ E, then for all

f ∈ X the resolvent operator of Mc
←−
A on L1

(

(0,1);ℓ1(E)
)

is given by

R(λ ,Mc
←−
A ) f (s)=

(

Id+Dλ (Id−MDλ )
−1M

)

∫ 1

s
Eλ (s−τ+1)C−1 f (τ)dτ, s∈ [0,1].

(4.26)
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The key point is that the significant vector-valued equation

λu−Mc
←−
A u = v

is equivalent to a family of equations

λue− ce
due

dx
ue = ve, e ∈ E,

whose fundamental solutions are particularly simple if each ce is a constant (indeed,
in this case

u(s) =
1
ce

∫ 1

s
e

λ (s−τ+1)
ce f (τ) dτ, s ∈ [0,1]),

and to a family of compatibility conditions that have to be satisfied by the values of
the solutions ue in the endpoints of each interval/metric edge. Checking that such
compatibility conditions force the resolvent operator to take the form (4.26) is just
a matter of lenghty computations: Details can be found in [253]. (Clearly, the same
idea allows to easily find an expression for the resolvent operators of the first deriva-
tive with different node conditions.)

Indeed, the integral on the right hand side of (4.26) is simply the resolvent oper-
ator of the first derivative with Dirichlet boundary conditions on the right endpoint:
In this way the eigenvalue problem is effectively decomposed in a term that agrees
with the solution in the classical case of individual, decoupled intervals; and another
term – i.e., the matrix

(

Id+Dλ (Id−MDλ )
−1M

)

– that encodes the connectivity of
the graph. Using this decomposition it is not difficult to prove the following, cf. [253,
Lemma 4.4].

Proposition 4.65 Let G be finite and strongly connected. Then (etMc
←−
A )t≥0 is irre-

ducible. It converges towards a periodic group.

The second assertion follows from Proposition 4.38.
Another possible application of the explicit formula (4.26) is presented in the

following.

Example 4.66 If all coefficients ce ≡ 1, then Eλ (s− τ + 1)C−1 f (τ) is a diagonal

matrix for all s ∈ [0,1] and all τ ∈ (s,1), hence the integral term in (4.26) leaves

any subspace Y of L1
(

(0,1);ℓ1(E)
)

invariant. Let e.g. P be an orthogonal projector

of CE and consider the subspace

Y := { f ∈ L1((0,1);ℓ1(E)
)

: f (x) ∈ RgP for a.e. x ∈ (0,1)}.

Then, by Corollary 4.29 one sees that Y is invariant under (et
←−
A )t≥0 if and only if

Dλ (1−MDλ )
−1MY ⊂ Y for some λ ∈ R.

By definition of M,Dλ such a condition only depends on the topology of the graph.

Similar results will be obtained with less effort in Chapter 8.
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4.6 Notes and references

Section 4.1. Lemma 4.3 was established in [80] and extended to the weighted case in [306]. In the
unweighted case it was showed in [296] that the adjacency matrix is bounded on ℓp(V) for some/all
p if and only if G is uniformly locally finite; and compact if and only if G is finite. Remarkably,
in [314] V. Müller has disproved the conjecture, due to B. Mohar, that the adjacency operator of an
(unweighted) locally finite graph is always self-adjoint – in fact, it is in general not even essentially
self-adjoint as shown in [185].

On the other hand, by Lemma 4.3 the discrete Laplacian L is bounded and symmetric, hence
self-adjoint on each uniformly locally finite graph. The question whether L is essentially self-
adjoint has been open for a long time. It has been finally answered in the positive in [412] in the
unweighted case, and then independently in [221, 232, 396] in the weighted case, provided the
node weight ν is bounded away from 0. If the node weight is allowed to degenerate, or if the graph
is not locally finite, then L is in general not essentially self-adjoint.

Since L = (I C
1
2 )(I C

1
2 )T , if for p = 2 L is bounded on ℓp(V) and hence

‖I C
1
2 ‖2

L (ℓ
p
γ (E),ℓ

p(V))
= ‖L ‖L (ℓp(V)) < ∞,

then I is bounded from ℓp
γ (E) to ℓp(V), hence by Lemma 4.3.(3) G is uniformly locally finite.

This observation has been generalized to all p ∈ [1,∞] in [197, Thm. 9.3].
On a graph without sinks (resp., sources) one may also define normalized versions of the out-

going (resp., incoming) Kirchhoff or advection matrices, like
−→
L norm := (Dout)−

1
2
−→
N (Dout)−

1
2 .

Because a pendant of Lemma 4.2 holds replacing deg by degout, and because one sees that K out

and hence its transpose
−→
N are bounded on ℓ2

degout (V), one concludes that
−→
L norm is bounded on

ℓ2(V) regardless of the connectivity of G.

Section 4.2. A modern, convenient survey of the theory of C0-semigroups can be found in [155]
or, in more brief form, in many other monographs including [16, 70, 219]. The celebrated Theo-
rem 4.20 was obtained simultaneously but independently in 1948 by E. Hille and K. Yosida and
marked the birth of this theory. Over the last 60 years, semigroup theory has become very rich
in its own right, beyond the elementary interplay with first order Cauchy problems. In particular,
dwelling on the classical Perron–Frobenius theory a comprehensive collection of results on long-
time behavior of positive C0-semigroups has been obtained among others in [16, 151, 316, 400].
Proposition 4.31 is a classical invariance criterion obtained by H. Brezis in [69]. The slightly gen-
eralized version presented here is a special case of [417, Thm. 2.4]. The theorems 4.23 and 4.46
appeared in [279] and [344], respectively.

In general, in view of Proposition 4.12 there is no point in looking for semigroups that are
better than merely strongly continuous: it can be easily proved (cf. [155, Thm. I.3.7]) that any
family of bounded linear operators that satisfy the semigroup law and are continuous with respect
to the operator norm is necessarily generated by a bounded operator – unlike the operators that
appear in partial differential equations, which are typically unbounded. (This is also the reason for
us to focus on functional settings based on Lebesgue Lp-spaces for 1 ≤ p < ∞, in the following,
thus excluding L∞ from our considerations. Indeed, by a result due to H.P. Lotz, a C0-semigroup
on some L∞-space is automatically norm continuous in 0, and hence it is necessarily generated by
a bounded operator.)

Theorem 4.26 was first obtained by A.M. Gomilko in [186], cf. also [376]. When it was pub-
lished, Gomilko’s Theorem answered a long-standing question. It has been variously generalized
ever since, among others in [150, Thm. 2.4] as follows.

Proposition 4.67 Let A be a densely defined closed linear operator on a Banach space X and

σ(A)⊂ {z ∈ C : Rez≤ 0}. If
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∫ δ+i∞

δ−i∞

∣

∣

∣

∣

〈

d

dλ
R(λ ,A)x,y

〉∣

∣

∣

∣

|dλ |< M

δ
(1+δ−d)‖x‖‖y‖ for all x ∈ X , y ∈ X ′

holds for all δ > 0 and some d ≥ 0, then A generates a C0-semigroup such that

‖etA‖ ≤ K(1+ td)

for some K > 0 and all t > 0.

In both this and Gomilko’s original version it is remarkable that A is not a priori assumed to be a
generator.

The idea of studying domination as an invariance property was developed by E.M. Ouhabaz
in [335, § 3]. The problem of finding the orthogonal projector of L2(U, µ̃) onto the Lp-unit ball
has been open for a long time, until R. Nittka could determine in [326] a semi-explicit formula for
it; this is in turn enough to apply some variants of Proposition 4.31. Lemma 4.41 has been taken
from [155, § II.2.3].

As we already mentioned in Chapter 2, in this book we mostly focus on time-continuous evo-
lution equations, but in view of specific applications it is sometimes more appropriate to consider
discrete time steps instead. One is then led to time discrete abstract Cauchy problems like

f (n+1) = Z f (n), n ∈N,

so that in general f (n) = Z n f (0) for some operator Z (typically, a matrix) and the relevant
asymptotic issue is whether the discrete operator semigroup (Z n)n∈◆ converges in some sense as
n→ ∞. A necessary condition is clearly that the operator be power-bounded. The critical case is
now that of eigenvalues that lie on the unit circle U(1) of Z , rather than generator’s eigenvalues
on iR. In comparison with the analysis of long-time behavior of C0-semigroups the discrete theory
is more involved, essentially due to the fact that – unlike iR – U(1) contains non-trivial finite sub-
groups. Let us only mention the following pendant of Proposition 4.38, which follows from [230,
Thm. 5.6] remembering that Lebesgue Lp-spaces have order continuous norm for all p ∈ [1,∞).

Proposition 4.68 Let p ∈ [1,∞) and let Z be a positive irreducible power-bounded operator on

Lp(U, µ̃). Then (Z n)n∈◆ converges almost weakly to a periodic group (U n)n∈❩; this means that

there exist spaces L
p
0 ,L

p
ap such that

• Lp(V) = L
p
0 ⊕L

p
ap and both L

p
0 and L

p
ap are invariant under Z ;

• there exists a periodic group (U n)n∈❩ on L
p
ap such that Z ≡U on L

p
ap;

• for every x ∈ L
p
0 there exists a sequence (n j) j∈◆ ⊂N such that Z n j x converges weakly to 0.

We stress that (linear) continuous dynamical systems and discrete ones are tightly related. In-
deed, let −W = (ωvw) be a V×V-matrix that generates a Markovian semigroup, which is then by
Example 4.44 of the form

W =











∑
w 6=v

ωvw −ωvz

. . .
−ωzv ∑

w 6=z

ωzw











.

Now, let λ := max
v∈V

∑
w 6=v

ωvw, so that

Z := Id− 1
λ

W

is a row sub-stochastic matrix. Then

etW T

= etλ (Z T−Id) =
∞

∑
k=0

e−λ t(λ t)k

k!
Z T k

, t ≥ 0.

Observe that terms corresponding to a homogeneous Poisson distribution and the transition-like
matrix Z coexist, yielding some kind of jump sub-Markovian process, cf. [127, Chapt. 12].
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Conversely, if Z is a stochastic matrix, then Id−Z is negative off-diagonal and satisfies (4.11),
so that (et(Z −Id))t≥0 generates a Markovian semigroup – and hence, (et(Z T−Id))t≥0 is a stochastic
semigroup: A similar idea is behind the introduction of the heat kernel pagerank in Definition 2.30.
In both cases, the properties of the random walk described by W is enhanced by perturbing it by a
lazy walk (at each step the walker has a certain probability of not moving), rather than by random
surfing like in Google’s algorithm.

Section 4.3. Cosine operator functions were first studied by M. Sova in [385]. We have summa-
rized elementary results, but more detailed overviews can be found in [164, 402] and [16, § 3.14].
Observe that the operator B discussed in Example 4.50 is the square of the operator A introduced
in Example 4.16.

Conversely, by a classical theorem of H.O. Fattorini each C0-cosine operator function generator
on Lp-spaces in the reflexive range is, up to a scalar perturbation, the square of a C0-group gener-
ator. Proposition 4.53 is taken from [281], where a previous partially erroneous assertion in [178]
was corrected.

Unlike in the case of semigroups, the stability theory of cosine operator functions is rather
poor. This is mainly due to the fact, discussed e.g. in [16], that if for a C0-cosine operator function
(C(t))t≥0 limt→∞ C(t)x = 0, then necessarily x = 0. Seemingly, the only reasonable asymptotic no-
tion is that of boundedness (or perhaps of polynomial boundedness, in the sense of Proposition 4.67
above. A cosine operator function counterpart of Theorem 4.26 has been proved in [255].

Section 4.5. The generator property of C
←−
A +Mp has been proved in [253], while (4.25) has been

found by B. Dorn in [142, Prop. 1.2.1 and Cor. 3.2.5]. Proposition 4.64 is [253, Prop. 3.3]. Several
subsequent papers of the Tübingen school have been devoted to more and more general advection
processes on metric graphs, including infinite ones in [143]. If G is an oriented cycle, then it is

clear that (et
←−
A )t≥0 embeds in a periodic C0-group; if it is not, one may expect that the transported

matter either disappears from the system, or it stabilizes on a set of closed orbits. Actually, the
following refinement of Proposition 4.65 holds by [253, Thm. 4.5] and [378, Thm. 2.4.11], where
the notions introduced in Proposition 4.68 are extended in a natural way.

Proposition 4.69 If G is strongly connected, then (et
←−
A )t≥0 converges exponentially towards a

direct sum of periodic groups, one for each strongly connected component, whose periods are the

greatest common divisors of the cycle lengths inside the components.

Thus, in some sense the metric graph asymptotically splits into the direct sum of its strongly con-
nected components. More refined results are presented in [378, Chapter 2].

If
←−
B is replaced by a general – especially, not necessarily row-stochastic – matrix, we are

allowing for absorption and/or generation phenomena in the nodes. This setting can be discussed in
a similar way using the idea presented in [142, Rem. at page 45]. Also time-dependent-conditions
have been considered in [379]. The generation results and growth estimates in [242] have been
recently generalized and refined in [154]. The observation in Remark 4.63.(3) appears in [161].





Chapter 5

And now something completely different:

A crash course in cortical modeling

In the previous chapters we have introduced a convenient functional analytical
framework for studying evolution equations on network-like structures, along with
some first examples. In the next chapters we will devote much attention to the in-
vestigation of properties of partial differential equations that are motivated by appli-
cations, and we will do so by applying the methods developed in the first half of the
book. The reader will be perhaps puzzled to see that virtually all evolution equations
treated in the next chapters are of diffusion and wave type. Why are wave and, above
all, diffusion phenomena so ubiquitous in nature? An answer is not known – or per-
haps this question is ill-posed all-together. Still, we feel that we owe the reader some
convincing examples of real-life emergence of diffusion-type equations as well as
of differential equations in networks.

The emergence of actual evolution equations in applications is a good source of
inspiration for the development of the theory, and it is mostly in consideration of
applications that we are going to present both the continuous and the discrete theory
jointly throughout the book. In several fields of applied sciences, mathematical mod-
els that involve the former or the latter coexist, perhaps to capture different scales
of a system. This becomes strikingly clear if one looks at how evolution equations
on networks usually arise in the context of theoretical neuroscience. Conversely, it
seems that several of the mathematical objects we will encounter in this book can
be paradigmatically introduced through neuronal models, which will be therefore
described in some detail in this chapter.

Indeed, modern neuroscience is a research field largely devoted to the investiga-
tion of dynamic behaviors of networks as well as in networks. While most theoreti-
cal neuroscientists are well trained in mathematics, only seldom do mathematicians
have more than only a rough idea of brain theory. Therefore, it is often surprising
and exciting for the latter to discover how pervasively the mathematics of networks
(graph theory, network analysis and discrete dynamical system, above all) influ-
ences brain research. In this chapter we have tried to give a brief overview of this
influence, focusing on the interactions that are likely to prove more fascinating for
the professional mathematician and neurobiological layman. Diffusion phenomena
will indeed appear throughout.

101
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After a dispute that lasted for decades at the end of 19th century, neurons were
eventually accepted by the scientific community as the building blocks of the ner-
vous system: This was finally certified when the Nobel Prize in Physiology or
Medicine was awarded to S. Ramón y Cajal in 1906. Even if his theories had to
be variously extended and updated in the light of new experimental findings, it is
nowadays still generally maintained that neurons are the fundamental computational
units of animal brains. These can in turn be fairly accurately described as incredibly
complex and greatly efficient ramified structures based on geometric and functional
juxtaposition of neurons.

Each neuron is a cell, whose dimension can be considerably different. It essen-
tially consists of a collection of dendrites, a soma (the cell’s body), and an axon.

A dendrite is a thin fiber on whose surface thousands of appendages (spines)
are found: they collect electrical synaptic impulses from other neurons and transmit
them toward the dendrite’s ending and then, via branching points, to further den-
drites. In each neuron dendrites form a ramified structure: If we think of it as a tree
– in the graph-theoretical meaning – then the soma is its root. Signal is conducted by
dendrites towards the soma, where it is elaborated and eventually propagated along
the axon. In its final tract, each axon ramifies into many terminals that collectively
constitute the axonal tree. At their ends a synapse is responsible for passing signal
to other neurons.

Fig. 5.1: Drawing of a neuron by S. Ramón y Cajal

In most common models, dendrites passively transmit electrical potential with-
out any form of self-excitation (this simplifying assumption has been variously dis-
proved though, cf. [353]); while in the soma electric charge is accumulated until
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it surpasses a certain electrophysiological threshold. Both processes are jointly de-
scribed by the lumped soma model that was first proposed by W. Rall in [352] and
several subsequent papers: it consists of a linear diffusive partial differential equa-

tion
∂u

∂ t
(t,x) =

∂ 2u

∂x2 (t,x)−u(t,x) (5.1)

along a single so-called equivalent cylinder, which represents the transport on the
whole collection of dendrites. This is complemented by a dynamic boundary condi-

tion
∂u

∂ t
(t,vs) =−u′(t,vs)−u(t,vs) (5.2)

imposed on the endpoint vs of the equivalent cylinder corresponding to the soma,
which is for simplicity assumed to be isopotential, cf. also [367] for a more detailed
derivation. Rall formulated his hypothesis under strong, possibly unrealistic sym-
metry assumptions on the network structure: His work has been later generalized to
arbitrary dendritic networks in a series of papers beginning with [283], where the
hypothesis of the equivalent cylinder was dropped and the actual geometric config-
uration was studied imposing in each branching point vb a condition of the form

∑u′e(t,vb) = 0 (5.3)

along with (5.2). Here the sum of the incoming and outgoing currents u′e is taken
over all incident dendrites. The electric potential is assumed not to make jumps
at branching points. Of course, this does not imply that an analogous continuity
condition is also satisfied by the incoming and outgoing currents.

Electric charge accumulates in the soma after being transmitted along the den-
drites: this is the mathematical meaning of the above dynamic boundary condi-
tion (5.2). Thus, it may seem natural to think of the soma as a capacitor, but this
analogy is partially misleading: Since the soma is not perfectly isolated, ions tend
to diffuse over time and cause the potential to decrease naturally. This “leak” is
modeled by the second term in the right hand side of (5.2). Whenever the poten-
tial reaches a phenomenological threshold of approx. -55mV, though, the soma can
finally discharge releasing ions in the axon. This process of charge accumulation,
decrease, and transmission is commonly considered as a form of signal elaboration:
neural models that rely on this approach are referred to as leaky integrate-and-fire

(shortly: LIF).
Transmission of signal occurs by means of a short, intense wave of potential

called action potential or spike: This can be approximately thought of as a Dirac
delta traveling along axons and probably also along dendrites. The hypothesis of
this so-called all-or-none law was finally underpinned by the experimental findings
of C. Sherrington and E. Adrian, for which they were awarded the Nobel Prize in
Physiology or Medicine in 1932. Spikes are usually initiated in the so-called hillock,
at the interface between the soma and the axon, whenever the potential in the soma
surpasses a certain phenomenological threshold ξ . The precise way a neuron’s mem-
brane potential rises and falls may depend on various factors, usually of biochemical
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nature. On the other hand, also the threshold may vary in time: Right after a spike
has been initiated, the value of ξ typically increases for some time, called refractory

period.
In order to enhance the conductivity properties of biological fibers, axons of

vertebrates are usually covered with a continuous myelin sheath that significantly
speeds up the propagation of action potentials. Still, speed of signal propagation in
vertebrates’ axons is high, but fairly slower than that of light: usually approx. 30
m/s, and up to 100 m/s. This behavior is significantly different to what would be
predicted by an equation with finite speed of propagation, like the linear heat equa-
tion. Indeed, transmission of potential in axons is usually modeled by a semilinear
diffusion equation. Axons conduct actions potentials at a speed of approx. 30 m/s by
relaxing and then re-activating ion pumps whose work allows to modify membrane
conductance over time: This cost them energy. The conduction of action poten-
tials would soon stop, had the neurons not developed a regenerative self-excitation
mechanism. The most widely accepted model of signal propagation in the axon was
suggested in 1952 by A.L. Hodgkin and A.F. Huxley in [209, § III], who based on
their studies of the “giant axon” that controls the propulsion in squid. As this specific
one, discovered in 1936, is much thicker than any other common axon, Hodgkin and
Huxley were able to perform pioneering in vitro experiments that led them to de-
scribe the transmission of potential by means of a system of differential equations.
Its mathematical structure is the following:



























∂u
∂ t
(t,x) = ∂ 2u

∂x2 (t,x)− (u(t,x)−uL)− (n(t,x))4 (u(t,x)−uK)

−(m(t,x))3
h(t,x)(u(t,x)−uNa)

∂m
∂ t
(t,x) = αm(u(t,x))(1−m(t,x))−βm(u(t,x))(m(t,x)),

∂h
∂ t
(t,x) = αh(u(t,x))(1−h(t,x))−βh(u(t,x))(h(t,x)),

∂n
∂ t
(t,x) = αn(u(t,x))(1−n(t,x))−βn(u(t,x))(n(t,x)).

(HH)

For simplicity, no boundary conditions were imposed, thus the axon is sketched as
a straight line of infinite length, whose membrane potential at time t and at point
x is u(t,x) along the axon. So why does propagation of an action potential not
eventually stop? The explanation suggested in [209] is ingenious: Chains of ion
channels of three different kinds are active in the membrane and may enable or
inhibit transmission, depending on whether they are closed or opened. The prob-
ability that these channels are open at time t and at point x of the axon is given
by m(t,x),h(t,x),n(t,x), respectively, so that the three additional terms in the first
equation represent a leak current along with the current carried by K+ and Na+ ions,
respectively, whereas uL,uNa,uK represent some reference potentials. (A lot of phe-
nomenological parameters have been omitted in (HH): In particular, they account
for the well-known fact that conduction velocity in thick nerve fibers is greater than
in thin ones.)

The first equation in (HH) is an example of nonlinear diffusion equation, a
ubiquitous object in applied mathematics that is both rich in structure and math-
ematically well understood and which we have already met in Example 4.14 and
Section 4.4. This model has been a breakthrough in modern neuroscience and has
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earned Hodgkin and Huxley a Nobel Prize in Physiology or Medicine in 1963. Nev-
ertheless, as it stands it does not account for several experimentally observed fea-
tures of neurons (cf. [168, § 1.4]) and has thus been variously patched over the last
decades. Let us mention only two of the many proposed improvements.

Apparently, the Hodgkin–Huxley model says nothing about how different neu-
rons communicate. We are going to discuss synaptic coupling of neurons soon,
but since the 1940s there has also been experimental evidence of ephaptic cou-
pling, i.e., of mutual electric interactions among axons that form bundles. While not
strong enough in their own right to trigger action potentials in neighboring neurons,
ephaptic couplings can still effectively induce depolarization or hyperpolarization
and hence in turn influence the timing of spikes, as shown in [12]. A possible expla-
nation for ephaptic communication is based on ionic diffusion in the extracellular
medium [33], but it is more common to see it as an effect of mutual electric ex-
citability of neighboring neurons – possibly of pathological origin. Models for this
mode of interaction are based on involved electric circuits that are not series and
boil down to coupled systems of diffusion equations of the form

∂ue

∂ t
(t,x) = ∑cef

∂ 2uf

∂x2 (t,x),

cf. [211], or to nonlinear versions thereof. Here (cef) is usually a (doubly) stochastic,
positive definite matrix whose entries encode the influence exercised on the potential
ue(t,x) at point x of axon e by the potential uf(t,x) at same point x of neighboring
axon f. The sum is taken over all such axons f.

It appears that ephaptic coupling, a comparatively usual mode of communica-
tions in the invertebrates’ brain, is rather rare in vertebrates, and so are the corre-
sponding models.

Another, much more problematic aspect of the original Hodgkin–Huxley system
is related to one of the main properties of action potentials: As observed in vitro,
spikes are transmitted along the axon without any change in either their profile or
their amplitude. However, it is not obvious whether a traveling spike may in fact be
a solution of (HH), if one fits all parameters of (HH) in a biologically realistic way,
cf. [204, 357]. One might alternatively take a chance on the advection equation

∂u

∂ t
(t,x) = c

∂u

∂x
(t,x),

for some c 6= 0. We have seen in Example 4.16 that its solutions are of the form

f (x+ c−1t)

for suitably smooth waveforms f (traveling to the left or to the right, depending on
whether c is positive or rather negative) that depend on the initial data. But this is
not really an option, as the advection equation has no biophysical interpretation and
does not account for many other neuronal phenomena. (E.g., it is known that neu-
rons are not directional structures as would be asserted by a model based on a first
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order partial differential equation, and indeed spikes may actually be propagated
also against the usual direction of transmission, both along axons and dendrites, if
an action potential happens to be triggered beyond the hillock).

Instead, in order to address these points of criticism several corrections to the
Hodgkin–Huxley model have been proposed since [209]: Most of them consist in
adding nonlinear terms to the first equation of (HH) in order to guarantee wave-like
propagation of action potentials.

Both (HH) and all its modifications depend on certain assumptions on the be-
havior of ion channels and describe the variations in a cell’s membrane potential. In
very recent years some new models have been proposed that dismiss this approach
and instead rely upon different derivations. Most notably, T. Heimburg and A.D.
Jackson have argued that a cell’s density change (with respect to some reference
density) should instead be modeled: By a thermodynamical derivation, and arguing
that a rather specific kind of traveling waves (so-called “solitons”) are the natural
transmission mode, they have proposed in [206] to replace the whole system (HH)
by the equation

∂ 2φ

∂ t2 (t,x) =
∂

∂x

(

(

1−φ +φ 2) ∂φ

∂x

)

(t,x)− ∂ 4φ

∂x4 (t,x). (5.4)

This is a nonlinear beam equation, a representative of the class of so-called dis-

persive equations, for whose solutions different wavelengths propagate at different
phase velocities. Properties of dispersive wave equations are quite different from
those of nonlinear diffusion-type equations and their mathematical theory is much
harder. This model seems to be in interesting accordance with some experimental
data, but such a paradigm shift from a conductance-based description to a pressure-
based one is still far from being part of mainstream neuroscience. (Another classical
derivation of a neural model – this time for the activity of the excitatory synapses –
that leads to a wave-type equation comparable to (5.4) is due to P.L. Nunez [328].)

So far we have sketched the transmission of signal from the dendrites through
the soma and finally along the axon. While axonal endings are ramified structures
on their own right, their limited size makes difficult to derive experimentally a de-
scription of how signal splits in axonal branching points. Indeed some experimental
data seem to suggest that the spikes’ amplitude is preserved as they approach the
axonal endings, cf. [118], so we will neglect this aspect and jump to final phase: the
arrival of signal at a synapse.

A human brain contains approx. 500 trillions of synapses, either of electrical or
chemical kind: Each of them is responsible for transmitting signal from the presy-

naptic neuron to the postsynaptic one. Electrical synapses recall nodes in electric
circuits: They can transmit signal in both directions, preserve the profile of the signal
and attenuate its amplitude (owing to the membrane resistance) – and do so almost
without delay, thus significantly reducing reaction times. However, it is chemical
synapses that carry out most of the task of signal transmission, as we know owing to
the experiments of H. Dale and O. Loewi that earned them the Nobel Prize in Phys-
iology or Medicine in 1936. The operation of chemical synapses relies upon release
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and subsequent reception of amino acids, peptides and other chemicals (collectively
called neurotransmitters) by the presynaptic and postsynaptic neuron, respectively,
upon arrival of an action potential. The release mechanism of neurotransmitters may
be modeled similarly to ion channels in (HH) as they, too, act as gates – this means
in particular that signal transmission is only allowed in one direction. Unlike trans-
mission in less sophisticated electrical synapses, this biochemical process claims
not negligible delays of approx. 1msec. Indeed, such neuronal latencies have been
observed to be stimulus-dependent.

In spite of their differences in the description of certain specific neuronal features,
the models for dendrites, somata, and axons summarized so far share a basic Ansatz:
They are derived from electrophysiologic principles and aim at describing actual
biochemical processes.

However, the equations delivered by the models that take precisely into account
neuron the elaborate morphology of neurons include a very large number of phe-
nomenological constants (which we have omitted for mathematical simplicity) that
ought to be fitted. Additionally, a human brain contains approx. 100 billions of neu-
rons: Modeling each and every of them with a system of several coupled partial and
ordinary differential equations is not computationally feasible at the moment, and
will likely not be for many years to come, either. Even the Blue Brain Project –
currently the world’s most developed and most realistic cortical modeling program,
which does aim at full biological plausibility – only deals with discretized versions
of the Hodgkin–Huxley equations.

A possible way to simplify the model consists in theoretically assuming and/or
experimentally forcing the whole axon, or perhaps even larger neuronal tracts, to
be isopotential: This so-called space-clamp eliminates longitudinal voltage gradi-
ents and in turn allows to replace all partial differential equations by ordinary ones.
One may regard this simplification by thinking at a brain as a gigantic network of
interconnected points (viz, dimensionless neurons, or somata) that, in view of the
all-or-none law, may be active or not and thereby also influence the neurons nearby,
after some delay. The whole neural activity is thus stored into an array, or more
precisely in the time-dependent entries of a vector of huge, but finite size. This is
a massive simplification, and possibly even an oversimplification, but analyzing a
1011-dimensional dynamical system is still rather impractical.

A nervous system can be studied at at least three different scales: the micro-
scopic, mesoscopic, and macroscopic levels of individual neurons (approx. 100 bil-
lions); columns (in the cortex) and other neuron ensembles (approx. 2 millions);
and functional areas (approx. a dozen), respectively. Typically, as the focus is laid
on higher and higher structures, larger and larger regions are considered as clamped
and the task steadily shifts from the accurate description of biological structures
to the development of computationally efficient algorithms that may be practically
implemented in electronic devices. In particular, the dynamics of functional areas
is currently studied mostly by imaging tools, like the fMRI, which have their good
share of interesting mathematical questions, in particular in connection with the
theory of inverse problems. We will avoid to discuss this aspect as the fine network
structure described so far has essentially disappeared at this level of definition.
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On the other hand, the activity inside cortical columns still offers interesting ap-
plications for network analysis and its mathematical tools. In this context all math-
ematical models rely upon certain minimal assumptions: There is a hierarchy of
regions that are responsible for processing a certain signal, each consisting of sub-
regions – the columns; there are connections both from regions active in the early
processing stages to later ones, and back – these are called feed-forward and top-

down connections in the jargon of neuroscience; and finally, there are so-called
recurrent interconnections within each column and, possibly, lateral connections
to some columns nearby (which we exclude, for the sake of presentation clarity).
While these classes of interconnections pursue different modeling purposes and
have different theoretical justifications, they all essentially have the same mathe-
matical structure. To begin with, in view of the all-or-none law it is meaningful to
shift from a description based on membrane potential to a model in which all infor-
mation is stored in the frequency of spike activity – the so-called firing rate. Luckily,
these objects are not unrelated: At least approximately, the current I(t,v0) entering
at time t the soma of a neuron v0 and the firing rates f of all its presynaptic neurons
– i.e., of all neurons that projects into v0 through one of their synapses – satisfy the
differential equation

dI

dt
(t,v0) =−I(t,v0)+∑µ(v,v0) f (t,v),

where the sum is taken over all presynaptic neurons v and, for all v, µ(v,v0) repre-
sents the strength of the synaptic connection between v and v0, cf. [128, § 7.2]. All
these weights may be encoded in a square matrix (µ(v,v0)) indexed by all neurons:
We have seen in Chapter 2 that this is the weighted incoming adjacency matrix A in

that describes our schematic neuronal network.
The time-dependent behavior of the firing rate f at neuron v0 inside a certain

column is usually modeled by an ordinary differential equation of the form

d f

dt
(t,v0)=− f (t,v0)+F

(

∑
w

∑
i

ω(w,v0)g(t−τi,w)+∑
v

∑
i

µ(v,v0) f (t−τi,v)
)

+φ(t),

(5.5)
where the function F is often taken to be a sigmoid or, in a better approximation,
a convolution with some integral kernel. Observe that the firing rate at v0 at time
t depends on all spikes that have reached v0 in the past, at earlier times t− τi. In-
deed, in view of complicated neuronal latencies one may even allow such delays τi

do be activity-dependent. The first sum is over all presynaptic neurons w that be-
long to the column, the second one over all remaining neurons v in columns within
the same cortical region, and the inhomogeneous term φ accounts for the activity
due to external stimuli (and in particular avoids that the constant zero function is a
solution).

The neuroscientist may like to distinguish between firing rates f from recurrent
and lateral connections with synaptic weight µ and firing rates g from feed-forward
ones, weighted by ω . So-called Wilson–Cowan models that, like this, tend to identify
all neurons belonging to a same ensemble can be regarded as planar dynamical
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systems and as such they capture several fundamental features of the neural activity,
cf. [410].

Though, a mathematician cannot refrain from grouping together – as their ab-
stract role is just the same – f ,g and therefore also µ,ω: Again, the latter will then
fill together the entries of a weighted incoming adjacency matrix A in. In this way
one can eventually re-write (5.5) as a higher-dimensional dynamical system

d f

dt
(t,v) =− f (t,v)+F

(

A in ∑
i

f (t− τi,v)

)

+φ(t), (5.6)

where the definition of F in dependence of F is obvious.
Such so-called firing-rate models can become almost arbitrarily complicated in

order to accommodate the demand for more precise description of the brain, possi-
bly splitting the neuronal and/or synaptic populations into relevant subclasses, and
including top-down connections as in [128, § 10.3]; one may want to consider the
synaptic delays, which may be different neuron-wise; the functions F can be more
or less smooth, or perhaps even boil down to simple multiplications by positive
numbers – or conversely, F may be allowed not to respect the local network struc-
ture in order to favor the joint activity of an ensemble of neurons, like in so-called
population coding; in the spirit of a groundbreaking intuition expressed by D.O.
Hebb in [205], the weights ω can be assumed to be time-dependent, e.g. to satisfy
the Hebbian rule expressed by the differential equation

dω

dt
(t,(v,v0)) = Qω(t,(v,v0)), (5.7)

where Q :=
(

corr(ω(t,(v,v0)),ω(t,(w,v0))
)

is the correlation matrix of the weights,
in order to describe learning abilities by so-called synaptic plasticity; or A in may
even be allowed to modify its zero/nonzero pattern over time, in order to describe
the so-called synaptic pruning, i.e., death or disconnection of neurons. Nonetheless,
the underlying mathematical structure remains almost always that of (5.6), as long
as firing-rate models are considered.

The above summary of models in neuroscience is by no means complete, nor it
is conclusive. The development of neuroscience has been tumultuous over the last
hundred years and promises to keep on for a long while. A detailed synopsis of the
manifold of hypotheses coexisting or competing in the mathematical neuroscience
can be found in [128], where both biophysical and computational approaches are
discussed. Of all further monographs devoted to the mathematics of neural sys-
tems, [387] is particularly committed to discuss the role of network-based models.
It seems likely that a new plethora of both analytical and statistical tools that were
first developed by theorists of complex networks will soon find their applications in
neuroscience.

Modern neuroscience does not only makes extensive use of networks as metaphor
or convenient formalism. It occasionally goes further on saying that the sole network
structure can explain – perhaps exclusively, through the connectivity features – the



110 5 And now something completely different: A crash course in cortical modeling

neural behavior, and in fact the animal behavior altogether. Indeed, some argue that
just like the genes are responsible for determining all tracts in animal physiology, the
animal behavior is completely determined by the connectivity features of the brain.
The word connectome, first proposed in [198, 389], was coined precisely in analogy
with genome – and the supporters of this theory suggest that the connectome should
be completely analyzed just like the human genome has been completely sequenced.
The recent monograph [388] is a most representative manifesto of this agenda.

The concept of connectome is in these days both popular and controversial. In a
very few cases, a complete connectome has actually been determined: most notably,
in the case of the C. elegans, with its mere 302 neurons and approximately 5000
synapses. Still, even in those cases it is not clear to what extent knowledge of con-
nectivity alone – i.e., of which neurons project into a given one – can possibly give
definite answers on behavioral questions. Indeed, there is broad belief among com-
plex network theorists that certain small interconnection patterns, so-called network

motifs, carry decisive information about the whole system; but just the example of
C. elegans seems to show – it is argued e.g. in [27] – that no patterns are quite
distinguished, as any two nodes have almost always very small distance.

Moreover, one cannot neglect plasticity phenomena: On one hand we have al-
ready mentioned that the brain network is being pruned continually, in particular
in adult animals; on the other hand, synaptic plasticity is responsible for constantly
modifying the strength of connection. This suggests that a relevant information is
carried by ever-changing weights – and we can usually describe these changes only
stochastically. This makes for a very involved and currently still rather inaccurate
analysis.



Chapter 6

Sesquilinear forms and analytic semigroups

Applying the theorems of Hille–Yosida or Lumer–Phillips is sometimes unsatisfac-
tory, as they make no claim about possible regularity gain (either in space or time)
of solutions. In this chapter we specialize our previous investigations to parabolic
equations. These are evolution equations, typically associated with diffusive pro-
cesses, whose foremost property is enhanced smoothness of initial data.

6.1 Analytic semigroups

A favorite setting that captures this feature is that of analytic semigroups, which we
briefly review in this section.

In the following we are going to adopt the notation

Σθ := {z ∈ C : |argz|< θ}\{0}

for θ ∈ (0, π
2 ]: i.e., Σθ is the sector in C of all numbers whose argument is smaller

than θ .

Definition 6.1 A C0-semigroup (T (t))t≥0 on a Banach space X is said to be analytic
of angle θ ∈ (0, π

2 ] if it admits an analytic extension (T (t))t∈Σθ∪{0} that satisfies

T (t)T (s) = T (t + s) and T (t) ∈L (X) for all t,s ∈ Σθ ∪{0}.

It is said to be bounded analytic if it is analytic and moreover for all θ0 ∈ (0,θ)
there exists Mθ0 > 0 such that ‖T (t)‖L (X) ≤Mθ0 for all t ∈ Σθ0 .

The notion of generator remains unchanged. The pendant of the Hille–Yosida
Theorem for analytic semigroups is the following.

Theorem 6.2 Let A be a closed, densely defined operator on a Banach space X and

θ ∈ (0, π
2 ]. The following are equivalent.

(a) A generates a bounded analytic C0-semigroup of angle θ .
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(b) A generates a bounded C0-semigroup, RgetA ⊂ D(A) for all t > 0, and

sup
t>0
‖tAetA‖L (X) < ∞. (6.1)

(c) Σθ+ π
2
⊂ ρ(A) and for all θ0 ∈ (0,θ) there exists Mθ0 ≥ 1 such that

|λ |‖R(λ ,A)‖L (X) ≤Mθ0 for all λ ∈ Σ π
2 +θ−θ0

\{0}. (6.2)

If the above conditions hold, then A is called sectorial of angle θ and the semigroup

is given by

etA :=

{ 1
2πi

∫

γ eµzR(µ,A) dµ, z ∈ Σθ ,

Id, z = 0,
(6.3)

for any piecewise smooth curve in Σθ+ π
2

that connects ∞− i(π
2 +θ ′) to ∞+ i(π

2 +

θ ′) for some θ ′ ∈ (|argz|,θ). The integral in (6.3) converges absolutely in L (X),
uniformly in z ∈ Σθ ′ .

Lemma 6.3 Let A be a closed, densely defined operator on a Banach space X. Then

A generates an analytic C0-semigroup on X if and only if there exists ω ≥ 0 such

that A−ω Id generates a bounded holomorphic semigroup.

Lemma 6.3 shows that it is possible to modify Theorem 6.2 in order to study op-
erators that are sectorial only upon a scalar perturbation. The following thus holds.

Theorem 6.4 Let A be a closed, densely defined operator on a Banach space X.

Then the following assertions hold.

(1) If A generates a bounded C0-semigroup on X, then (etA)t≥0 is bounded analytic

if and only if RgetA ⊂ D(A) for all t > 0 and

sup
t>0
‖tAetA‖L (X) < ∞.

(2) There exist ω0 ∈ R and ρ > 0 such that

Sω0,ρ := {λ ∈ C : Reλ > ω0 and |λ |> ρ} ⊂ ρ(A)

and

sup
λ∈Sω0 ,ρ

|λ |‖R(λ ,A)‖L (X) < ∞.

Lemma 6.5 Let A generate an analytic (but not necessarily bounded analytic) C0-

semigroup on a Banach space X. If B is a bounded operator on X, or a compact

operator from [D(A)] to X, then also A+B with domain D(A) generates an analytic

C0-semigroup on X with same analyticity angle.

A slight modification of the proof of Lemma 4.27 covers the case of bounded B,
but the assumption of boundedness usually excludes the case of differential opera-
tors that would be useful to treat lower order terms of – say – elliptic differential op-
erators. On the other hand, the assertion concerning compact operators from [D(A)]
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to X – which was proved by W. Desch and W. Schappacher in [134] and has a nice
symbiosis with compactness results like the theorems of Ascoli–Arzelà or Rellich–
Kondrachov – has only limited usefulness whenever we treat infinite graphs.

In this case one may apply another result, also proved by Desch and Schappacher
in [133], that relies upon the notion of interpolation space. We will instead formulate
a relateed but different (and more elementary) perturbation result that is tailored for
our needs in Lemma 6.22 below.

The most relevant property of analytic semigroups is arguably the following,
which makes them attractive even if one is not interested in considering a complex
time variable t. It follows from condition (b) in Theorem 6.2 and the semigroup law.

Proposition 6.6 Let A generate a bounded analytic C0-semigroup on a Banach

space X. Then

RgetA ⊂ D(Ak) for all t > 0, k ∈ N

and

sup
t>0
‖tkAketA‖L (X) < ∞ for all k ∈ N.

In particular, for each t > 0 and each k ∈ N etA is a bounded linear operator from

X to [D(Ak)].

(In accordance with the notation introduced in Remark 4.9, [D(Ak)] is here the
domain of Ak endowed with its graph norm.)

Thus, an analytic C0-semigroup yields for all x ∈ X a solution of (ACP) that is of
class Ck((0,∞),X)∩C((0,∞),D(Ak)) for any arbitrarily large k ∈ N.

Among many further properties of analytic semigroups let us mention three that
prove rather useful in applications to evolution equations. They are the analogs of
Theorem 4.35 and Proposition 4.37.

Proposition 6.7 If A generates an analytic C0-semigroup, then the spectrum of etA

(possibly up to 0) coincides with

etσ(A) := {etλ ∈ C : λ ∈ σ(A)}.

In particular, the geometric multiplicities of the eigenvalues of etA and A satisfy

mg(e
tλ )≥ mg(λ ),

with equality if A is self-adjoint.

Proposition 6.8 If A generates an analytic C0-semigroup, then s(A) = ω0(A).

Hence, an analytic semigroup (etA)t≥0 is uniformly exponentially stable if and
only if s(A)< 0.

Proposition 6.9 Let (U, µ̃) be a σ -finite measure space, p ∈ (1,∞), and let A gen-

erate a positive, analytic, bounded C0-semigroup on Lp(U, µ̃). Then (etA)t≥0 con-

verges strongly, i.e.,
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Pu := lim
t→∞

etAu exists for all u ∈ Lp(U, µ̃),

and P is the projector of Lp(U, µ̃) onto KerA.

Remark 6.10 If (ACP2) is well-posed in the sense introduced in Proposition 4.11,

then so is (ACP): Indeed, if A generates a C0-cosine operator function (C(t,A))t≥0

on a Banach space X, then it also generates a C0-semigroup that is given by

the Weierstraß formula

etAx :=
∫ ∞

0

e
−s2
4t

√
πt

C(s,A)x ds, t > 0, x ∈ X .

This semigroup is analytic of angle π
2 and the spectrum of its generator A lies inside

a parabola (and not only inside a sector, as usual for general analytic semigroup

generators).

Hence, even if one is actually interested in (ACP), it is sometimes convenient to

study (ACP2) instead, and hence to check whether A generates a cosine operator

function.

We conclude with a result that is rather useful whenever discussing non-self-
adjoint Hamiltonians – cf. Stone’s theorem below.

Theorem 6.11 Let A generate an analytic C0-semigroup of angle π
2 on a Banach

space X. Then ±iA generates a C0-semigroup on X if and only if

sup
z∈D±
‖ezA‖L (X) < ∞,

where D± := {z ∈ C : |z| ≤ 1, Rez > 0 and Imz R 0}.
If actually both iA and −iA generate a C0-semigroup on X , then we have seen in

Example 4.16 that iA generates a C0-group. Such a group is called in this context
the boundary group of the analytic semigroup (ezA)z∈Σ π

2
; and by Proposition 4.51,

−A2 generates a C0-cosine operator function.

6.2 General theory of elliptic forms

In Hilbert spaces it is usually possible to show generation of analytic semigroups in
an easier way than applying Theorem 6.2. Throughout the remainder of this chapter

V,H are separable, complex Hilbert spaces with V
d→֒ H.

We denote by (·|·)V ,(·|·)H their inner products.
It turns out that forms provide an elegant and mighty tool to investigate linear

parabolic equations. In this section we will present a concise invitation to this theory.
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Definition 6.12 A mapping a : V ×V → C is called a sesquilinear form if

a(α f +βg,γh) = αγ a( f ,h)+βγ a(g,h) for all f ,g,h ∈V and all α,β ,γ ∈C.

The space V is its form domain. Then a is said to be

• coercive if there exists µ > 0 such that

Rea( f , f )≥ µ‖ f‖2
V for all f ∈V ;

• H-elliptic if there exist µ > 0 and ω ∈ R such that

Rea( f , f )+ω‖ f‖2
H ≥ µ‖ f‖2

V for all f ∈V ;

• accretive if

Rea( f , f )≥ 0 for all f ∈V ;

• continuous if there exists M > 0 such that

|a( f ,g)| ≤M‖ f‖V‖g‖V for all f ,g ∈V ; (6.4)

• of Lions type if there exists M > 0 such that

| Ima( f , f )| ≤M‖ f‖V‖ f‖H for all f ∈V. (6.5)

• symmetric if

a( f ,g) = a(g, f ) for all f ,g ∈V ;

In particular in the contexts of linear algebra and mathematical physics, where one
is mostly interested in hermitian matrices and self-adjoint operators, continuous, H-
elliptic sesquilinear forms that are symmetric are usually referred to as quadratic

forms.
Observe that H-ellipticity is equivalent to the condition that

V ∋ f 7→ ‖ f‖a :=
√

Rea( f , f )+ω‖ f‖2
H ∈ [0,∞) (6.6)

defines an equivalent norm on V : ‖ · ‖a is then called the form norm. It is also clear
that symmetry implies the Lions condition.

Definition 6.13 Let a : V ×V → C be a continuous, H-elliptic sesquilinear form.

The operator associated with a is

D(A) := { f ∈V : ∃h ∈ H s.t. a( f ,g) = (h | g)H ∀g ∈V} ,
A f := −h.

Conversely, an operator A on H is said to come from a form if there exists a Hilbert

space W densely embedded in H and a continuous, H-elliptic sesquilinear form

b : W ×W → C such that A is the operator associated with b.
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The Lax–Milgram Lemma ensures that h in the definition of D(A) exists and is
unique.

Remark 6.14 The sign convention in the definition of the operator associated with

a form is tailored for the case of differential operators of even order and their Gauß–

Green-formulae, as we will see e.g. in Example 6.21; but has the drawback that if

A = (ai j) is an n×n-matrix and a is given by

a(x,y) :=
n

∑
i, j=1

ai jx jyi, x,y ∈ C
n,

then the operator associated with a is−A, in contrast with the definition of quadratic

form associated with a matrix that is usual in linear algebra.

We assume throughout that

a : V ×V → C is sesquilinear, continuous and H-elliptic
and A is its associated operator

with constants as in Definition 6.12.

Theorem 6.15 The operator A generates an ω-quasi-contractive, analytic C0-semi-

group on H. Its part in V generates an analytic C0-semigroup on V . If in particular

a is coercive with constant µ , then (etA)t≥0 is uniformly exponentially stable with

‖etA‖L (H) ≤ e−µt , t ≥ 0,

Indeed, one can prove that

Σπ−arctan M
µ
⊂ ρ(A−ω Id) (6.7)

(here M is the constant in (6.4)) and for all θ ∈ [0,π− arctan M
µ ) there holds

|λ |‖R(λ ,A−ω)‖L (H) ≤
1

sin
(

θ − arctan M
µ

) for all λ ∈ Σθ . (6.8)

The semigroup generated by A is called the semigroup associated with a.
While it is in many cases very difficult to determine the operator domain D(A),

the form domain V is known from the very beginning: This is a most appealing
property of forms. Even whenever D(A) is unknown and Theorem 6.6 is therefore
not immediately useful, one obtains the following smoothing enhancement.

Proposition 6.16 For each t > 0 etA is a bounded linear operator from H to V .

Proof. It suffices to apply Theorem 6.6 and the fact that, by definition, the domain
of A endowed with the graph norm is densely and continuously embedded in V . ⊓⊔
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Remark 6.17 The adjoint form a∗ : V ×V → C is defined by

a∗( f ,g) := a(g, f ), u,v ∈V.

It is apparent that a∗ is coercive (resp., H-elliptic, accretive, continuous, of Lions

type) if and only if so is a. The operator associated with a∗ is A∗ and by Theo-

rem 6.15 also A∗ generates an analytic C0-semigroup.

Theorem 6.18 If a is additionally of Lions type, then A generates on H a C0-cosine

operator function with Kisyński space V .

Remark 6.19 If a is a coercive bounded sesquilinear form of Lions type, then

f 7→ Rea( f , f ), f ∈V,

defines an equivalent norm on V . One then takes the reduction matrix A defined

in (4.12) and checks that – with respect to said equivalent norm on V ! – the Lumer–

Phillips Theorem applies: More precisely, both A and −A are dissipative because

for all x ∈ D(A)

Re(Ax|x)V×X = Re(x2|x1)V +Re(Ax1|x2)H

= Re(x2|x1)V −Rea(x1,x2)

= Re(x2|x1)V −Re(x1|x2)V = 0.

Hence, both A and −A generate a contraction C0-semigroup – i.e., A generates a

C0-group of operators that are all unitary with respect to the norm of the Hilbert

space V ×H. One therefore interprets the quantity

‖x0‖2
V +‖x1‖2

H

as the square of the energy of the initial data x0,x1: By unitarity of (etA)t∈R, this

energy is conserved over time under evolution of the second order problem (ACP2).
These considerations apply e.g. to the wave equation with Dirichlet boundary con-

ditions, as we will see in Example 6.21 below.

A C0-semigroup (T (t))t>0 is said to be compact (resp., of trace class) if so is
T (t) for all t > 0.

Lemma 6.20 The C0-semigroup (etA)t≥0 is

• compact if and only if the embedding V →֒ H is compact;

• of trace class if the embedding V →֒ H is Hilbert–Schmidt;

• of trace class if H = L2(U, µ̃) for a finite measure space (U, µ̃) and etA maps

L2(U, µ̃) into L∞(U, µ̃) for all t > 0.

Observe that by the ideal property of Schatten class operators a semigroup cannot
be of any class Sp, 1 < p < ∞, without being already of trace class.
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Proof. The claims are proved using the semigroup property, Proposition 6.6, the
ideal property of compact and Schatten class operators, and the fact that each opera-
tor mapping L2(U, µ̃) into L∞(U, µ̃) is Hilbert–Schmidt provided µ̃(X)<∞, cf. [15,
Thm. 1.6.2]. ⊓⊔

Example 6.21 (1) Let us consider again the setting in Example 4.14. We restrict to

the case of p = 2 and hence take H = L2(0,1). Integrating by parts one finds for all

u ∈ D(∆ D) and all test functions v ∈C∞
c (0,1)

(∆ Du | v)H =
∫ 1

0
u′′(x)v(x)dx =−

∫ 1

0
u′(x)v′(x)dx,

due to the Dirichlet boundary conditions satisfied by v (this would not work taking

v ∈C∞(0,1)!). This suggests to define a sesquilinear form by

a(u,v) :=
∫ 1

0
u′(x)v′(x)dx.

This expression is only well-defined for (u,v) ∈W 1,2(0,1)×W 1,2(0,1), hence the

form domain V of a has to be a subspace of W 1,2(0,1). Indeed, we want the form

norm to define an equivalent norm on V : hence, we close C∞
c (0,1) up in the form

norm, thus obtaining V = W̊ 1,2(0,1).
By Lemma B.8.(4) we can endow V with the equivalent norm u 7→ ‖u′‖L2 : this

establishes coercivity of a. In order to show that the associated operator is precisely

∆ D, take u ∈V such that there exists w ∈ H with

a(u,v) =
∫ 1

0
u′v′dx

!
=
∫ 1

0
wvdx for all v ∈V.

By definition of weak derivative u′ ∈W 1,2(0,1), i.e., w = u′′ ∈ L2(0,1) and u ∈
W 2,2(0,1). Thus, ∆ D generates an analytic, contractive, uniformly exponentially

stable C0-semigroup. Finally, by Lemma B.3 and 6.20 (et∆ D
)t≥0 is of trace class.

(2) One can see likewise that taking instead the largest possible domain such

that a is still elliptic with respect to H = L2(0,1), i.e., V =W 1,2(0,1), the operator

associated with a is the second derivative with Neumann boundary conditions

D(∆ N) := {u ∈W 2,2(0,1) : u′(0) = u′(1) = 0}
∆ Nu := u′′.

Thus, also ∆ N generates an analytic, contractive C0-semigroup that is of trace class.

However, a is not coercive any more and in fact (et∆ N
)t≥0 is not uniformly exponen-

tially stable, since s(∆ N) = 0.

Once it has been proved that an operator is a generator, one may want to con-
sider its lower-order and/or boundary perturbations. Then, the following perturba-
tion lemmata prove useful.
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Lemma 6.22 Let α ∈ (0,1) and let Hα be some normed space such that V →֒Hα →֒
H and such that additionally

‖ f‖Hα ≤Mα‖ f‖α
V ‖ f‖1−α

H f ∈V, (6.9)

holds. If b : V ×Hα →C and c : Hα×V →C are continuous sesquilinear mappings,

then a+b+ c : V ×V → C is H-elliptic and continuous.

If additionally a is of Lions type, b,c are continuous on V×H and H×V , respec-

tively, and (for α = 1
2 ) d : H 1

2
×H 1

2
is continuous for some H 1

2
that satisfies (6.9),

then a+b+ c+d : V ×V → C is H-elliptic, continuous, and also of Lions type.

Proof. We apply Young’s inequality xy≤ εxp + cε,pyp/(p−1), which is valid for ev-
ery p ∈ (1,∞), every x,y ≥ 0, and every ε > 0 with some constant cε,p ≥ 0. For
p := 2

1+α we obtain that

Reb( f , f )≥−‖b‖‖ f‖V‖ f‖Hα ≥−‖b‖Mα‖ f‖1+α
V ‖ f‖1−α

H

≥−‖b‖Mα ε‖ f‖2
V −‖b‖Mα cε,p‖ f‖2

H

for all f ∈V . For ε := µ
2‖b‖Mα

we thus obtain that

Rea( f , f )+Reb( f , f )− (ω−‖b‖Mα cε,p)‖ f‖2
H ≥

µ

2
‖ f‖2

V

for all f ∈V . The other terms can be treated likewise. ⊓⊔

Lemma 6.23 Let W,Z be Banach spaces that are continuously embedded in H and

such that V is continuously embedded in them. Let S,T be compact operators from

V into W,Z, respectively. Let b0 : V ×W → C and c0 : Z×V → C be continuous

sesquilinear forms. Define further sesquilinear forms b,c by

b( f ,g) := b0( f ,Sg) and c( f ,g) := c0(T f ,g), f ,g ∈V.

Then a+b+ c is continuous and H-elliptic.

Proof. We deduce from compactness of S that for all ε > 0 there exists cε > 0 with

‖S f‖Z ≤ ε‖ f‖V + cε‖ f‖H for all f ∈V,

and thus for all f ∈V

|b( f , f )|= |b0( f ,S f )|
≤ ‖b0‖‖ f‖V‖S f‖Z

≤ ε‖b0‖‖ f‖2
V + cε‖b0‖‖ f‖V‖ f‖H

≤ ε‖b0‖‖ f‖2
V +δcε‖b0‖‖ f‖2

V +
cε‖b0‖

4δ
‖ f‖2

H
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for all δ > 0 by Young’s inequality. An analogous estimate holds for c. Picking first
ε > 0 small enough, and then δ > 0 small enough to compensate cε , we can deduce
H-ellipticity of a+b+ c from H-ellipticity of a as in the proof of Lemma 6.22. ⊓⊔

We have emphasized in Remark 6.47 that forms can be considered as a special
instance of the nonlinear theory presented in the Appendix 6.2.2. Applying abstracts
results on subdifferentials of suitable energy functionals we can thus complement
Corollary 4.18 as follows.

Corollary 6.24 Let T > 0, x0 ∈H and f ∈ L2
(

(0,T );H
)

. Then there exists a unique

ξ ∈C
(

[0,T ];H
)

which is differentiable for a.e. t ∈ [0,T ], satisfies ξ (t) ∈ D(A) for

a.e. t ∈ [0,T ] and such that

{

dξ
dt
(t) = Aξ (t)+ f (t), for a.e.t ∈ [0,T ],

ξ (0) = x0.
(iACP)

If additionally x0 ∈ V , then ξ ∈ H1
(

(0,T );H
)

∩L∞
(

(0,T );V
)

. If x0 ∈ D(A), then

even ξ ∈W 1,∞
(

(0,T );H
)

and ξ is right differentiable for all t ≥ 0.

Remark 6.25 For T > 0 and f ∈ L2(0,T ;V ′) one can also study non-autonomous

abstract Cauchy problems like

{

dξ
dt
(t) = A(t)u(t)+ f (t), t ∈ [0,T ],

ξ (0) = x0,
(nACP)

by studying time-dependent forms. More precisely, by a classical result in [274]

assume that for all t ∈ [0,T ] A(t) comes from a form a(t, ·, ·) : V ×V → C. Assume

furthermore that a(t, ·, ·)≡ a1(t, ·, ·)+a2(t, ·, ·) such that (with obvious modifications

of the notions of Lemma 6.22)

• a1 and a2 are equi-continuous on V ×V and V ×Hα , respectively;

• a1 is equi-coercive; and

• t 7→ a1(t, ·, ·) and t 7→ a2(t,u,v) are measurable from [0,T ] to C for all (u,v) ∈
V ×V and all (u,v) ∈V ×H, respectively.

Then for all u0 ∈ H there exists a unique u ∈ H1(0,T ;V ′)∩L2
(

(0,T );V
)

such that

the differential equation in (nACP) is satisfied for a.e. t ∈ [0,T ], and moreover u ∈
C([0,T ];H).

A comparable result has been recently proved in [17]: Assume additionally that

• a1(t, ·, ·) is symmetric for all t; and

• t 7→ a1(t, ·, ·) is locally Lipschitz continuous from [0,T ] to (V ×V )′.

Then for all u0 ∈ V there exists a unique u ∈ H1
(

(0,T );H
)

∩ L2
(

(0,T );V
)

such

that the differential equation in (nACP) is satisfied for a.e. t ∈ [0,T ], and in fact

u ∈C([0,T ];V ).

Under the assumptions of Theorem 6.18, it follows by a result due to A. McIn-
tosh [288] that V is the domain of the square root of (a scalar perturbation of) A and
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a complex interpolation space between D(A) and H, see also [14, § 5.6.6]. Let us
mention that this allows to study some class of nonlinear evolution equations, by the
theory in [280, Chapt. 7].

Corollary 6.26 Let a : V ×V → C be continuous, H-elliptic, and of Lions type with

associated operator A. Let B : [0,T ]×V → H be a continuous nonlinear operator

that is globally Lipschitz continuous in the second variable. Then the nonlinear

abstract Cauchy problem

{

u̇(t) = Au(t)+B(t,u(t)), t ≥ 0,
u(0) = u0,

is globally well-posed, i.e., there exists a function u ∈C([0,∞);H) that satisfies the

variation of constants formula

u(t) = etAu0 +
∫ t

0
e(t−s)AB(s,u(s))ds, t ≥ 0.

This assertion has a counterpart that ensures local well-posedness whenever the Lip-
schitz condition is satisfied by F only locally. It is critical for applications, cf. 6.27
below, that unlike in Lemma 6.44 B is here allowed to satisfy a Lipschitz condition
only with respect to the norm of V .

Example 6.27 Let us discuss the initial value problem associated with the Hodgkin–

Huxley model (HH) presented in Chapter 5, which describes the propagation of an

action potential on an axon of length µ . To this aim one introduces the state space

H := L2(0,µ)4 and the sesquilinear form

a(( f ,ξ ),(g,ζ )) :=
∫ µ

0

(

f ′(x)g′(x)+ f (x)g(x)+
((

αm αh αn

)

f (x)
)

·ζ (x)
)

dx

with domain V :=W 1,2(0,µ)×L2(0,µ)3. The associated operator A governs a lin-

earized version of (HH). Continuity and H-ellipticity of a can be easily checked –

observe that the second and third integrands are associated with bounded opera-

tors on H. In order to study the original semilinear problem one observes that each

of the nonlinear terms, which are polynomials of odd degree, can be split into a

maximal monotone operator and an error term that is Lipschitz continuous with

from C([0,µ]) to L2(0,µ), and hence also from H1(0,µ) to L2(0,µ), cf. [81, § 6]

for details. This latter term can be dealt with with by means of Corollary 6.26,

whereas well-posedness of the complete problem follows from the classical theory

of m-accretive operators as in Section 6.2.2.

The following invariance criterion has been obtained by E.M. Ouhabaz in [335]
in the accretive case and extended in [285] to the case of general elliptic forms.

Theorem 6.28 Let C be a closed convex subset of H and denote by PC the orthogo-

nal projector of H onto C. Then the following assertions are equivalent.

(a) C is invariant under (etA)t≥0.
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(b) PCu ∈V and Rea(PCu,u−PCu)≥ 0 for all u ∈V .

If a is additionally symmetric, then also the following condition is equivalent.

(c) PCu ∈V and a(PCu,PCu)≤ a(u,u) for all u ∈V .

If u belongs to a Sobolev space W 1,2, then for many relevant subsets K (includ-
ing, by Lemma B.12.(2), all order intervals) (PKu)′ agrees with u′ on supp(PKu) ⊂
suppu. This suggests that whenever a is local (cf. the precise Definition 7.9 below),
condition (c) in Theorem 6.28 is often easy to check. This is especially the case
for the forms introduced in Example 6.21. We omit the straightforward details and
focus on a related negative result.

Example 6.29 Let A be (minus) the fourth derivative with Dirichlet and Neumann

boundary conditions. Considered as an operator on H = L2(0,1), A is associated

with the form a defined by

a(u,v) :=
∫ 1

0
u′′(x)v′′(x)dx, u,v∈V := {w∈W 2,2(0,1) : w(0)=w(1)=w′(0)=w′(1)= 0}.

Since V is dense in H and a is continuous, coercive and of Lions type, A generates

on H a cosine operator function that governs the linear beam equation

∂ 2u

∂ t2 (t,x) =−
∂ 4u

∂x4 (t,x), t ≥ 0, x ∈ (0,1),

with clamped boundary conditions

u(0) = u(1) = u′(0) = u′(1) = 0.

Hence in particular A generates an analytic C0-semigroup of angle π
2 . Take now

C := {w ∈ L2(0,1) : w(x) ≥ 0 for a.e. x ∈ (0,1)}, so that PCu = u+. We know from

Remark B.13 that V is not invariant under PC. Hence, Theorem 6.28 and Proposi-

tion 4.29 show that there exist t > 0 and λ > 0 such that etA and R(λ ,A) are not

positive.

In the remainder of this section we assume that

(U, µ̃) is a σ -finite measure space and H := L2(U, µ̃).

Combining Theorem 6.28 and Lemma 4.33 one can prove the following.

Proposition 6.30 The following hold.

(1) (etA)t≥0 is real if and only if for all f ∈V one has Re f ∈V and a(Re f , Im f ) ∈
R.

(2) (etA)t≥0 is positive if and only if it is real and additionally for all f ∈V one has

Re f+ ∈V and a(Re f+,Re f−)≤ 0.

(3) (etA)t≥0 is stochastic if and only if it is positive and additionally 1 ∈ V and

Rea( f ,1) = 0.
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(4) (etA)t≥0 is irreducible if and only if for any measurable subset U0 of U one has

µ̃(U0) = 0 or µ̃(UC
0 ) = 0 whenever 1U0 ∈ V and Rea( f 1U0 , f 1UC

0
) = 0 for all

f ∈V .

(5) If a is accretive, then (etA)t≥0 is contractive with respect to ‖ · ‖L∞ if and only

if for all f ∈ V one has (1 ∧ | f |)sgn f ∈ V and Rea((1 ∧ | f |)sgn f ,(| f | −
1)+ sgn f )≥ 0.

(6) Let W be a Hilbert space that is densely and continuously embedded in H and b :
W×W→C be another H-elliptic, continuous sesquilinear form with associated

operator B. Let both a and b be accretive, and (etB)t≥0 be positive. Then (etB)t≥0

dominates (etA)t≥0 in the sense of positive operators if and only if

• V is a lattice ideal of W in the sense of Definition B.5 and additionally

• for all f ,g ∈V such that f g≥ 0 one has Rea( f ,g)≥ b(| f |, |g|).
(7) Under the assumptions of (7), let additionally (etA)t≥0 be positive, too. Then

(etB)t≥0 dominates (etA)t≥0 in the sense of positive operators if and only if

• V is a lattice ideal of W and additionally

• for all positive-valued f ,g ∈V one has a( f ,g)≥ b( f ,g).

An interesting property of C0-semigroups (T (t))t≥0 on Lp(U, µ̃) that are analytic,
positive, and irreducible is that if f ≥ 0 µ-a.e. but f 6= 0, then T (t) f > 0 µ-a.e.,
cf. [336, Thm. 2.9 and Def. 2.8]. This shows that whenever some heat is injected in
a system at time t = 0, this can be immediately sensed at any point. In other words,
diffusion equations typically have infinite speed of propagation, cf. Definition 4.54.

Let us recall the Kantorovich–Vulikh Theorem.

Theorem 6.31 Let for K ∈ L∞(U×U)

(TKu) :=
∫

U
K(ω, ·)u(ω)dµ̃(ω), u ∈ L1(U). (6.10)

Then TK defines a bounded linear operator from L1(U) to L∞(U). Conversely, every

bounded linear operator from L1(U) to L∞(U) can be represented as TK for some

K ∈ L∞(U×U). Furthermore, ‖TK‖L (L1,L∞) = ‖K‖L∞ .

Example 6.32 We mention the following as a typical application of the Kantorovich–

Vulikh Theorem. Under our standing assumptions, by Proposition 6.16, etA is

bounded from H to V for all t > 0. If in particular H = L2(I), and V is a subspace

of W 1,2(I) for some interval I ⊂ R, then in view of Lemma B.3 etA is bounded from

L2(I) to L∞(I) for all t > 0, and so is etA∗ by Remark 6.17. By duality, etA extends

to a bounded linear operator from L1(I) to L∞(I). Hence, each etA is an integral

operator with integral kernel Kt . Then, (Kt)t≥0 is called the heat kernel of (etA)t≥0.

It can be estimated by the following.

Proposition 6.33 Assume both semigroups (etA)t≥0 and (etA∗)t≥0 to be L∞(U, µ̃)-
contractive. If

‖ f‖3
L2 ≤M‖ f‖V‖ f‖2

L1 (6.11)
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holds for some constant M and all f ∈V , or else if the embedding

V →֒ L
2n

n−2 (U) (6.12)

holds for some n≥ 2, then (etA)t≥0 is ultracontractive of dimension d, i.e., it satisfies

the estimate

‖etA f‖L∞ ≤ ct−
d
4 ‖ f‖L1 , t > 0, f ∈ L2(U), (6.13)

for some constant c > 0, where d = 1 if (6.11) holds, or d = n if (6.12) holds.

Clearly, smaller or larger d yield in (6.13) better estimates for smaller or larger t,
respectively.

Example 6.34 In the setting of Example 6.21, several qualitative properties of the

semigroups generated by ∆ N or ∆ D can be proved by means of Proposition 6.30,

thus extending Lemma 4.57. Let u ∈V . Then, also the functions

Reu : x 7→ Re(u(x)),

Reu+ : x 7→ Re(max{u(x),0}),
(1∧|u|)sgnu : x 7→ (min{1, |u(x)|})sgnu(x)

are weakly differentiable and there holds

(Reu+)′ = Reu′, (Reu+)′ = Reu′ ·1{u≥0}, ((1∧| f |)sgn f )′ = u′ ·1{|u|≤1}.

E.g.,

a(Reu+,Reu−) =
∫

U
|(Reu)′|21{u≥0}1{u≤0}dx = 0,

and similarly Rea((1∧|u|)sgnu,(|u|−1)+ sgnu)= 0. By Proposition 6.30 (et∆ D
)t≥0

is real, positive, and L∞-contractive. The same properties hold for (et∆ N
)t≥0. By

interpolation and then by duality either C0-semigroup extends to a family of C0-

semigroups on all spaces Lp(0,1), 1< p<∞. Moreover, by Proposition 6.30.(6) and

Lemma B.6 (et∆ N
)t≥0 dominates (et∆ D

)t≥0. Finally, it follows from Proposition 6.33

and the Nash inequality (B.3) that (et∆ N
)t≥0 is ultracontractive of dimension 1, and

hence so is the dominated C0-semigroup (et∆ D
)t≥0.

6.2.1 Generalized elliptic forms

In this section we keep on imposing the standing assumptions of Section 6.2 and
discuss the notion of j-elliptic forms, a rather recent generalization of the usual
notion of forms first proposed in [19].

Definition 6.35 Let j : V →H a bounded linear map with dense range. A sesquilin-

ear form a : V ×V → C is called j-elliptic on H with form domain V if there exist
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ω ∈ R and µ > 0 such that

Rea(u,u)−ω‖ j(u)‖2
H ≥ µ‖u‖2

V for all u ∈V. (6.14)

If a is continuous as a function from V ×V to C and j-elliptic, then the unique,

densely defined operator A on H given by

D(A) := { f ∈ H : ∃u ∈V s.t. j(u) = f , ∃g ∈ H s.t. a(u,v) = (g| j(v))H ∀v ∈V},
A f :=−g,

is called the operator associated with (a, j).

If j = Id, then we recover the classical theory of forms. More generally, j-
ellipticity essentially agrees with the usual notion of ellipticity if j is injective, since
then V can be identified with a dense subspace of H. All properties of a and A thus
follow more or less directly from the decomposition

V =V (a)⊕Ker j,

where
V (a) := {u ∈V : a(u,v) = 0 for all v ∈ Ker j},

in view of the obvious fact that j|V (a) is injective.

Example 6.36 A less obvious application of the theory of j-elliptic forms arises if

one looks again at the setting of Example 6.21, i.e.,

a(u,v) :=
∫ 1

0
u′(x)v′(x) dx, u,v ∈V :=W 1,2(0,1),

and take

H := C
2 and j(u) :=

(

u(1)
u(0)

)

.

Then V (a) is the space of weakly harmonic functions on (0,1). In particular the

operator associated with (a, j) must satisfy −(A j(u)| j(v))H = a(u,v) for all u,v ∈
V (a), i.e.,

−
(

A

(

u(1)
u(0)

)

|
(

v(1)
v(0)

))

!
= a(u,v) = u′(x)v(x)

∣

∣

∣

x=1

x=0
, u,v ∈V (a).

One hence checks that for x ∈ C2 Ax = −y if and only if there exists u ∈ V (a) such

that

x =

(

u(1)
u(0)

)

=: j(u) and y =

(

u′(1)
−u′(0)

)

.

In other words, A is (minus) the Dirichlet-to-Neumann operator introduced in Sec-

tion 2.3.1. Because of course the (weakly) harmonic function with boundary values

j(u) is given by u : x 7→ u(0)+ (u(1)− u(0))x, one also sees that −A agrees with

the matrix
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(

1 −1
−1 1

)

.

Thus, the Dirichlet-to-Neumann operator−A agrees with the discrete Laplacian L

0 1

Fig. 6.1: An interval as a trivial unweighted graph.

for the trivial unweighted graph associated with the interval (0,1). This observation

can be extended to the case of discrete Laplacians on more interesting graphs, as

we will see in Section 6.6.

(What happens taking j : u 7→ ∫ 1
0 u(x) dx instead? The form is clearly j-elliptic,

as one sees applying a suitable version of the Poincaré inequality.)

Most of the classical results summarized in Section 6.2 can be extended to the
case of j-elliptic forms. We consider explicitly the following two instances, taken
from [309] and [19] respectively.

Proposition 6.37 Let a : V ×V → C be a j-elliptic, continuous form and denote by

A the associated operator. Then A generates an analytic C0-semigroup on H.

If additionally there exists M ≥ 0 such that

| Ima(u,u)| ≤M‖u‖V‖ j(u)‖H for all u ∈V (a), (6.15)

then A generates a C0-cosine operator function with Kisyński space j(V ) and hence

a C0-semigroup with analyticity angle of π
2 .

Proposition 6.38 Let C be a closed convex subset of H and denote by PC the or-

thogonal projector of H onto C. Then the following assertions are equivalent.

(a) C is invariant under (etA)t≥0.

(b) for all u∈V there exists w∈V such that PC j(u) = j(w) and Rea(w,u−w)≥ 0.

In this way one can e.g. show that the C0-semigroup generated by Dirichlet-to-
Neumann operators is sub-Markovian. In view of the connection with the discrete
Laplacians observed above, this Proposition 6.38 may also be used to provide an
alternative proof of Theorem 6.54 below.

Using the notion of form convergence that goes back to U. Mosco, cf. [301], the
following has been proved in [309].

Theorem 6.39 Let (an, jn)n∈N and (a, j) be densely defined, sesquilinear contin-

uous forms on a Hilbert space H with form domains (Vn)n∈N and V , respectively.

We assume that an is jn-elliptic for all n ∈ N and a is j-elliptic, and that the j-

ellipticity constants can be chosen to be the same for all n ∈ N. Then the following

are equivalent.
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(a) The sequence of operators (An)n∈N associated with (an, jn)n∈N converges to the

operator −A associated with (a, j) in the strong resolvent sense.

(b) The following conditions are satisfied:

(i) If un ∈Vn, jn(un)⇀ x for some x ∈ H and liminfn→∞ an(un,un)< ∞, then

there exists u ∈V such that j(u) = x and liminfn→∞ an(un,un)≥ a(u,u);
(ii) For all u ∈V there exists a sequence (un)n∈N with un ∈Vn such that

lim
n→∞

jn(un) = j(u) and liminf
n→∞

an(un,un)≤ a(u,u).

Observe that strong resolvent convergence of generators is a necessary condition
for strong convergence of the associated C0-semigroups.

Proposition 6.40 Under the assumptions of Theorem 6.39, let additionally (b, j)
be a sesquilinear, continuous, j-elliptic form defined on V . Denote the respective

associated operators by An, n ∈ N, A, and B. Assume all the forms to be symmetric.

If the equivalent conditions in Theorem 6.39 are satisfied, and additionally

• (etB) is of trace class as well as

• for all n ∈ N

jn(Vn)⊂ j(V ) and an(u,u)≥ b(v,v) whenever jn(u) = j(v),

then etAn converges to etA for all t > 0 in operator norm (and even in trace norm).

6.2.2 Subdifferentials of energy functionals

After the Hille–Yosida Theorem paved the way for the development of the theory
of C0-semigroups, it seemed obvious to generalize this theorem – and as much as
possible of the linear theory – to the nonlinear setting. Unfortunately, all attempts to
find a precise nonlinear counterpart of the Hille–Yosida Theorem have been unsuc-
cessful to date. Partial results are known, but are often rather technical.

Nevertheless, in the 1960s an elegant and efficient theory of nonlinear semi-
groups could indeed be developed: It regards a class of nonlinear operators that
bear many similarities to those linear operators that come from forms, and a class
of nonlinear semigroups that enjoy many properties typical of analytic semigroups.
This section is devoted to recall this theory: We do so for the sake of completeness of
our exposition, even if throughout the book we have chosen to devote our attention
almost exclusively to linear models and equations.

Assumptions 6.41 Throughout this section we consider the following functional

setting.

• V is a reflexive Banach space.

• H is a Hilbert space.

• V is densely and continuously embedded in H.
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• E : V → [0,∞) is a convex, Fréchet differentiable functional (with derivative de-

noted by E ′) such that E (0) = 0.

We can and will extend E to the whole H by +∞: With an abuse of notation we
denote this extension again by E . Then the subdifferential of E : H → [0,+∞] at
f ∈ H is defined (cf. e.g. [377, Def. at p. 81]) as the set

∂E ( f ) :=

{

{g ∈ H : (g|ϕ− f )H ≤ E (ϕ)−E ( f ) ∀ϕ ∈ H}, if f ∈V,
/0, if f ∈ H \V,

However, under the above assumptions the subdifferential of E at each f ∈ V is
by [377, Prop. II.7.6] either empty or a singleton. Thus, we can regard ∂E as a
(single-valued) operator from

D(∂E ) := { f ∈V : ∂E ( f ) 6= /0}

to H, and we denote with a slight abuse of notation

∂E ( f )≡ {∂E ( f )}, f ∈ D(∂E ).

Determining a subdifferential is in general a tedious task. Due to our assumption
of Fréchet differentiability of E , however, a subdifferential can be described more
easily by means of the following result. While it seems to be known, the only precise
reference we are aware of is [325, Lemma 2.8.9].

Lemma 6.42 The subdifferential of E can be equivalently described by

D(∂E ) = { f ∈V : ∃g ∈ H s.t. E ′( f )h = (g|h)H ∀h ∈V},
∂E ( f ) = g.

(6.16)

Unlike in the linear case, in the world of nonlinear evolution equations several
discording techniques for finding solutions exist. In particular, subdifferentials of
proper, convex, lower semicontinuous functionals are (nonlinear) m-accretive oper-
ators, cf. [377, Prop. IV.2.2], i.e., they satisfy the estimate

〈Au−Av,u− v〉 ≥ 0 for all u,v ∈ D(A).

(This definition can be even extended to multi-valued operators, but we avoid this
general setting for the sake of simplicity.) Therefore the celebrated theorem due to
M.G. Crandall and T.M. Liggett – the nonlinear pendant of the theorem of Lumer–
Phillips, since obviously a linear operator A is dissipative if and only if−A is accre-
tive – can be applied to find solutions of abstract Cauchy problems associated with
subdifferentials in terms of a semigroup of nonlinear operators.

Theorem 6.43 Let A be a densely defined, m-accretive operator on a Banach space

X. Then for any f0 ∈ X and any t ≥ 0 the sequence

Jn
t
n

f0 :=
(

Id+
t

n
A
)−n

f0, n ∈ N,
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converges uniformly on compact subsets of [0,∞) and its limit, which we denote

by e−tA f0, defines a nonlinear contractive C0-semigroup, i.e., a strongly continuous

family of (in general, nonlinear) contractions on X that satisfy the semigroup law.

Let us observe that, among other things, the perturbation theory for accretive
operators is not nearly as mighty as in the linear case. As an example we mention
the following, cf. [69, Théo. 3.17 and Rem. 3.14].

Lemma 6.44 Let A be an m-accretive operator on a Hilbert space H. If B : H→H

is a globally Lipschitz mapping, then A+B+ω Id is m-accretive, where ω is the

Lipschitz constant of B.

At a first glance, this result is tailored for application to differential equations
where the maximal monotone leading term is perturbed by polynomial of odd de-
gree, which can be splitted into globally Lipschitz, bounded part – corresponding to
the graph of the polynomial between its smallest and its largest zero – and a maxi-
mal monotone part – corresponding to the graph of the function outside this interval.
(The case of a perturbation by a polynomial of even degree is more delicate, and we
refer to [1, Thm. 3.1] for a comparable generation result.) Unfortunately, polynomi-
als do not usually define globally Lipschitz operators on Lp-spaces for p < ∞, but
only on spaces of continuous functions.

Just like in the linear case, it can be shown that semigroups yield solutions of
abstract Cauchy problems. As shown in [50], however, the solutions obtained in
this way have to be defined by means of an approximation scheme and have in
general very poor regularity properties. More useful information about solutions
can be obtained applying more directly the properties of subdifferentials and using
Hilbert space methods.

Theorem 6.45 Let T > 0. Then for all f ∈ L2
(

(0,T );H
)

and all f0 ∈H there exists

a unique ϕ ∈C([0,T ];H) which is differentiable for a.e. t ∈ [0,T ] and such that







ϕ(t) ∈ D(∂E ), for a.e. t ∈ [0,T ],
∂ϕ
∂ t
(t)+∂E ϕ(t) = f (t), for a.e. t ∈ [0,T ],

ϕ(0) = f0.

(6.17)

Furthermore, E ◦u ∈ L1(0,T ), and moreover

• if f0 ∈V , then E ◦u ∈ L∞(0,T ) and u ∈ H1
(

(0,T );H
)

;

• if f0 ∈D(∂E ), then u∈W 1,∞
(

(0,T );H
)

and u is right differentiable for all t ≥ 0,

• if f ≡ 0, then the mapping t 7→ ϕ(t) agrees for all t ≥ 0 with t 7→ e−t∂E f0.

An alternative approach to investigate well-posedness of nonlinear evolution
equations goes back to [275] and has been substantially enhanced by R. Chill and his
coauthors in recent years, cf. [101] for a comprehensive exposition. The following
collects [101, Thm. 6.1 and § 6.4].

Theorem 6.46 Additionally to our standing assumptions, let
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• V be separable,

• E be coercive, i.e., the sublevel sets

{ f ∈V : E ( f )≤ α}

be bounded with respect to the norm of V for all α ∈ R, and

• the Fréchet derivative E ′ map bounded sets of V into bounded sets of V ′.

Then for all f ∈L2
(

(0,T );H
)

and all f0 ∈V there exists a unique ϕ ∈L∞
(

(0,T );V
)

∩
H1
(

(0,T );H
)

such that







ϕ(t) ∈ D(∂E ), for a.e. t ∈ [0,T ],
∂ϕ
∂ t
(t)+∂E ϕ(t) = f (t), for a.e. t ∈ [0,T ],

ϕ(0) = f0.

(6.18)

Furthermore, the energy inequality

∫ t

0

∥

∥

∥

∥

∂ϕ

∂ t
(s)

∥

∥

∥

∥

2

H

ds+E (ϕ(t))≤ E ( f0)+
∫ t

0

(

f (s)|∂ϕ

∂ t
(s)

)

H

ds, t ∈ [0,T ],

(6.19)
is satisfied. If in particular V = H is finite dimensional and f ≡ 0, then the solution

ϕ satisfies the further energy inequality

d

dt
E (ϕ(t))≤−1

2

∥

∥

∥

∥

∂ϕ

∂ t
(t)

∥

∥

∥

∥

2

H

− 1
2
‖∂E ϕ(t)‖2

H , t ≥ 0. (6.20)

The main idea of the proof is to consider the weak formulation
(

∂ϕ

∂ t
|h
)

H

+∂E ϕ(t)h = ( f (t)|h)H , for a.e. t ∈ [0,T ] and all h ∈V,

or rather
(

∂ϕ

∂ t
(t)|h

)

H

+E ′(ϕ(t))h = ( f (t)|h)H , for a.e. t ∈ [0,T ] and all h ∈V,

of the differential equation, and then to discretize it by applying the so-called
Galerkin scheme:

(1) since V is separable, one can take

• a total sequence (en)n∈N and hence the sequence of finite dimensional spaces
Vn := span{em : m ≤ n} (with the norm induced by H) such that

⋃

n∈NVn is
dense in V and

• a sequence ( f0n)n∈N such that f0n ∈Vn for all n ∈ N and limn→∞ f0n = f0 in
V ;

(2) for all n ∈N, consider E|Vn
, take its subdifferential as in (6.16), but with respect

to test functions in Vn; and use Carathéodory’s Theorem to solve
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{

∂ϕ
∂ t n

(t)+∂E|Vn
ϕn(t) = Pn f (t), for a.e. t ∈ [0,T ],
ϕn(0) = f0n,

where we denote by Pn the orthogonal projection of H onto Vn;
(3) for all n ∈ N, show that all the solutions φn admit uniform a priori bounds,

which in turn show that the sequence (φn)n∈N is bounded in L∞
(

(0,T );V
)

∩
H1
(

(0,T );H
)

and also that (E (φn))n∈N is bounded in L∞(0,T ;V ′);
(4) extract a converging subsequence and show that its limit is a solution of the

abstract Cauchy problem (6.18) with the claimed regularity properties and sat-
isfying the energy inequality (6.19);

(5) use accretivity of ∂E to prove that there cannot be further solutions.

The latter energy inequality (6.20), which in [101, § 6.4] is reported to be due to
De Giorgi, shows that either the solution reaches in finite time a ground state, or its
energy decreases indefinitely.

Remark 6.47 There is a connection between the linear theory of quadratic forms

and the nonlinear theory we are summarizing in this section: If V is a Hilbert space

and a : V ×V → R is a bounded, coercive, symmetric sesquilinear form (i.e., a

quadratic form), then

E : V ∋ f 7→ 1
2

a( f , f ) ∈ [0,∞)

defines a convex, coercive, Fréchet differentiable functional and all sublevel sets

are bounded in V , hence it satisfies the assumptions of all results in this section.

Moreover, one sees directly that the Fréchet derivative of E is given by

E ′( f )g = a( f ,g), f ,g ∈V.

Therefore, by definition the subdifferential/Fréchet derivative of E is precisely −A,

where A is the linear operator associated with a in the sense of Definition 6.13.

Finally, making use of semigroup theory it is possible to characterize closed
convex sets of H that are left invariant over time, by a nonlinear generalization
of Ouhabaz’ invariance criterion due to L. Barthélemy.

Lemma 6.1. Let C be a closed convex subset of H and denote by PC the orthogonal

projection of H onto C. Then the following assertions are equivalent.

(a) C is left invariant under Jλ (∂E ) for all λ > 0.

(b) C is left invariant under e−t∂E for all t ≥ 0.

(c) E (PC f0)≤ E ( f0) for all f0 ∈V .

In particular:

• The semigroup (e−t∂E )t≥0 is order preserving, i.e.,

f0 ≤ g0 ⇒ e−t∂E f0 ≤ e−t∂E g0 ∀t ≥ 0, ∀ f0,g0 ∈ H, (6.21)
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if and only if

E ( f0∧g0)+E ( f0∨g0)≤ E ( f0)+E (g0) for all f0,g0 ∈V.

• Let (U, µ̃) be a σ -finite measure space and H = L2(U ; µ̃). Then (e−t∂E )t≥0 is

contractive with respect to the norm of L∞(U ; µ̃), i.e.,

‖e−t∂E f0− e−t∂E g0‖∞ ≤ ‖ f0−g0‖∞ ∀t ≥ 0, ∀ f0,g0 ∈ H,

if and only if

E

(

g0 +( f0−g0 +1)+
2

+
g0− ( f0−g0−1)−

2

)

+E

(

f0− ( f0−g0 +1)+
2

+
f0 +( f0−g0−1)−

2

)

≤ E ( f0)+E (g0) for all f0,g0 ∈V.

6.3 Delay evolution equations

In many models arising in biomathematics, and especially in neuroscience, delays
have to be considered. Let us mention two examples: due to the duration of preg-
nancy, the size of a population only determines the number of its offspring at a later
time; communication between neurons is slowed down by signal processing inside
the individual neurons, as discussed in Chapter 5.

In these and several further models it is therefore appropriate to modify the stan-
dard version of an evolution equation and rather discuss

u̇(t) = Au(t− τ), t ≥ 0,

for some delay τ > 0 that is determined by the model. For a Banach space X and a
function u : [−τ,+∞)→ X one introduces the history segment

ut : [−τ,0] ∋ σ 7→ u(t +σ) ∈ X .

With this notation we can now introduce a class of delayed abstract Cauchy prob-
lems of the form







u̇(t) = Au(t)+Φut , t ≥ 0,
u(0) = u0,

u0 = f .
(dACP)

We refer to [31, Chapter 3] for a justification of this formulation. Indeed, the con-
dition on the history segment in (dACP) is necessary in order to determine a so-
lution, because (dACP) has to be turned into a certain abstract Cauchy problem
on X ×L1

(

(−τ,0;X
)

with initial conditions (u0, f ). We want to study this kind of
problems in the framework of the theory of elliptic forms and adopt the standing
assumption of Section 6.2, i.e.,
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a : V ×V → C is sesquilinear, continuous and H-elliptic
and A is its associated operator

Definition 6.48 Let τ > 0, f ∈ L1
(

(−τ,0);V
)

, and u0 ∈H. A solution of (dACP) is

a function u ∈C
(

[−τ,∞);X
)

∩C1
(

[0,∞);X
)

that satisfies (dACP) and with u(t) ∈
D(A), ut ∈W 1,1

(

(−τ,0);V
)

for all t ≥ 0.

Proposition 6.49 Let a : V ×V → C be an H-elliptic, continuous sesquilinear form

with associated operator A, τ > 0, and Φ be a bounded linear operator from

W 1,1
(

(−τ,0);V
)

to H.

Then for every u0 ∈ D(A) and f ∈W 1,1
(

(−τ,0);V
)

such that f (0) = u0 there

exists a unique solution of (dACP). Furthermore, for each pair of sequences

(u0n)n∈N⊂D(A) and ( fn)n∈N⊂W 1,1
(

(−τ,0);V
)

that tend to 0 in X and L1
(

(−τ,0);V
)

,

respectively, also the sequence (un)n∈N of solutions to the corresponding (dACP)
tends to 0 in X, uniformly in compact intervals of R+.

An elementary but relevant class of bounded linear operators from W 1,1
(

(−τ,0);V
)

to H consists of those operators given by

Φw :=
n

∑
k=0

Bkw(−τk), w ∈W 1,1((−τ,0);V
)

,

for some n ∈ N, where for all k = 1, . . . ,n Bk is a bounded linear operator from V

to H and τk ∈ [0,τ]. In this case (dACP) can be regarded as an abstract, linearized
version of the model in (5.6), as it reads







u̇(t) = Au(t)+∑
n
k=1 Bku(t− τk), t ≥ 0,

u(0) = u0,
u0 = f .

Proposition 6.50 Let B be a bounded linear operator from V to H. If (et(A+B))t≥0

is uniformly exponentially stable, then there is τ > 0 such that for any τ0 ∈ [0,τ] the

solution u of (dACP) with

Φw := Bw(−τ0), w ∈W 1,1((−τ,0);V
)

,

is exponentially stable, i.e., it satisfies ‖u(t)‖H ≤ e−εt for some ε > 0 and all t ≥ 0.

Under the assumptions of Proposition 6.50 the semigroup generated by A+B

is analytic by Lemma 6.22. Thus, in order to apply the above result and conclude
that sufficiently small delays do not affect the stability of (dACP) it suffices by
Proposition 6.8 to show that s(A+B)< 0.
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6.4 Matrix semigroups on networks

In this section we see how to study some of the difference operators introduced in
Section 2.1 in the light of the theory of forms. We assume throughout that

G= (V,E,γ) is a locally finite, weighted oriented graph

and we generally take over all notational conventions of Section 2.1

6.4.1 The discrete diffusion equation

This section is devoted to the study of the discrete diffusion equation, i.e., of the
evolution equation

d f

dt
(t,v) =−L f (t,v), t ≥ 0, v ∈ V,

(beware the sign!) associated with (minus) the discrete Laplace–Beltrami operator
L on an oriented weighted graph G. If G is finite, then it is natural to look for a
solution given by (4.1).

If (3.2) holds, then L is a bounded operator on ℓ2(V) by Lemma 4.4. Hence,
−L generates a C0-semigroup (in fact, even an analytic C0-group) that is given by
the exponential formula. Then, by Remark 4.13 no strict restriction and no strict
extension of −L can be a generator as well. But if (3.2) fails, a new phenomenon
appears – nothing overly unusual if one is used to work with differential operators:
One may also define −L on some different closed subspace of w

1,2
γ (V) – e.g. on

ẘ
1,2
γ (V), cf. Remark 3.9. (The question whether w

1,2
γ (V) 6= ẘ

1,2
γ (V), i.e., whether

two different realizations of L actually exist, is a difficult one and depends on the
properties of G as a metric measure space. We refer to [232] for some preliminary
answers.)

For general graphs, the Laplace–Beltrami matrix L acts on test functions by

L f (v) := ∑
w∈V
w∼v

γ
(

(v,w)
)

( f (v)− f (w)), v ∈ V, f ∈ c00(V),

but then it can have different extensions: We will consider two of them, defined by

D(L N) :=

{

f ∈ w
1,2
γ (V) : ∃g ∈ ℓ2(V)

s.t. ∑
e∈E

γ(e)(I T f )(e)(I T h)(e) = ∑
v∈V

g(v)h(v) ∀h ∈ w
1,2
γ (V)

}

,

L N f := −g,
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and

D(L D) :=

{

f ∈ ẘ
1,2
γ (V) : ∃g ∈ ℓ2(V)

s.t. ∑
e∈E

γ(e)(I T f )(e)(I T h)(e) = ∑
v∈V

g(v)h(v) ∀h ∈ ẘ
1,2
γ (V)

}

,

L D f := −g,

respectively. They are defined weakly, i.e., we cannot in general determine their
values pointwise, but only integrate – or rather sum – them against suitable test
functions. Their form domains are subspaces of ℓ2(v) – indeed, the largest and the
smallest possible ones, respectively. This reminds us of to the situation in Exam-
ple 6.21 and we thus regard these realizations as a “Neumann” and a “Dirichlet”
discrete Laplace–Beltrami operator, respectively.

Remark 6.51 This setting can be further generalized. Let namely a function ν :
V→ R define a measure that is equivalent to the standard counting measure, i.e.,

0 < n0 ≤ ν(v)≤ n1 for some n0,n1 > 0 and all v ∈ V. (6.22)

Then ℓp(V) = ℓp
ν(V), and in particular the sesquilinear form a in (6.23) is ℓ2

ν(V)-
elliptic as well. Thus, the operators associated with the form a – either with domain

V N := w
1,2
µ,ν(V), cf. Definition 3.4, or with domain V D given by the closure in V N of

c00(V) – generate C0-cosine operator functions, and hence analytic C0-semigroups,

on ℓ2
ν(V). How do these operators look like? A direct computation shows that their

action on test functions is

f 7→ 1
ν ∑

w∈V
w∼v

γ
(

(v,w)
)

( f (·)− f (w)), f ∈ c00(V).

Theorem 6.52 Both −L D and −L N generate an analytic, contractive C0-semi-

group on ℓ2(V) – in fact, even a C0-cosine operator function with Kisyński space

w
1,2
γ (V) or ẘ

1,2
γ (V), respectively. Both these semigroups are compact if both condi-

tions in Proposition 3.8.(2) are satisfied.

Proof. Define a sesquilinear form a defined either on V N := w
1,2
γ (V) or on V D :=

ẘ
1,2
γ (V) by

a( f ,g) :=
(

I T f |I T g
)

ℓ2
γ (E)

. (6.23)

Then a is sesquilinear, continuous, accretive, and ℓ2(V)-elliptic by definition of
w

1,2
γ (V). It is even coercive on V D. Because a is symmetric, it is also of Lions

type. If Proposition 3.8.(2) applies, then compactness of the semigroup follows from
Lemma (6.20). Finally, −L N and −L D are by construction the operators associ-
ated with (a,V N) and (a,V D), respectively. ⊓⊔

Remark 6.53 An analogous result holds if one considers either the space
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z
1,p
γ,ν(V) :=

{

f ∈ ℓp
ν(V) : J T f ∈ ℓp

γ (E)
}

with the natural norm, or the closure of c00(V) in z
1,p
γ,ν(V). Here J is the signless

incidence matrix, cf. Remark 2.4. Taking the form

b( f ,g) :=
(

J T f |J T g
)

ℓ2
γ (E)

(6.24)

one can deduce a generation result for two different realizations of the signless

Laplace–Beltrami matrix Q. We omit the details.

Like in the case of finite graphs discussed in Lemma 4.57, the following holds.
Due to non-locality of Laplace–Beltrami matrix, the proof requires ideas than are
rather different from those that will prove useful in the continuous case.

Theorem 6.54 Both (e−tL D
)t≥0 and (e−tL N

)t≥0 are sub-Markovian. They are ir-

reducible if and only if G is connected.

We will exploit throughout that for all k ∈ R and p ∈ [1,∞) the function

fk : [0,∞) ∋ α 7→ |k+α|2 + |k−α|2 ∈ [0,∞) (6.25)

is strictly monotonically increasing.

Proof. Reality of the semigroup is clear, as all entries of I are real.
Let us denote by E the quadratic form given by the values of a (defined in (6.23))

along the diagonal, i.e.,

E ( f ) :=
1
2

a( f , f ), f ∈V. (6.26)

By Theorem 6.28, positivity of the C0-semigroup has to be proved checking that

E ( f+)≤ E ( f ) for all f ∈ w
1,2
γ (V).

This is actually satisfied, because for all e ∈ E dividing the cases

• f (einit), f (eterm)≥ 0,
• f (einit), f (eterm)≤ 0,
• f (einit)≤ 0≤ f (eterm),
• f (einit)≥ 0≥ f (eterm).

one sees that
| f+(einit)− f+(eterm)| ≤ | f (einit)− f (eterm)|.

Let us now prove that the semigroups are ‖ · ‖ℓ∞ -contractive, i.e., that for all
f ,g ∈ w

1,2
γ (V)
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E

(

g+( f −g+1)+

2
+

g− ( f −g−1)−

2

)

+E

(

f − ( f −g+1)+

2
+

f +( f −g−1)−

2

)

≤ E ( f )+E (g).

As above, it suffices to take one e ∈ E and to check that for all f ,g ∈ w
1,2
γ (V)

∣

∣

∣

∣

I T g+( f −g+1)+

2
(e)+I T g− ( f −g−1)−

2
(e)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

I T f − ( f −g+1)+

2
(e)+I T f +( f −g−1)−

2
(e)

∣

∣

∣

∣

2

≤ |I T f (e)|2 + |I T g(e)|2,

or equivalently that for all x,y,w,z ∈ R

∣

∣

∣

∣

y+(x− y+1)+

2
− z+(w− z+1)+

2
+

y− (x− y−1)−

2
− z− (w− z−1)−

2

∣

∣

∣

∣

2

+

∣

∣

∣

∣

x− (x− y+1)+

2
− w− (w− z+1)+

2
+

x+(x− y−1)−

2
− w+(w− z−1)−

2

∣

∣

∣

∣

2

≤ |x−w|2 + |y− z|2.

Proving this inequality in the nine possible cases

|x− y| ≤ 1 and |w− z| ≤ 1, x− y≤−1 and |w− z| ≤ 1, x− y≥ 1 and |w− z| ≤ 1,
|x− y| ≤ 1 and w− z≥ 1, x− y≤−1 and w− z≥ 1, x− y≥ 1 and w− z≥ 1,
|x− y| ≤ 1 and w− z≤−1, x− y≤−1 and w− z≤−1, x− y≥ 1 and w− z≤−1,

is tedious but not difficult. E.g., in the second case (the first being trivial) one has to
check that

∣

∣

∣

∣

x− w− z+1
2

∣

∣

∣

∣

2

+

∣

∣

∣

∣

y− w+ z−1
2

∣

∣

∣

∣

2

≤ |x−w|2 + |y− z|2.

This condition can be re-written as

|k+α|2 + |k−α|2 ≥ |k+ γ|2 + |k− γ|2,

where

k :=
x+ y−w− z

2
, α :=

−x+ y+w− z

2
, γ :=

x− y−1
2

.

Under the assumption that (|x− y| ≤ 1 and) w− z≥ 1, one has
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x− y−w+ z≤ x− y−1≤ y− x+w− z,

and hence |γ| < |α|, whence the assertion follows, by monotonicity of fk defined
in (6.25).

Finally, let us show the assertion about irreducibility. All closed lattice ideals of
ℓ2(V) are of the form ℓ2(V0) ≡ { f ∈ ℓ2(V) : supp f ⊂ V0} for some subset V0 ⊂
V, and the associated orthogonal projections are given by the restriction operators
PV0 := 1V0 ·.

Assume G to be connected and ℓ2(V0) to be invariant under (e−tL ), or equiva-
lently that

E (PV0 f )≤ E ( f ) for all f ∈ w
1,2
γ (V). (6.27)

We have to show that V0 is a trivial subset of V, i.e., V0 = V or V0 = /0.
In fact, if V0 6= V 6= V

C
0 there are two adjacent nodes v0 ∈ V0 and v1 ∈ V

C
0 . Set

Ṽ := V \{v0,v1},

so that E is partitioned into (v0,v1),E
0,E1, Ẽ. Here for i ∈ {0,1} Ei consist of those

edges other than (v0,v1) one of whose endpoints is vi (regardless of their orienta-
tion), and Ẽ := E\ ((v0,v1)∪E0∪E1). In other words,

2E (g) = γ(v0,v1)|g(v0)−g(v1)|2 + ∑
w∼v0
w 6=v1

γ(v0,w)|g(v0)−g(w)|2

+ ∑
w∼v1
w 6=v0

γ(v1,w)|g(v1)−g(w)|2 + ∑
e∈Ẽ

γ(e)|g(einit)−g(eterm)|2 for all g ∈ w
1,2
γ (V).

Let now f ∈ w
1,2
γ (V) be defined by

f (v) :=







x, if v = v0,
1, if v = v1,
0, otherwise,

for some x > 0 to be determined later. Accordingly,

PV0 f (v) :=

{

x, if v = v0,
0, otherwise.

Therefore,

2E ( f ) = γ(v0,v1)|x−1|2 + |x|2 ∑
w∼v0
w 6=v1

γ(v0,w)+ ∑
w∼v1
w 6=v0

γ(v1,w).

(the sums on the right hand side are finite, because they are less then deg(v0) and
deg(v1), respectively – recall that G is assumed to be locally finite) whilst
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2E (PV0 f ) = γ(v0,v1)|x|2 + |x|2 ∑
w∼w0
v 6=v1

γ(v0,w).

Accordingly,

2E ( f )−2E (PV0 f ) = γ(v0,v1)
(

|x−1|2−|x|2
)

+ ∑
w∼v1
w 6=v0

γ(v1,w)< 0,

choosing x large enough, thereby contradicting (6.27). This implies that indeed V0 =
/0 or V0 = V.

Conversely, each subspace of ℓ2(V) consisting of functions over a connected
component is left invariant under (e−tL N

)t≥0, hence the semigroup would be re-
ducible if G contained more than one connected components. The same proof holds
for (e−tL D

)t≥0. ⊓⊔

An alternative proof of well-posedness of the abstract Cauchy problem associated
with L D, based instead on the Galerkin scheme, yields a convergence assertion for a
sequence of solutions of certain discrete diffusion equations on finite graphs. More
precisely, a family of graphs (Gn)n∈N is said to be growing if Gn is an induced
subgraph of Gm for all n,m ∈ N with n≤ m; and that it exhausts G if

• Gn is an induced subgraph of G for all n ∈ N and
• ⋃

n∈NVn = V.

Then the following holds, by a direct application of the Galerkin scheme described
in Appendix 6.2.2, applied to the functional E in (6.26).

Proposition 6.55 For all f0 ∈ ẘ
1,2
γ (V) there is a growing family of finite graphs

(Gn)n∈N that exhausts G and such that the sequence of solutions (ϕn)n∈N of the

Cauchy problem







ϕ̇n(t,v) = −L (n)ϕn(t,v), t ≥ 0, v ∈ Vn,
ϕn(t,v) = 0, t ≥ 0, v ∈ V \Vn,
ϕn(0,v) = f0(v), v ∈ Vn,

converges to e−L D
f0, weakly in W 1,2

(

(0,∞);ℓ2(V)
)

and weakly∗ in L∞
(

(0,∞); ẘ
1,2
γ (V)

)

.

Here Vn denotes the node set of Gn and for all h ∈ c00(V)

L (n)h(v) :=























∑
w∈Vn
w∼v

γ(v,w)(h(v)−h(w))+h(v) ∑
w 6∈Vn
w∼v

γ(v,w), v ∈ Vn,

−h(v) ∑
w∈Vn
w∼v

γ(v,w), v 6∈ Vn.

Corollary 6.56 Let p ∈ (1,∞). Either C0-semigroup (e−tL N
)t≥0,(e

−tL D
)t≥0 ex-

trapolates to a family of semigroups on ℓq(V) for all q ∈ [1,∞] as well as on
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c0(V) := { f : V→ R : ∀ε > 0 ∃W ⊂ V, |W|< ∞, s.t. | f (v)|< ε ∀v 6∈W}.

They are strongly continuous for q ∈ (1,∞).

Proof. Contractivity of (e−tL N
)t≥0 with respect to the norm of ℓ∞(V) yields that

the semigroup on ℓ2(V) extends to a contractive C0-semigroup on the closure of
ℓ2(V) in the ℓ∞-norm, i.e., in c0(V). By duality we obtain a contractive semigroup
on ℓ1(V), and finally again by duality a contractive semigroup on ℓ∞(V). Now, the
assertion follows by the Riesz–Thorin Theorem. ⊓⊔

Some elementary spectral properties follow directly from the definitions and
Proposition 3.8.

Proposition 6.57 The following assertions hold for the Laplace–Beltrami matrix

L and for the associated form a defined in (6.23).

(1) If G= (V,E,γ) is finite, then the spectrum of L consists only of eigenvalues.

(2) 1 ∈ w
1,2
γ,ν(V) if and only if G = (V,E,γ) has finite surface with respect to the

node weight ν , and in this case a(1, f ) = 0 for all f ∈ w
1,2
γ,ν(V).

(3) Thus, 0 is an eigenvalue of the realization of L in ℓ2
ν(V) if and only if there exist

connected components of G of finite surface with respect to the node weight ν
(in the sense of Definition A.17); and in this case its multiplicity agrees with the

number of such connected components.

We can likewise deduce similar properties for the signless Laplace-Beltrami ma-
trix Q.

Proposition 6.58 The following assertions hold for Q and for the associated form

b : ( f ,g) 7→ (C J T f |J g).

(1) If G= (V,E,γ) is finite, then the spectrum of Q consists only of eigenvalues.

(2) Let G be bipartite, say with V = V1∪̇V2, and denote 1̃ := 1V1 − 1V2 . Then 1̃ ∈
w

1,2
γ,ν(V) if and only if G = (V,E,γ) has finite surface with respect to the node

weight ν , and in this case b(1̃, f ) = 0 for all f ∈ w
1,2
γ (V).

(3) Thus, 0 is an eigenvalue of the realization of Q in ℓ2
ν(V) if and only if there

exist connected components of G that are both bipartite and of finite surface

with respect to the node weight ν (in the sense of Definition A.17); and in this

case the multiplicity of 0 agrees with the number of such connected components.

Proof. We only prove the assertion in (2). First of all, recall that Q does not de-
pend on the orientation of G. On the other hand, a bipartite graph can be always
re-oriented in such a way that one cell of the partition only comprises sinks and
the other only sources. Hence (J T 1̃)e = 0 for all e ∈ E, i.e., 1̃ (which apparently
belongs to w

1,2
µ,ν(V) if and only if G has finite surface with respect to ν . The proof is

completed by observing that our reasoning extends component-wise to the case of a
non-bipartite graph. ⊓⊔
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6.4.2 The discrete advection equation

The C0-semigroup in Example 4.16, which yields the solution of the space-continuous
advection equation, is non-analytic. Indeed, it acts shifting the profile of a function,
and therefore there cannot be any gain of regularity – in contrast with the situation
described in Proposition 6.6.

We have seen in Section 2.1.6 that the relevant operators for the discrete advec-
tion equations are the advection matrices

−→
N ,
←−
N . If however G is not uniformly

locally finite, then I and hence −−→N = I C I −T may be unbounded, hence we
cannot use (4.1) to show that it generates a semigroup.

Consider the “Neumann” discrete advection operator

D
(−→
N N

)

:=

{

f ∈ w
1,2
γ (V) : ∃g ∈ ℓ2(V)

s.t. −∑
e∈E

γ(e)
(

I −
T

f
)

(e)
(

I T h
)

(e) = ∑
v∈V

g(v)h(v) ∀h ∈ w
1,2
γ (V)

}

,

−→
N N f := −g,

and the “Dirichlet” discrete advection operator

D
(−→
N D

)

:=

{

f ∈ ẘ
1,2
γ (V) : ∃g ∈ ℓ2(V)

s.t. −∑
e∈E

γ(e)
(

I −
T

f
)

(e)
(

I T h
)

(e) = ∑
v∈V

g(v)h(v) ∀h ∈ ẘ
1,2
γ (V)

}

,

−→
N N f := −g,

and the operators
←−
N D,

←−
N D,K outN ,K outD,K inN

,K inD
defined likewise.

Proposition 6.59 Let G be inward (resp., outward) uniformly locally finite. Then

−−→N N ,−−→N D,−K outN ,−K outD as well as −←−N N ,−←−N D,−K inN
,−K inD

) gen-

erate C0-cosine operator functions, hence analytic C0-semigroups on ℓ2(V). All

these C0-semigroups are compact if the conditions in Proposition 3.8.(2) are sat-

isfied.

Proof. By definition,
−→
N N is the operator associated with the form b = a+b0 with

domain w
1,2
γ (E), where a is the continuous and ℓ2(V)-elliptic (by Theorem 6.52)

form introduced in (6.23) and

b0( f ,g) :=
(

C I +T
f |I T g

)

ℓ2
γ (E)

.

Now, under our assumptions b0 is continuous on ℓ2(V)×w
1,2
γ (V) – indeed, I +T

is bounded on ℓ2(V) by Lemma 4.3. Hence, in view of Lemma 6.22 b is a con-

tinuous, ℓ2(V)-elliptic form and the associated operator
−→
N N generates an analytic
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C0-semigroup on ℓ2(V). The other advection operators can be treated likewise. The
assertions on the Kirchhoff matrices follow by duality. All operators with Dirichlet
boundary conditions can be treated replacing w

1,2
γ (V) by ẘ

1,2
γ (V). ⊓⊔

Applying Theorem 6.28 one can prove the following.

Proposition 6.60 For both the Dirichlet and Neumann versions the following as-

sertions hold.

• The C0-semigroups (e−t
−→
N )t≥0,(e

−t
←−
N )t≥0,(e

−tK out
)t≥0,(e

−tK in
)t≥0 are posi-

tive. They are also irreducible provided G is strongly connected.

• The semigroups (e−tK out
)t≥0,(e

−tK in
)t≥0 are ℓ∞(V)-contractive and hence their

transpose (e−t
−→
N )t≥0 and (e−t

←−
N )t≥0 are ℓ1(V)-contractive.

• The semigroups (e−tK out
)t≥0,(e

−tK in
)t≥0 are ℓ1(V)-contractive and hence their

transpose (e−t
−→
N )t≥0 and (e−t

←−
N )t≥0 are ℓ∞(V)-contractive, provided degout(v)≥

degin(v) and degout(v)≤ degin(v) for all v ∈ V, respectively.

6.5 Diffusion on metric graphs

Throughout this section

G= (V,E) is the metric graph over
a locally finite, weighted oriented graph G= (V,E,µ).

We consider the diffusive system

∂ue

∂ t
(t,x) =

∂ 2ue

∂x2 (t,x), t > 0, x ∈ (0,µ(e)), e ∈ E, (Di)

complemented by the standard node conditions (Cc)− (KRc) introduced in Sec-
tion 2.2. In analogy with the approach in Example 6.21 it seems natural to consider
the sesquilinear form

(u,v) 7→
∫

E
u′(x)v′(x)dx, u,v ∈W 1,2(G).

It is however convenient to assume all edges to have unit length and consider
instead the Laplacian, or more generally

∇(c2∇)−Mp,

acting on L2(G) ≃ L2
(

(0,1);ℓ2
µ(E)

)

. Here ∇(c2∇) and Mp are the elliptic operator
with standard node conditions and the multiplication operator introduced in Defi-
nition 2.40 and Example 2.37, respectively, for two functions c, p defined on [0,1]
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that take values in the space of diagonal E×E matrices. This is legitimate upon con-
sidering the isometric isomorphism Ψ defined in (2.37), similarly to what we have
done in Section 4.5 for the case of an advective system.

We are going to show well-posedness of the associated Cauchy problem in Lp(G)
for all p ∈ [1,∞), or equivalently of the abstract Cauchy problem (ACP) associated
with ∇(c2∇)−Mp on the natural state space

H := L2((0,1);ℓ2
µ(E)

)

.

By Lemma 3.20 one sees that for all u∈W 2,2
(

(0,1);ℓ2
µ(E)

)

and all v∈W 1,2
(

(0,1);ℓ2
µ(E)

)

((cu′)′|v)
L2
(

(0,1);ℓ2
µ (E)
) =

∫ 1
0

(

(c2u′)′(x)|v(x)
)

ℓ2
µ

dx

=
(

c2(1)u′(1)|v(1)
)

ℓ2
µ
−
(

c2(0)u′(0)|v(0)
)

ℓ2
µ

−∫ 1
0

(

c2(x)u′(x)|v′(x)
)

ℓ2
µ

dx

=

((

c2(1)u′(1)
−c2(0)u′(0)

)

|
(

v(1)
v(0)

))

ℓ2
µ×ℓ2

µ

−∫ 1
0

(

c2(x)u′(x)|v′(x)
)

ℓ2
µ

dx.

(6.28)

A direct computation shows that the standard node conditions (Cc)− (KRc) are
transformed under the isomorphism Ψ from (2.37) into node conditions for ∇(c2∇)
that can be equivalently written as

(

u(1)
u(0)

)

∈ Y (Cc’)

and
(

c2(1)u′(1)
−c2(0)u′(0)

)

+W

(

u(1)
u(0)

)

∈ Y⊥, (KRc’)

where Y is the (closed, by Lemma 4.3.(1)) subspace of ℓ2
µ(E)× ℓ2

µ(E) defined by

Y := Rg

(

(I +)
T

(I −)T

)

. (6.29)

(We stress that the orthogonality relation is considered with respect to the (weighted)
inner product of ℓ2

µ(E)× ℓ2
µ(E).)

Remark 6.61 Even if this does not respect our standing assumption that multiple

edges be forbidden, let us for a moment informally consider the case where G is

a “rose”, in the terminology of [259], i.e., it contains infinitely many edges all of

whose endpoints coincide (in other words: there is just one “central” node v).

Then (Cc′) corresponds to continuity if Y is the subspace of ℓ2
µ(E)× ℓ2

µ(E) =

ℓ2
µ(Ev)× ℓ2

µ(Ev) spanned by the constant vector 1: In order to write continuity as

above it is therefore necessary to assume that in particular
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∞ > ∑
e∈Ev

12µ(e)+ ∑
e∈Ev

12µ(e) = degµ(v)

i.e., v to have finite degree, or equivalently G = (V,E,µ) to be locally finite. (This

restrictive condition is superfluous if one works in L∞
(

(0,1);ℓ∞
µ (E)

)

instead – a

tempting feature that has been exploited in [44] and subsequent papers.)

Whenever u and v satisfy (Cc′)− (KRc′) and (Cc′), respectively, we can re-
write (6.28) as

∫ 1

0

(

(c2u′)′(x)|v(x)
)

ℓ2
µ

dx=−
(

W

(

u(1)
u(0)

)

|
(

v(1)
v(0)

))

ℓ2
µ (E)×ℓ2

µ (E)

−
∫ 1

0

(

c2(x)u′(x)|v′(x)
)

ℓ2
µ

dx.

(6.30)
We thus introduce a sesquilinear form aW : V ×V → C defined by

aW (u,v) :=
∫ 1

0

(

(

c2(x)u′(x)|v(x)
)

ℓ2
µ
+(p(x)u(x)|v(x))ℓ2

µ

)

dx+

(

W

(

u(1)
u(0)

)

|
(

v(1)
v(0)

))

Y

,

(6.31)
with (dense, by Lemma 3.27.(1)) domain

V :=W
1,2

Y

(

(0,1);ℓ2
µ(E)

)

,

where

W
1,2

Y

(

(0,1);ℓ2
µ(E)

)

:=

{

u ∈W 1,2((0,1);ℓ2
µ(E)

)

:

(

u(1)
u(0)

)

∈ Y )

}

≃W 1,2(G)

(6.32)
under the standing assumptions that

p ∈ L1(0,1;ℓ∞
µ (E)

)

,

c ∈ L∞
(

0,1;ℓ∞
µ (E)

)

with ce(x)≥ c0 for some c0 > 0, all e ∈ E and a.e. x ∈ (0,1),

and that
W is a bounded linear operator on Y .

Remark 6.62 By definition of W
1,p

Y

(

(0,1);ℓ2
µ(E)

)

and in view of Lemma 4.3 one

sees that the operator u 7→ u|V that evaluates u at the nodes of G is surjective from

W
1,p

Y

(

(0,1);ℓ2
µ(E)

)

to ℓ2
degµ

(V).

Lemma 6.63 The sesquilinear form aW is well-defined, continuous, H-elliptic, and

of Lions type. Additionally, aW is symmetric if and only if W is self-adjoint.

Proof. The form aW is well-defined, as by Lemma 4.3 I ±u(x) ∈ ℓ2
degµ

(V) for all

x ∈ [0,1] and all u ∈W 1,2
(

(0,1);ℓ2
µ(E)

)

. Moreover, if p(x) ∈ ℓ∞
µ (E) for a.e. x ∈

(0,1), then p(x) · u(x) ∈ ℓ2
µ(E) for a.e. x ∈ (0,1) and hence pu ∈ L1

(

(0,1);ℓ2
µ(E)

)

as by Lemma 3.21.(1) u ∈ L∞
(

(0,1);ℓ2
µ(E)

)

for all u ∈V .
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By (3.6), the leading term a0 : (u,v) 7→ (c2u′|v′)L2((0,1);ℓ2
µ )

is continuous, H-

elliptic, symmetric, and hence of Lions type. Let us consider the remaining terms

a1 : (u,v) 7→ (pu|v)
L2
(

(0,1);ℓ2
µ

)+

(

W

(

u(1)
u(0)

)

|
(

v(1)
v(0)

))

Y

as lower order perturbations. By the Hölder inequality (first for sequences, then for
functions) we can estimate for all u,v ∈V

|a1(u,v)| ≤
∫ 1

0
‖p(x)‖ℓ∞

µ
‖u(x)‖ℓ2

µ (E)
‖v(x)‖ℓ2

µ (E)
dx+‖W ‖L (Y )

∣

∣

∣

∣

((

u(1)
u(0)

)

|
(

v(1)
v(0)

))

Y

∣

∣

∣

∣

≤
(

‖p‖L1 +2‖W ‖L (Y )

)

‖u‖∞‖v‖∞.

For u= v we can refine this estimated applying Lemma 3.21.(5) for p=∞, q= r = 2,
and hence α = 1

2 , thus obtaining |a1(u,u)| ≤
(

‖p‖L1 +2‖W ‖L (Y )

)

‖u‖W 1,2‖v‖L2 .
We conclude that aW := a0+a1 is H-elliptic, continuous, and of Lions type because
we can apply Lemma 6.22 with H 1

2
=C

(

[0,1];ℓ2
µ(E)

)

. ⊓⊔

Remark 6.64 In view of the equivalence between (Cc′) and the continuity condition

in the nodes, the space Y is lattice isomorphic to ℓ2
degµ

(V) via the identification

(

u(1)
u(0)

)

≃ u|V,

cf. (2.43). Our standing assumption on W can thus be reformulated by requiring

that

W is a bounded linear operator on ℓ2
degµ

(V).

This motivates to write (6.31) equivalently as

aW (u,v) :=
∫

G

(

c2(x)u′(x)v′(x)+ p(x)u(x)v(x)
)

dx

+
(

W u|V | v|V
)

ℓ2
degµ

, u,v ∈W 1,2(G),
(6.33)

as W 1,2(G)≃W
1,2

Y

(

(0,1);ℓ2
µ(E)

)

.

It remains to determine the operator associated with aW in L2
(

(0,1);ℓ2
µ(E)

)

.

Lemma 6.65 The operator A associated with aW in L2
(

(0,1);ℓ2
µ(E)

)

is

D(∇ · (c2∇)) :=
{

u ∈W 2,2((0,1);ℓ2
µ(E)

)

: u satisfies (Cc’)-(KRc’)
}

,

∇(c2∇)u := (c2u′)′.

Proof. The arguments following Remark 6.61 show that ∇(c2∇) is contained in the
operator associated with aW . In order to prove the converse inclusion, take u ∈ V

such that there exists w ∈ H satisfying
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aW (u,v) = (w | v)H =
∫ 1

0
(w(x)|v(x))ℓ2

µ
dx for all v ∈V. (6.34)

Hence, (6.34) is satisfied in particular for all functions v≡ ṽ⊗ee, where ee is the e-th
vector of the canonical basis of ℓ2

µ(E) and ṽe is a scalar-valued W̊ 1,2(0,1)-function,
i.e.,

∫ 1

0

(

c2
e(x)u

′
e(x)ṽ

′
e(x)+ pe(x)ue(x)ṽe(x)

)

µ(e)dx=
∫ 1

0
we(x)ṽe(x)µ(e)dx for all e∈E.

(6.35)
By definition of weak derivative, this means that ceu

′
e ∈ W 1,2 (0,1) and hence

u′e ∈W 1,2 (0,1) with weak derivative we− peue, for all e ∈ E. As moreover (6.35)
holds in particular for all functions v ∈ V such that v′e ≡ 1 for any e ∈ E on ar-
bitrarily large closed subsets of (0,1), one sees that u′ ∈W 1,2

(

(0,1);ℓ2
µ(E)

)

, i.e.,
u ∈W 2,2

(

(0,1);ℓ2
µ(E)

)

. Moreover, taking into account (6.34)

((

c2(1)u′(1)
−c2(0)u′(0)

)

|
(

v(1)
v(0)

))

Y

=−
(

W

(

u(1)
u(0)

)

|
(

v(1)
v(0)

))

Y

.

By Remark 6.62 the operator of evaluation at the nodes is bounded and surjective
from V to Y , hence

(

c(1)u′(1)
−c(0)u′(0)

)

=−W

(

u(1)
u(0)

)

in Y⊥.

Thus, u satisfies (KRc′) and therefore u ∈ D(∇(c2∇)). Furthermore,

∫ 1

0

(

(c2(x)u′(x)|v′(x))ℓ2
µ
− (p(x)u(x)|v(x))

)

ℓ2
µ

dx =
∫ 1

0
(w|v)ℓ2

µ
dx for all v ∈V

and this finally implies that ∇(c2∇u) =−w. ⊓⊔

Corollary 6.66 If G is finite, then the C0-semigroup (etA)t≥0 associated with aW

consists of integral operators, i.e.,

etAu(x) =
∫

G
Kt(x,y)u(y)dy for a.e. x ∈G, t > 0, (6.36)

for a heat kernel (Kt)t≥0⊂L∞(G×G), and there holds ‖etA‖L (L1,L∞)= ‖Kt‖L∞(G×G),

t ≥ 0.

Proof. If G is finite, then V is densely and continuously embedded in L∞(G) by
assumption. By Lemma 3.21 and Proposition 6.16, and by duality the analytic C0-
semigroup generated by ∇(c2∇)−Mp maps L1(G) to L∞(G), because by the semi-
group law

L1(G)
e

t
2 (∇(c2∇)−Mp)
−→ L2(G)

e
t
2 (∇(c2∇)−Mp)
−→ L∞(G),
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i.e., et(∇(c2∇)−Mp) is a bounded linear operator from L1(G) to L∞(G), t > 0. In view
of Theorem 6.31, the claim follows. ⊓⊔

We can summarize all our findings as follows.

Theorem 6.67 The operator ∇(c2∇)−Mp with standard node conditions (with do-

main as in Lemma 6.65) generates on L2
(

(0,1);ℓ2
µ(E)

)

a cosine operator func-

tion with Kisyński space W
1,2

Y

(

(0,1);ℓ2
µ(E)

)

, hence also an analytic C0-semigroup

of angle π
2 . This semigroup is given by an integral kernel (Kt)t≥0 ⊂ L∞

(

(0,1)×
(0,1);ℓ2

µ(E)
)

, as in (6.36). Furthermore, (et∆ )t≥0 is of trace class if the graph

G= (V,E,µ) has finite volume.

If furthermore −W is dissipative and pe(x)≥ 0 for all e ∈ E and a.e. x ∈ (0,1),
then (et∆ )t≥0 is contractive. Assume additionally that−W is ε-quasi-dissipative for

some ε < 0 or pe(x) ≥ p0 for some constant p0 > 0, all e ∈ E and a.e. x ∈ (0,1):
Then (et∆ )t≥0 is also uniformly exponentially stable.

Proof. In view of Lemmata 6.63 and 6.65, the assertion about generation follows
from Theorems 6.15 and 6.18. Existence of an integral kernel with said properties
is a consequence of Corollary 6.66. Finally, (etA)t≥0 is contractive if and only if a is
accretive, i.e., if and only if for all u ∈V

0≤ ReaW (u,u) = ∑
e∈E

∫ 1

0

(

|c2
e(x)u

′
e(x)|2 + pe(x)|ue(x)|2

)

µ(e) dx

+ ∑
v,w∈V

ωvwu(w)u(v)degµ(v).

This holds whenever−W is dissipative and pe(x)≥ 0 for all e∈E and a.e. x∈ (0,1).
Exponential stability of (et∆ )t≥0 can be established in a similar way. ⊓⊔
Example 6.68 Conversely, the matrix −W need not be dissipative if the operator

associated with aW is dissipative and hence the associated C0-semigroup is con-

tractive. For c≡ 1 the matrix

W =

(

−1 1
1 −1

)

is negative definite (its eigenvalues are 0 and −2), but nevertheless the correspond-

ing operator ∆ on L2(0,1) is dissipative: To see this, observe that

∫ 1

0
u′′(x)u(x) dx = u′(1)

(

u(1)−u(0)
)

−u′(0)
(

u(1)−u(0)
)

−
∫ 1

0
|u′(x)|2dx

= |u(1)−u(0)|2−
∫ 1

0
|u′(x)|2dx

=

∣

∣

∣

∣

∫ 1

0
u′(x) dx

∣

∣

∣

∣

2

−
∫ 1

0
|u′(x)|2dx≤ 0,
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by Jensen’s inequality. Indeed, 0 is an eigenvalue of ∆ with multiplicity 2, associated

with the eigenfunctions x 7→ 1 and x 7→ x. (As already remarked in Section 2.2.1,

this is the Krein–von Neumann extension of the second derivative on L2(0,1), cf.

also [368, Example 14.14].)

The solution of the parabolic initial value problem with node conditions (Cc′)− (KRc′)
automatically satisfies additional compatibility conditions in the nodes. If u0 is the
initial data, then by Proposition 6.6

u(t) := et∇(c2∇)u0 ∈
⋃

k∈N
D(∇(c2∇)k) for all t > 0

and the derivatives of u of even and odd order satisfy a continuity and Kirchhoff–
Robin node condition, respectively. In the special case of the Laplacian of Sec-
tion 2.2.1, e.g., we can hence deduce the following for the Laplacian on G with
standard node conditions.

Corollary 6.69 Let c ≡ 1, p ≡ 1, and W = 0 (i.e., let A = ∆ with continuity and

Kirchhoff node conditions). Then for all N ∈ N

u
(2N)
e (t,v) = u

(2N)
f

(t,v) =: u(2N)(t,v), e, f ∈ Ev, v ∈ V, t > 0,

∑
w∈V

ωvwu(2N)(t,w) = ∑
e∈E

ιveu
(2N+1)
e (t,v), v ∈ V, t > 0.

(6.37)

Proposition 6.70 The following assertions hold for the form aW associated with

the elliptic operator with standard node conditions (Cc)−(KRc) introduced in Sec-

tion 2.2.1.

(1) If G = (V,E,µ) has finite volume, then the spectrum of ∇(c2∇)−Mp consists

only of eigenvalues.

(2) 1∈V if and only if G= (V,E,µ) has finite volume, and in this case aW (1,u) = 0
for all u ∈V if and only if

∑
w∈V

ωvw degµ(v) = 0 for all v ∈ V (6.38)

and p ≡ 0. Then, 0 is an eigenvalue of ∇(c2∇) whose multiplicity agrees with

the number of connected components of G.

Proof. (1) By Lemma 3.17 G is a (finite) measure space and hence V is compactly
embedded in H. Therefore, ∇(c2∇) has compact resolvent and its spectrum consists
only of eigenvalues.

(2) The first assertion is clear by definition of volume, as 1 satisfies (Cc′). Now,
1∈D(∇(c2∇)) (and in this case, ∇(c2∇1) = 0) if and only if 1 satisfies (KRc′), i.e.,
if and only if (6.38) holds. The claim follows by a localization argument applied to
test functions. ⊓⊔
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Since W and the multiplication operator Mp are bounded operators on ℓ2
degµ

(V)

and L2
(

(0,1);ℓ2
µ(E)

)

, respectively, they generate C0-semigroups (e−tW )t≥0 and

(e−tMp)t≥0. Several qualitative properties of (et∇(c2∇))t≥0 can be characterized by
analogous properties of these semigroups, cf. Example 4.44.

Theorem 6.71 The semigroup (et(∇(c2∇)−Mp))t≥0 is real if and only if so are (e−tW )t≥0

and (e−tMp)t≥0. If (e−tMp)t≥0 is real, then (et(∇(c2∇)−Mp))t≥0 is positive if and only

if so is (e−tW )t≥0.

Proof. By Proposition 6.30 (et∇(c2∇))t≥0 is real and positive if and only if

• u ∈V ⇒ Reu ∈V and aW (Reu, Imu) ∈ R, and
• u ∈V ⇒ (Reu)+ ∈V, aW (Reu, Imu) ∈ R, aW ((Reu)+,(Reu)−)≤ 0,

respectively.
Let now u ∈ V . One has Re(ue) = (Reu)e, e ∈ E. It follows from the above

arguments that Reu ∈W 1,2
(

(0,1);ℓ2
µ(E)

)

and the continuity of the values attained
by u in the nodes is preserved upon taking the real part. All in all, Reu ∈V and then
one has a(Reu, Imu) ∈ R if and only if

∑
v,w∈V

ωvw Reu(w) Imu(v)degµ(v) ∈ R

(where W = (ωvw))and

∑
e∈E

∫ 1

0
pe(x)Reue(x) Imue(x)µ(e) dx ∈ R.

By Theorem 6.28 this is indeed equivalent to reality of(e−tW )t≥0 and (e−tMp)t≥0.
One also sees that ((Reu)+)e = (Re(ue))+ for all u ∈ V and e ∈ E, and hence

(Reu)+ ∈V . Accordingly,

a((Reu)+,(Reu)−) = ∑
v,w∈V

ωvw(Reu)+(w)(Reu)−(v)degµ(v).

In particular, for all v ∈ V there holds

(Reu)+(v) =

{

0 if (Reu)(v)≤ 0,
(Reu)(v) if (Reu)(v)≥ 0,

and

(Reu)−(v) =

{

−(Reu)(v) if (Reu)(v)≤ 0,
0 if (Reu)(v)≥ 0.

Since by Theorem 6.28 a((Reu)+,(Reu)−) ≤ 0 has to hold for all u|V, the claim
follows. ⊓⊔
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Theorem 6.72 Let −W be dissipative. If (e−tW )t≥0 is ℓ∞
degµ

(V)-contractive, then

(et(∇(c2∇)−Mp))t≥0 is L∞
(

(0,1);ℓ2
µ(E)

)

-contractive. The converse implication holds

if additionally pe ≡ 0 for all e.

This result is in fact simply a special instance of Theorem 6.85 below, but we
have chosen to give here a more direct proof.

Proof. By Proposition 6.30 the semigroup (etA)t≥0 is L∞
(

(0,1);ℓ2
µ(E)

)

-contractive
if and only if

u ∈V ⇒ (1∧|u|)sgnu ∈V and ReaW ((1∧|u|)sgnu,(|u|−1)+ sgnu)≥ 0.

Take u ∈ V . It can be deduced from Lemma B.12.(2) that the functions defined
by

((1∧|u|)sgnu)(x) =

{

u(x) if |u(x)| ≤ 1,
u(x)
|u(x)| if |u(x)| ≥ 1,

as well as

((|u|−1)+ sgnu)(x) =

{

0 if |u(x)| ≤ 1,

u(x)− u(x)
|u(x)| if |u(x)| ≥ 1

are in W 1,2
(

(0,1);ℓ2
µ(E)

)

, with ((1∧|u|)sgnu)′= u′1{|u|≤1} and ((|u|−1)+ sgnu)′=
u′1{|u|≥1}: Hence, they have disjoint support.

Accordingly, if u ∈ V , then (1∧ |u|)sgn f ∈ V , as the continuity in the nodes is
preserved because

((1∧|u|)sgnu)(v) =

{

u(v) if |u(v)| ≤ 1,
sgnu(v) if |u(v)|> 1,

as well as

(

|u|−1)+ sgnu
)

(v) =

{

0 if |u(v)| ≤ 1,
u(v)− sgnu(v) if |u(v)|> 1,

for all v ∈ V. Now a direct computation yields

ReaW ((1∧|u|)sgnu,(|u|−1)+ sgnu) = ∑
e∈E

∫ 1

0
pe(x)(|ue(x)|−1)1{|ue(x)|≥1}µ(e)dx

−Re ∑
v,w∈V

ωvw(1∧|u(w)|)sgnu(w)(|u(v)|−1)+ sgnu(v)degµ(v)

≥ −Rew((1∧|u|V|)sgnu|V,(|u|V|−1)+ sgnu|V),

with equality if p ≡ 0. Here w denotes the sesquilinear, accretive form on ℓ2
degµ

(V)

associated with the matrix W . By Remark 6.62, the claim follows. ⊓⊔



6.5 Diffusion on metric graphs 151

Example 6.73 What does the above theorem say about the semigroup that governs

the heat equation on G with standard node conditions, i.e., under continuity condi-

tion and additionally under generalized Kirchhoff conditions of the form

∂
γ2 u(v)+W u|V = 0 ?

If W = 0 (pure Kirchhoff conditions), then e−tW = Id for all t ≥ 0 and hence the

semigroup is sub-Markovian – in fact, Markovian.

More generally, under continuity and Kirchhoff–Robin conditions (i.e., if W is

diagonal), then positivity also holds, and so does L∞-contractivity provided all (di-

agonal) entries of W have non-negative real part.

On the other hand, if W = −L (i.e., if we consider the Krein extension of the

second derivative), then the semigroup that governs the heat equation on G is nei-

ther positive nor L∞-contractive: Indeed, by Lemma 4.57 the semigroup generated

by −W , i.e., (etL )t≥0, is not positive, nor it is ℓ∞-contractive.

By the usual arguments based on the Riesz–Thorin Theorem, cf. Proposition 4.40,
(et∇(c2∇))t≥0 extrapolates to an analytic C0-semigroup on all spaces Lp

(

(0,1);ℓ2
µ(E)

)

,
2 ≤ p < ∞, whenever Theorem 6.72 applies and thus yields L∞-contractvity. By
Lemma 3.21.(5) and Corollary 4.42, its generator is the Lp

(

(0,1);ℓ2
µ(E)

)

-realization
of ∇(c2∇), with domain

D(∇(c2∇)) :=
{

u ∈W 2,p((0,1);ℓ2
µ(E)

)

: u satisfies (Cc’) and (KRc’)
}

.

Remark 6.74 While (KRc′) and hence the operator domain D(∇(c2∇)) change

upon reorienting the graph G, (Cc′) and hence the form domain V do not. This

explains why all the properties of the system that depend on the energy methods

presented in Section 6.2 do not depend on the orientation.

Example 6.75 Further qualitative properties can be deduced from Theorem 6.28.

To mention a simple instance, let G be an unweighted inbound star with two edges,

W = 0, and consider the closed convex set

C := {u ∈ L2((0,1);C2) : |u1(x)| ≤ u2(x) for a.e. x ∈ (0,1)}.

We have seen in Lemma 4.43 that the orthogonal projector PC onto C is given by

PCu =
1
2

(

(|u1|+min{|u1|,Reu2})+ sgnu1,(max{|u1|,Reu2}+Reu2)
+) .

Then an edgewise domination result can be deduced from Ouhabaz’ criterion: If u

is the solution of the diffusion problem (Di)− (Cc′)− (Kc′) and the initial data u0

verifies |u01(x)| ≤ u02(x) for a.e. x∈ (0,1), then u satisfies the inequality |u1(t,x)| ≤
u2(t,x) for a.e. x ∈ (0,1) and all t ≥ 0.

Remark 6.76 If −W is dissipative and
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Reωvv degµ(v)≥ ∑
w∈V
w 6=v

|ωvw|degµ(v) and Reωvv≥ ∑
w∈V
w 6=v

|ωwv|degµ(v), v∈V,

(6.39)
then in view of Example 4.44 and Lemma 3.27.(4) Proposition 6.33 applies and

yields

‖et∇(c2∇)u‖C(G) ≤ ct−
1
4 ‖u‖L2(G), t > 0, u ∈ L2(G), (6.40)

for some constant c > 0. By duality, the adjoint semigroup maps L1(G) (and even

M(G) if G has finite measure) into L2(G) and satisfies

‖et∇(c2∇)µ‖L2 ≤ ct−
1
4 ‖µ‖M(G), t > 0, f ∈M(G),

i.e., (et∇(c2∇))t≥0 maps L1(G) in C(G) with

‖et∇(c2∇)φ‖∞ ≤ ct−
1
2 ‖φ‖L1(G) for all t > 0, φ ∈M(G). (6.41)

In particular, (et∇(c2∇))t≥0 is ultracontractive of dimension 1.

The semigroup on L2(G) is strongly continuous if (e−tW )t≥0 is positive, by

Proposition 4.40 and Theorem 6.71.

Let us finally address the issue whether the semigroup that governs the diffusive
problem is irreducible, in the sense of Definition 4.30. In view of Theorem 3.28, irre-
ducibility of an operator in L2

(

(0,1);ℓ2
µ(E)

)

can be discussed studying irreducibility
of the corresponding operator on L2(E).

Proposition 6.77 If G is connected, then (et∇(c2∇))t≥0 is irreducible. Also the con-

verse implication holds, if additionally W is a diagonal matrix.

Proof. To begin with, let us observe that if for all f ∈V f 1G0 ∈V for some metric
subgraph G0 of G, and if G0 contains an interior point x of some edge e0, then
the whole e0 belongs to G0 (otherwise f 1G0 would be discontinuous at x, and in
particular not of class W 1,2). Clearly, the same also applies to GC

0 , since f 1GC
0
=

f − f 1G0 .

Let us now prove the first assertion. If (et∇(c2∇))t≥0 would be reducible, then
both G0 and GC

0 would contain interior points by the initial remark, and they would
define a partition of E. Because f 1G0 ∈ V for all f ∈ V , it would be then possible
to construct a function f ∈ V that is identically 1 along any path of finite length
that connects an interior point of G0 and an interior point of GC

0 – such a path must
exist, if G is connected, and moreover there are no summability issues for f (v) at
any node, since G is assumed to be locally finite. But because f 1G0 is identically 1
on G0 and vanishes on GC

0 , it must be discontinuous at some point inbetween – a
contradiction to f 1G0 ∈V .

In order to check the second assertion, let W be diagonal. Then aW is local
and the condition in Proposition 6.30.(5) boils down to the following: Let G̃ be a
subdivision of G and G0 be an induced (metric) subgraph of G̃. If 1G0 ∈ V , then
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volµ(G0)= 0 or volµ(G
C
0 )= 0. If this would not be the case, then both volµ(G0)= 0

and volµ(G
C
0 ) = 0 would contain at least one edge each, and the assertion could be

proved essentially as above. ⊓⊔

An alternative, possibly more elegant proof of the former assertion will be pre-
sented in Remark 8.34.

Remark 6.78 In view of Remark 6.64, all the results of this section are based on

the properties of the form aW defined on (a subspace isomorphic to) W 1,2(G). What

if we restrict it to W̊ 1,2(G) instead? While clearly W̊ 1,2(G) = W 1,2(G) in the fi-

nite case, W̊ 1,2(G) and W 1,2(G) may actually differ if the underlying graph is in-

finite, under certain volume growth conditions. Like in the case of the discrete dif-

fusion equations treated in Section 6.4.1, working with such restriction correspond

to studying the (weak formulation of) a heat equation on which, additionally to

standard node conditions, also a certain growth condition “at infinity” is imposed

on solutions. Just like in Theorem 6.52 we may thus obtain two different analytic,

sub-Markovian C0-semigroups. By Proposition 6.30.6, the one associated with the

restriction of aW to W̊ 1,2(G) is dominated by (et(∇(c2∇)−Mp))t≥0 – the semigroup

discussed in Theorem 6.67 – since W̊ 1,2(G) is a lattice ideal of W 1,2(G).

6.5.1 Generalized node conditions

We have so far always considered standard node conditions. While we have ex-
plained in Section 2.2.1 why we regard them as the “natural ones”, other conditions
might be relevant as well for specific purposes. As we are going to see, in many
cases form methods may be adapted – but not always. In [278], G. Lumer consid-
ered different realizations of elliptic operators on C(G).

Proposition 6.79 Consider the Laplacian of Section 2.2.1 whose domain is the

space of all functions of class C2(G) that satisfy the continuity condition (Cc′) as

well as a Kirchhoff-type condition

∑
e∈E

cve
∂γ2 ue

∂n
(v) = 0, for all v ∈ V. (6.42)

If cve > 0 for each v ∈ V, e ∈ E, then the associated abstract Cauchy problem is

well-posed (in a suitable sense).

An easier extension of the theory presented in Section 6.5 can be performed
upon a close examination of our methods. Our main technical Lemma 6.63 strongly
depends on the representation of the node conditions as in (Cc′)− (KRc′), which
leads to the description of V in (6.32) and to Lemma 3.20. One may wonder whether
other choices of the space Y may be relevant: Picking a certain suitable space Y may
e.g. yield a realization of ∆ where Dirichlet conditions (instead of (Cc′)− (KRc′))
are imposed on some nodes; but in fact any closed subspace Y of ℓ2

µ(E)× ℓ2
µ(E)
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gives rise to a well-posed diffusive system. We are going to briefly discuss this
setting, in which usual node conditions are replaced by algebraic relations between
node values of functions over a metric graph, which however need not respect the
graph structure – i.e., the “node conditions” may be non-local with respect to the
actual connectivity of the graph.

Proposition 6.80 Let Y be a closed subspace of ℓ2
µ(E)× ℓ2

µ(E) and W ∈ L (Y ).
Then the space

W
1,2

Y

(

(0,1);ℓ2
µ(E)

)

:=

{

u ∈W 1,2((0,1);ℓ2
µ(E)

)

:

(

u(1)
u(0)

)

∈ Y )

}

(6.43)

is dense in L2
(

(0,1);ℓ2
µ(E)

)

and the form aW defined as in (6.31) is H-elliptic,

continuous, and of Lions type. Furthermore, the form is accretive (resp., coercive)

if −W is dissipative (resp., ω-quasi-dissipative for some ω < 0).

The associated operator is ∇(c2∇)−Mp with node conditions (Cc′)− (KRc′). It

is self-adjoint if and only if W is self-adjoint.

Thus, ∇(c2∇)−Mp with node conditions (Cc′)−(KRc′) generates on L2
(

(0,1);ℓ2
µ(E)

)

a cosine operator function with Kisyński space W
1,2

Y

(

(0,1);ℓ2
µ(E)

)

, hence also an

analytic C0-semigroup of angle π
2 . This semigroup is of trace class if the graph

G= (V,E,µ) has finite volume.

Remark 6.81 For each choice of Y and for W = 0 it is of course possible to

consider the operator associated with the form aW defined on W
1,2

Y

(

(0,1);ℓ2
µ(E)

)

as well as the operator associated with the same form but this time defined on

W
1,2

Y⊥
(

(0,1);ℓ2
µ(E)

)

. All these forms are accretive, hence the associated semigroups

are contractive. The fact that these semigroups come in pairs is theoretically inter-

esting and a few results are known that show some kind of duality between them, cf.

Section 7.2.1 and (7.18) below.

If e.g. Y is defined as in (6.29), then the Laplacian obtained switching the roles

of Y and Y⊥ is the second derivative with anti-Kirchhoff node conditions, i.e., with

conditions

∂ue

∂ν
(v) =

∂uf

∂ν
(v) =:

∂u

∂ν
(v), for all e, f ∈ Ev, v ∈ V,

along with

∑
e∈Ev

ue(v) = 0, for all v ∈ V.

(These node conditions have already been discussed in Remark 2.43.)

By a direct application of Proposition 6.40 we obtain the following.

Corollary 6.82 Let G= (V,E,µ) have finite volume. Let (Yn)n∈N be a sequence of

closed subspaces of ℓ2
µ(E)× ℓ2

µ(E) and let (∇(c2∇)Yn)n∈N be a sequence of Lapla-

cians on L2
(

(0,1);ℓ2
µ(E)

)

with node conditions
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(

u(1)
u(0)

)

∈ Yn and

(

c2(1)u′(1)
−c2(0)u′(0)

)

+W

(

u(1)
u(0)

)

∈ Y⊥n , n ∈ N.

Assume that there exist a closed subspace of ℓ2
µ(E)× ℓ2

µ(E) and a family (J↓n)n∈N
of unitary operators on L2

(

(0,1);ℓ2
µ(E)

)

converging to the identity Id such that

J↓nYn = Y for all n ∈ N. Denote by ∇(c2∇)Y the elliptic operator with analogous

node conditions defined by Y . Then

lim
n→∞

et∇(c2∇)Yn = et∇(c2∇)Y for every t > 0

in trace norm.

Like in the case of first derivatives on metric graphs it is possible to find an
explicit formula for the resolvent operator of the second derivative with (Cc′)−
(KRc′), cf. [249, § 4]. However, we prefer to present an equivalent representation
that is in accordance with our formalism. For the sake of simplicity we focus on the
case of µ ≡ 1. Observe that in view of Proposition 4.28.(3) may in principle be used
to deduce an explicit formula for the associated C0-semigroup, too.

Proposition 6.83 Let G be finite. Let Y be a closed subspace of CE × CE and

W ∈ L (Y ). Let us denote by A the operator associated with aW with domain

W
1,2

Y

(

(0,1);CE
)

. For all k 6= 0, k2 ∈ ρ(A) if and only if

PY R3(k)+(W +P⊥Y )R4(k)

is invertible, and in this case the resolvent operator R(k2,A) is given by

R(k2,A)u(x) :=
∫

G
r(x,y,k)u(y) dy

with integral kernel

r(x,y,k) :=
i

2k
(rd(x,y,k)−Φ(x,k)Σ(k)Ψ(y,k)) . (6.44)

Here

Σ(k) :=
(

PY R3(k)+(W +P⊥Y )R4(k)
)−1(

PY R1(k)+(W +P⊥Y )R2(k)
)

,

rd(x,y,k) is the E×E matrix defined by

rd(x,y,k)ef := δefe
ik|x−y|, e, f ∈ E,

and PY is the orthogonal projector onto Y . Furthermore,

R1(k) :=

(

ik1
CE 0

0 ikeik1
CE

)

, R2(k) :=

(

1
CE 0
0 eik1

CE

)

,
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R3(k) :=

(

ikeik1
CE −ike−ik1

CE

−ik1
CE ik1

CE

)

, R4(k) :=

(

eik1
CE e−ik1

CE

1
CE 1

CE

)

.

Finally,

Φ(x,k) :=
(

eikx1
CE e−ikx1

CE

)

, Ψ(x,k) :=

(

eiky1
CE

e−iky1
CE

)

, x ∈ (0,1),

where the entries are diagonal matrices whose entries are functions with arguments

from the corresponding edges.

The node conditions have no influence on the solution of the eigenvalue equation
inside each edge, so that the usual formula for the Green function prevails on each
individual edge. Deducing a correct expression for the resolvent is then essentially
a matter of correctly gluing together such a family of |E| Green functions, in accor-
dance with the node conditions. A detailed proof in a more general case has been
delivered in [215, § 6.3]. As usual, close inspection of the formulae also reveals this:
Indeed, on the right hand side of (6.44) the first term is simply the Green function

of the elliptic equation d2

dx2 − k2, whereas the connectivity of the networks is fully
encoded in the second term.

This formula for the resolvent may be used to discuss invariance properties by
Proposition 4.29. However, it turns out that Ouhabaz’ criterion is more convenient
to apply. It leads to a generalization of Theorem 6.72 that we present next. The main
ingredient in the proof is the following auxiliary result. For a closed convex subset
C of ℓ2

µ(E) we adopt the notation

CH :=
{

u ∈ L2((0,1);ℓ2
µ(E)

)

: u(x) ∈C for a.e. x ∈ (0,1)
}

,

C∂H :=
{

f = ( f (0), f (1)) ∈ ℓ2
µ(E)× ℓ2

µ(E) : f (0), f (1) ∈C
}

.

Lemma 6.84 Let C be a closed convex subset of ℓ2
µ(E) and Y be a closed subspace

of ℓ2
µ(E)× ℓ2

µ(E). Then the inclusion PCH
VY ⊂ VY holds if and only if the inclusion

PYC ⊂ C holds, where PCH
and PY denote the orthogonal projectors of H onto CH

and of ℓ2
µ(E)× ℓ2

µ(E) onto Y , respectively.

Proof. By a simple property of general orthogonal projectors, cf. [285, Lemma 2.3],

PYC ⊂C if and only if PCY ⊂ Y. (6.45)

Since any orthogonal projector of a Hilbert space onto a closed convex subset is
Lipschitz continuous, by Lemma B.12 one has that pointwise projecting does not
affect weak differentiability. That is, PCH

u∈W 1,2
(

(0,1);ℓ2
µ(E)

)

for all u∈VY . Thus,
PCH

VY ⊂ VY if and only if the node condition (PCH
u)(z) ∈ Y is satisfied for z = 0,1

and for all u ∈VY , i.e., if and only if for all u ∈W 1,2
(

(0,1);ℓ2
µ(E)

)

f (z) ∈ Y for z = 0,1 implies PC(u(z)) ∈ Y for z = 0,1, (6.46)



6.5 Diffusion on metric graphs 157

or rather, by surjectivity of the trace operator, if and only if PCY ⊂Y . By (6.45), this
concludes the proof. ⊓⊔

For α,β ∈ R let us define order intervals by

[α,β ]H := {u ∈ H : ue(x) ∈ [−α,β ] for a.e. x ∈ (0,1) and all e ∈ E} ,

and

[α,β ]∂H :=
{

f = ( f (0), f (1)) ∈ ℓ2
µ(E)× ℓ2

µ(E) : fe(0), fe(1) ∈ [−α,β ] for all e ∈ E
}

.

(Semi-infinite order intervals are defined likewise.)

Theorem 6.85 Let Y be a closed subspace of ℓ2
µ(E)× ℓ2

µ(E) and W ∈L (Y ) and

let ∇(c2∇) be the elliptic operator on L2
(

(0,1);ℓ2
µ(E)

)

with node conditions

(

u(1)
u(0)

)

∈ Y and

(

c2(1)u′(1)
−c2(0)u′(0)

)

+W

(

u(1)
u(0)

)

∈ Y⊥.

Then for all α,β ∈ R∪ {±∞} the C0-semigroup (et∇(c2∇))t≥0 leaves invariant

[α ,β ]H if and only if both the C0-semigroup (e−tW )t≥0 on Y and the orthogonal

projector PY of H onto Y leave invarian [α,β ]ℓ2
µ (E)
× [α ,β ]ℓ2

µ (E)
.

Proof. To begin with, observe that the former condition in Theorem 6.28.(b) can be
dealt with using Lemma 6.84. Furthermore, there holds

ReaW (P[α ,β ]H
u,u−P[α,β ]H

u) = Re
∫

U
((P[α,β ]H

u)′(x)|(u−P[α,β ]H
u)′(x))ℓ2

µ
dx

+Re

(

(W P[α ,β ]∂H

(

u(1)
u(0)

)

| (Id−P[α ,β ]∂H
)

(

u(1)
u(0)

))

ℓ2
µ×ℓ2

µ

= Re
∫

U
((P[α,β ]H

u′)(x)|(u−P[α,β ]H
u′)(x))ℓ2

µ
dx

+Re

(

(W P[α,β ]∂H

(

u(1)
u(0)

)

| (Id−P[α,β ]∂H
)

(

u(1)
u(0)

))

ℓ2
µ×ℓ2

µ

= Rew

(

(P[α,β ]∂H

(

u(1)
u(0)

)

| (Id−P[α,β ]∂H
)

(

u(1)
u(0)

))

ℓ2
µ×ℓ2

µ

,

where w is the sesquilinear form associated with W . Applying Theorem 6.28 –
Ouhabaz’ invariance criterion – to both aW and w the claim follows. ⊓⊔

Example 6.86 Theorem 6.85 yields a surprising fact: While for Y as in (6.29) the

node conditions (Cc′)− (KRc′) are “natural”, they also represent a singularity

among all generalized node conditions. This can be seen already in the elementary

case of only one (unweighted) edge, i.e., ℓ2
µ(E)× ℓ2

µ(E)≡ C2. Neglecting the trivial

(uncoupled) node conditions defined by Y = {0} and Y = C2 we can consider all

1-dimensional subspaces Y ≡ Yξ of C2 by means of the parametrization
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PYξ
:=

(

cos2 ξ sinξ cosξ

sinξ cosξ sin2 ξ

)

, ξ ∈ [0,π),

where Yξ denotes the range of the orthogonal projection PYξ
. Observe that ξ = 0,

ξ = π
4 , ξ = π

2 and ξ = 3π
4 correspond to uncoupled Dirichlet/Neumann, to Kirch-

hoff, to uncoupled Neumann/Dirichlet and to anti-Kirchhoff node conditions, re-

spectively, as can be checked directly.

We are going to discuss – in dependence of ξ , and assuming for the sake of

simplicity that R = 0 – the sub-Markovian property of the semigroup associated

with these subspaces. A direct computation shows that the semigroup (e
t∆Yξ ,0)t≥0 is

positive if and only if ξ ∈ [0, π
2 ]; and it is L∞(0,1)-contractive if and only if PYξ

is

ℓ∞-contractive, i.e., if and only if the inequalities

cos2 ξ + |sinξ cosξ | ≤ 1 and |sinξ cosξ |+ sin2 ξ ≤ 1

hold simultaneously. The former (resp, the latter) inequality holds if and only

if ξ 6∈ (0, π
4 )∪ ( 3π

4 ,π) (resp., if and only if ξ 6∈ (π
4 ,

π
2 ),(

π
2 ,

3π
4 )). Therefore, L∞-

ξ
π
4

π
2

3π
4

π

−1

0

1 cos2(ξ )+ |sin(ξ ) cos(ξ )|

sin2(ξ )+ |sin(ξ ) cos(ξ )|

sinξ cosξ

Fig. 6.2: The heat semigroup on a metric graph consisting of a single edge with
coupled conditions parametrized by ξ . The semigroup is positive if and only if the
corresponding point in the gray line is above the 0. It is L∞-contractive if and only
if the corresponding point in the blue and purple lines both lie within the interval
[−1,1].

contractivity of the semigroup associated with node conditions (Cc)− (Kc) repre-

sents a singularity. In particular, a sub-Markovian semigroup is generated exactly
in the following five cases:

• with uncoupled Dirichlet/Dirichlet boundary conditions,

• with uncoupled Neumann/Neumann boundary conditions,

• with uncoupled Dirichlet/Neumann boundary conditions,

• with uncoupled Neumann/Dirichlet boundary conditions and finally

• with continuity and Kirchhoff boundary conditions.

One can prove as in Theorem 6.85 a number of further properties of the semi-
groups that govern diffusion problems associated with forms aW , which essentially
boil down to checking related but much accessible properties of the orthogonal pro-
jectors PY . We mention the following example. A metric graph G over a weighted
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oriented graph G = (V,E,µ) is called equilateral if µ ≡ 1, i.e., if the graph G is
effectively unweighted. (We are going to state in the following a few spectral and
symmetry results that hold for diffusion equations on equilateral graphs: By linear-
ity, all of them extend to the case of µ ≡ c for some positive real number c.)

Definition 6.87 Let G be an equilateral metric graph over an oriented star graph,

cf. Definition A.3. We call a function u : G→ C odd or even if

∑
e∈E

ue(x) = 0 or ue(x) = uf(x) for a.e. x ∈ (0,1) and all edges e, f ∈ E,

respectively.

Proposition 6.88 Let G be an equilateral metric graph over a finite oriented star

graph. Then the semigroup generated by the elliptic operator ∇(c2∇) with standard

node conditions (Cc)− (Kc) leaves invariant both the subspaces of odd and even

functions. The same is true for the semigroup generated by the elliptic operator

∇(c2∇) with anti-Kirchhoff node conditions, cf. Remark 6.81.

Observe that in the leaves (i.e., in the exterior nodes of the star) node condi-
tions (Cc)− (Kc) are equivalent to Neumann boundary conditions. Likewise, anti-
Kirchhoff node conditions impose Dirichlet boundary conditions in the leaves. Fur-
thermore, for continuous even functions anti-Kirchhoff node conditions boil down
to Dirichlet boundary conditions on a family of decoupled intervals.

Proof. In the case of an inbound star, node conditions (Cc)− (Kc) can be equiv-
alently written as (Cc′)− (KRc′) for W = 0, where Y is the one-dimensional sub-
space spanned by the vector (0,1,0,1, . . . ,0,1) ∈ CE×CE. Up to a permutation the
orthogonal projector onto Y is a block matrix

(

0 0
0 J

)

,

where

J =
1
|E|













1 1 . . . 1

1
. . .

...
...

. . .
...

1 1 . . . 1













Now, it suffices to observe that J is precisely the orthogonal projector onto the sub-
space spanned by the vector (1,1, . . . ,1) ∈ CE. Similarly, anti-Kirchhoff conditions
are obtained replacing Y by Y⊥. The orthogonal projector onto Y⊥ is a block matrix

(

Id 0
0 Id−J

)

,

and Id−J is the orthogonal projector onto the subspace of all vectors whose entries
sum up to 0. ⊓⊔
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6.6 Hybrid evolution equations

6.6.1 The Dirichlet-to-Neumann operator

We have already showed in Section 6.5.1 how to use the theory of j-elliptic forms
in order to discuss the Dirichlet-to-Neumann operator on one interval. The corre-
sponding operator on a subset V0 of the node set V of a network can be discussed
likewise, taking the form aW (for arbitrary W ∈L (Y ); the standard operator intro-
duced in Section 2.3.1 is recovered letting W = 0) defined on V := W 1,2(G) and
letting throughout this section

H := ℓ2
degµ

(V0) and j(u) := u|V0
,

where j is surjective from V onto H by Remark 6.62. In view of Lemma 3.27.(6), it
is immediate to check that aW is j-elliptic.

Lemma 6.89 The operator associated with (aW , j) is (minus) the Dirichlet-to-

Neumann operator DN with respect to V0, where DN is the operator on ℓ2
µ(V0)

defined by

f ∈ D(DN)
DN f := g

}

⇔







f ∈ ℓ2
µ(V0)

∃u solution of (2.50)
g = ∂

γ2 u|V0
∈ ℓ2

µ(V0).

(Here the shorthand ∂
γ2 is defined as usual as in (2.40).)

Proof. By definition, the domain D(A) of the operator A associated with (aW , j) is
given by

{

x ∈ ℓ2
degµ

(V0) : ∃u ∈W 1,2(G) : u|V0
= x and ∃y ∈ ℓ2

degµ
(V0) s.t.

∫

G u′(x)w′(x) = ∑v∈V0
y(v)w(v) for all w ∈W 1,2(G)

}

.

But, up to the isomorphism Ψ in (2.37),

∫

G
u′w′ =−∑

e∈E

∫ 1

0
u′′(x)w(x)µedx+ ∑

e∈E

(

u′e(1)we(1)−u′e(0)we(0)
)

µe.

Accordingly, x ∈ D(A) with Ax =−y for a certain y ∈ ℓ2
degµ

(V0) if and only if there

exists u∈W 1,2(G) (and hence, in particular continuous in all nodes) such that u′′= 0
(weakly), u|V0

= x, and finally

∑
v∈V0

y(v)w(v) = ∑
e∈E

(

u′e(1)we(1)−u′e(0)we(0)
)

µe,

i.e., y≡ ∂
µ2 u|V0

. ⊓⊔
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Then by Proposition 6.37 we can deduce the following, of which Theorem 6.52
becomes a special case since the Dirichlet-to-Neumann operator agrees with the
Laplacian–Beltrami matrix whenever V0 = V.

Theorem 6.90 Let V0 ⊂ V. Then (minus) the Dirichlet-to-Neumann operator DN
with respect to V0 generates on H = ℓ2

degµ (V0)
a cosine operator function with

Kisyński space j(V ), hence also an analytic C0-semigroup of angle π
2 . This semi-

group is contractive if−W is dissipative, and uniformly exponentially stable if−W
is ε-quasi-dissipative for some ε < 0.

Finally, for all α,β ∈ R∪{±∞} the C0-semigroup (e−tDN)t≥0 leaves invariant

[α,β ]ℓ2
degµ

(V0)
:=
{

f ∈ ℓ2
degµ

(V0) : f (v) ∈ [−α,β ] for a.e. v ∈ V0

}

,

if and only if both the C0-semigroup (e−tW )t≥0 on Y and the orthogonal projector

PY of ℓ2
µ(E)× ℓ2

µ(E) onto Y leave invariant

[α,β ]ℓ2
µ (E)×ℓ2

µ (E)
:=
{

φ ∈ ℓ2
µ(E)× ℓ2

µ(E) : φ(e) ∈ [−α,β ] for all e ∈ E
}

.

In the last assertion we have used the notation of Section 6.5.1. Observe that the
Kisyński space agrees with H = ℓ2

degµ (V0)
whenever G has finite volume, but is in

general different.

6.6.2 The Laplacian with dynamic node conditions

Also in view of the relevant role played by dynamic node conditions in applica-
tions, we will now turn to properties of the hybrid Laplacian ∆ introduced in Defi-
nition 2.49. A special motivation to study parabolic properties of the hybrid Lapla-
cian ∆ with standard/dynamic node conditions comes from the Rall-type lumped
soma model discussed in Chapter 5, see also [283]. Indeed, if we neglect some non-
essentials lower-order perturbations, the abstract Cauchy problem (ACP) associated
with ∆ is exactly the initial value problem that arises from the (biologically more
realistic) generalization of Rall’s model suggested in [283].

Another motivation comes from elastic systems: Whenever modeling flexible
structures one sometimes has to describe the behavior of those mechanical elements
that join different parts of the system. On the one hand they may be massive enough
that their modeling has to take into account the force of gravity; on the other hand
they may be small enough that it is approximately correct to describe them as point
masses. This leads to studying the second order abstract Cauchy problem (ACP2)
associated with ∆, or with related operators.

The well-posedness of both Cauchy problems can be discussed by means of form
methods. To this aim we assume throughout this section that
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G= (V,E) is the metric graph associated with
a locally finite, weighted oriented graph G= (V,E,µ),

and V0 is a subset of V.

and

c ∈ L∞
(

0,1;ℓ∞
µ (E)

)

with ce(x)≥ c0 for some c0 > 0, all e ∈ E and a.e. x ∈ (0,1),

letting for the sake of simplicity p≡ 0. We then introduce for all p∈ [1,∞] a normed
product space Lp by

‖u‖p := ‖u‖p

L
p
µ
+‖ f‖p

ℓ
p
degµ

for u≡
(

u

f

)

∈ L
p := L

p
µ(E)× ℓp

degµ
(V0).

Observe that Lp is separable for all p ∈ [1,∞) and reflexive for all p ∈ (1,∞), while
L2 is a Hilbert space.

Lemma 6.91 The vector space

V :=











(

u

f

)

∈W 1,2((0,1);ℓ2
µ(E)

)

× ℓ2
degµ

(V0) :

∃u|V ∈ CV with

(I −)⊤u|V = u(0), (I +)⊤u|V = u(1),

and u|V0
= f











is densely and continuously embedded in

H := L
2.

If G is finite, then this embedding is compact – and even of trace class for p = 2.

The proof depends on Lemma 3.21 and the following elementary result.

Lemma 6.2. Let X1,X2,Y1,Y2 be Banach spaces, such that X1 →֒ X2 and Y1 →֒ Y2.

Consider a surjective operator L ∈ L (X1,Y1) such that KerL is dense in X2 and

RgL = Y1 is dense in Y2. Then

GraphL =

{(

x

y

)

∈ X1×Y1 : Lx = y

}

is densely and continuously embedded in X2×Y2. The embedding is compact/of p-

th Schatten class if both embeddings X1 →֒ X2 and Y1 →֒ Y2 are compact/of p-th

Schatten class, respectively.

Proof. Let x ∈ X2, y ∈ RgL, ε > 0. Take z ∈ RgL∩Y1 such that ‖y− z‖Y < ε . In
particular there exists u∈X1 such that Lu= z. Take ũ, x̃∈KerL such that ‖u− ũ‖X2 <
ε and ‖x− x̃‖X2 < ε . Let w := x̃+u− ũ ∈ X1. Then
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∥

∥

(

x

y

)

−
(

w

z

)

∥

∥

X2×Y

≤
∥

∥

(

x− x̃

0

)

∥

∥

X2×Y
+
∥

∥

(

u− ũ

0

)

∥

∥

X2×Y
+
∥

∥

(

0
y− z

)

∥

∥

X2×Y
< 3ε.

Since Lw = Lu = z, density of GraphL in X1×Y is proved.
The assertion on compactness/Schatten class property of the embedding follows

from the obvious observations that

GraphL →֒ X1×Y1

and that the embedding of X1×Y1 in X2×Y2 is compact/of Schatten class if and
only if so are the embeddings X1 →֒ X2 and Y1 →֒ Y2. ⊓⊔

Again following the ideas from Section 2.2.1 we can also write

V≡
{(

u

f

)

∈W 1,2((0,1);ℓ2
µ(E)

)

× ℓ2
degµ

(V0) :

(

u(1)
u(0)

)

∈ Y and u|V0
= f

}

for the space Y defined in (6.29).
Throughout this section we assume that

W1,W2 are bounded linear operators on ℓ2
degµ

(V0), ℓ
2
degµ

(VC
0 ), respectively

and study the densely defined sesquilinear form aW given by

aW

((

u

u|V0

)

,

(

v

v|V0

))

:=
∫ 1

0

(

c2(x)u′(x)|v′(x)
)

ℓ2
µ (E)

dx+
(

W u|V | v|V
)

ℓ2
degµ

(V)
,

with form domain V. Here W denotes the diagonal block matrix

W :=

(

W1 0
0 W2

)

.

The following assertions can be proved in a way similar to Lemma 6.63 and 6.65
and Theorem 6.71.

Lemma 6.92 The densely defined form aW : V×V→ C is continuous, H-elliptic,

and of Lions type.

Lemma 6.93 The operator associated with aW is the hybrid elliptic operator A

defined by
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D(A) :=

{

u =

(

u

f

)

∈W 2,2((0,1);ℓ2
µ(E)

)

× ℓ2
degµ

(V) s.t.

∃u|V ∈ CV with

(I −)⊤u|V = u(0), (I +)⊤u|V = u(1),

I +
VC

0
c2(1)u′(1)−I −

VC
0
c2(0)u′(0)+W2u|VC

0
= 0,

and u|V0
= f























,

Au :=

(

∇(c2∇) 0
−∂

c2 −W1

)

u :=

(

∇(c2∇u)
−∂

c2 u−W1 f

)

.

The Cauchy problem associated with A is different from (Di)− (Cc)− (KRc).
Indeed, aside (Di) on each edge, (Cc) on each node, and (KRc) on the nodes that
belong to V

C
0 , we also have the dynamic node condition

∂u

∂ t
(t,v) =−∂

c2 u(t,v)−W1u(t,v), t > 0, v ∈ V0. (Dc)

Theorem 6.94 The operator A defined in Lemma 6.93 generates on H a cosine

operator function with Kisyński space V, hence also an analytic C0-semigroup of

angle π
2 . This semigroup is contractive and given by an integral kernel. Further-

more, (etA)t≥0 is of trace class if G is finite. If additionally−W is dissipative (resp.,

ε-quasi-dissipative for some ε < 0), then (etA)t≥0 is contractive (resp., uniformly

exponentially stable).

Remark 6.95 The above results could have been alternatively obtained by the the-

ory of j-elliptic forms. Indeed, A is easily seen to be also the operator associated

with (aW , j), with domain as in (6.32), where

j : u 7→
(

u

u|V0

)

.

One possible advantage of the approach through j-forms is the ease of showing

convergence results by means of Theorem 6.39 and Corollary 6.96. For instance,

reasoning just as in [309, § 4.7] one can show that

(

∇(c∇) 0
β∂

c2 −W1

)

converges to ∆D ⊕ 0 on H in the strong resolvent sense as β → 0, where ∆D is

Laplacian on L2
(

(0,1);ℓ2
µ(E)) with (decoupled) Dirichlet conditions in each node;

whereas the same operator does not converge to any closed operator – not even

in the weak resolvent sense! – as either c→ ∞ or β → ∞ (one would heuristically

expect convergence towards the Dirichlet-to-Neumann operator and the Laplacian

with standard node conditions, respectively).

Applying Lemma 6.5 we can deduce the following from Theorem 6.94.
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Corollary 6.96 Let G be finite. If β ∈ RV, then

(

∇(c∇) 0
β∂

c2 −W1

)

with domain D(A) generates an analytic C0-semigroup on H.

Properties of (etA)t≥0 can be studied by energy methods like those of (et∆ )t≥0 in
the previous section. Indeed, the proofs are essentially the same, as one sees that V is
lattice isomorphic to V =W 1,2(G) and – upon identifying these spaces accordingly
– the forms aW ,aW agree.

Theorem 6.97 The semigroup (etA)t≥0 is real (resp., positive) if and only if so is

(e−tW )t≥0.

If −W is dissipative, then (etA)t≥0 is L∞
(

(0,1);ℓ2
µ(E)

)

-contractive if and only if

(e−tW )t≥0 is ℓ∞
degµ

(V)-contractive.

If (e−tW )t≥0,(e
−tW ∗)t≥0 are ℓ∞

degµ
(V)-contractive, then (etA)t≥0 extends to a

contractive, analytic C0-semigroup on all spaces Lp whose generator is the Lp-

realization of A. Furthermore, (etA)t≥0 is ultracontractive of dimension 1.

Corollary 6.98 Let G be a connected graph of finite volume. If W is a diagonal ma-

trix whose entries are all non-negative, then (etA)t≥0 is a sub-Markovian semigroup

that is strongly-continuous on C0(G) – a so-called Feller semigroup – and is hence

the transition semigroup of a Feller process. Its generator is the part of A in

{(

u

f

)

∈C0(G)×C
V0 : u|V0

= f

}

.

Proof. Under our assumptions we know from Theorem 6.97 that (etA)t≥0 is a sub-
Markovian (even Markovian, if W = 0) C0-semigroup . Furthermore, V is isomor-
phic to W 1,2(G) by the isomorphism u 7→ (u,u|V0

). If in particular G is finite, then
same operator also acts as an isomorphism between C0(G) and C(G). Now, C(G)
embeds in L2 and L2 is mapped into V by the analytic semigroup (etA)t≥0. Because
by Lemma 3.27 V embeds into C0(G), we conclude that, up to the above isomor-
phism, (etA)t≥0 map C0(G) into itself. By Lemma 3.27.(5) (for r = q= 2 and p=∞)
(etA)t≥0 is strongly continuous also with respect to the ∞-norm, hence on C0(G). Fi-
nally, Corollary 4.42 yields the claim on the generator of the semigroup on C0(G).
⊓⊔

The solution u of the initial value problem associated with A, complemented by
node conditions (Cc′) on V, (KRc′) on V

C
0 , and (Dc′) on V0 is by Lemma 6.93

a W 2,2-function, hence it is a priori not obvious that its second derivative can be
evaluated at the nodes. However, it is straightforward to see that

D(A2)⊂W 3,2((0,1);ℓ2
µ(E)

)

× ℓ2
degµ

(V)

and hence by analyticity of (etA)t≥0 and in view of Proposition 6.6 we conclude that
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∂ 2u

∂x2 (t,v) =
∂u

∂ t
(t,v) =−∂

c2 u(t,v)−W u(t,v), t ≥ 0, v ∈ V0, (WRC)

where the first identity follows evaluating (Di) at the nodes in V0 and the second
is (Dc), and all terms are well defined. In other words, (WRC) is satisfied – for all
t > 0 – by all solution of the abstract Cauchy problem associated with the hybrid
Laplacian on H. We have hence recovered (2.52).

Example 6.99 The Hodgkin–Huxley model considered in Example 6.27 can be eas-

ily extended to the case of a network, possibly to complement a lumped soma model

of Rall’s type, if different intervals (corresponding to different axons and/or den-

drites, or perhaps to simplified models of whole neurons) are coupled by standard

and/or dynamic node conditions. We omit the mathematical details – which are not

difficult and can be found in [81, § 6] – and focus instead on the modeling issue.

If the interface between these elements is an electric synapse, then our current un-

derstanding of these biological devices suggests that said class of node conditions

actually delivers a convenient description: This is indeed the very simple setting

studied in [81].

If however a dendrite and an axon (represented by two intervals e1,e2) are inci-

dent in a chemical synapse v, which is terminal endpoint of e1 and initial endpoint

of e2, then we have already seen in Chapter 5 that the synaptic input coming from

e1 undergoes a delay τdel before reaching e2 and cannot turn back.

e1 e2

τdel

v

Fig. 6.3: An axon e1 projecting into a dendrite e2 through a synapse v.

The synaptic input is of course an action potential that lets neurotransmitters be

released by synaptic vesicles, but experimental observations seem to suggest that no

obvious (linear) algebraic relation exists between the pre- and post-synaptic poten-

tial in the dendrites – i.e., between the boundary values of the unknowns u1,u2 in

the diffusion equations. Indeed, a chemical synapse is not an electrical connector!

6.7 Nonlinear parabolic equations

Let us briefly discuss how the theory summarized in Section 6.2.2 can be adapted to
the setting of equations on networks.

We restrict ourselves for the sake of simplicity to the case of

a uniformly locally finite, weighted oriented graph G= (V,E,γ)
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and consider the discrete p-Laplacian introduced in Section 2.4 (the case of a merely
locally finite graph has been treated in [306]). For 1 < p < ∞ one introduces the
energy functional

E : f 7→ 1
p
‖I T f‖p

ℓ
p
µ
,

which is well-defined on the separable, reflexive Banach space

w
1,p,2
µ (V) :=

{

f ∈ ℓ2 : I T f ∈ ℓp
µ(E)

}

.

(Observe that for p = 2 we recover the quadratic form introduced in (6.23), up to
the factor 1

p
.)

Lemma 6.3. Let p ∈ (1,∞). Then the functional E is convex, coercive, and continu-

ously Fréchet differentiable as a functional on w
1,p,2
µ (V) and lower semicontinuous

as a functional on ℓ2(V). It is coercive whenever restricted to the closure of c00(V)

in w
1,p,2
µ (V).

Proof. Since for all p ∈ (1,∞)

E ≡ 1
p
‖ · ‖p

ℓ
p
µ (E)
◦I T on w

1,p,2
µ (V), (6.47)

the composition of a convex functional and a linear operator, the functional E is
convex. The assertion on coerciveness is clear, by definition.

In view of (6.47), and because I T is bounded from w
1,p,2
µ (V) to ℓp

µ(E), in order
to check continuous Fréchet differentiability of E it suffices to observe that the
functional ‖ ·‖p

ℓ
p
µ

on ℓp
µ(E) is continuously Fréchet differentiable for p ∈ (1,∞) with

E ′( f )h =
〈

|I T f |p−2I T f ,I T h
〉

ℓ
p′
µ ,ℓ

p
µ

= ∑
e∈E

µ(e)|(I T f )(e)|p−2(I T f )(e)(I T h)(e), f ,h ∈ w
1,p,2
µ (V),

by the chain rule. Thus, E is in particular lower semicontinuous as a functional on
w

1,p,2
µ (V), and hence lower semicontinuity as a functional on ℓ2(V). ⊓⊔

Using Lemma 6.42 one thus shows that the operator associated with E is actually
(minus) the discrete p-Laplacian Lp in (2.54) – in a weak sense, and also in a
classical sense whenever applied to test functions, i.e., to sequences in the space
c00(V). Then, Theorem 6.45 yields well-posedness of the abstract Cauchy problem
associated with −Lp.

Similar considerations hold if instead of the discrete p-Laplacian, the more usual
(differential) p-Laplacian is considered. This is the operator formally defined as
(minus) the subdifferential (or rather, as before, as the Fréchet derivative) of the
energy functional

E : u 7→ 1
p
‖∇u‖p

Lp .
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This operator was introduced back in the 1960s by G. Aronsson, E. DiBenedetto,
O.A. Ladyženskaja, N.N. Ural’ceva and others, who were of course only interested
in functions on domains of Rd . In order to consider its network version, it suffices
to take as domain of E

W
1,p

Y

(

(0,1);ℓ2
µ(E)

)

:

This is defined in a way analogous to (6.32) for Y as in (6.29) (or even for a general
closed subspace of ℓ2

µ(E)× ℓ2
µ(E)). Again, this functional is convex, Fréchet differ-

entiable and E (0) = 0, and we can obtain well-posedness of the associated parabolic
equation right away.

6.8 Notes and references

Section 6.1. Analytic semigroups were introduced by E. Hille in [208]. Much attention has been
devoted to them ever since: We refer to [14, 280] and [16, § 3.7] for modern, comprehensive treat-
ments. Indeed, analyticity is a very relevant property. On the one hand, it is sufficiently frequent:
For instance many – if not all – elliptic operators of even order generate analytic semigroups. On
the other hand, analytic semigroups have several distinctive features – like the perturbation results
in Lemma 6.5.

In view of Theorem 6.2 and Proposition 6.8, (6.7) and (6.8) yield an estimate on the semi-
group’s analyticity angle and growth bound. However, observe that the optimal angle of π

2 can-
not be deduced from (6.7)-(6.8) even when it is certainly known to hold, e.g. in the case of a
bounded generator. It is also for this reason that Theorem 6.18 is particularly valuable, in view of
Remark 6.10.

Section 6.2. The assumptions under which most of the results in Section 6.2 are formulated are by
no means sharp. The reader is referred to [14, 15, 124, 336] for proofs, further details, and recent
accounts about forms, although the first significant advances in the theory of sesquilinear forms
go back to [229]. Here we do not discuss Kato’s theory of closed forms and follow instead the
approach proposed by J.-L. Lions, cf. [123]: that celebrated monograph includes an introduction
to this theory along with many applications to problems from physics and mechanics.

A version of Theorem 6.18 was known to J. Kisyński, who in [241] gives to J.-L. Lions credit
for it. Condition 6.5 has become rather popular after M. Crouzeix showed in [119] that it plays a
fundamental role in the development of a new type of functional calculus. Whenever the damping
operator C in (4.19) is at least as unbounded as A, one does not expect generation of a C0-group,
but rather of an analytic C0-semigroup. Form methods have proved effective in order to discuss
also such damped wave equations, generalizing results that were previously known for self-adjoint
operators: it has been proved in [303] that if C comes from a form and A is merely bounded from
[D(C)] to H, then (a certain extension of) the reduction matrix generates an analytic C0-semigroup.

The constants in (6.8) have been tracked down in [310], while the perturbation Lemmata 6.22–
6.23 are taken from [303, 309]. They are the form analogs of Lemma 6.5 and further perturbation
results for operators, cf. [133, 134]. Theorem 6.11 has been proved in [18], where also the notion
of boundary group has been introduced.

The converse of the assertion in Remark 6.10 is not true: W. Littman showed in [276] that –
unlike the heat equation on the same spaces – the classical wave equation is not well-posed on
Lp(Rd) unless p = 2 or d = 1.

A comprehensive collection of applications and further results related to Ouhabaz’ invariance
criterion can be found in [336, Chapter 2]. Two special but fundamental instances – characterization
of the invariance of the positive cone of L2 and of the unit ball of L∞ – have been obtained for



6.8 Notes and references 169

symmetric forms by A. Beurling and J. Deny in [52] and are therefore known as Beurling–Deny

criteria. These results have also a nonlinear pendant proved in [30], cf. Lemma 6.1.
Theorem 6.31 can be traced back to [228], but has been re-discovered several times under

slightly different assumptions. An account of its interesting history along with a vector-valued
version are found in [308]. Observe that if µ(U)< ∞, then L∞(U×U) →֒ L2(U×U) and hence we
can conclude that TK is is a Hilbert–Schmidt operator. Recalling that the composition of Hilbert–
Schmidt operators is of trace class, we deduce from the semigroup law another proof of the fact
that under the assumptions of Corollary 6.66 and (etA)t≥0 is automatically of trace class, provided
G has finite volume.

Even whenever Proposition 6.30.(5) applies and we know that the analytic semigroup associ-
ated with a form extrapolates to an L∞-space, the semigroup on L∞ need not be analytic itself – that
is, its analyticity angle is 0. Nevertheless, all further extrapolated semigroups on Lp, p∈ (2,∞), are
indeed analytic, cf. [14, § 7.2].

The notion of j-elliptic form has been introduced by W. Arendt and T. ter Elst in [19], from
where most of the results in this section are taken. Very similar ideas had already appeared in [47]
as a refinement of the theory of traces of Dirichlet forms in [174].

The theory of Arendt and ter Elst also allows for some useful spectral relations – in this case
between ∆ and A – as it has been shown in [309]. This theory is particularly efficient in order to
discuss the Dirichlet-to-Neumann operator, but we omit the easy details and refer to [309, § 4] for
related results.

Classical references for the theory of nonlinear semigroups are [69, 295, 377] or a legendary un-
completed manuscript by Ph. Bénilan, M. Crandall, and A. Pazy, which is still circulating in mathe-
matical departments as a samizdat. The recent lecture notes [101] offer an easy-to-read introduction
to the theory of subdifferentials, whereas [26] is more focused on applications. In Theorems 6.45
and 6.46 we have summarized several different results obtained with different methods, and in
particular some celebrated results by H. Brezis and T. Kato, cf. [377, Thm. IV.4.1, Thm. IV.4.3,
and Thm. IV.8.2] or [69, Théo. 3.1, Théo. 3.2, Théo. 3.3, Théo. 3.6]. Lemma 6.1 combines [30,
Théo 1.1 and Cor. 2.2], [69, Prop. 4.5], and [105, Cor. 3.7].

Section 6.3. Delay differential equations represent a broad and classical research topic, cf. [137].
The approach presented here follows that developed in [31]. Well-posedness of parabolic delay
differential equations is proved using a technique based on the theory of one-sided coupled opera-

tor matrices due to K.-J. Engel, cf. [31, Thm. 3.35]. Many sophisticated results on asymptotics of
delay evolution equations can be found in [31, Part III], including Proposition 6.50.

Section 6.4. We have already mentioned that algebraic methods were applied to graph-theoretical
problems already by G. Kirchhoff in [237]. It seems that the firsts who suggested a functional
analytical theory of networks were A. Beurling and J. Deny in [53]. (Likely because their actual
goal was clearly more general and ambitious – viz, the development of the theory of forms as-
sociated with sub-Markovian semigroups on general metric measure spaces – their “elementary
case” was possibly overlooked or considered as a mere toy model for several years.) Similar ideas,
also in connection with potential theory, appeared in [148] and were then systematically devel-
oped by M. Yamasaki and his coauthors in a series of papers beginning with [413]. They were
devoted to potential theory on infinite networks and in this context Yamasaki and his coauthors
naturally introduced a non-standard kind of random walk – in our language, the discrete diffusion
equation – along with some different but related versions of the discrete Sobolev spaces. A few
years later, B. Mohar started to investigate the spectral properties of the adjacency matrix in [296].
J. Dodziuk studied in [140] the discrete Laplacian from the point of view of dynamical systems,
and also considered the same operator in dependence of different node weights – specifically, of

the deg-weight. Observe that 1
deg L is similar to Lnorm by the unitary transformation D

1
2 . Soon

after [141] many authors, including D. Cartwright, M. Picardello, P. Soardi, and W. Woess began
to combine all these different approaches along with group theory and stochastics, thus obtaining
a comprehensive and elegant theory of difference operators on discrete graphs, both on the elliptic
and parabolic side, cf. [384, 411]. Finally, in the last few years new clusters of authors began inter-
breeding the approach of the 1990s with new mathematical physical flavors, in particular in three
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series of papers by P. Jorgensen and E. Pearse, by U. Smilansky, and by M. Keller and D. Lenz,
and some further coauthors: They are conveniently surveyed in [222, 231, 382], respectively.

Non-autonomous problems like that considered in Remark 6.25 arise, e.g., whenever we discuss
a linearized version of (5.6) and at the same time allow for synaptic pruning and/or plasticity, so
that the entries of A in may change over time.

In Remark 6.51 we have imposed condition (6.22) for the sake of simplicity. The more chal-
lenging case of measures ν that are allowed to be unbounded from above and/or from below is con-
sidered, e.g., in [232, 306]. It can be treated using the weighted, discrete Sobolev spaces w

1,2
µ,ν (V).

In this generality, Theorems 6.52 and 6.54 about well-posedness and sub-Markov property of
(etL D

)t≥0,(e
tL N

)t≥0 have been obtained in [197, 232] using the theory of Dirichlet forms of Beurl-
ing and Deny. Indeed, the special case of finite graphs had been fully discussed already in [52]. An
equivalent statement of Theorem 6.54 is precisely that the Laplace–Beltrami matrix is associated
with a Dirichlet form. In our proof of these results we follow instead the partially different meth-
ods discussed in [306], which incidentally also extend to nonlinear diffusion problems associated
with the discrete p-Laplacians briefly introduced in Section 2.4. The existence of realizations of
the Laplace–Beltrami matrix that generate semigroups that are not sub-Markovian has been proved
in [213].

The possibility of approximating the solution of an evolution equation on a network by cutting
the graph outside ever-growing “discrete balls”, solving the problem on such finite graphs, and
then going to the limit has been envisaged by several authors. Proposition 6.55 is taken from [306],
but [231, Prop. 10] is very similar. Strong and spectral radius convergence has been observed
already in [296] in the case of the adjacency matrix. Observe that the same Galerkin methods may
be also applied to find solutions of discrete advective problems as in Section 6.4.2, as they are
associated with perturbations of quadratic forms. In contrast, application of Galerkin methods to
advective problems is much more delicate in the usual continuous setting.

Section 6.5. Many properties of the semigroup (et∆ )t≥0 associated with the sesquilinear form a

defined in (6.31) have also been obtained, by other methods and with different motivations, in [46,
246, 254], but special instances were already known since [38], see also [42] and references therein.
A more precise estimate that takes into account the topology of the graph is presented in [135].
Theorem 6.67 and Example 6.73, which together state that the second derivative with continuity
and Kirchhoff node conditions comes from a Dirichlet form (and hence that it generates a sub-
Markovian semigroup), has been obtained in [254, 302] in the case of finite graphs, and in [82]
in the infinite case. We have observed in Example 6.73 failure of the (sub-)Markovian property
for the semigroup associated with aW where W =−L – i.e., for the semigroup generated by the
Krein extension of the second derivative: This is also a well-known fact in abstract potential theory,
cf. [173, Thm. 2.3.2].

More general system of diffusion processes can be considered, describing non-local interactions
that take place not only in the nodes, but also in the edges. More precisely, (Di) can be generalized
to

∂ue

∂ t
(t,x) = ∑

f∈E

∂

∂x

(

c2
ef(x)

∂uf

∂x

)

(t,x)−∑
f∈E

pefuf(t,x), x ∈ (0,1), e ∈ E, t ≥ 0, (6.48)

where c2(x), p(x) need not be diagonal matrices for all x ∈ [0,1]. (We have already seen this equa-
tion as a mathematical model of ephaptic coupling of neurons, cf. Chapter 5.) It has to be comple-
mented by (Cc) and the generalized Kirchhoff conditions

∑
e,f∈E

∑
w∈V

c2
ef(w)

(

ι+veι+
wf
− ι−veι−

wf

)

u′f(t,w) = ∑
w∈V

ωvwu(w), t ≥ 0, v ∈ V. (gKc)

It has been shown in [84] that the generation result in Theorem 6.67 extends to such a general
setting, under the additional assumptions that c is sufficiently smooth – C1

(

[0,1];ℓ2
µ (E)× ℓ2

µ (E)
)

will do –, that p ∈ L∞
(

(0,1)× (0,1);ℓ2
µ (E)

)

, and that the ellipticity condition
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Γ |ξ |2ℓ2 ≥ Re ∑
e,f∈E

c2
ef(x)ξfξe ≥ γ|ξ |2ℓ2 for all ξ ∈ ℓ2(E) and a.e. x ∈ (0,1),

is satisfied for some Γ ,γ > 0. More precisely, despite being highly non-local this problem is gov-
erned by an analytic C0-semigroup on L2

(

(0,1);ℓ2
µ (E)

)

. Remarkably, in spite of its parabolic na-
ture (shown e.g. in [290]) (6.48) lacks most of the regularity properties that are typical of diffusion
problems if c is not diagonal for all x ∈ [0,1]: e.g., the solution is not of class C∞ and the governing
C0-semigroup is not (sub-)Markovian – i.e., no parabolic maximum principle holds, and the system
is not dissipative with respect to the L1 and L∞-norms.

Existence of traveling waves as solutions of (Di)− (Cc)− (Kc) is known to be possible under
some combinatorial assumptions on the graph underlying the neuronal network, cf. [42, §§ 16–17]:
This suggests that a network may support spikes moving at constant velocity in the framework of
(HH). In the case of a single interval of infinite length, traveling wave solutions of different neural
models have studied by several authors, cf. [372, Chapter 6] and references therein. As already
mentioned in Remark 6.99. it is however not clear how (HH) should be extended to a model of a
whole network.

The possibility of interpreting some class of discrete diffusion equations as stochastic processes
that approximate classical diffusion processes associated with differential or hybrid operators on
metric graphs has been discussed in [408]. Conversely, a fascinating instance of emergence of
diffusion equations on networks from a discrete setting was suggested by M.I. Freidlin and A.D.
Wentzell in [169]: If one considers a family of dynamical systems, say indexed by ε > 0, it may
happen that as ε → 0 the system tends to have faster diffusion in certain directions than in other
ones. (Formally speaking, weak convergence of distributions in a space of continuous functions
is meant). Hence, the phase plane is subdivided in regions that as ε → 0 may collapse to edges
of a metric graph (actually, of a tree), so that transition from one region to the others corresponds
to crossing of ramification points. Similar ideas concerning the possibility of letting a system of
diffusion equations on decoupled intervals, but with non-local Robin-type boundary conditions,
converge to a discrete diffusion equation on a line graph have been analyzed in [58].

Finally, let us observe that, just like its underlying discrete graph G, also a metric graph G might
suffer from a growth so ill-behaved that G develops a kind of boundary at infinity. More precisely,
even in the unweighted case it might be that the space of compactly supported C1(G)-functions is
not dense in W 1,2(G) even if G is infinite and has no node of degree 1. We have avoided to treat
these aspects in detail, but the reader should keep in mind that bizarre non-uniqueness phenomena
may arise that resemble the situation described in Theorem 6.52.

Section 6.5.1. Proposition 6.79 is the main result in [278]. He proved it – in a significantly more
general context – making use of his theory of local dissipativity, cf. [277], which roughly speaking
allows for an extension of Hilbert space methods to evolution equations taking place in spaces
of continuous functions. Observe that the “wrong sign” in the node conditions in Proposition 6.79
appears in the domain of the operator rather than in the operator itself as in Corollary 6.96, and thus
cannot be treated by a simple perturbation argument (Perturbation results for domains of generators
do in fact exist, cf. [191, 192], but are seemingly not applicable here.)

Up to minor notational changes, the more benign node conditions (Cc′)− (KRc′) have been
studied already in [39, 187], and (more implicitly) already by E. Hölder, cf. [210, § 3]. This setting
has become rather popular after P. Kuchment discussed it in [258, § 3] in the case of Hermitian W
as well, in a slightly more general form, in [175], cf. Section 7.2.1. The case of non-Hermitian W
has been discussed, among others, in [45, 82, 227, 246, 302]. An extension to the case of dynamic
node conditions has been performed in [304, 373]. Theorems 6.72 has been proved independently
in [82, 227]. Example 6.86 is taken from [304].

Local finiteness of the graph has been one of our standing assumptions throughout Sections 6.4
and 6.5. If we drop it, the results of these sections become much more delicate and several counter-
intuitive phenomena may happen, both in the continuous and in the discrete case. To the best of
our knowledge, the latter case has been investigated in only in [232] and a few other papers. An
example concerning the continuous case is given by the following, taken from [80].
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Proposition 6.100 Let G be the metric graph constructed over a countable unweighted graph

G. Let ∆ be the operator on L2(G) associated with the form aW for W = 0 with domain

W
1,2

Y

(

(0,1);ℓ2(E)) as in (6.32). Then the associated semigroup (et∆ )t≥0 is irreducible if and only

if for one/all e ∈ E and any other edge f there exists a path from e to f that does not contain any

node of infinite degree.

Section 6.6.1. We are not aware of literature specifically devoted to the parabolic properties of the
Dirichlet-to-Neumann operators on graphs. In the case of domains of R

d , the fact that the relevant
C0-semigroup is sub-Markovian – i.e., a counterpart of Theorem 6.90 – has been proved in [366,
Thm. 9.1] and independently by form methods in [153].

Section 6.6.2. The operator A appears in several models of neuroscience [79, 283] and elastic-
ity [268, § II.7], with essentially the same explanation/derivation: E.g., in the lumped soma model
introduced in Chapter 5 one wants electric potential neither to vanish in the soma, nor to be reflected
in the dendritic network, but rather to accumulate there (until an action potential is triggered).

Material in this section is mainly taken from [304, 312, 313], where the interplay with the
investigations in [283] has also been discussed. Related mathematical results appear in [227, 373],
whereas [81] is more devoted to modeling issues. There seems to be no consensus in the literature
on how the biochemistry of even very small pools of neurons connected by chemical synapses
should be modeled by means of differential equations: To the best of our knowledge, [215] is
one of the few articles devoted to this topic. Also motivated by biological investigations, this time
by those in [79], parabolic equations for hybrid operators have seemingly been mathematically
investigated for the first time by S. Nicaise and later in a more detailed way by J. von Below, cf.
in particular [42, 46, 321] and references therein. Such systems also fit into the abstract theory of
so-called “interaction problems” introduced by F. Ali Mehmeti in [7].

Our investigation is based on the possibility of applying form method, which depends on the
particular structure of A. More general dynamic boundary conditions (and hence different entries in
the operator matrix A) might be chosen: This more general setting can still be studied by different
methods, e.g. along the lines of [42, 252, 307, 403].

W. Feller and A.D. Wentzell intensively studied stochastic processes associated with the real-
ization of A in C(U), beginning with [166, 405]: Such boundary conditions (or their generalization
as in (2.52)) are therefore sometimes also referred to as of Feller or generalized Wentzell type. They
essentially describe the behavior of a Brownian motion in which any particle that hits the boundary
is neither simply reflected or absorbed, but rather can spend some time there, cf. [394] for a mod-
ern and general overview. In this sense, it is indeed natural to study them in a space of continuous
functions, like in Corollary 6.98. A characterizations of generators of Brownian motions on met-
ric graphs in terms of Laplacians with Generalized Wentzell conditions has been proved in [247,
Theorems 2.5 and 2.8].

Concerning differential operators with general node conditions as in (2.53), the main difficulty
is that they need not come from a form – indeed, they are possibly not even quasi-dissipative. It is
indeed more natural to discuss realizations of these operators in C0(G): This has been done in [278]
for α ≡ 0, and in [42] for α 6≡ 0.



Chapter 7

Evolution equations associated with self-adjoint

operators

The theory of forms presented in Chapter 6 was originally developed in order to
extend the study of parabolic problems beyond the setting of the Spectral Theorem,
in much the same way the Lax–Milgram Lemma extended the applicability of the
Riesz–Fréchet Theorem. This program was successful: Nowadays many relevant
results on linear parabolic problems have been extended to the non-self-adjoint case
by form methods and further results depend on much deeper techniques, including
sophisticated functional calculi that conveniently replace the Spectral Theorem and
whose exposition goes beyond the scope of our book, cf. [261].

However, some properties still seem to be typical for self-adjoint operators. In
this chapter we collect a few results that are either specific for the self-adjoint case
or whose general validity does not seem to be known yet. In the remainder of the
chapter we apply them to different classes of evolution equations on networks.

7.1 The spectral theorem and Dirichlet forms

Throughout this section we assume that

V,H are separable, complex Hilbert spaces
with V densely and continuously embedded in H.

We recall the Spectral Theorem for (possibly unbounded) self-adjoint operators.

Theorem 7.1 Let A be a self-adjoint operator on H. Then there exist a σ -finite

measure space X, a measurable function q : X→R, and a unitary operator U : H→
L2(X) such that A = U−1MqU, where Mq is the multiplication operator defined in

Example 4.17, i.e.,

D(A) = {u ∈ H : Uu ∈ D(Mq)}, Au =U−1(q ·Uu).

173
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Furthermore, the self-adjoint operator A is dissipative (and hence by definition neg-

ative semidefinite) if and only if q(x)≤ 0 for a.e. x ∈ X.

If A is self-adjoint and dissipative, so that −q is a positive function, the square

root of −A is

D
(√
−A
)

:=
{

u ∈ H :
√−q · (Uu) ∈ L2(X)

}

,
√
−A := U−1(√−q · (Uu)

)

.

Lemma 7.2 Let a : V ×V → C be a continuous, H-elliptic sesquilinear form. If a is

symmetric, then the associated operator A is self-adjoint.

Conversely, let A be a self-adjoint and ω-quasi-dissipative operator on H. Then

a(u,v) :=
(√
−A−ω Id u|

√
−A−ω Id v

)

H
, u,v ∈V := D(

√
−A−ω Id),

defines a continuous, H-elliptic, symmetric sesquilinear form a : V ×V → C.

If V is compactly embedded in H, then X can be chosen to be a subset of N

(actually a finite subset, if dimH < ∞) with the standard atomic measure and q is
simply the sequence of eigenvalues of A. Hence we obtain the following.

Corollary 7.3 Let a : V ×V → C be a symmetric, continuous, H-elliptic sesquilin-

ear form with associated operator A. If the embedding of V in H is compact, then

the following assertions hold.

(1) A has compact resolvent and hence its spectrum consists solely of eigenvalues

of finite multiplicity.

(2) Ordering the eigenvalues in decreasing order and counting multiplicities, the

k-th largest eigenvalue λk(A) is given by Courant’s minimax formula

−λk = min
E⊂V

dimE=k

max
u∈E
u6=0

a(u,u)

‖u‖2
H

, k ∈ N, (7.1)

i.e., E runs over the k-dimensional subspaces of V . Moreover, lim
n→∞

λn = −∞ if

dimH = ∞.

(3) There exists an orthonormal basis of H consisting of eigenvectors en of A asso-

ciated with λn such that en ∈V and for which

D(A) =

{

u ∈ H :
dimH

∑
n=1

λ 2
n (u|en)

2
H < ∞

}

, Au =
dimH

∑
n=1

λn(u|en)Hen.

The fraction in (7.1) is usually referred to as Rayleigh quotient.
While all quasi-dissipative self-adjoint operators come from a form, there exist

self-adjoint operators that are not quasi-dissipative – an example is the momentum
operator with periodic boundary conditions, cf. Definition 2.44. We rather study
them exploiting directly the spectral theorem.
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Evolution equations involving multiplication operators can usually be explicitly
solved, e.g.,

etMq u(x) = etq(x)u(x), x ∈ X .

Furthermore, these solutions are well-behaved under isomorphic transformations U :
e.g.,

etU−1MqU =U−1etMqU, t ≥ 0.

Clearly, unitarity of the semigroup is also preserved if (and only if) U is additionally
unitary.

Remark 7.4 The spectral theorem suggests how to solve an abstract Cauchy prob-

lem associated with a self-adjoint operator A: It suffices to define an exponential

function by

etAu :=U−1(etq ·Uu), t ≥ 0. (7.2)

In particular, these formulae show that (etA)t≥0 is contractive (resp., uniformly ex-

ponentially stable) if and only if q(x) ≤ 0 (resp., if and only if q(x) ≤ q0 for some

q0 < 0) for a.e. x ∈ X.

If furthermore A− ω Id is a negative definite operator, then (7.2) defines a

bounded analytic C0-semigroup of angle π
2 such that

‖etA‖L (X) ≤ eω Re t for all t ∈ C s.t. Re t > 0.

Corollary 7.5 Under the assumptions of Corollary 7.3 if we denote by P the or-

thogonal projector onto the eigenspace associated with s(A), then

‖e−s(A)tetA−P‖L (H) ≤Me−εt for all t ≥ 0,

where ε is the largest eigenvalue of A different from s(A).

Proof. It follows directly from Corollary 7.3 that for all u ∈ H

etAu =
dimH

∑
n=1

etλn(u|en)Hen, t ≥ 0. (7.3)

Now, s(A) is an eigenvalue and A− s(A) Id is a non-invertible self-adjoint operator.
By (7.3), the semigroup generated by A− s(A) Id leaves invariant its eigenspace
associated with the operator 0, hence it follows by (7.3) that

(

e−s(A)tetA−P
)

u =
dimH

∑
n=m1+1

et(λn−s(A))(u|en)Hen, t ≥ 0, (7.4)

where m1 is the multiplicity of the largest eigenvalue s(A). ⊓⊔

Example 7.6 Let G be a finite oriented graph. Let us assume for simplicity that G

is not weighted, i.e., µ ≡ 1.
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(1) It is clear by definition that the discrete Laplacian L is symmetric and hence

also self-adjoint, as it is bounded, and furthermore −L is dissipative. Since

G is finite, by Lemma 2.13 s(L ) = 0, hence by Corollary 7.5 (e−tL )t≥0 con-

verges exponentially to a linear combination of the characteristic function of

each connected component.

(2) Similarly, it is clear by definition that the signless Laplacian Q is self-adjoint.

By Lemma 2.13 s(Q) = 0, hence by Corollary 7.5 (e−tQ)t≥0 converges ex-

ponentially to a linear combination of the β eigenvectors associated with the

eigenvalue 0. Each of these eigenvectors is a function that assigns a value ±1
to each node of the k-th bipartite connected component Vk, 1≤ k ≤ β , depend-

ing on whether the node belongs to V
+
k or V−k . Hence, a convenient method to

check whether a given connected graph is bipartite or not is to check whether

(e−tQ1)t≥0 converges to 0 or rather to a ±1-function.

More generally, self-adjointness allows for the definition of a “natural” functional
calculus for A, by acting on the function q: In this way properties of f (A) can be
read off f ◦ q. Besides the cases of the square root

√
− · and the exponential et·,

arbitrary continuous functions may be applied – e.g. cos(t
√
− ·), yielding that each

self-adjoint operator generates a C0-cosine operator function. As a further instance
we explicitly mention Stone’s Theorem.

Theorem 7.7 Let A be a densely defined operator on a Hilbert space. Then the

following assertions are equivalent.

(a) iA is the generator of a C0-group of unitary operators.

(b) A is self-adjoint.

Example 7.8 The (time-dependent) Schrödinger equation is

ih̄
∂ψ

∂ t
(t,x) = Hψ(t,x), t ∈ R, (7.5)

where the Hamiltonian H is a self-adjoint operator acting on some Hilbert space.

In the easiest, 1-dimensional instance one studies the “free Hamiltonian” H= ∆ on

L2(R). Then it can be proved as usual that H comes from a symmetric form and is

thus self-adjoint: One concludes from Stone’s Theorem that the initial value problem

associated with (7.8) is governed by (eit∆ )t∈R, hence it is in particular well-posed.

Indeed, it is easily seen that (4.6) can be modified to yield for all u ∈ L2(R) the

formula

eit∆ u(x) = (G1(it, ·)∗u)(x) =
1

(4πit)
1
2

∫

R

e−
‖x−y‖2

4it u(y)dy, t 6= 0, x ∈ R, (7.6)

i.e., one simply replaces real time t by purely imaginary time it in the Gaussian

kernel G1 (concerning i
1
2 , we take the square root in the first quadrant of the complex

plane). We extend this formula letting

ei0∆ := Id :
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This defined a unitary C0-group (eit∆ )t∈R.

Let us in the following assume that

(Ω ,d, µ̃) is a metric measure space and H := L2(Ω , µ̃).

Definition 7.9 A sesquilinear mapping a : V ×V →C is called a Dirichlet form if it

is continuous, H-elliptic and symmetric and if additionally the associated semigroup

is sub-Markovian.

It is called local if for all open, disjoint U,V ⊂Ω

a(u,v) = 0, whenever u,v ∈ L2(Ω) with suppu⊂U,suppv⊂V. (7.7)

Example 7.10 Because for all u ∈W 1,2-functions the support of u′ is not larger

than the support of u, the form aW in (6.33) is certainly local whenever the matrix

W is diagonal. By Theorems 6.71 and 6.72, aW is also a Dirichlet form.

The form a in (6.23) is also Dirichlet, by Theorem 6.54, but it is non-local, as

one sees even in the simple case of

V = {v1,v2}, E= {(v1,v2)}, f (v1) = 0, f (v2) = 1, g(v1) = 1, g(v2) = 0.

However, whenever G is unweighted a clearly satisfies the following weaker locality

property (for δ = 2): There exists δ > 0 such that for all open, disjoint U,V ⊂ Ω
with d(U,V )≥ δ

a(u,v) = 0, whenever u,v ∈ L2(Ω) with suppu⊂U,suppv⊂V.

Definition 7.11 Let (T (t))t≥0 be a C0-semigroup on L2(Ω).

• If there exist b,c > 0 such that for all open U,V ⊂Ω

|(T (t)u|v)L2 | ≤ ce−
dist(U,V )2

bt ‖u‖L2‖v‖L2 , for all u,v∈L2(Ω) s.t. suppu⊂U,suppv⊂V, t > 0.

then (T (t))t≥0 is said to satisfy Davies–Gaffney estimates.

• Let (T (t))t≥0 have an integral kernel (Kt)t≥0 as in (6.36). If there exist constants

b̃, c̃ > 0 and d ∈ N such that

0≤ Kt(x,y)≤ c̃t−
d
2 e
− |x−y|2

b̃t for all x,y ∈Ω , t > 0, (7.8)

then (T (t))t≥0 is said to satisfy d-dimensional Gaussian estimates.

The latter name is due to fact that the term on the right hand side is, up to rescaling
factors, just the Gaussian kernel introduced in Example 4.15.

Proposition 7.12 The semigroup associated with a local Dirichlet form satisfies

Davies–Gaffney estimates.
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Pointwise estimates of Gaussian type may appear stronger than integrated esti-
mates like those of Davies–Gaffney. However, the following holds.

Proposition 7.13 If (T (t))t≥0 satisfies Davies–Gaffney estimates and it is ultracon-

tractive of dimension d, then it satisfies d-dimensional Gaussian estimates.

Proposition 7.14 Let an operator A on L2(Ω) be self-adjoint and dissipative. Then

(ACP2) enjoys finite speed of propagation if and only if (etA)t≥0 satisfies Davies–

Gaffney estimates.

7.2 Self-adjoint operators on networks and evolution equations

We assume throughout this section that

G is the metric graph associated with a locally finite,
weighted oriented graph G= (V,E,µ).

The difference operators we have considered in Section 6.4 satisfy the range condi-
tion in the Hille–Yosida Theorem, hence they are self-adjoint if and only if they are
symmetric – their symmetry can in turn be checked directly, already looking at the
formal definitions in Section 2.1. For this reason, in this chapter we mostly focus on
differential operators.

7.2.1 Diffusion equation

We come back to the study of diffusion equations on graphs and investigate the
spectrum of ∆ , the second derivative standard node conditions on L2(G): Knowing
its eigenvalues and its eigenvectors we may then by (7.3) solve the heat equation in
terms of a series. If W is self-adjoint, then the sesquilinear form in (6.31) is sym-
metric and we conclude that the associated Laplacian ∆ is self-adjoint. We simulta-
neously discuss the Laplacian ∆̃ with anti-Kirchhoff node conditions introduced in
Remarks 2.43 and (6.81), in order to emphasize the symmetry between the spectra
of these both operators. Indeed, because of the factorization (2.47) the spectra of ∆
and ∆̃ have to agree, possibly up to {0}. Throughout this section we restrict to the
case of equilateral metric graphs.

Theorem 7.15 Let G be equilateral. Let us denote by κ the number of its connected

components and by β the number of its connected components that are additionally

bipartite. Then for λ > 0 the following assertions hold.

• If u is an eigenvector of ∆ with node conditions (Cc)− (Kc) with associated

eigenvalue −λ , then the corresponding vector u|V ∈ CV of node values is a

(right) eigenvector of the transition matrix T : more precisely,
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T u|V = cos
√

λ u|V. (7.9)

Conversely, if cos
√

λ is an eigenvalue of T of multiplicity mult(cos
√

λ ) and

u|V is an associated eigenvector, then λ is an eigenvalue of −∆ with standard

boundary conditions and u|V is the vector of node values of some eigenvector

associated with the eigenvalue λ . The multiplicities are

mult(λ ) =



















κ if λ = 0,

mult(cos
√

λ ) if sin
√

λ 6= 0,

|E|− |V|+2κ if cos
√

λ = 1, λ > 0,

|E|− |V|+2β if cos
√

λ =−1, λ > 0.

λ

−cos
√

λ

cos
√

λ

1

α...

...
β

π2
0

µ

ν (π−√µ)2

(π−
√

ν)2

(π +
√

µ)2

(π +
√

ν)2 (2π−√µ)2

(2π−
√

ν)2

Fig. 7.1: On the abscissa, the eigenvalues of−∆ are plotted (solid line) in correspon-
dence with the associated eigenvalues of T on the ordinate axis. This plot reflects
the case of a non-bipartite graph, for which the spectrum of T is not symmetric with
respect to 0. The eigenvalues of−∆̃ , (minus) the Laplacian with anti-Kirchhoff node
conditions, are also plotted (dashed line).

• Let ũ := ∂
C

u ∈ CV, where u is an eigenvector of ∆̃ with associated eigenvalue

−λ . Then

T ũ =−cos
√

λ ũ. (7.10)

Conversely, if λ > 0 and −cos
√

λ is an eigenvalue of T admitting the eigen-

vector ψ ∈ Cn, then λ is an eigenvalue of −∆̃ with anti-Kirchhoff conditions

and ψ = ∂
C

u for some eigenfunction u belonging to λ . The multiplicities of the

eigenvalues are
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mult(λ ) =



















|E|− |V|+β if λ = 0,

mult(−cos
√

λ ) if sin
√

λ 6= 0,

|E|− |V|+2κ if cos
√

λ =−1, λ > 0,

|E|− |V|+2β if cos
√

λ = 1, λ > 0.

λ

−cos
√

λ

cos
√

λ

1

−1

α...

...
−α

π20 µ
(π−√µ)2 (π +

√
µ)2 (2π−√µ)2

Fig. 7.2: This plot corresponds to the bipartite case, when the spectrum of T is
symmetric about 0, cf. Remark 2.17.

Example 7.16 The most relevant limitation to the application of Theorem 7.15 is

of course that only equilateral graphs are allowed. Under this restrictive assump-

tion, there are quite a few consequences that are easy to deduce but nevertheless

worth to remark. For example, the formulae for the multiplicities show that simplic-

ity of all eigenvalues implies that the graph is connected and |V| − |E| = 1 – i.e.,

by (A.3), that the graph G is a tree. This is true both in the case of standard node

conditions (Cc)−(Kc) and in the case of anti-Kirchhoff conditions. If we also know

that all eigenvalues of the normalized Laplacian of the graph are simple, then we

can conclude that all eigenvalues of the second derivative with both standard and

anti-Kirchhoff node conditions have multiplicity one – not surprisingly, this is e.g.

the case for path graphs.

The above description of the spectrum of ∆ has further interesting consequences:

Let for instance G be finite and connected. The heat equation on G with node

conditions (Cc)− (Kc), i.e., the abstract Cauchy problem associated with ∆ , is

governed by a C0-semigroup. By dissipativity of ∆ and because 1 ∈ D(∆) with

∆1 = 0, s(∆) = 0 and by Corollary 7.5 the rate of convergence of (et∆ )t≥0 towards

the projector onto the first eigenspace (i.e., the space of constant functions) is di-

rectly influenced by the second largest eigenvalue λ2(∆) of ∆ , hence by the second

largest eigenvalue λ2(T ) of T . Further properties hold; e.g., it follows from Re-

mark 2.17 that the (et∆ )t≥0 converges exponentially to an equilibrium with the same

rate (namely, e−λ2t = e−
π2
4 t ) on all metric graphs over complete bipartite graphs.
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Remark 7.17 By Theorem 7.15 and (2.23), spectral properties of the normalized

Laplacian Lnorm can be easily trasnfered to properties of ∆ . One of the most inter-

esting consequences of this general principle becomes clear when one observes that

in the last few years many interlacing results have been obtained for the eigenvalues

of L under graph operations. For example, it is proved in [77, Thm. 1.2] that if

• Γ1 is a graph on n vertices,

• Γ̃2 is a subgraph of Γ1,

• t is the number of isolated vertices of Γ̃2,

• Γ2 is the complement of Γ̃2 in Γ1, i.e., the graph obtained by deleting from Γ1 the

edges of Γ̃2,

• µ
(1)
j and µ

(2)
j denote the eigenvalues of the normalized Laplacian of Γ1, Γ2, re-

spectively,

then for k = 1, . . . ,n

µ
(1)
k−t+1 ≤ µ

(2)
k ≤

{

µ
(1)
k+t−1, if Γ2 is bipartite,

µ
(1)
k+t , otherwise,

where

µ
(1)
−t+1 = . . .= µ

(1)
0 := 0 and µ

(1)
n+1 = . . .= µ

(1)
n+t := 2.

(An analogous relation holds if a graph is added, instead of subtracted [77, Cor. 1.4]).

Yet more refined results related to more subtle structures (like coverings and span-

ning subgraphs) have been obtained in [78, 96, 212]. In view of Theorems 7.15 it

is possible to translate all these interlacing results for the spectrum of Lnorm into

interlacing results for spectral subsets of ∆ .

In the case G has finite volume, the embedding of the form domain V in
H = L2(G) is even a Hilbert–Schmidt operator, and in particular ∆ has purely point
spectrum and (7.2) reads

et∆ u = ∑
n∈N

etλn(u|en)Hen, t ≥ 0.

We know from Lemma (6.20) that (et∆ )t≥0 is then of trace class. One can now
recover relevant information, as the following trace formula due to J.-P. Roth shows.

Theorem 7.18 Let G be finite, with |V| nodes and |E| edges. Then for all t > 0

Tret∆ := ∑
n∈N

eλnt =
volµ(G)

2
√

πt
+
|V|− |E|

2
+

1

2
√

πt
∑
C∈C

σ(C) lenµ(Gen(C))e−
volµ (C)2

4t ,

where the series are absolutely convergent.

Here C denotes the set of all circuits of G, where G was introduced before Defi-
nition 2.36, and σ(C) is the number defined in (2.35) based on the scattering matrix
S of G. Recall that for any circuit C we denote by lenµ(Gen(C)) its length and by
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Gen(C) its gene – i.e., the circuit that yields C after some finite number of reitera-
tions –, cf. Remark A.18 and Definition A.3, respectively.

Example 7.19 Since repetitions are allowed, (e, ē,e, ē,e, ē) defines in a natural way

a closed path in G, its gene being the circuit e, ē. On the other hand, the circuit

defined by (e, ē,e, ē, f, f̄,e, ē) agrees with its own gene.

Hence for a circuit associated with (e1, . . . ,en) we have in particular

σ(C) = σene1σe1e2 · · ·σen−1en .

Clearly, summing over C and not only over the set of all genes is essential in order
to have an infinite sum on the right hand side (as one expects, since also the sum on
the left hand side consists of infinitely many terms).

Roth also found a fundamental solution of the heat equation. It shows in turn that
diffusion on metric graphs consists of a weighted overlapping of diffusions along
infinitely many paths.

Theorem 7.20 For any two x,y ∈G let Px,y be the set of all paths from x,y. Then

et∆ u(x) =
∫

G
Kt(x,y)udy for all t > 0 and x ∈G,

where

Kt(x,y) := ∑
P∈Px,y

σ(P)G1(t,distµ(x,y)), t > 0, x,y ∈G. (7.11)

Here G1 is the 1-dimensional Gaussian kernel in (4.5), distµ is the metric distance
introduced in Definition 3.14 and, again, σ(P) is defined as in (2.35).

In the special case of two points x,y on an unweighted path graph the only el-
ements of Px,y that yield a non-zero contribution are those for which no reflection
ever takes place, since by Definition 2.36 σeē = 0 whenever eterm is an inessential
node, i.e., whenever it has exactly two incident edges. We conclude that only the
shortest path between x,y yields a contribution, and we hence recover the usual
setting of Example 4.15 as a special case.

Example 7.21 It is remarkable that non-trivial qualitative information about the

spectrum of elliptic operators on networks becomes available by a direct appli-

cation of the minimax formula (7.1) in Lemma 7.3, without necessarily apply-

ing Theorem 7.15 to determine eigenvalues explicitly. First of all, it is clear that

the form domain W
1,2

Y

(

(0,1);ℓ2
µ(E)

)

is contained for Y as in (6.29) – indeed,

for every closed subspace of ℓ2
µ(E)× ℓ2

µ(E)! – between W
1,2
0

(

(0,1);ℓ2
µ(E)

)

and

W 1,2
(

(0,1);ℓ2
µ(E)

)

. Accordingly, the operator A associated with aW with form do-

main W
1,2

Y

(

(0,1);ℓ2
µ(E)

)

– i.e., the Laplacian with standard node conditions – is

always included, in the sense of self-adjoint operators, between the Laplacians with

Dirichlet and Neumann boundary conditions on L2
(

(0,1);ℓ2
µ(E)

)

. The same inter-

lacing holds for the k-th eigenvalue λk, for each k ∈ N.
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It is perhaps more interesting to compare Laplacians with standard node condi-

tions on different networks. Let us mention three easy examples.

• Whenever we consider the Laplace–Beltrami matrix L on a given finite weighted

oriented graph G, adding an edge obviously does not change the state space

ℓ2
degγ

(V), but it does certainly enlarge the numerator of the Rayleigh quotient.

This modification of the graph hence yields a smaller λ2(−L ). The same asser-

tion holds for Q,Lnorm,Qnorm.

• Let us now consider a metric graph G and V0 ⊂ V. For the hybrid Laplacian ∆

on G with standard node conditions on V
C
0 and dynamic ones on V0, the denom-

inator of the quotient in (7.1) certainly decreases if one replaces the standard

node condition on some v ∈ V
C
0 by a dynamic one in the same node; hence, the

new hybrid Laplacian thus obtained has a smaller λ2(∆).
• The dependence of the eigenvalues of the Laplacian ∆ with standard node con-

ditions on deleting of edges is rather subtle. However, it is not difficult to see that

the quotient in (7.1) is well-behaved under certain different graph operations. If

e.g. two different nodes v,w ∈ V are identified yielding a new weighted oriented

graph G
′, then it is clear that W 1,2(G′) is a closed subspace of W 1,2(G). Again,

Courant’s minimax principle says that λ2(∆) becomes smaller than it was in G.

In view of Corollary 7.5, all these observations can be translated into assertions

on the rate of convergence of diffusion equations on different networks. In this way,

the connectivity of the network is enhanced, and the corresponding diffusive system

convergence more quickly to equilibrium (recall that all λ2 is a strictly negative

number, since all our operators are dissipative).

Are there any further self-adoint realizations of the Laplacian, or more general
elliptic operators, on a metric graph? Certainly. Indeed, by Lemma 7.2 any operator
associated with a densely defined, elliptic continuous form that is symmetric is also
self-adjoint; and by Lemma 6.63 the standard form aW is symmetric if and only if
W is a self-adjoint operator on ℓ2

degµ
(V). This is not the end of the story, however.

Indeed, we have already mentioned in Section 6.5 that the node conditions (Cc′)−
(KRc′) may well be defined not only for Y defined as in (6.29), but for a general
closed subspace of ℓ2

µ(E)× ℓ2
µ(E): It is immediate to check that also in this case

aW , formally defined in the same way, is symmetric. The following sharper result is
due to P. Kuchment.

Theorem 7.22 Let Y be a closed subspace of ℓ2
µ(E)× ℓ2

µ(E) and a self-adjoint

bounded linear operator W on Y . Then the operator associated with aW is self-

adjoint.

If additionally G is finite, then conversely for any self-adjoint realization of an

elliptic operator ∇(c∇) there exist a closed subspace Y of ℓ2
µ(E)×ℓ2

µ(E) and a self-

adjoint operator (i.e., a Hermitian matrix) W ∈L (Y ) such that the node conditions

of ∇(c∇) can be written as (Cc′)− (KRc′).

The very convenient variational structure of this class of problems can be eas-
ily exploited to investigate spectral properties of the vector-valued elliptic problem
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problem






















(cu′)′(x) = λu(x), x ∈ (0,1)
(

u(1)
u(0)

)

∈ Y,
(

(cu′)(1)
−(cu′)(0)

)

+W

(

u(1)
u(0)

)

∈ Y⊥.

(EPY,W )

Proposition 7.23 Let Y be a closed subspace of ℓ2
µ(E)× ℓ2

µ(E) and a self-adjoint

bounded linear operator W on Y . The spectrum of the operator ∇(c∇) associated

with aW is real; it is contained in (−∞,0] if R is positive semidefinite. If H is finite-

dimensional, then ∇(c∇) has pure point spectrum. Then the following assertions

hold.

1) 0 is an eigenvalue of (EPY,W ) if and only if

HY := {(A,B) ∈ ℓ2
µ(E)× ℓ2

µ(E) : A = B}∩Y 6= {0} and W = 0,

and in this case the multiplicity of 0 agrees with dimHY ≤ dimℓ2
degµ

(V).

2) If W is positive semidefinite, then λ > 0 is an eigenvalue of (EPY,W ) if and

only if the space HY,W of all solutions (A,B) ∈ ℓ2
degµ

(V)× ℓ2
degµ

(V) of the system















PY⊥

(

A

Acos
√

λ +Bsin
√

λ

)

= 0

PY

(√
λ

(

B

Asin
√

λ −Bcos
√

λ

)

−R

(

A

Acos
√

λ +Bsin
√

λ

))

= 0
(7.12)

has nonzero dimension; and in this case the multiplicity of λ agrees with dimHY,R ≤
2dimℓ2

degµ
(V).

This result complements the explicit formula for the resolvent in Proposition 6.83.
Observe in particular that if W is self-adjoint, then by Theorem 7.22 the operator A

is self-adjoint and therefore iA generates a C0-group. Now, Propositions 4.51, 7.23
and 6.83 can be combined to study spectral properties of the bi-Laplacian on a met-
ric graph that was introduced in Section 2.2.4.

7.2.2 Three Schrödinger-type equations

By Stone’s theorem, the initial-value problem associated with each time-dependent
Schrödinger-type equation on G

ih̄
∂ψ

∂ t
(t,x) = Hψ(t,x), t ∈ R, x ∈G, (7.13)
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is well-posed if the relevant observable – the Hamiltonian H – is self-adjoint. Con-
versely, in the mathematical formulation of quantum mechanics each physically
meaningful self-adjoint operator on a Hilbert space can be viewed as an observable
of a given system.

One possible “physically meaningful” observable is the momentum. Classical
momentum can be quantized to yield the operator i∇ in R3, or rather i d

dx
on G –

this is the operator Ã with node conditions defined by a matrix U introduced in
Definition 2.44.

Proposition 7.24 Let U ∈L (ℓ2(E)). Then the operator Ã on G is self-adjoint on

L2(G) if and only if U is unitary. In this case the unitary group (eitÃ)t≥0 is given by

eitÃu(x) := U ku(t + x− k) if t + x ∈ [k,k+1), k ∈ N, x ∈ (0,1), t ≥ 0.

Thus, (i times) the first derivative with standard node conditions
←−
A is usually not

self-adjoint.

Another relevant equation of Schrödinger type arises if the momentum operator
is replaced by another observable – the Dirac operator D from Section 2.2.3, whose
notation we adopt in the following. The following characterizes its self-adjointness.

Proposition 7.25 A Dirac operator with boundary conditions defined by Z1,Z2 ∈
L
(

ℓ2
µ(E)×ℓ2

µ(E)
)

is self-adjoint if (Z1 Z2) is surjective and if moreover Z1Z ∗
2 is

self-adjoint. The converse implication holds if G is finite.

Finally, let us now consider (7.13) for the free Hamiltonian H = ∆ . We know
from Example 7.8 that (G1(i ·, ·))t>0,x∈R yields the integral kernel of (eit∆ )t∈R. The
proof of the fact that (Kt)t>0 in (7.11) is a fundamental solution of the heat equation
on G in [92, 359] consists essentially of three parts: It has to be checked that

• for each t > 0 Kt has the required regularity properties,
• for each t > 0 Kt satisfies the standard node conditions, and
• K ·(·) solves (Di).

In the case of the Schrödinger equation one can mimic the proofs of the above
assertions and thus easily deduce the following, where we adopt the same notations.

Proposition 7.26 The unitary group that solves the Schrödinger equation on G with

continuity and Kirchhoff node conditions (Cc)− (Kc) consists of integral operators

whose kernel is given by

Ht(x,y) := Kit(x,y) = ∑
P∈Px,y

σ(P)G1(it,distµ(x,y)), t > 0, x,y ∈G. (7.14)

7.2.3 Wave equations

Let us now consider the second order abstract Cauchy problem (ACP2) associated
with Mc∆ −Mp, where c≥ 0 and ∆ is the Laplacian with standard node conditions,
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i.e.,

∂ 2ue

∂ t2 (t,x) =
∂

∂x

(

ce
∂ue

∂x

)

(t,x)− pe(x)ue(t,x), t ≥ 0, x ∈ (0,µ(e)), e ∈ E,

(Wa)
complemented by (Cc)− (KRc). This is a system of wave equations (or, more pre-
cisely, of Klein-Gordon equations whenever p 6= 0). We already know that the as-
sociated form a is of Lions type, hence (ACP2) is well-posed. Now, a is a local,
symmetric Dirichlet form whenever p≥ 0 and W is diagonal with positive entries:
By Propositions 7.12 and 7.14 the following holds.

Proposition 7.27 Let W be diagonal with non-negative entries and pe ≥ 0 for all

e ∈ E. Then (ACP2) associated with the elliptic operator ∇(c∇)−Mp with node

conditions (Cc)− (KRc) enjoys finite speed of propagation.

The abstract wave equation on G over a finite graph G with node conditions
(Cc)− (Kc), i.e., the second order abstract Cauchy problem associated with ∆ , is
governed by a C0-cosine operator function (C(t,∆))t≥0. Because ∆ comes from an
accretive form, it is dissipative and hence by the Spectral Theorem (C(t,∆))t≥0 is
bounded. Also by the Spectral Theorem, Proposition 4.53 applies and we conclude
that periodicity of (C(t,∆))t≥0 is equivalent to (4.21). In view of Theorem 7.15, this
imposes a strong condition on the connectivity of G, which is however satisfied if G
is a path or a cycle.

7.2.4 Beam equations

As a direct consequence of the self-adjointness of the Laplacian with standard node
conditions, one deduces the following.

Proposition 7.28 Consider the bi-Laplacian with standard node conditions

D(∆ 2) :=



































u : (0,1) ∈W 4,2 ((0,1);ℓ2
µ(E)

)

s.t.

∃u|V,u′′|V ∈ CV with

(I −)⊤u|V = u(0), (I +)⊤u|V = u(1),

(I −)⊤u′′|V = u′′(0), (I +)⊤u′′|V = u′′(1),

I +M u′(1)−I −M u′(0)+W u|V = 0,

and I +W u′′′(1)−I −W u′′′(0)+W u′′|V = 0



































,

∆ 2u :=
d4u

dx4 .

Then −∆ 2 generates a C0-cosine operator function on L2(G), thus the associated

beam equation is well-posed.

Indeed, as we know the semi-explicit expression for (eit∆ )t∈R given by (7.14),
we also know by Proposition 4.51 a semi-explicit expression for (C(t,−∆ 2))t≥0.
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7.3 Quantum graphs

Consider a Hamiltonian system associated with a function H of time t, momentum
p : R→ Rn and position q : R→ Rd – it is assumed that momentum and position
completely describe the state of the system. E.g., in the classical description of a
particle in three dimensions, one has

H(p,q, t) =
(p|p)

R3

2m
+V (q, t), t ∈ R.

It is well known from classical theoretic mechanics that the particle’s dynamics is
described by the 2d-dimensional system

{

d p
dt
(t) = − ∂H

∂q
(p(t),q(t), t), t ∈ R,

dq
dt
(t) = ∂H

∂ p
p(t),q(t), t), t ∈ R,

where the Hamiltonian function represents the energy of the system. As any other
dynamical system, the above Hamiltonian system may or may not have a chaotic
behavior. Because of conservation of energy, the Hamiltonian function agrees at
any time with the energy E, i.e.,

E(p,q, t) =
(p|p)

R3

2m
+V (q, t), t ∈ R.

When trying to extend the classical framework to quantum mechanics, there is a
standard way of quantizing the above Hamiltonian system, i.e., to obtain a Hamil-
tonian operator that formally resembles the Hamiltonian function and which can be
used to set up a Schrödinger equation (7.5) in a suitable Hilbert space (typically,
L2(R3)). This quantization is commonly performed by formally replacing the mo-
mentum q by its quantum analog, the momentum operator −ih̄∇ and the potential
energy by the corresponding multiplication operator MV , so that the Hamiltonian
operator is eventually given by H := 1

2m
(−ih̄∇) · (−ih̄∇)+MV , or rather

Hψ :=− h̄2

2m
∆ψ +V ψ.

In this way, it is possible to formally translate the dynamics governing classical
systems into a quantum mechanical formalism, and vice versa. For reasons we are
not able to discuss in this brief account, it is relevant to investigate the properties
of those quantum mechanical systems whose classical analog has chaotic behavior.
This branch of mathematical physics is commonly referred to as “quantum chaos”.

One of the most intriguing open questions in this field is related to the so-called
Bohigas–Giannoni–Schmit conjecture. In their paper [59] they make a case for the
following assertion: 1

1 Here, GOE denotes the Gaussian orthogonal ensemble, the set of all symmetric matrices which
becomes a measure space whenever it is endowed with a certain Gaussian measure. One simi-
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Spectra of time-reversal-invariant systems whose classical analogs are K systems show the
same fluctuation properties as predicted by GOE.

What is truly remarkable about this conjecture is apparently that it links two
rather different subjects – quantum chaos and random matrices. Ever since, more
and more numerical evidence has been collected in the literature for an even stronger
claim, which is what nowadays usually goes under the name of BGS-conjecture and
which we can summarize as follows:

Spectra of quantum systems whose classical analogs are chaotic show the same fluctuation
properties as predicted by at least one of the random matrix ensembles GOE, GUE or GSE.

Failure of the BGS-conjecture is commonly regarded as utterly unlikely in the quan-
tum chaos community, but investigations in this subject had traditionally to deal with
models that can only be dealt with numerically: typically, spectra of Laplacians with
Dirichlet boundary conditions on two dimensional domains with peculiar geome-
tries – so-called quantum billiards.

Then, in 1997, T. Kottos and U. Smilansky made a surprising discovery. They
observed in [250] that even a very simple differential operator – to be precise, a
Schrödinger operator with magnetic potential A – defined on a metric graph dis-
plays analogous fluctuation properties as predicted by GOE (if A = 0) or GUE (if
A 6= 0), under the sole assumption that the edge lengths are rationally independent.
This is true already for very simple graphs – the example of a metric graph over the
complete graph with four nodes is done in [250]. This operator has a well-behaved
spectrum that can be determined rather explicitly. Similar properties have been ob-
served in [62] for the Dirac operator and GSE.

The discovery of Kottos and Smilansky has promptly aroused much interest in
the quantum chaos community: the expression “quantum graph” was born2. Mean-
while it has been extended to refer to the whole field of the analysis of partial dif-
ferential operators on metric graphs (and, more recently, of difference operators on
discrete graphs), but the amount of work devoted to spectral theoretical aspects is
still preponderant. Two usual references for spectral theory and ordinary differential
equations on graphs are [179, 259].

7.4 Notes and references

Section 7.1. The formulation of the Spectral Theorem in Theorem 7.1 was suggested by P. Hal-
mos in [199] with the aim of emphasize the similarities with the eponymous result for Hermitian
matrices.

Corollary 7.5 is a special case of [155, Cor. V.3.3], which holds under slightly milder assump-
tions. Many properties of semigroups that we have seen in dependence of positivity have natural

larly defines the ensembles of hermitian matrices GUE and of self-dual matrices GSE. We refer
e.g. [289] for a good introduction to random matrix theory.
2 In fact reborn: the same name was earlier sporadically used in relation to Feynman diagrams.
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self-adjoint counterparts. Indeed, historically the theory of positive C0-semigroups has been de-
veloped largely with the aim of dropping the assumption of self-adjointness from many results on
long-time behavior – e.g., for shift semigroups.

Theorem 7.7 was proved by M.H. Stone in [390] and explains why it is mostly self-adjoint
observables that are studied in quantum mechanics: The normed square of a wavefunction U(t)ψ0

can only be interpreted as a probability (for a quantum system with initial configuration ψ0) if the
C0-group (U(t))t∈❘ is unitary.

If A is self-adjoint and −A is dissipative, so that A comes from an accretive, symmetric form,
then a(ψ,ψ) represents the system’s energy at a certain configuration ψ: this explains why tech-
niques for analyzing an evolution equation based on properties of a form a evaluated along its
diagonal are sometimes referred to as energy methods.

Although Davies–Gaffney estimates had already been suggested in earlier articles, they have
been become popular with [125]. Proposition 7.12 was shown in [391]. Propositions 7.13 and 7.14
appear in [116, 380]. Because the Gaussian semigroup is the prototypical example of a semigroup
governing a well-behaved parabolic problem, Gaussian estimates are quite naturally to expect.
Theorem 7.13 and some related properties have been studied in in [116, 380]. It seems to be
unknown whether Proposition 7.14 holds if the symmetry assumption is dropped and a is only
required to be of Lions type. A concise but efficient overview of the interplay between heat kernel
estimates and properties of metric measure spaces is given in [115]. It is known that semigroup
with Gaussian estimates also enjoy several further properties: E.g., if a an analytic C0-semigroup
on L2 admits Gaussian estimates (and hence it necessarily extrapolates to Lp, p ∈ (1,∞)), then all
extrapolates semigroups on Lp have the same analyticity angle – in particular also the extrapolated
semigroup on L1 which (unlike in the case of general analytic semigroups that are contractive with
respect to both the L2 and L∞-norm) is always strongly continuous and analytic. Furthermore, all
their generators have coincident spectrum – but this is also true in the case that the generator in L2

has compact resolvent, which is usually much easier to check. We refer to [14, § 7.4] for further
related properties.

A classical way of solving the one-dimensional wave equation

∂ 2u

∂ t2 (t,x) =
∂ 2u

∂x2 (t,x), t ≥ 0, x ∈ R, (7.15)

consists in factoring it as
(

∂

∂ t
− ∂

∂x

)(

∂

∂ t
+

∂

∂x

)

u(t,x) = 0, t ≥ 0, x ∈ R,

which is justified if u is smooth enough and hence the assumptions of Schwarz’ Theorem are
satisfied. This suggests to define a new unknown

v(t,x) :=

(

∂

∂ t
+

∂

∂x

)

u(t,x), t ≥ 0, x ∈ R, (7.16)

using which (7.15) becomes an advection equation
(

∂

∂ t
− ∂

∂x

)

v(t,x) = 0, t ≥ 0, x ∈ R. (7.17)

Thus, we can first solve (7.17) and then use the solution as an inhomogeneous data in (7.16). In
this way we can deduce a few properties of the wave equation from the corresponding solutions of
the advection equation, which in turn can be explicitly solved by Example 4.16.

In particular, this approach yields (4.20) and hence the fact that the one-dimensional wave equa-
tion exhibits finite speed of propagation. Indeed, this is more generally true of the wave equation
associated with the d-dimensional Laplacian, by Proposition 7.14. Accordingly, if the initial data
u0,u1 are compactly supported, so is the solution u at any time. In this case, a spectacular result
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due to J.A. Goldstein and R.J. Duffin in [149, 184] states that if d is odd (and only then) both the
kinetic energy ‖ut‖2

L2 and the potential energy ‖∇u‖2
L2 become constant, and in fact equal, within

finite time.
One can replicate the same idea also for wave equations on networks. In this case, it is tempting

to replace the second derivative on R by the second derivative with standard node conditions on a
metric graph and to exploit the factorization (2.47). However,

←−
A K ,
←−
A C are in general not generators

of C0-semigroups (it is easy to see that they need not have the necessary number of boundary
conditions). A tricky workaround has been developed in [243].

Section 7.2.1. The core of Theorem 7.15 has been proved by J. von Below in [38], cf. also [322],
and variously extended to infinite graphs and to Laplacians with further, non-standard boundary
conditions in [45] – from where also Proposition 7.23 is taken – and other papers over the last
three decades, and in particular in [74, 91, 341]. It is particularly significant that, in view of The-
orem 7.15, there is a monotonic dependence of changes on λ2(T ) on λ2(∆). Much is known
about λ2(T ), in particular whenever G is a regular graph, cf. e.g. [104, 297]; also the behavior of
λ2(T ) and hence of λ2(∆) under graph operations has been thoroughly investigated, cf. [45] and
references therein.

If G is weighted in a non-trivial way, an analog of Theorem 7.15 is less immediate to obtain;
in particular, the knowledge of the spectrum T is poorer. Some information on λ2(∆), the second
largest eigenvalue of ∆ , has been obtained both by analytic and numerical methods in [265, 284],
cf. also the earlier investigations in [323]. In these papers, particular attention is devoted to the
shifts of λ2(∆) induced by deleting or inserting edges, and to comparisons with the (well-known)
values of λ2(∆) in some elementary graphs, most notably paths, cycles and complete graphs. Even
the very elementary case of (non-simple) graphs Gm obtained connecting two nodes with m edges
of length 1 = µ1, µ2, . . . ,µm, respectively, has a non-obvious behavior. The authors of [265] prove
that the second largest eigenvalue of the Laplacian with standard node conditions on G2 can be
either larger or smaller than on G1, depending on µ2; and that the second largest eigenvalue of Gn−1

is smaller than the second largest eigenvalue of Gn for any n ≥ 3, no matter how large µ3, . . . ,µn

are. In view of Example 7.16, this leads to surprising statement that the rate of convergence to
equilibrium of a diffusion process on a network can become slower by enhancing connectivity. A
phenomenon that seems to be closely related to this has been first predicted for traffic networks
in [68] and is nowadays referred to as Braess’ paradox. It has been actually observed in quantum
mechanical experiments, cf. [338]. This seems highly counter-intuitive in particular in view of
Rayleigh’s principle: The effective resistance between any two nodes of an electric circuit cannot

be decreased by cutting edges. This suggests that the effective resistance is not directly related to
the lowest non-trivial eigenvalue of the discrete Laplacian.

It has been observed in [45, 175, 347] that the multiplicities of the null spaces of ∆ , ∆̃ carry
relevant topological information: In the case of an unweighted, finite G

dimKer ∆̃ −dimKer∆ = Tret∆̃ −Tret∆ = |E|− |V|−κ−, (7.18)

where κ− is the number of connected components that are not bipartite.
Can one hear the shape of a metric graph? Following M. Kac [225], this question is quite

natural. One answer relies directly upon Theorem 7.15: It suffices to observe that the Laplacians
on two different metric graphs G1,G2 are clearly isospectral if so are the transition matrices T of
the underlying discrete graphs G1,G2, provided G1,G2 are both connected and either both bipartite
or both non-bipartite. Since T are isospectral G1,G2 if so are the adjacency matrices of G1,G2,
and because indeed isospectral adjacency matrices on regular connected, non-bipartite graphs are
known, von Below could answer the above question in the negative in [43].

But is it possible to modify the setting in order to recover the shape of a graph? Indeed, it
was proved in [196] that this is possible if the weights µ of the edges are not pairwise rationally
dependent. It has been shown in [45] that, remarkably, there seems to be no relevant difference
between information encoded in the spectrum of ∆ and ∆̃ : this depends on some interesting sym-
metry relation between the eigenvalues of these operators, even if their multiplicities are generally
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Fig. 7.3: An example of two isospectral metric graphs (courtesy of J. von Below).

different. A beautiful general method for constructing isospectral graphs, relating spectral issues
and (geometric) symmetries of a metric graph, has been presented in [24].

It was sketched in Example 7.16 how it is possible to obtain estimates for the speed of conver-
gence toward equilibrium of diffusion processes on metric graphs that depend on graph-theoretical
results. This idea has been elaborated e.g. in [38, 45, 254]. If for example W = 0 and µ ≡ 1 (i.e., all
edges have the same length and conditions (Kc)− (Cc) are imposed, then among all metric graphs
with given node set the fastest convergence is attained when the underlying graph is complete,
cf. [254, § 5]. Further estimates can be obtained in terms of certain parameters that are relevant in
graph theory, like the diameter and the edge connectivity parameter of a graph.

A precise description of the eigenspaces that evidences their symmetric features is obtained
in [88]. In the case of infinite graphs there are several potential theoretical reasons that motivate
the study of the Laplacian in L∞(G) instead of L2(G): This rich theory has been studied in a long
series of papers that begins with [44]. Spectral theory of second order differential operators on
metric graphs is thoroughly discussed in [51, Chapters 3–5].

Some simple instances of (7.11) have been proved in [323, 359] for finite graphs. Its later non-
trivial generalization to the infinite case has been introduced (in a slightly different formulation)
by C. Cattaneo in [92, 93].

It was showed by A. Selberg in [374] that the trace of et∆M , where ∆M denotes the Laplace–
Beltrami operator on a Riemannian manifold M, carries relevant information about the geometry of
M and in particular about the lengths of its geodesics, cf. also [108]. The formula in Theorem 7.18
arises in close analogy with Selberg’s theory upon regarding cycles in a graph as the analogs of
closed geodesics of a manifold; it is due to J.-P. Roth [358, 359], cf. also [251, 323]. A comparable
trace formula has been obtained in[266], and later for metric graphs with more general boundary
conditions in [61, 245]. More precisely, the trace formulae in the latter two articles are expressed
in terms of an identity of two measures: Roth’s formula in Theorem 7.18 can then be deduced inte-
grating them against the Gaussian kernel. The idea of describing a diffusion process as a weighted
sum of random walks, like in Theorem 7.20, is old and was already at the basis of the Feynman–

Kac formula. There, the solution of a diffusion-type equation is expressed in terms of a conditional
expectation with respect to a probability measure associated some Brownian motion: In the case
of a network, the set or Brownian motions from x to y is simply Px,y.

One-dimensional Gaussian estimates for the semigroup generated by the Laplacian with
Kirchhoff–Robin node conditions have been proved in [302] for finite metric graphs by the so-
called Davies’ trick, which amounts to prove uniform L∞-(quasi)contractivity estimates for a
class of perturbed semigroups. The proof relies substantially on the identification suggested in
Lemma 3.22 and only works in the finite case: The reason for this is that in general the isomor-
phism Φ in Lemma 3.22 fails to yield a rough isometry in the infinite case. A simpler proof pro-
posed in [339] applies Propositions 7.12 and 7.13 to Example 7.10, thus it additionally allows to
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treat the case of diffusion on infinite metric graphs. Furthermore, two-dimensional Gaussian esti-
mates are proved in [339] for the metric graph over Z

2: This means that diffusion on this metric
graph behaves like on an individual interval for short times (intuitively, until some particles initially
confined in an edge hit the edge’s boundaries), and then it starts resembling diffusion in a domain
of R

2. Here we have followed Pang’s approach, generalized in [349] to much more general infinite
planar graphs that arise as skeletons of tessellations of the plane.

Also (e−tL )t≥0, the semigroup that governs the discrete heat equation, can be trivially repre-
sented as a family of kernel operators. Kernel estimates for this semigroup are delicate and depend
essentially on metric properties of the underlying graph. Results in this direction have been ob-
tained among others in [126, 194]. In particular, T. Delmotte has proved in [130] estimates on the
kernel of the random walk on a graph by a rather sophisticated method based on proving a Har-
nack inequality for the time-continuous problem and then extending it to the time-discrete case by
a Moser-type iteration argument.

In this context, Theorem 7.22 has first appeared in [258], but cf. the historical notes at the end
of Chapter6. They have been

Section 7.2.2. Proposition 7.25 is taken from [62]. J. Bolte and his coauthors have systematically
investigated properties of the Dirac equation on a graph.

Unlike quantum mechanics, quantum fields theory on graphs seems to be still in its early stage.
Some investigations have been performed by B. Bellazzini, M. Mintchev and coauthors beginning
with [36, 37].

Section 7.2.3. The study of wave equations seems to have been one of the earliest active subfields
of the theory of PDEs on networks. There are apparent motivations for this interest, mostly coming
from mechanical engineering: We refer to [122, 268] for results – mostly focused on controllability
– and for possible higher dimensional extensions. An early investigation of the wave equation on
G has been performed in [359, § VI]. If W = 0, and hence the node conditions are of purely
Kirchhoff type, an explicit formula for the cosine operator function generated by ∆ on G was
obtained by C. Cattaneo and L. Fontana in [94, Thm. 3] see also [350]. (However, in a recent
article [271], D. Lenz and K. Pankrashkin shed light on a little known article (cf. [244], or [271,
Prop. 3] for a summary in English), only available in Russian, where a D’Alembert-type formula
for the solution has seemingly been obtained at least in the case of a finite weighted oriented
graph: A general D’Alembert-type formula for graphs that need not even be locally finite has
been obtained in [271].) A solution formula for the case of general W could probably be obtained
combining the ideas of [94, 102]. However, the formula in [94] looks extremely complicated even
on networks with simple connectivities like a star or a complete graph. Actually, the formula hardly
gives any hint on the behavior of solutions. It is therefore desirable to prove by abstract methods at
least some property one naturally expects.

Finite speed of propagation for the wave equation on a metric graph as in Proposition 7.27 has
been observed in [369] by different methods. In a different but related setting, it has been proved
in [267] that only wave equations with node conditions that give rise to local forms can enjoy finite
speed of propagation.

Also the second order abstract Cauchy problem associated with the discrete Laplacian L is
well-posed, by Theorem 6.52. One would expect finite speed of propagation there, too, but the
form associated with L is not local and therefore Proposition 7.14 does not apply directly.

Section 7.2.4. The analysis of metric graph of beams is common in the literature, though less than
waves, and the literature on this topic includes several contributions by, among others, K. Ammari,
S. Avdonin, V. Komornik, G.R. Leugering, S. Nicaise, E.J.P.G. Schmidt, E. Zuazua, cf. [122, 268]



Chapter 8

Symmetry properties

The aim of this final chapter is to discuss how possible symmetries in an (oriented)
weighted graph G influence the behavior of evolution equations – either on G or on
the metric graph G over it. We will use the word “symmetry” in a rather broad sense,
to mean different notions of structural regularity of graphs of the Laplacian on Rd .

The common thread in our discussion is the search for reductions of an equation.
By this we mean the possibility of decomposing it into components that are possibly
easier to solve, typically because their relevant functional setting are lower dimen-
sional than the original one. This usually amounts to showing that all operators of a
semigroup (or a cosine operator function) commute with a certain operator that can
be associated with some relevant symmetry of the system – like orthogonal matrices
are associated with rotational symmetry.

8.1 Commutation properties

In the classical case of a diffusion equation on a spherically symmetric domain –
e.g., a ball or Rd – it is well-known that solutions of the equation take the same value
upon rotating their argument, provided the initial value is rotationally symmetric as
well. It turns out that this observation is a special instance of the general theory of
Lie groups of symmetries.

The theory of continuous symmetries for partial differential equations is a broad
and interesting topic, but it is most effective whenever the equation is defined on
the whole Euclidean space. Indeed, Lie groups of space-dependent transformations
typically do not respect boundary conditions – or, in our case, node conditions. In
this section we are going to sketch the most elementary traits of this theory.

Definition 8.1 Let U be an open domain of Rd and K ∈ N. Let k ∈ {0, . . . ,K}. Two

functions f ,g ∈ CK(U) are said to be k-jet-equivalent at x0 ∈U if their difference

f −g vanishes at x0 along with all its partial derivatives of any order up to k.

193
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The k-th jet space at x0, denoted by Jk
x0

, is the quotient space of CK(U) with

respect to the k-jet-equivalence relation at x0. The generic element of Jk
x0

is therefore

of the form x0 ≡ (x0, jk f (x0)) for some f ∈CK(U) and is called k-jet of f at x0. The

resulting function jk f : Rd → Rdk is called the k-jet of f . Finally,

Jk := Jk(U) := {Jk
x0

: x0 ∈U} ≡U×R
dk

is called the k-th jet bundle.

(Here the coefficients dk, k ∈ N, are defined by

d0 := 1, dk := 1+
k

∑
h=1

(

d +h−1
h

)

, k ≥ 1.)

Definition 8.2 For a bounded open domain U ⊂ Rd we call each mapping from J0

to J0 a point transformation.

A family T := (Tε(x))ε∈Ix, x∈J0 (Ix ⊂ R for x ∈ J0) of point transformations is a

point transformation group if both following conditions hold.

• T satisfies the group law

Tε1+ε2(x) = Tε2 (Tε1(x)) and T0(x) = x

for all x ∈ J0 and all ε1,ε2 ∈ R for which the identity makes sense;

• the dependence of T on x and ε is jointly continuously differentiable.

Let T be a point transformation group. The k-jet of T is the family jkT of

mappings from Jk to Jk defined by

( jkTε)(x, jk f ) := (x̃, jk f̃ ), whenever (x̃, f̃ ) = Tε(x, f ), for all ε ∈ Ĩx,

for some family (Ĩx)x∈J0 of open intervals such that Ĩx ⊂ Ix and inf Ĩx = 0 for each

x ∈ J0.

Just like in the case of C0-semigroups we can define the generator of a point
transformation group T formally as its strong right derivative at 0.

Definition 8.3 Given a function H : U×C(U)× . . .×C(U)→ R, a point symmetry
group of the differential equation

H

(

x,u,
∂u

∂x1
, . . . ,

∂u

∂xd

,
∂ 2u

∂x2
1

,
∂ 2u

∂x1∂x2
, . . .

∂ 2u

∂x2
d

, . . . ,
∂ Ku

∂xK
d

)

= 0 (8.1)

is a point transformation group such that

H
(

( jKTε)(x, jKu)
)

= 0 for all ε ∈ Ĩx whenever H(x, jKu) = 0. (8.2)

Example 8.4 It can be shown (cf. [332, Example 2.41]) that the only point trans-

formation groups of the one-dimensional heat equation
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∂u

∂ t
=

∂ 2u

∂x2 , t ≥ 0, x ∈ R,

are those given by

T
(1)

ε : (t,x,u) 7→ (t + ε,x,u), ε ∈ R,

T
(2)

ε : (t,x,u) 7→ (e2ε t,eε x,u), ε ∈ R,

T
(3)

ε : (t,x,u) 7→ ( t
1−4εt

, x
1−4εt

,
√

1−4εt e
−εx2
1−4εt u), ε < 1

4t
,

T
(4)

ε : (t,x,u) 7→ (t,x+ ε,u), ε ∈ R,

T
(5)

ε : (t,x,u) 7→ (t,x+2εt,e−εx−εt2
u), ε ∈ R,

T
(6)

ε : (t,x,u) 7→ (t,x,eε u), ε ∈ R,

Now, one sees that only (T
(1)

ε )ε∈R and (T
(6)

ε )ε∈R are independent of the space vari-

able and are hence effective regardless of the geometry of the domain; or more

specifically of the boundary – or the node – conditions. (Specific domains or metric

graphs may support further families, though; e.g., (T
(4)

ε )ε∈R is clearly compatible

with a heat equation on the 1-dimensional torus, hence also with the metric graph

over a cycle graph.)

But there exists also further groups that map solutions of the heat equations into

solutions, although they do not carry a differentiable structure like a Lie group: for

instance, the cyclic group generated by the involution

(t,x,u) 7→ (t,−x,u) .

Because continuous symmetries are so rare in graphs and other discrete struc-
tures, we make a virtue of necessity and focus instead on different symmetries, of
which there is often abundance in networks: discrete ones, as the involution consid-
ered at the end of Example 8.4.

By a discrete symmetry we loosely mean a finite or countable group of mappings,
or even a single mapping (for instance a point transformation, if jets can be defined
at all) such that some relation analogous to (8.2) holds. Actually, it is not always easy
to make sense of (8.2) in the context of equations on metric graphs and/or whenever
boundary conditions are imposed – let alone whenever H in (8.1) is replaced by a
matrix acting on a space of sequences and hence a jet formalism is not available.

For all these reasons, we go over to a much more elementary notion of symmetry.
Roughly speaking, we first content ourselves with operators that intertwine with the
flow that drives an evolution equation.

Definition 8.5 Let E,F be normed spaces and R,S,T be linear operators from E to

F, on E, and on F, respectively, such that D(RS)∩D(T R) dense in E. We say that

R intertwines between S and T if

RSx = T Rx for all x ∈ D(T R)∩D(SR).

If E = F and S = T , then R and T are said to commute.
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(Here D(T R) = {x ∈ D(R) : Rx ∈ D(T )} and D(RS) = {x ∈ D(S) : Sx ∈ D(R)}.)
In many cases, R will have some natural physical interpretation. Then, finding

commutation relations is often a key to a deeper understanding of the behavior of an
equation. If in particular R is self-adjoint, then iR generates a unitary group that may
turn out to be a point transformation group for a relevant evolution equation: S,T
may e.g. belong to a larger family – a C0-semigroup, for instance, or a C0-cosine
operator function.

In the cases relevant for us, at least one of the operators is bounded, so that
Definition 8.5 simplifies a bit. Let us begin with a simple but crucial observation.

Lemma 8.6 Let E,F be normed spaces, S,T be bounded linear operators on E,F,

respectively, and R be a closed, densely defined operator from E to F. Then R inter-

twines between S and T if and only if the graph of R

GraphR :=

{(

x

Rx

)

∈ D(R)×F

}

is invariant under the operator matrix diag(S,T ), which is a bounded linear opera-

tor on E×F.

Since an operator between Banach spaces E,F is closed if and only if its graph
is a closed subspace of E × F , we are now in the position to check whether an
operator commutes with the solution operator of a first order evolution equation by
simply applying our favorite characterization of invariance of closed convex subsets
– actually, closed subspaces – under C0-semigroups. To this aim, we first need the
following, which can be checked directly.

Lemma 8.7 Let E,F be normed spaces and R be a closed, densely defined operator

from E to F. Then both IdF +RR∗ and IdE +R∗R have bounded inverse and the

orthogonal projector onto GraphR is given by

PGraphR :=

(

(IdE +R∗R)−1 R∗(IdF +RR∗)−1

R(IdE +R∗R)−1 IdF−(IdF +RR∗)−1

)

. (8.3)

Consequently, the following holds.

Corollary 8.8 Let V,Ṽ ,H, H̃ be Hilbert spaces with V and Ṽ densely and continu-

ously embedded in H and H̃, respectively. Let a : V ×V → C and ã : Ṽ ×Ṽ → C be

continuous sesquilinear forms that are H-elliptic and H̃-elliptic, respectively. Let us

denote by A, Ã the respective associated operators, and let R be a bounded linear

operator from H to H̃.

Then R intertwines between the C0-semigroups on H, H̃ generated by A, Ã, re-

spectively, i.e.,

etARx = RetÃx for all t ≥ 0 and all x ∈ H

if and only if

R(V )⊂ Ṽ , R∗(Ṽ )⊂V,
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and furthermore

a(L1x+R∗L2y,R∗RL1x−R∗L2y)= ã(RL1x+RR∗L2y,RL1x−L2y) for all x∈V, y∈ Ṽ .
(8.4)

Here
L1 := (IdH +R∗R)−1, L2 := (IdH̃ +RR∗)−1

and hence
IdH̃−L2 = RR∗L2, IdH−L1 = R∗RL1.

If in particular R is unitary, then

L1 =
1
2

IdH and L2 =
1
2

IdH̃ (8.5)

and we obtain the following.

Lemma 8.9 Under the assumptions of Corollary 8.8, let R be unitary. Then R in-

tertwines between (etA)t≥0,(e
tÃ)t≥0 if and only if R(V ) = Ṽ and

a(x+R∗y,x−R∗y) = ã(Rx+ y,Rx− y), for all x ∈V, y ∈ Ṽ . (8.6)

If additionally a and ã are symmetric, then (8.6) can be further simplified to the
condition

a(x,x) = ã(Rx,Rx), for all x ∈V. (8.7)

Corollary 8.8 is a consequence of the following special case of Theorem 6.28.

Corollary 8.10 Let V,H be Hilbert spaces with V densely and continuously embed-

ded in H. Let a : V ×V → C be a continuous H-elliptic sesquilinear form. If C is a

closed subspace of H and we denote by PC the orthogonal projector onto it, then the

following assertions are equivalent.

(a) C is invariant under (etA)t≥0.

(b) PCV ⊂V and Rea(PCu,u−PCu)≥ 0 for all u ∈V .

(c) PCV ⊂V and Rea(u,v) = 0 for all u ∈V ∩C and all v ∈V ∩C.

If a is additionally symmetric, then the assertions (a)–(c) are also equivalent to the

following ones.

(d) PC commutes with (etA)t≥0.

(e) PCV ⊂V and a(PCu,PCu)≤ a(u,u) for all u ∈V .

Proof of Corollary 8.8. The operator matrix diag(A, Ã) generates the C0-semigroup
(

diag(etA,etÃ)
)

t≥0
on the Hilbert space H× H̃. It comes from a form defined by

((

x1

x2

)

,

(

y1

y2

))

7→ a(x1,y1)+ ã(x2,y2),
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with form domain V ×Ṽ . Now, use (8.3) and apply Theorem 6.28. ⊓⊔

In in this section we focus on the invariance of closed subspaces under semi-

groups, but let us mention that Corollary 4.32 and the formula for the resolvent
operator of the reduction matrix in (4.17), together with Corollary 8.10, have the
following straightforward consequence.

Corollary 8.11 Let the assumptions of Corollary 8.10, and in particular let C be a

closed subspace of the Hilbert space H.

(1) Let additionally a be a form of Lions type, so that by Theorem 6.18 the associ-

ated operator A generates a C0-cosine operator function (C(t,A))t≥0. Then the

assertions (a)–(c) in Corollary 8.10 are also equivalent to the following.

(a′) C is invariant under (C(t,A))t≥0.

(2) Let additionally a be symmetric, so that by Theorem 7.7 the associated oper-

ator A generates a unitary C0-group (eitA)t≥0. Then the assertions (a)–(c) in

Corollary 8.10 are also equivalent to the following.

(a′′) C is invariant under (eitA)t∈R.

Example 8.12 When one tries to apply Corollary 8.10, the main difficulty is in most

cases to determine the orthogonal projector onto C. Luckily, several orthogonal

projector onto relevant closed subspaces are explicitly known. Consider for instance

the cut space of a finite, oriented graph G, i.e., the range of the transpose of the

incidence matrix I introduced in Definition 2.2: Then the orthogonal projector of

ℓ2(E) onto it can be found in [180, Thm. 14.8.1].

8.2 Graph symmetries

Let us extend the notions of automorphisms – introduced in Definition A.6 – to
nodes and edges of a weighted graph.

We assume in the remainder of this chapter that 1

G= (V,E) is the metric graph over
a locally finite, connected, weighted oriented graph G= (V,E,ρ).

1 Unlike in the previous chapters we prefer to discuss the operators on the graph and on the metric
graph. For this reason we avoid to stress the difference between a resistance-like edge weight µ
and a conductance-like edge weight γ and rather formulate all results for a generic weight ρ . This
seems to be harmless, since no embedding in the Euclidean space will play a role in this chapter and
therefore it is not relevant to make precise whether ρ should be thought of as directly or inversely
proportional to the length of an edge.
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Definition 8.13 A permutation O on V is called an automorphism of G if O pre-

serves (weighted) node adjacency, i.e., αOvOw = αvw for all v,w ∈ V, where

A = (αvw) is the adjacency matrix of Definition 2.8.

Given an automorphism O, an induced edge automorphism Õ is defined by2

Õe := (Ov,Ow) whenever e= (v,w) ∈ E. (8.8)

We denote by Aut(G) and Aut′(G) the groups of all automorphisms and induced

edge automorphisms of G, respectively.

By Remark 2.9, a permutation on V is – in the sense of the above definition
– an automorphism with respect to some orientation of G if and only if it is an
automorphism with respect to all orientations. Observe moreover that, by definition,
ρ is constant along the orbits of any induced edge automorphism Õ.

The groups Aut(G),Aut′(G) will be in most cases isomorphic: The proof of
Lemma A.8 carries over verbatim to the weighted case. However, the automorphism
group of a weighted oriented graph does in general differ from the automorphism
group of the associated unweighted graph.

Example 8.14 Let G be the oriented cycle on three edges, cf. Figure 8.1.

2

1 1

Fig. 8.1: A weighted graph with weighted automorphism group of order 2 and un-
weighted automorphism group of order 3.

As long as no weight is assigned to the edges, all nodes (and all edges) can

be mutually identified and Aut(G) is therefore isomorphic to the symmetric group

S3. If however we consider a weight function (2,1,1), then the node that is not
endpoint of the edge with weight 2 has to be fixed. Hence, Aut(G) becomes in this

case isomorphic to C2: The remaining nodes can only be either fixed or switched.

Each node permutation O induces two mappings on the vector spaces CV and CE

defined by
f : v 7→ f (Ov) and u : e 7→ u(Õe), (8.9)

respectively. We will not distinguish between the node/edge permutations and their
associated operators as in (8.9), i.e., we adopt the notation.

(O f )(v) := f (Ov) and (Õu)(e) := u(Õe), v ∈ V, e ∈ E. (8.10)

2 By the following notation we mean that the (unique) edge that has v,w as endpoints is mapped
into the (unique) edge that has Ov,Ow as endpoints. The edge orientations given originally are
respected, and so are the weights, by definition of node automorphism: i.e., ρ

(

Õ
(

v,w)
)

= ρ (v,w)
whenever v,w are adjacent.
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Concerning the metric graph G associated with G, O induces also an operator that
acts on functions defined on G by

(Ωu)(x) :=

{

uÕe

(

x

ρ(Õe)

)

, if x ∈ (0,ρ(e)), e ∈ E,

u(Ov), if x ∈ V,
(8.11)

(recall that by definition a point of G is either an element of V or an element of some
metric edge). If we are instead interested in L2-functions over the metric graphs,
which are not defined in the Lebesgue null set V, we have simply

(Ωu)e := uÕe
, u ∈ L2((0,1);ℓ2

ρ(E)
)

, e ∈ E.

The following observation will prove useful in view of Remark 8.9: We omit its
straightforward proof.

Lemma 8.15 If O is an automorphism on G= (V,E,ρ), then the mappings O, Õ,Ω
are unitary operators on ℓ2(V), ℓ2

ρ(E), and L2
(

(0,1;ℓ2
ρ(E)

)

, respectively.

Applying a node automorphism O to a function on V, in the sense of (8.10),
means performing permutations of its nodal values that are more or less apparently
compatible with its symmetries: rotating it, switching nodes, etc.. In the rest of this
section we devote our attention to the following apparently related question for the
discrete diffusion equation (4.22):

Is it clear that the same results from

• first applying an automorphism to the initial data of (4.22) and then measuring
the temperature f of the system after a time t, or else

• first letting the system evolve, then at time t applying an automorphism to the
values of the temperature function f , and finally reading off the values of f in
the nodes?

If G is finite and O is an automorphism of G, then for all t ≥ 0 the semigroup
(e−tL )t≥0 generated by the Laplace–Beltrami matrix L is given by (4.1) and

e−tL O = Oe−tL for all t ≥ 0 :

Indeed, O clearly does not only commute with the adjacency matrix A , but also
with the degree matrix D and hence by Proposition 2.12 with L . Thus, for all t ≥ 0

e−tL O =
∞

∑
k=0

(−1)ktk

k!
L kO

=
∞

∑
k=0

(−1)ktk

k!
L k−1OL

= . . .

= O
∞

∑
k=0

(−1)ktk

k!
L k = Oe−tL .
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Hence, the answer to the above question is positive. To treat the general case we
present another proof that is based on Corollary 8.10 and contains an idea that will
be recurrent in the rest of this chapter.

Proposition 8.16 If O ∈ Aut(G), then

e−tL N

O = Oe−tL N

and e−tL D

O = Oe−tL D

for all t ≥ 0,

where L N ,L D are the self-adjoint realizations of the Laplace–Beltrami matrix

studied in Section 6.4.1.

Proof. The form a in (6.23) satisfies the condition (8.7) because

a( f , f ) =
∥

∥I T f
∥

∥

2
ℓ2

ρ (E)
=
∥

∥I T O f
∥

∥

2
ℓ2

ρ (E)
= a(O f ,O f ) for all f ,g ∈ w

1,2
ρ (V),

where the central identity is justified by the fact that f ∈w
1,2
ρ (V) if and only if O f ∈

w
1,2
ρ (V), as node permutations can be interpreted as rearrangements of series: Due to

absolute convergence, summability properties are not changed. Also in view of the
fact that and using the fact that ρ is constant along induced orbits, this completely
proves the claimed commutation relation for the semigroup (e−tL N

)t≥0 associated
with a.

The same considerations apply to elements of ẘ
1,2
ρ (V) and thus yield the claim

for (e−tL D
)t≥0, too. ⊓⊔

Remark 8.17 Let A be self-adjoint. One of the reasons why one is interested in

discovering bounded linear operators R that commute with a semigroup (etA)t≥0 –

and then by Proposition 4.28.(1) with the resolvent operators R(µ,A), µ ∈ ρ(A),
hence with A itself by standard properties of functional calculus for self-adjoint

operators – is the following: If λ is an eigenvalue of A with associated eigenvalue

x ∈ D(A), then Rx satisfies

ARx = RAx = λRx.

Hence, if Rx 6= αx for any α ∈ C, one concludes that the geometric multiplicity of

λ as an eigenvalue of A is at least 2.

A computation analogous to that in the proof of Proposition 8.16 holds for the
signless incidence matrix J from Remark 2.4, thus each automorphism commutes
with the Dirichlet and Neumann-like realizations of the signless Laplace–Beltrami
matrix, too. Additionally, a corresponding commutation result can be proved for
the semigroups generated by the advection and Kirchhoff matrices introduced in
Section 6.4.2, this time checking condition (8.6) instead of (8.7), since the associated
forms are not symmetric.

What about the operators that act on functions defined on the metric graph, like
Ω introduced by means (8.11) and (8.8)? In the following we work in the setting of
Section 6.5, also adopting the notation therein. In particular, ∇(c2∇) is the elliptic
operator with standard node conditions (Cc)− (KRc), cf. Definition 2.40.
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We will assume in the remainder of this chapter that

c ∈ L∞
(

0,1;ℓ∞
ρ (E)

)

with ce(x)≥ c0 for some c0 > 0, all e ∈ E and a.e. x ∈ (0,1)

and that

W is a bounded linear operator on Y := Rg

(

(I +)
T

(I −)T

)

≃ ℓ2
degρ

(V).

Proposition 8.18 Let O ∈ Aut(G). Assume that O commutes with W and that c is

constant along the orbits of Õ, i.e.,

ce(x) = cÕe
(x) for all e ∈ E and a.e. x ∈ (0,1).

Then

et∇(c2∇)Ω = Ωet∇(c2∇) for all t ≥ 0.

Proof. The form domain W
1,2

Y

(

(0,1);ℓ2
ρ(E)

)

defined in (6.32) is left invariant un-

der Ω : Indeed, if u ∈W
1,2

Y

(

(0,1);ℓ2
ρ(E)

)

, then clearly Ωu ∈W 1,2
(

0,1;ℓ2
ρ(E)

)

and
moreover the continuity condition (Cc) is preserved, as one has

(Ωu)e(v) = uÕe
(Ov) = uÕf

(Ov) = (Ωu)f(v) for all e, f ∈ Ev and all v ∈ V.

Now, for all u,v ∈W
1,2

Y

(

(0,1);ℓ2
ρ(E)

)

one has to check that (8.7) holds for the
form aW in (6.33). The corresponding equation reads

∑
e∈E

∫ 1

0
ce(x)|u′e(x)|2ρ(e)dx−∑

e∈E

∫ 1

0
ce(x)|Ωu′e(x)|2ρ(e)dx

= (W (Ωu)|V | (Ωu)|V)ℓ2
degρ

(V)− (W u|V | u|V)ℓ2
degρ

(V) :

The right hand side – an inner product in Y – vanishes, simply because by assump-
tion W and O commute and hence Corollary 8.8 applies. The left hand side vanish,
too, by a change of variable e 7→ Õe and using the fact that ρ is constant along
induced orbits. ⊓⊔

Observe that under the assumptions of Proposition 8.18 the operator Ω leaves
invariant the domain of ∇(c2∇), and in particular functions that satisfy the stan-
dard node conditions (Cc)− (Kc) are mapped into functions that satisfy the same
conditions. Indeed, one has

Ω∇(c2∇) = ∇(c2∇)Ω .

Let us denote in the following by Aut(G) the group of all unitary operators on
L2
(

(0,1);ℓ2
ρ(E)

)

that commute with
(

et∆
)

t≥0, where ∆ is the second derivative with
standard node conditions. We can recover a version of Frucht’s Theorem A.9 for
metric graphs. For the sake of simplicity we restrict to the unweighted case of ρ ≡ 1.
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Corollary 8.19 Let Γ be a (possibly infinite) group. Then there exists a metric

graph G such that Γ is isomorphic to a subgroup of Aut(G).

Proof. To begin with, apply Frucht’s Theorem A.9 to find some graph G such that
Aut(G) is isomorphic to Γ . Such a G can be chosen to be connected and with more
than three nodes, hence by Lemma A.8 the group Aut(G) of all automorphisms and
the group Aut′(G) of all induced edge automorphisms of G are isomorphic.

The operator Ω defined in (8.11) is unitary, since Õ is a permutation, and the
chain of identifications

O 7→ Õ 7→Ω

allow us to define a group

� := {Ω : O ∈ Aut(G)}

of unitary operators on L2
(

(0,1);ℓ2
ρ(e)

)

, which by construction is isomorphic to
Aut(G) and hence to Γ .

It follows from Theorem 8.18 that each such Ω commutes with
(

et∆
)

t≥0: This
shows that � is a subgroup of Aut(G) and concludes the proof. ⊓⊔

8.3 Shortings of nodes and edges

The results in Section 8.2 show that the diffusion semigroup (e−tL )t≥0 respects the
symmetries of the graph G, in the sense that if f is symmetric with respect to an

automorphism O (meaning that O f = f , i.e., f is constant along the orbits of O),
then also the solution of the abstract Cauchy problem associated with −L with
initial data f is symmetric with respect to O for all t ≥ 0. In the following we will
instead especially focus on the operation of averaging a node function over certain
subsets of V. In view the electrostatic interpretation of our network models (cf.
Section 2.1.4.1), we will refer to it as shorting. This seems to be a more general –
and, we argue, more flexible – notion of symmetry.

Definition 8.20 Given an oriented metric graph G = (V,E,ρ) and a node weight

function ν : V→ (0,∞), a node shorting operator of G is any orthogonal projector

of ℓ2
ν(V) onto the closed subspace

{ f ∈ ℓ2
ν(V) : f (v) = f (w) for all v,w ∈ V0},

where V0 is some subset of V; while for E0 ⊂ E an edge shorting operator of G is

any orthogonal projector of ℓ2
ρ(E) onto the closed subspace

{u ∈ ℓ2
ρ(E) : u(e) = u(f) for all e, f ∈ E0}.

Likewise, given an edge subset E0, we call the orthogonal projector of L2
(

(0,1);ℓ2
ρ(E)

)

onto its closed subspace
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{

u ∈ L2((0,1);ℓ2
ρ(E)

)

: ue(x) = uf(x) for a.e. x ∈ (0,1) and all e, f ∈ E0

}

a shorting operator of the metric graph G.

If we take an automorphism O and consider the partition of V induced by the
orbits of O, Propositions 8.16-8.18 show that the shorting operator with respect to
each of its cells commutes with the respective C0-semigroups. We will see in this
section that partitions that come from automorphisms’ orbits are not the only one
that admit well-behaved shortings. Thus, such shorting procedures are rewarding:
They may be used to reduce the complexity of the problem of solving a difference
of differential equation in a non-obvious way.

Let us now identify classes of node subsets V0 whose associated shorting opera-
tors commute with the C0-semigroup generated by a matrix or a differential operator.
To warm up, let us consider the easy case of V0 = V. While a possible commuta-
tion of the operator that shorts all nodes with a semigroup that governs an abstract
Cauchy problem does not yield much information, the associated shorting opera-
tor P is easy to find: If G has finite surface with respect to the node weight ν , cf.
Definition A.17, then the all-node-shorting P is given by

P f (v) =
1
|V|ν ∑

w∈V
f (w)ν(w), v ∈ V, f ∈ ℓ2

ν(V). (8.12)

This P projects onto the one-dimensional space spanned by 1, hence it certainly
commutes with a semigroup if it is a spectral projector for the semigroup’s generator
A, i.e., if 1 is an eigenvector of A.

Example 8.21 (1) Let G be finite or, more generally, let G have finite volume with

respect to the weight function ρ . Then 1 ∈ w
1,2
ρ,degρ

(V) and the Laplace–Beltrami

matrix L on ℓ2
degρ

(V) is not injective and 1 ∈ KerL by Proposition 6.57. Hence,

averaging a function f : V → C over all nodes (i.e., shorting all nodes) one ob-

tains a new system which is trivially left invariant under the discrete heat equation,

i.e., under (e−tL )t≥0, by Corollary 8.8 and because a(1,1) = 0 for the associated

sesquilinear form defined in (6.23); in particular this phenomenon is independent

of the automorphism group of G. The same holds for (e−tLnorm)t≥0.

(2) By Proposition 6.58, also (e−tQ)t≥0 – i.e., the semigroup generated by the

signless Laplace–Beltrami matrix – commutes with the orthogonal projector defined

in (8.12), provided G has some bipartite connected component.

(3) On the other hand, even in the unweighted case just shorting two arbitrary

nodes is not sufficient to obtain an invariant subsystem under (e−tL )t≥0: Take e.g. a

path of length 2 with ρ ≡ 1 and considering the orthogonal projector P of ℓ2(V)≡
C3 onto the space

{ f : {v1,v2,v3}→ C : f (v2) = f (v3)}.

Then, for f (vn) := n, n = 1,2,3, one has
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v1 v2 v3

Fig. 8.2: Shorting two nodes of a path graph does generally not yield an invariant
subsystem.

(

3
2

)2

= a(P f ,P f )> a( f , f ) = 2.

Example 8.21.(3) suggests that shortings cannot generally be expected to be re-
spected under time evolution of a diffusive problem unless they are compatible with
the (weighted) connectivity of the graph.

One possible example of such a compatibility is given in the following, taken
from [84], but similar results can actually be obtained under weaker assumptions –
say, if G simply has a layer structure.

Proposition 8.22 Let G be finite, unweighted (i.e., ρ ≡ 1), and orientedly bipartite

(say, with V = V1∪̇V2). Let W = (ωvw) be a V×V matrix. Then the shorting op-

erator defined in (8.12) commutes with (etW )t≥0 if and only if there exist numbers

a11,a12,a21,a22 such that

a11 deg(v) = ∑
w∈V1

ωvw, a12 deg(v) = ∑
w∈V2

ωvw for all v ∈ V1, and

a21 deg(v) = ∑
w∈V1

ωvw, a22 deg(v) = ∑
w∈V2

ωvw for all v ∈ V2.

(8.13)

Example 8.23 (1) If W = A = (αvw), the adjacency matrix of G, then Proposi-

tion 8.22 trivially applies, with a11 = a22 = 0 and a12 = a21 = 1.

(2) One may also apply Proposition 8.22 to prove once again that the shorting

operator P defined in (8.12) commutes with the semigroup (e−tL )t≥0 generated by

the discrete Laplacian or with the semigroup (etQ)t≥0 generated by the signless

Laplacian. Indeed condition (8.13) is satisfied with α11 = α22 = 1 and moreover

α12 = α21 =−1 (for L ) or α12 = α21 = 1 (for W = Q).

We stress that the discrete Laplacian satisfies condition 8.13 also if new edges

are added inside either of the partitions, cf. Figure 8.3, as this graph perturbation

does not affect the sums ∑
w∈V1

ωvw, ∑
w∈V2

ωzw for v ∈ V1 and z ∈ V2.

(3) If W = L , then condition (8.13) may be satisfied even if the graph is not

bipartite: An example is given by the graph in Figure 8.3.

Example 8.23.(2) suggests that invariance of the all-node-shorting under time
evolution of diffusive system is rather robust under certain graph perturbations. It
is also noteworthy that in the case of the graph in Figure 8.3 the all-node-shorting
operator is not the only one that commutes with L and hence with (e−tL )t≥0: So
does e.g. also the shorting operator defined by
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Fig. 8.3: A perturbation of a bipartite graph with respect to the partition V=V1∪̇V2,
where V1,V2 comprise the lower and upper nodes, respectively.

P f (v) :=
1
|Vi| ∑

w∈Vi

f (w) for all v ∈ Vi, i = 1,2. (8.14)

By definition, P averages the values of f over all nodes that belong to each cell of
the partition (i.e., over the white and over the black nodes, respectively); it defines a
doubly stochastic matrix, hence by Schur’s test a bounded linear operator on ℓ2(V).

We are soon going to see that this observation can be be generalized and put into
an abstract framework. It turns out that introducing a special class of partitions is
critic to achieve this objective.

Definition 8.24 Let ν : V→ (0,∞). A partition of the node set V of G – i.e., a family

(Vi)i∈I of disjoint subsets of V whose union is V – is called inward or outward almost
equitable with respect to a node weight ν with cells (Vi)i∈I if for all i, j ∈ I, i 6= j,

there are cin
i j ∈ R s.t. ∑

w∈V j

ι+weρ
(

(v,w)
)

= cin
i jν(v) for all v ∈ Vi, e := (v,w),

(8.15)
or

there are cout
i j ∈ R s.t. ∑

w∈V j

ι−weρ
(

(v,w)
)

= cout
i j ν(v) for all v ∈ Vi, e := (v,w),

(8.16)
respectively. It is called almost equitable with respect to a node weight ν (or simply

almost equitable if ν ≡ 1) if it is both inward and outward almost equitable with

respect to the same node weight ν , i.e., if for all i, j ∈ I, i 6= j,

there are ci j ∈ R s.t. ∑
w∈V j

ρ
(

(v,w)
)

= ci jν(v) for all v ∈ Vi. (8.17)

It is called equitable with respect to a node weight ν (or simply equitable if ν ≡ 1)

if (8.17) holds for all i, j ∈ I, and not only whenever i 6= j.

Here and in the following we will assume for the sake of notational simplicity
that a partition is indexed in N, i.e.,

(Vi)i∈I ≡ (Vi)i=1,2,... (8.18)
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Due to orientation-independence of the weights ρ , cf. Definition A.14, condi-
tion (8.17) and hence the very existence of an (almost) equitable partition does not
depend on the orientation of G.

Remark 8.25 (1) In the unweighted case (ρ ≡ 1, ν ≡ 1) existence of an inward

equitable/outward equitable/equitable node partition amounts to saying that each

node in Vi precedes/follows/is adjacent to exactly ci j nodes in a cell V j, respec-

tively, for all i, j ∈ I. More generally, for ν ≡ 1 (but general ρ) a partition is almost

equitable if the weighted degree (i.e., the combined weight of all edges) towards the

cell V j is the same for all the nodes in Vi.

(2) If ν ≡ degρ , then a partition is almost equitable if in each node v ∈ Vi the

combined weight of all edges towards the cell V j – in proportion to the combined

weight of all edges incident in v – only depends on Vi, and not on the individual

node. In a graph with equitable partition the degrees of the nodes that belong to

the same cell are necessarily the same (in this sense, equitable partition are proper

generalizations of the partitions induced by orbits of groups of automorphisms).

One thus sees that a partition is equitable with respect to ν ≡ 1 if and only if it is

equitable with respect to ν ≡ degρ . The same equivalence fails to holds in the case

of a partition that is merely almost equitable, cf. Figure 8.6.

(3) There is an easy reason for introducing equitable partitions: Assume for the

sake of simplicity that ν ≡ 1 and define for a given partition (Vi)i∈I of V an I×V

matrix S = (σiv) by

σiv :=

{

|Vi|−
1
2 if v ∈ Vi,

0 otherwise.

Consider an I× I matrix

R := S A S T .

Then it has been proved in [182, 371] that the partition is equitable if and only if

RS = S A , and in this case for all λ ∈ C and all x ∈ CI

Rx = λx if and only if A S T x = λS T x.

In particular, each eigenvalue of the so-called quotient matrix R is also an eigen-

value of A .

(This result can be further refined if one considers the class of so-called walk-
regular graphs, cf. [182, § 4] or [60, S VIII.3], for which the spectra of R and A
agree – not counting multiplicities. An example is precisely the Petersen graph with

respect to partition we have just considered.)

(4) Among others, the proof of the assertion reported in (3) uses the fact that

S S T = Id. Instead, S T S is an orthogonal projector that takes the average of a

function over all nodes that belong to a cell. More precisely,

P f (v) := S T S f (v) =
1
|Vi| ∑

w∈Vi

f (w), f ∈ C
V, v ∈ Vi. (8.19)
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Example 8.26 (1) A trivial equitable partition admitted by every graph is the one

whose cells are all singletons.

For any graph, the one-cell partition of V – i.e., the partition for which all nodes

belong to the same cell – is a further almost equitable partition. It is equitable if

and only if the graph is regular (in the weighted sense of Definition 2.5).

(2) It is clear that if Γ is a subgroup of the automorphism group Aut(G), then the

orbits of Γ define an equitable partition of G. However, not all equitable partitions

of a graph G are the orbits of some subgroup of Aut(G). A simple, unweighted

counterexample is shown in Figure 8.4, taken from [181].

Fig. 8.4: A graph with an equitable partition that does not come from an automor-
phism. The two cells comprise the nodes painted in white and black, respectively.
Condition (8.17) is satisfied with c11 = c12 = 1, c21 = 2, c22 = 0.

(3) Since each node has three neighbors, the Petersen graph in Example A.7 has

two trivial equitable partitions V (1),V (2): those consisting of the whole node set

and of singletons only, respectively.

Three further non-trivial equitable partitions V (3),V (4),V (5) with respect to the

edge weight ρ ≡ 1 and to the node weight ν ≡ 1 are presented in Figure 8.5. We

stress that the second partition is induced by the graph automorphism group S5, cf.

Example A.7, but the other are not.

Fig. 8.5: Three equitable partitions of the unweighted Petersen graph: In each case,
the cells comprise the nodes painted in the same color. In the former case, condi-
tion (8.17) is satisfied with c12 = 3, c21 = 1, c23 = 2, c32 = 1, c33 = 2, c11 = c22 = 0.
(The same partition is equitable also with respect to the node weight ν = degρ :

Then, c12 = 1, c21 =
1
3 , c23 =

2
3 , c32 =

1
3 , c33 =

2
3 , c11 = c22 = 0.) With respect to

the latter partition, condition (8.17) is satisfied with c11 = c22 = 2 and c12 = c21 = 1.
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(By Theorem A.10, the Petersen graph is not Eulerian. Observe however that for

all k = 2,3,4 each cell Vi in V (k) induces an Eulerian subgraph, as cii is even for

all i ∈ I.)

Let us show how convenient the approach described in Remark 8.25.(3) is in the

particular instance of the Petersen graph. If one labels its nodes starting with the

outer circle and proceeding clockwise before turning to the inner circle, then the

adjacency matrix of the Petersen graph is

A =

































0 1 0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0 0

































,

whereas for the equitable partition denoted by V (3)

S =







1 0 0 0 0 0 0 0 0 0
0 1√

3
0 0 1√

3
1√
3

0 0 0 0

0 0 1√
6

1√
6

0 0 1√
6

1√
6

1√
6

1√
6






.

Then a direct computation yields

S A S T =





0
√

3 0√
3 0

√
2

0
√

2 2



 ,

thus we can easily say that −2,1,3 are eigenvalues of A . (Indeed, one can even

show that there are no further eigenvalues, since V (3) is compatible with the walk-

regular structure of the Petersen graph.)

(4) More generally, if one takes a graph with an equitable partition and adds or

deletes one edge between nodes that belong to the same cell as in Figure 8.6, then

the resulting graph has an almost equitable, non-equitable partition.

(4) There exists graphs without any non-trivial almost equitable partitions – and

hence, a fortiori without any non-trivial automorphisms. An example (with respect

to the edge weight ρ ≡ 1 and to the node weight ν ≡ 1) is depicted in Figure 8.7,

taken from [85]

(6) In view of (2) a graph that is regular, but not node transitive, has an equi-

table partition whose sole cell contains all nodes, but which cannot be the orbit of

any subgroup of Aut(G). An example is the so-called Frucht graph in Figure 8.8,
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Fig. 8.6: This perturbation of the Petersen graph, for ρ ≡ 1, is a an example of a
graph with an almost equitable partition that is not equitable (both with respect to
ν ≡ 1 and with respect to ν ≡ degρ ); and also of a graph with a partition that is
almost equitable partition with respect to ν ≡ 1 but not with respect to ν = degρ .

Fig. 8.7: An unweighted graph without any non-trivial almost equitable partition.

but actually by Frucht’s Theorem A.9 there are uncountably many graphs with this

property.

Fig. 8.8: The Frucht graph, an example of an unweighted graph that has only the
trivial automorphism – i.e., each orbit is a singleton. However, being cubic it admits
an equitable partition that does not consists solely of singletons.

Remark 8.27 Any node partition induces an equivalence relation on V. If ν : V→
(0,∞), then we adopt the notation

|Vi|ν := ∑
v∈Vi

ν(v), i ∈ I.
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Additionally, each node partition (Vi)i∈I of a graph canonically induces an edge

partition (Ei j)i, j∈I , where the cells Ei j consist of all edges with initial endpoint in Vi

and terminal endpoint in V j. As above we write

|Ei j|ρ := ∑
e∈Ei j

ρ(e), i, j ∈ I. (8.20)

If (Vi)i∈I is an almost equitable partition with respect to ν , then summing all

identities of the form (8.17) over v ∈ Vi and over w ∈ V j yields

|Ei j|ρ = ci j|Vi|ν = c ji|V j|ν for all i, j ∈ I such that i 6= j. (8.21)

(Let us remark that if (Vi)i∈I is equitable, then additionally

|Eii|ρ =
1
2

cii|Vi|ν for all i ∈ I.

If in particular |Vi|ν < ∞, then also |Ei j|ρ < ∞ for each j 6= i, and also for i = j if

the partition is equitable.)

We can finally show a commutation result for the C0-semigroups (e−tL N
)t≥0 and

(e−tL D
)t≥0 that act on ℓ2

degρ
(V): These semigroups exist by Lemma 4.4.

Theorem 8.28 Let G= (V,E,ρ) have an almost equitable partition (with respect to

the node weight ν ≡ 1). Assume its cells (Vi)i∈I to be finite for all i ∈ I and consider

the associated cellwise averaging operator P defined in (8.19). Then

e−tL N

P = Pe−tL N

and e−tL D

P = Pe−tL D

for all t ≥ 0.

A graph with an equitable partition should be thought of as consisting of different
layers (the cells) that are connected by edges that display a certain regularity in their
distribution. Because of the invariance of L under edge re-orienting of G, without
loss of generality we may and do assume all edges to be oriented in such a way that

cin
i j = 0, cout

i j = ci j, cout
ji = 0, cin

ji = c ji for all i, j ∈ I with i < j.

Proof. We have to check condition (e) in Corollary 8.10 for the symmetric form a

introduced in (6.23), i.e.,

‖I T P f‖2
ℓ2

ρ (E)
≤ ‖I T f‖2

ℓ2
ρ (E)

for all f ∈ w
1,2
ρ (V). (8.22)

First of all, define a cellwise averaging operator by

P̃u(e) :=
1
|Ei j|ρ ∑

f∈Ei j

u(f)ρ(f), u ∈ ℓ2
ρ(E), e ∈ Ei j, (8.23)
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which is an orthogonal projector of the Hilbert space ℓ2
ρ(E) onto the closed subspace

of all functions that are constant along cells Ei j. For all f ∈ ℓ2(V) and all i, j ∈ I

• if e ∈ Eii, then I T P f (e) = 0 since P f (v) = P f (w) for all v,w ∈ Vi,
• if e ∈ Ei j with i 6= j, and hence eterm ∈ V j and einit ∈ Vi, then

I T P f (e) = P f (eterm)−P f (einit)

=
1
|V j| ∑

v∈V j

f (v)− 1
|Vi| ∑

w∈Vi

f (w)

(∗)
=

c ji

|Ei j|ρ ∑
v∈V j

f (v)− ci j

|Ei j|ρ ∑
w∈Vi

f (w)

=
cin

ji

|Ei j|ρ ∑
v∈V j

f (v)−
cout

i j

|Ei j|ρ ∑
w∈Vi

f (w)

(∗∗)
=

1
|Ei j|ρ ∑

e∈Ei j

f (eterm)ρ(e)−
1
|Ei j|ρ ∑

e∈Ei j

f (einit)ρ(e)

=
1
|Ei j|ρ ∑

e∈Ei j

( f (eterm)− f (einit))ρ(e)

= P̃I T f (e).

Here (∗) follows from (8.21) and (∗∗) is a direct consequence of Lemma 2.1
applied to the subgraph of G that consists solely of the edges in Ei j and their
endpoints. (The rearranging of the sums in the last step is justified by the fact the
edge cells Ei j are finite, as so are the node cells Vi,V j by assumption.)

In other words, for all i, j ∈ I and all e ∈ E

I T P f (e) =

{

P̃I T f (e) e ∈ Ei j, i 6= j,
0 e ∈ Eii.

In view of the above observations, one has for all f ∈ w
1,2
ρ (V)
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∑
e∈E

ρ(e)|I T P f (e)|2 = ∑
i, j∈I
i6= j

∑
e∈Ei j

ρ(e)|I T P f (e)|2 +∑
i∈I

∑
e∈Eii

ρ(e)|I T P f (e)|2

= ∑
i, j∈I
i6= j

∑
e∈Ei j

ρ(e)|P̃I T f (e)|2

= ∑
i, j∈I
i 6= j

∑
e∈Ei j

ρ(e)

∣

∣

∣

∣

∣

1
|Ei j|ρ ∑

f∈Ei j

ρ(f)I T f (f)

∣

∣

∣

∣

∣

2

(∗∗∗)
≤ ∑

i, j∈I
i6= j

∑
e∈Ei j

ρ(e)

|Ei j|ρ ∑
f∈Ei j

ρ(f)
∣

∣I T f (f)
∣

∣

2

= ∑
i, j∈I
i6= j

∑
f∈Ei j

ρ(f)
∣

∣I T f (f)
∣

∣

2

≤ ∑
e∈E

ρ(e)|I T f (e)|2,

where (∗ ∗ ∗) follows from Bessel’s inequality. This shows that (8.22) holds and
completes the proof. ⊓⊔

Example 8.29 The almost equitable partition for the graph in Figure 8.9 shows

how rough can be graphs that satisfy the assumptions of Theorem 8.28.

Fig. 8.9: If f attains the same value in the black nodes, and if it attains the same
value in the white nodes, so does e−tL f for all t > 0.

Let us turn to metric graphs G = (V,E) built upon discrete graphs G = (V,E)
with an equitable partition. If one looks for an analog of Theorem 8.28, one may
conjecture that the correct pendant of the P in (8.28) is the operator that projects onto
“radial” functions or rather, more generally, the one that shorts all points with the
same coordinate belonging over all (metric) edges in the same cell Ei j for i 6= j; and
that shorts all points in the same cell Eii for each i. Unfortunately, by Corollary 8.10
this projector does not commute with the semigroup even in very simple cases, as
the first condition in (b) therein is not satisfied.

Indeed, shorting the graph in Figure 8.10 in this radial manner one obtains a
corresponding orthogonal projector defined by
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e1 e2

e3

Fig. 8.10: Shorting the points of a graph in a radial manner does in general not yield
a subspace that remains invariant under time evolution. In this case, “radial” means
that we are shorting – i.e., identifying – all points of the graph which we have drawn
as having the same ordinate, including all those on the edge e3.

u 7→





u1+u2
2

u1+u2
2

∫ 1
0 u3(y) dy ·1



 ,

but the range of this operator also contains functions that are not continuous in the
nodes: Take e.g. any function u ≥ 0 whose nonempty support is contained in the
interior of e3.

However, the following analog of Theorem 8.28 does hold.

Theorem 8.30 Let G = (V,E,ρ) have an almost equitable partition (with respect

to the node weight ν ≡ 1). Assume its cells (Vi)i∈I to be finite for all i ∈ I and

additionally that

cin
i j = 0, cout

i j = ci j, cout
ji = 0, cin

ji = c ji for all i, j ∈ I with i < j (8.24)

and

cin
ii = cout

ii for all i ∈ I, (8.25)

with the notation of Definition 8.24.

Consider the averaging operator

Πue(x) :=
1
|Ei j|ρ ∑

f∈Ei j

uf(x)ρ(f), u ∈ L2((0,1);ℓ2
ρ(E)

)

, x ∈ (0,1), e ∈ Ei j.

(8.26)
If c is cell-wise constant, i.e., for all i, j ∈ I there exist functions cEi j

, such that

ce(x) = cEi j
(x) for all e ∈ Ei j and a.e. x ∈ (0,1),

then

et∇(c2∇)Π = Πet∇(c2∇) for all t ≥ 0.

Here ∇(c2∇) is the elliptic operator with node conditions (Cc)− (Kc).

Under the assumptions (8.24)-(8.25), and with the notation in (8.18), one has
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Ei j = /0 if j 6= i or j 6= i+1. (8.27)

Furthermore, for all i ∈ I the subgraph of G induced by Vi is orientedly Eulerian, cf.
Definition A.3. Observe that

Πu(x) = P̃(u(x)), for a.e. x ∈ (0,1), (8.28)

where P̃ is the orthogonal projector defined in (8.26). In other words, Π is an or-
thogonal projector that acts by shorting all points which – with respect to the chosen
parametrization of the set of metric edges – share the same coordinate.

Proof. We focus for the sake of simplicity on the case of W = 0, i.e., of Kirchhoff
node conditions without any absorption term: In this way ∇(c2∇) is certainly a self-
adjoint operator, hence the associated form is symmetric. The general case will be
briefly discussed afterwards.

It suffices to check condition (e) in Corollary 8.10 for the quadratic form aW

(with W = 0) associated with ∇(c2∇), cf. Section 6.5, i.e.,

a(u,v) := ∑
e∈Ei j

∫ 1

0
c2
e(x)u

′
e(x)v

′
e(x)ρ(e) dx,

defined on the space of W 1,2-functions on the metric graph G that are continuous in
the nodes of G, i.e., on

W
1,2

Y

(

(0,1);ℓ2
ρ(E)

)

:=

{

u ∈W 1,2((0,1);ℓ2
ρ(E)

)

:

(

u(1)
u(0)

)

∈ Rg

(

(I +)
T

(I −)T

)}

.

By definition P̃ and hence Π act as linear combinations, hence they commute with
the first derivative: Therefore, Πu∈W 1,2

(

(0,1);ℓ2
ρ(E)

)

whenever u∈W 1,2
(

(0,1);ℓ2
ρ(E)

)

.
We still have to check that Πu is continuous in the nodes, provided so is u. Let
v ∈ V j. If e ∈ Ei j with i = j−1, then

(Πu)e(v) =
1
|Ei j|ρ ∑

f∈Ei j

uf(fterm)ρ(f)

(∗)
=

1
|Ei j|ρ ∑

v∈V j

c jiu(v)

(∗∗)
=

1
|V j| ∑

v∈V j

u(v),

where (∗) and (∗∗) hold by Lemma 2.1 and by (8.21), respectively. Similar com-
putations show that (Πu)e(v) =

1
|V j | ∑

v∈V j

u(v) if e ∈ E j j or e ∈ E jk for k = j + 1.

Thus, the value of Πu in the nodes is independent of the incident edge, hence the
continuity condition (Cc) is satisfied.
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In view of Corollary 8.10, and observing that a is symmetric, it now suffices to
show that a(Πu,Πu)≤ a(u,u) holds for all u∈W 1,2

(

(0,1);ℓ2
ρ(E)

)

. Indeed, one has
by (8.27)

a(Πu,Πu) = ∑
e∈E

∫ 1

0
c2
e(x)|(Πu)′e(x)|2ρ(e) dx

= ∑
i, j∈I
i≤ j

c2
Ei j

(x) ∑
e∈Ei j

∫ 1

0

∣

∣

∣

∣

∣

1
|Ei j|ρ ∑

f∈Ei j

u′f(x)ρ(f)

∣

∣

∣

∣

∣

2

ρ(e) dx

(∗∗∗)
≤ ∑

i, j∈I
i≤ j

c2
Ei j

(x) ∑
e∈Ei j

ρ(e)

|Ei j|ρ ∑
f∈Ei j

∫ 1

0
|u′f(x)|2ρ(f) dx

= ∑
i, j∈I
i≤ j

∑
f∈Ei j

∫ 1

0
c2
e(x)|u′f(x)|2ρ(f) dx

≤ a(u,u),

where (∗∗∗) is justified again by Bessel’s inequality. ⊓⊔

8.3.1 General symmetries of equations on metric graphs

Shorting the the points of a network, in the sense of Definition 8.20, means imposing
the same value (of temperature, density, etc. – depending on the model) on the points
of all edges in the metric graph that share the same parametrization, provided they
belong to a certain relevant subset of the metric edge set E. In this section we are
going to make a case for the introduction of a generalized notion of shorting.

Let P̃ be an orthogonal projector of ℓ2
ρ(E) and consider

{

u ∈ L2((0,1);ℓ2
ρ(E)

)

: u(x) ∈ Rg P̃ for a.e. x ∈ (0,1)
}

. (8.29)

Invariance of this kind of subspaces under the C0-semigroup (et∇(c2∇))t≥0 (cf. Sec-
tion 6.5) will be the topic of this section.

The orthogonal projector Π of L2
(

(0,1);ℓ2
ρ(E)

)

onto the closed subspace defined
in (8.29) is formally given in (8.28), even if P̃ is now a more general operator. The
shorting operators introduced in Section 8.3 are special instances of operators of this
kind: For this reason we refer to such Π as generalized shorting operators.

Example 8.31 The range of Π – i.e., the space in (8.29) – is finite dimensional only

if P̃≡ 0. Hence, no rank-1 operator (see Definition 4.36) – and in particular not the

functional that maps each function into its average – can be a generalized shorting

operator.
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With the notations of (6.32) and (6.29), by Corollary 8.10 the semigroup gen-
erated by the elliptic operator ∇(c2∇) with standard node conditions (Cc)− (KRc)
(which is possibly non self-adjoint, depending on the operator W that appears in the
node conditions) leaves invariant RgΠ if and only if

• Π
(

W
1,2

Y

(

(0,1);ℓ2
ρ(E)

)

)

⊂W
1,2

Y

(

(0,1);ℓ2
ρ(E)

)

and

• a(Πu,u−Πu) = 0 for all u ∈W
1,2

Y

(

(0,1);ℓ2
ρ(E)

)

.

The latter condition is equivalent to

∫ 1

0
(c2Πu′ | u′−Πu′)ℓ2

ρ (E)
dx+(W (Πu)|V | (u−Πu)|V)ℓ2

degρ
(V)

!
= 0

for all u ∈W
1,2

Y

(

(0,1);ℓ2
ρ(E)

)

. (Observe that in order to write (Πu)|V one already
has to know that Πu is continuous in the nodes, i.e., the first condition already has to
hold.) But the first addend always vanishes if (an analog of) Theorem 8.30 applies,
hence the condition boils down to checking that

(W (Πu)|V | (u−Πu)|V)ℓ2
degρ

(V)
!
= 0 for all u ∈W

1,2
Y

(

(0,1);ℓ2
ρ(E)

)

.

In the remainder of this section we will mostly focus on the analysis of the first
condition in dependence on the orthogonal projector P̃ on ℓ2

ρ(E) associated with Π
– an issue that turns out to be intimately related to structural property of graphs.

Definition 8.32 We call the generalized shorting operator P̃ admissible if Π in (8.28)
maps W

1,2
Y

(

(0,1);ℓ2
ρ(E)

)

into itself.

We stress that admissibility does depend on the orientation of the graph. Now,
the proof of Theorem 8.30 prevails for generalized shorting operators whenever P̃

is admissible. Thus the main question is to understand how admissibility can be
characterized.

Lemma 8.33 Let G be finite and let Π be a generalized shorting operator associ-

ated (via (8.28)) with an orthogonal projector P̃ on ℓ2
ρ(E)). If P̃ is admissible, then

1 is an eigenvector of P̃.

Proof. Consider the constant function 1 : [0,1] ∋ x 7→ (1, . . . ,1)⊤ ∈ CE and observe
that 1 ∈W

1,2
Y

(

(0,1);ℓ2
ρ(E)

)

and Π1(x) = P̃1 for a.e. x ∈ (0,1). This shows that on
each edge Π1 is a constant function.

Since by hypothesis Π
(

W
1,2

Y

(

(0,1);ℓ2
ρ(E)

)

)

⊂W
1,2

Y

(

(0,1);ℓ2
ρ(E)

)

and hence

Π1∈W
1,2

Y

(

(0,1);ℓ2
ρ(E)

)

, all these (constant) edge values coincide, hence Π1 = α1

for a scalar α . ⊓⊔

Remark 8.34 Observe that P̃1 ∈ {0,1}, since the only eigenvalues of an orthog-

onal projector are 0 and 1, and that 1 ∈ Ker(Id−P̃) if 1 ∈ Rg P̃. Moreover, P̃ is

admissible if and only if Id−P̃ is admissible. Therefore, we can assume without loss

of generality that 1 ∈ Rg P̃.
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This observation can be used especially to deliver an alternative proof of irre-

ducibility of the semigroup generated by the elliptic operator ∇(c2∇) with node

conditions (Cc)− (KRc) (cf. Proposition 6.77), provided G is finite and connected:

To this aim we have to show that there exists no proper subgraph G
′ of G (say, with

edge set E′) such that the closed subspace

{ f ∈ L2((0,1);ℓ2
ρ(E)

)

: fe ≡ 0 for all e ∈ E
′}

is invariant under (et∇(c2∇))t≥0. The orthogonal projector onto it is given by Π as

in (8.28), where P̃ is the E
′× (E\E′) diagonal block matrix

P̃ =

(

Id 0
0 0

)

.

Since 1 is not an eigenvector of P̃, by Lemma 8.33 and Corollary 8.10 { f ∈ L2(G) :

f|G′ = 0} is not invariant under (e∇(c2∇))t≥0, independently of the elliptic coefficient

c2 and on the term W that appears in the node conditions.

Some classes of oriented graphs can even be characterized in terms of the admis-
sibility of the all-edge-shorting

P̃ue =
1
|E|ρ ∑

f∈E
ufρ(f), e ∈ e, u ∈ C

E. (8.30)

Theorem 8.35 Let G have finite volume. Consider the orthogonal projector P̃

defined in (8.30) and let Π be the associated generalized shorting operator on

L2
(

(0,1);ℓ2
ρ(E)

)

as in (8.28). Then P̃ is admissible if and only if G is orientedly

bipartite or orientedly Eulerian, cf. Definition A.3.

Proof. By definition, P̃ is admissible if and only if Πu is continuous in the nodes for
all u ∈W

1,2
Y

(

(0,1);ℓ2
ρ(E)

)

. Denote by V0 (resp., by V1) the subset of V consisting
of all nodes with nonzero outdegree (resp., nonzero indegree).

Let first P̃ be admissible. If V0 ∩V1 = /0, then G is by definition an orientedly
bipartite graph. Let on the other hand V0 ∩V1 6= /0. By admissibility of P̃, a vector
(Πu)|V ∈ CV of joint node values exists for any u ∈W

1,2
Y

(

(0,1);ℓ2
ρ(E)

)

if and only
if

1
|E|ρ ∑

e∈E
ue(0)ρ(e) =

1
|E|ρ ∑

e∈E
ue(1)ρ(e). (8.31)

For an arbitrary node v∈V choose u∈W
1,2

Y

(

(0,1);ℓ2
ρ(E)

)

in such a way that u(v) =
1 and u(w) = 0 for all w 6= v. Then

∑
e∈E

ue(0)ρ(e) = ∑
e∈E

ι−veρ(e) = degin
ρ (v),

as well as

∑
e∈E

ue(1)ρ(e) = ∑
e∈E

ι+veρ(e) = degout
ρ (v),
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where (ι+ve),(ι
−
ve) denotes the incoming and outgoing incidence matrix, respectively.

Therefore, G is by definition orientedly Eulerian.
If conversely G is orientedly bipartite, then for an arbitrary u∈W

1,2
Y

(

(0,1);ℓ2
ρ(E)

)

there holds

(Πu)(v) =
1
|E|ρ ∑

e∈E
ue(0)ρ(e) for all v ∈ V0

and

(Πu)(v) =
1
|E|ρ ∑

e∈E
ue(1)ρ(e) for all v ∈ V1.

This shows continuity of Πu in the nodes and hence admissibility of P̃. It can be
proved likewise that (8.31) holds, and hence that P̃ is admissible, if instead G is
orientedly Eulerian. ⊓⊔

We conclude mentioning a further structural result.

Theorem 8.36 If G is finite, then the following assertions hold.

(1) All nodes of G have degree 1 if and only if all orthogonal projectors P̃ of ℓ2
ρ(E)

are admissible.

(2) G is a star if and only if all orthogonal projectors P̃ of ℓ2
ρ(E) with eigenvector

1 are admissible.

8.4 Variational symmetries via shortings

Let us conclude this chapter by suggesting a further motivation for investigating
admissible (generalized) shorting operators. To this aim we will come back to the
ideas sketched in Section 8.2 and consider a new notion of symmetry group that
is more easily checked than that of point symmetry group, but only fits differential
equations with a Lagrangian structure.

Definition 8.37 For a bounded open domain U ⊂ Rd and a Lagrangian L ∈C2(J1)
we call a point transformation group T := (Tε(x))ε∈Ix, x∈J0 (Ix ⊂ R for each x∈ J0)

a variational symmetry group of the Euler–Lagrange equation associated with L if

for the 0-th jet (xε ,uε) := ( j0Tε)(x,u) and ωε := {xε ∈ Rd : x ∈ ω} the identity

∫

ω
L( j1Tε(x, j1u))dx =

∫

ωε

L(x, j1u)dx (8.32)

holds for all open domains ω ⊂ U, all |ε| small enough that (8.32) makes sense,

and all u ∈C1(U).

The following fundamental result was proved by E. Noether in [327]. It shows
a tight relation between invariance of linear subspaces and the notion of symmetry
– as made precise in Definition 8.37 – that has been much exploited over the last
century in the classical and quantum field theories. In a modern language based on
jet formalism Noether’s theorem can be expressed as follows.
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Theorem 8.38 Let U be an open bounded domain of Rd with smooth boundary

and consider a Lagrangian L ∈C2(J1). Then for each variational symmetry group

(Tε(x))ε∈Ix,x∈J0 with generator

A := (ξ1, . . . ,ξn,φ)

of the Euler–Lagrange equation associated with L the identity

n

∑
k=1

∂

∂xk

(

φ̃(x, j1u)
∂L

∂uxk

(x, j1u(x))−L(x, j1u(x))ξk(x, j1u)

)

= 0

holds for all (x,u)∈ J1 in the solution manifold of the same equation, provided each

ξi depends on the independent variables only, i.e. ξi 6= ξi(u), i = 1, . . . ,n. Here φ̃ is

defined by

(ξ̃1, . . . , ξ̃n, φ̃)(x, f ) :=

(

lim
ε→0

xε − x

ε
, lim

ε→0

fε(xε)− f (x)

ε

)

.

Roughly speaking, Noether’s theorem states that if a Lie group acts on the phase
space of a differential equation in terms of variational symmetries, then there exist
a number of independent conserved quantities of the differential equation equal to
the dimension of the Lie algebra.

Unlike the heat equation, which cannot be seen as a Euler–Lagrange in a natural
way, cf. [332, Chapter 4], the Schrödinger equation has a natural Lagrangian struc-
ture: This observation goes back to R. Feynman [131]. Hence, we can apply to it
Noether’s theorem.

Example 8.39 With a computation similar to that performed to determine the point

symmetry groups of the heat equation as in Example 8.4, the point symmetry groups

of the one-dimensional Schrödinger equation can be shown to be

i
∂ψ

∂ t
=

∂ 2ψ

∂x2 , t ∈ R, x ∈ R,

are those given by

T
(1)

ε : (t,x,ψ) 7→ (t + ε,x,ψ), ε ∈ R,

T
(2)

ε : (t,x,ψ) 7→ (e2ε t,eε x,ψ), ε ∈ R,

T
(3)

ε : (t,x,ψ) 7→ ( t
1−4εt

, x
1−4εt

,
√

1−4εt e
−εx2
1−4εt ψ), ε < 1

4t
,

T
(4)

ε : (t,x,ψ) 7→ (t,x+ ε,ψ), ε ∈ R,

T
(5)

ε : (t,x,ψ) 7→ (t,x+2εt,e−iεx−iεt2
ψ), ε ∈ R,

T
(6)

ε : (t,x,ψ) 7→ (t,x,eiε ψ), ε ∈ R.

We will be particularly interested in (T
(6)

ε )ε∈R: On one hand, it is still a point sym-

metry group if we consider the Schrödinger equation in a rougher environment,

like a metric graph; on the other hand, the conserved quantity whose existence is
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guaranteed by Noether’s Theorem is rather important: In quantum mechanics, this

conserved quantity is interpreted as mass.

As long as a wavefunction is scalar-valued – as it is in Example 8.39 – there is
but one possibility of rotating its phase. But if the wavefunction is vector-valued,
like the solution of a Schrödinger equation in the Hilbert space L2

(

(0,1);ℓ2
ρ(E)

)

,
cf. Proposition 7.26, then “partial” phase rotations may actually define further vari-
ational symmetry groups.

Theorem 8.40 Let G = (V,E,ρ) have N almost equitable partitions (with respect

to the node weight ν ≡ 1). For each of them, assume its cells (Vi)i∈I to be finite for

all i ∈ I and additionally that

cin
i j = 0, cout

i j = ci j, cout
ji = 0, cin

ji = c ji for all i, j ∈ I with i < j

and

cin
ii = cout

ii for all i ∈ I,

with the notation of Definition 8.24. Then there exists N conserved quantities for the

Schrödinger equation on the metric graph G over G.

One can interpret them as conservation of mass on reduced solution manifolds.
An analogous assertion holds for the wave equation, for which the Lagrangian struc-
ture is well-known.

Proof. For each of the almost equitable partitions, consider the associated short-
ing operator Π on the Hilbert space L2

(

(0,1);ℓ2
ρ(E)

)

. Now, Theorem 8.30 applies

and Π commutes with the semigroup (et∆ )t≥0 generated by ∆ with standard node
conditions (Cc)− (Kc), and by Corollary 8.11 this is equivalent to the fact that
Π commutes with the unitary group (eis∆ )s∈R. Since Π is self-adjoint, by Stone’s
Theorem 7.7 one can consider the unitary group (eisΠ )s∈R. By Example 4.1, Π
commutes with (eis∆ )s∈R if and only if so does (eisΠ )s∈R. Thus, we have found a
variational symmetry group (eisΠ )s∈R for the Schrödinger equation. ⊓⊔

8.5 Notes and references

Section 8.1. According to J. Neuberger [320, § 5.2], formula (8.3) is due to J. von Neumann.

Section 8.2. There is an extensive theory of applications of Lie groups to ordinary and partial dif-
ferential equations. A comprehensive introduction can be found in [332]. The interplay between
automorphisms of (discrete) graphs and the various semigroups that govern diffusion-type equa-
tions on the graphs is studied in [305, 306].

Section 8.3. The results in this section have been extensively developed in [84, 306].
The analogy between projecting a function to its cell-wise average and shorting all the nodes

in the same cell is quite old and has been variously exploited. Shorting techniques have become
popular when they were proposed in [318] by C.St.J.A. Nash-Williams in order to prove recurrence
of the random walk on the lattice Z

2, cf. the exposition in [145, § 2.2]. A manifold of further
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potential theoretic problems can nowadays be treated by shorting methods, see e.g. [411, §§ 2–3
and references therein]. Related notions of symmetries on metric graphs have been discussed by
several authors, see e.g. [63, 163, 233, 375]. Proposition 8.22 is [84, Prop. 3.13].

In the case of unweighted graphs, the concept of almost equitable partition has been introduced
in [85] as a generalization of notions proposed in [364], [54, Chapter 20], and [371], cf. also [298]
for an extension to infinite, uniformly locally finite graphs.

An equivalent but perhaps more eidetic explanation of the result discussed in Remark 8.25 relies
upon the notion of quotient graph: If G is a graph with an equitable partition, then its quotient graph
is the directed, weighted directed graph with node set of cardinality |I| (the i-th node corresponding
to the cell Vi) such that (Vi,V j) is an edge (and if so, with weight ci j) if and only if ci j 6= 0. Again,
the spectrum of the adjacency matrix of G contains the spectrum of the adjacency matrix of its
weighted quotient graph, see e.g. [180, Thm. 9.3.3]. As we have seen in Example 8.26.(3), the
(unweighted) Petersen graph is an example of graph with an equitable partition. Its quotient graph
with respect to its equitable partition which we have denoted by V (3) is shown in Figure 8.11. The
corresponding adjacency matrix is





0 3 0
1 0 2
0 1 2



 .

3

1

2

1

2

Fig. 8.11: An equitable partition of the Petersen graph and the associated quotient
graph.

Section 8.4. The defining condition of variational symmetry groups looks like a weak formulation

of that of point symmetry group. Each point symmetry groups of a Euler–Lagrange differential

equation is also a variational symmetry group, cf. [332, §4.2]. A modern treatment of Noether’s

theory can be found e.g. [332, § 4.4] or [160, § 8.6].



Appendix A

Basics on graph theory

We review in this chapter the most elementary notions of graph theory and present in
passing a few graph-theoretical theorems of combinatorial nature that have actually
played a role in other chapters. Throughout the book we have tacitly adopted all
notations presented in this Appendix.

Definition A.1 A directed graph, or digraph, is a pair G = (V,E), where V is a

(finite or countable) set and E is a subset of V×V. We refer to the elements of V

and E as nodes and edges, respectively. A digraph is said to be simple if for any two

elements v,w ∈ V

(S1) at most one of the pairs e := (v,w), ē := (w,v) is an element of E and

(S2) the pair (v,v) is not an element of E.

Simple digraph are called oriented graphs. We call G finite if so are V and hence E.

The initial and terminal endpoint (or sometimes: tail and head) of e ≡ (v,w) are v

and w, respectively. We denote them by

einit := v and eterm := w, (A.1)

and say that they are adjacent (shortly: v∼w) and more precisely that v precedes w,

or that w follows v; or that they are neighbors. One also says that e is incident in v

(as well as in w); and that two edges are adjacent if they share and endpoint.

(Observe that this notion of edge adjacency is independent of orientation.)
Conditions (S1) and (S2) stipulate that there are no multiple edges between two

nodes, and no loops connecting one node to itself.

Definition A.2 A simple graph is an oriented graph the orientations of whose edges

are ignored; i.e., any edge is a set of the form {v,w} for v,w ∈ V with v 6= w.

Conversely, an oriented graph over a given simple graph is determined fixing the
orientation of each of its edges – clearly, there are 2|E| different oriented graphs over
the same simple graph. One can show by a simple double counting argument that
for all simple graphs the Handshaking Lemma

223
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|E|= 1
2 ∑
v∈V

deg(v) (A.2)

holds.

Definition A.3 Let G= (V,E) be an oriented graph.

1. A subgraph of G is an oriented graph G̃ = (Ṽ, Ẽ) such that Ṽ ⊂ V and Ẽ ⊂ E.

The subgraph is called induced if additionally

v,w ∈ Ṽ and (v,w) ∈ E implies (v,w) ∈ Ẽ.

2. If any two nodes are adjacent, then G is called complete.

3. Nodes with no neighbors are said to be isolated. Nodes with only one neighbor

are called leaves. A node is inessential if it has exactly two neighbors. Ramifi-
cation nodes are those with at least three neighbors.

4. If v,w ∈ V and n ∈ N, then an n-path from v to w is a pair of sequences

(v1, . . . ,vn+1) ∈ V
n+1 and (e1, . . . ,en) ∈ E

n,

where v1 = v, vn+1 = w, and for all i = 1, . . . ,n either ei = (vi,vi+1) or ei =
(vi+1,vi). A path from v to w is called closed if v = w; it is called oriented
if ei = (vi,vi+1) for all i = 1, . . . ,n. A path all of whose edges are distinct is

called a trail.
5. One defines an equivalence relation identifying all closed paths that consist of

sequences of nodes and edges that are equal up to some shift. The representative

of a corresponding equivalence class is called a circuit, or sometimes a periodic
orbit. A circuit is uniquely determined by the sequence of its edges.

6. Because a circuit is allowed to contain the same nodes and even the same edges,

one can produce a new circuit C = n ·C0 out of an old one C0 by repeating n

times all its nodes and edges in the same sequence. Given a circuit C, its gene
(or sometimes: primitive) Gen(C) is the circuit such that C= n ·Gen(C) for the

largest possible n ∈ N.

7. A cycle is a closed path whose nodes (with the exception of the initial and

terminal one) and edges are pairwise different. An oriented cycle is an oriented

path that is a cycle.

8. If for any two nodes v,w ∈ V there is a path from v to w, then G is called

connected, and strongly connected if the path can be chosen to be oriented. A

connected/strongly connected component of G is a largest connected/strongly

connected subgraph.

9. A subgraph of G is called a forest if none of its subgraphs is a cycle as subgraph,

and a tree if additionally it is connected. It is called a spanning tree of G if its

node set agrees with V. One checks that G is a forest if and only if

|E|− |V|+κ = 0, (A.3)
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where κ is the number of connected components. Indeed, |E| − |V|+ κ is the

number of independent cycles contained in G, cf. [237, § 5], and is thus called

cyclomatic number (or sometimes first Betti number) of G.

10. If there is one node v ∈ V – which is then called center – such that any fur-

ther w ∈ V is adjacent to v, and only to it, then G is a star. If the center is

initial/terminal endpoint of each edge, then G is called outbound/ inbound star,
respectively; in either case it is an oriented star.

11. If V can be partitioned in two subsets V1,V2 such that (v,w) 6∈ E for any two

nodes v,w ∈Vi, i = 1,2, then G is called bipartite. If furthermore each node v in

V1 and each node in V2 is initial and terminal endpoint of any incident edge,

respectively, then G is called orientedly bipartite.

12. An Eulerian tour of G is a closed trail C in G whose edge set Ẽ agrees with E.

If G contains an Eulerian tour C, then G is called Eulerian. If its orientation

makes C an oriented cycle, then we call G orientedly Eulerian.

Example A.4 (v,w,z,v), ((v,w),(w,z),(z,v)) on the one hand, and (w,z,v,w) and

((w,z),(z,v),(z,w)) on the other hand, are two representatives of the same circuit.

Remarks A.5 1) We do not regard paths as subgraphs of G, since they may in gen-

eral contain the same nodes and even the same edges more than once; but suitably

identifying all such paths yields one representative that is indeed an induced sub-

graph of G. (Loosely speaking, this is the “union” of all the nodes and edges that

belong to the given path.)

2) A cycle can be equivalently defined as a connected graph each of whose nodes

has exactly two neighbors.

3) A graph is a closed trail if and only if it is a circuit that agrees with its gene.

Each closed trail C in G, and in particular each cycle, can thus be identified with

one vector z ∈ CE defined by

z(e) :=

{

1 if e belongs to the edge set of C,
0 otherwise.

4) Non-oriented Eulerian graphs can be given an orientation in a natural way.

With respect to this orientation, they are also strongly connected.

If we consider two triangle graphs, i.e., two simple graphs consisting of three
nodes and three edges each, then as soon as one draws them one sees that they can
be identified. We can formalize this intuition as follows.

Definition A.6 Let G= (V,E), G̃= (Ṽ, Ẽ) be oriented graphs.

A bijective mapping O : V→ Ṽ is called an isomorphism whenever for all v,w ∈
V (Ov,Ow) ∈ Ẽ or (Ow,Ov) ∈ Ẽ if and only if (v,w) ∈ E or (w,v) ∈ E; and a

automorphism if G= G̃. The set of all automorphisms of G forms the automorphism
group of G, which we denote by Aut(G).

A bijective mapping U : E→ Ẽ is called an edge isomorphism whenever for all

e, f ∈ E U(e),U(f) are adjacent (in the sense of Definition A.1) if and only if e, f are

adjacent; and an edge automorphism if G = G̃. The set of all edge automorphisms

of G forms the edge automorphism group of G, which we denote by Aut∗(G).
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Observe that all nodes that belong to the same orbit induced by some subgroup of
the automorphism group of a graph have necessarily the same number of neighbors.

Example A.7 The Petersen graph in Figure A.1 is probably the single most famous

finite graph. The automorphism group of this graph is isomorphic to the symmetric

Fig. A.1: The Petersen graph.

group S5. It acts on the graph’s nodes by arbitrary permutations of the outer nodes:

this determines uniquely the action on the inner nodes, too.

In other words, automorphisms (resp., edge automorphisms) are node (resp.,
edge) permutations that preserve node (resp., edge) adjacency. Corresponding no-
tions hold if G, G̃ are simple graphs, as the above notion does not depend on orien-
tation.

Now, observe that each symmetry O ∈ Aut(G) naturally induces an edge sym-
metry U := Õ ∈ Aut∗(G): simply define

Õ(e) := (Ov,Ow) whenever e= (v,w).

While clearly
Aut′(G) := {Õ : O ∈ Aut(G)}

(whose elements we call induced edge automorphisms) is a group, it can be strictly
smaller than Aut(G) – simply think of the graph G defined in Figure A.2. There,
Aut(G) = C2×C2 (independent switching of the adjacent nodes and/or of the iso-
lated nodes) but Aut′(G) is trivial, so Aut(G) and Aut′(G) are not isomorphic.

Fig. A.2: A graph for which Aut(G) and Aut′(G) are not isomorphic.

However, this is an exceptional case. The following has been proved by G.
Sabidussi and H. Whitney, cf. [203, Thm. 1] and [34, Cor. 9.5b].
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Lemma A.8 Let G be an (either oriented or simple) finite graph. Then the groups

Aut(G) and Aut′(G) are isomorphic provided that G contains at most one isolated

node and no isolated edge.

If additionally G is connected and has at least three nodes, then the three groups

Aut(G),Aut′(G),Aut∗(G) are pairwise isomorphic if and only if G is different from

each of the graphs in Figure A.3

Fig. A.3: The only graphs on four or more nodes for which Aut(G),Aut∗(G) are not
isomorphic.

The following Frucht’s theorem is one of the most interesting result in the theory
of graph automorphisms. It was proved in [172] and strengthened in [218, 361, 362].

Theorem A.9 For any group Γ there are uncountably many connected cubic graphs

G – i.e., graphs each of whose nodes has exactly three neighbors – such that Aut(G)
is isomorphic to Γ .

If the automorphism group of G is transitive, then G is said to be node transitive.
A necessary condition for a graph to be node transitive is that each node has the
same number of neighbors.

It was observed in [157] that finite graphs can only exceptionally have non-trivial
automorphisms: This assertion can be given a precise meaning in the theory of ran-
dom graphs. An elementary example of a graph with only trivial automorphisms is
depicted in Figure A.4.

Fig. A.4: A graph without any non-trivial automorphisms.

L. Euler found in [159] a sufficient and necessary condition for a finite graph to
be Eulerian. His result was extended to the infinite case in [156].

Theorem A.10 Let G= (V,E) be a connected (non-oriented) graph.

(1) If G is finite, then it is Eulerian if and only if each of its nodes has an even

number of incident edges; it is orientedly Eulerian if and only if each of its

nodes has an equal number of incoming and outgoing edges.
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(2) If G is infinite, then it is Eulerian if and only if

• E is at most countable,

• each node has an even or infinite number of neighbors,

• if E′ ⊂ E is finite, then the connected components of G′ := (V,E \ E′) are

at most two, and in fact exactly one if each node has an even number of

neighbors in G
′.

Example A.11 An example of infinite Eulerian graph is given as follows: The ori-
ented d-dimensional lattice is the oriented graph (V,E) whose set is V = Zd and

whose edge set E is defined as follows: For any two vectors x,y ∈ Zd , (x,y) ∈ E if

and only if there is exactly one k0 ∈ {1, . . . ,d} such that

yk0 − xk0 = 1 and yk = xk for all k 6= k0.

I.e., all edges of Zd are of the form (x,x+ ek) for some x ∈ Zd and k = 1, . . . ,d,

where ek is the k-th vector of the canonical basis of Zd . Accordingly, each edge is

oriented in the direction of the first orthant.

If we discard this orientation, we obtain the plain d-dimensional lattice, which

by Theorem A.10.(2) is Eulerian if and only if d > 1.

Fig. A.5: A non-regular infinite Eulerian graph

Fig. A.6: Two infinite non-Eulerian graphs

Definition A.12 The doubling of a digraph G= (V,E) is the digraph G
‖ := (V,E),

where E := {e, ē : e ∈ E}.
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Hence, the doubling of a digraph is the digraph obtained adding to each oriented
edge e ∈ E its reverse ē. Clearly, G‖ is not simple even if G is so (more precisely,
(S2) is not satisfied by G).

Remark A.13 The doubling G
‖ is at most countable and each node has an even

or infinite number of neighbors for any digraph G. However, the third condition

in Theorem A.10.(2) may well fail for G
‖, too: think e.g. of the doubling of the

infinite path graph Z, and more generally of any infinite tree. Also the right graph

in Figure A.6 has a non-Eulerian doubling. However, this condition is satisfied by

the doubling of the planar lattice Z2, and more generally by any finite perturbation

of a graph associated with a tiling of the plane, provided all tiles are bounded: The

left graph in Figure A.6 is not Eulerian, but its doubling is.

Definition A.14 A weighted digraph is a triple G = (V,E,ρ), where (V,E) is a

digraph and ρ : E→ (0,∞) is some given function such that ρ(e) = ρ(ē) whenever

both e, ē ∈ E. A weighted oriented graph is a weighted, simple digraph.

Weighted oriented graphs with with both sinks and sources have been often called
networks since the 1940s, in particular by the Cambridge school during their inves-
tigations on the axiomatic theory of electric circuits, cf. [72] and subsequent papers.

Conventions A.15 (1) We always regard unweighted graphs as weighted ones upon

imposing ρ ≡ 1. All notions defined for weighted graphs thus extend to unweighted

ones. Conversely, all notions that only rely upon a graph’s connectivity (e.g., exis-

tence of an Eulerian graph) remain unchanged if a weight function is introduced.

(2) If G is weighted, we regard its subgraphs as weighted with respect to the

function ρ̃ := ρ|Ẽ.

Example A.16 Weights can be used to effectively deform a given graph without af-

fecting its connectivity. E.g., the lattice graph Zd , cf. Example A.11, can be turned

into a weighted oriented graph (Zd ,ρ) in which each pair (v,w) of adjacent nodes

is distant ρ
(

(v,w)
)

length units. If in particular ρ ≡ ρ0 > 0, then ρ0 is referred to

as lattice constant. Clearly, modifying ρ0 leads to a rescaling of the whole lattice.

Heuristically, one expects that discretized equations on Zd tend to their continuous

counterparts in Rd whenever the lattice constant tends to 0. This is a favorite empir-

ical principle in the treatment of a number of problems in physics, and in particular

in the so-called lattice field theory.

Definition A.17 Let G̃ be a subgraph of a weighted oriented graph G = (V,E,ρ).
Then capacity and volume of G̃ are defined by

capρ(G̃) := ∏
e∈Ẽ

ρ(e) and volρ(G̃) := |Ẽ|ρ ∑
e∈Ẽ

ρ(e),

respectively. The surface of G̃ with respect to a weight function ν : V→ (0,∞), or

simply surface if ν ≡ 1, is defined as

surfν(G̃) := |Ṽ|ν := ∑
v∈Ṽ

ν(v).
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Using the notation of Chapter 3, it is clear that a graph has finite surface with
respect to ν (resp., finite volume with respect to ρ) if and only if ν ∈ ℓ1(V) (resp.,
if and only if ρ ∈ ℓ1(E)).

Clearly, the surface of G̃ is simply the cardinality of Ṽ if ν ≡ 1; and by the
Handshaking Lemma (cf. (A.2)) G= (V,E,ρ) has finite volume if and only if G has
finite surface with respect to ν = degρ .

Remark A.18 In the specific case of paths or cycles, the word length is universally

used in the literature instead of volume. We also adopt this convention and for a

path G̃ := P we denote its length by lenρ(P). The same notation extends in a natural

way to circuits.

Clearly, in the unweighted case surface and volume of a subgraph are simply the

cardinalities of its node and edge set, respectively, whereas its capacity is always 1
unless G is empty.

One of the reasons why graphs are so popular in the applied sciences is that it
is easy to identify real-life objects with graph-like structures. Conversely, also the
following holds.

Lemma A.19 Each (oriented or simple) graph G= (V,E) can be embedded in R3,

i.e., it is possible

(1) to associate to each node v ∈ V a point xv ∈ R3 in a bijective way, and

(2) to connect two points xv,xw by an 3-dimensional simple arc svw if and only if

v,w are adjacent, in such a way that different arcs do not share any internal

points.

The embedding can be e.g. performed by associating each v ∈ V with a different
point of the x-axis and then connecting each pair (v,w) of adjacent nodes by a simple
arc that lies in one of the uncountably many different planes that contain the x-axis,
choosing a different plane for each pair.

Accordingly, we may identify edges with simple arcs, although this identifica-
tion clearly depends on the chosen embedding. This is the first step towards the
development of the theory of metric graphs presented in Section 3.2.

It is sometimes useful to switch from a description of a system based on agents
(persons, particles, nations...) to one based on their interactions: E.g., Feynman di-
agrams in quantum field theory [404], p-graphs in anthropology [409], or highway
networks from our Model 2 in Chapter 1 are based on this idea. The following for-
malism goes back to [202].

Definition A.20 Let G= (V,E) be a simple graph. Its line graph is the simple graph

GL := (VL,EL) with node set VL := E and such that for any e, f ∈ VL (e, f) ∈ EL if

and only if e, f have a common endpoint.

Definition A.21 Let G= (V,E) be an oriented graph. Its line graph is the oriented

graph GL := (VL,EL) with node set VL := E and such that for any e, f ∈ VL (e, f) ∈
EL if and only if eterm = finit.



A Basics on graph theory 231

If now G = (V,E,ρ) is a weighted oriented graph, then its line graph is GL :=
(VL,EL,ρL), where VL,EL are constructed as before and the weight function ρL is

defined by ρL ((e, f)) := ρ(f).

Comparing Definitions A.20 and A.21 one sees that for two nodes e, f ∈ VL the
edge (e, f) may belong to the edge set of the non-oriented version of the line graph
even if neither (e, f) nor (f,e) belong to the edge set of the oriented line graph:
this is the case precisely when they share either the initial endpoint or the terminal
endpoint – i.e., e, f form an oriented star, rather than an oriented path.





Appendix B

Basics on Sobolev spaces

One of the most fruitful mathematical ideas of the last century is the weak formu-
lation of differential equations. One weakens the notion of solution of a boundary
value differential problem, looks for a solution in a suitably larger class (which typ-
ically allows one to use standard Hilbert space methods, like the Representation
Theorem of Riesz–Fréchet) and eventually proves that the obtained solution is in
fact also a solution in a classical sense. The essential idea behind this approach is
that of weak derivative, one which is based on replacing the usual property of dif-
ferentiability by a prominent quality of differentiable functions – the possibility to
integrate by parts.

Definition B.1 Let I ⊂ R be an open interval, whose boundary we denote by ∂ I,

and p ∈ [1,∞]. A function f ∈ Lp(I) is said to be weakly differentiable if there exists

g ∈ Lp(I) such that

∫

I
f h′ =−

∫

I
gh for all h ∈C∞

c (I). (B.1)

The function g is unique and is called the weak derivative of f , shortly: g := f ′. The

set of weakly differentiable functions f ∈ Lp(I) such that f ′ ∈ Lp(I) is denoted by

W 1,p(I) and called Sobolev space of order 1. We define the Sobolev space W k,p(I) of

order k ≥ 2 recursively as the set of those functions f ∈W k−1,p(I) such that f (k−1),

the weak derivative of order k−1, belongs to W 1,p(I).
If c ∈ L∞(I), then g̃ ∈ K∂ I is said to be conormal derivative of f (with respect to

c) if
∫

I
c f ′h′+

∫

I
(c f ′)′h =

∫

∂ I
g̃h|∂ I for all h ∈W 1,p(I). (B.2)

In this case, g̃ is unique and is denoted by
∂c f

∂n
.

If I is bounded, then by Hölder’s inequality W 1,p(I) is continuously embedded
in W 1,q(I) for all p,q ∈ [1,∞] such that p≥ q.

Lemma B.2 Let I be an open interval, k ∈ N and p ∈ [1,∞]. Then W k,p(I) is a

Banach space with respect to the norm defined by

233
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‖ f‖p

W k,p(I)
:=

k

∑
j=1

‖ f ( j)‖p

Lp(I)
.

It is separable if p ∈ [1,∞) and reflexive if p ∈ (1,∞).
Furthermore, W k,2(I) is a Hilbert space with respect to the inner product

( f |g)W k,2(I) :=
k

∑
j=1

( f ( j)|g( j))L2(I) =
k

∑
j=1

∫ 1

0
f ( j)(x)g( j)(x)dx.

Furthermore, the space C1(I) is densely and continuously embedded in W 1,p(I),
since any f ∈C1(I) satisfies (B.1) (which for continuously differentiable functions
is nothing but the usual formula of integration by parts) with g :=− f ′.

The following results are special cases of [3, Thm. 4.12], [70, Thm. 8.8, Rem. 8.10,
and § 8.1.(iii)] and [189, Satz 1]. We denote by Cb(I) the space of continuous func-
tions on I and by C0(I) its closed subspace consisting of those bounded continuous
functions on I such that for all ε > 0 {x ∈ I : | f (x)| ≥ ε} is compact. (Clearly,
Cb(I) =C0(I) if I is finite; otherwise, it consists of those continuous functions that
vanish at ∞.) Lemma B.3.(2) is usually referred to as Rellich–Kondrachov Theorem.

Lemma B.3 Let I ⊂ R be an open interval. Then the following assertions hold.

(1) W 1,p(I)
d→֒C0(I), i.e., W 1,p(I) is densely and continuously embedded in C0(I)

for all p ∈ [1,∞].
(2) If I is bounded, then both the embeddings of W 1,1(I) in Lq(I) and of W 1,p(I) in

C(I) are compact, for all p,q < ∞.

(3) The embedding of W 1,2(I) in L2(I) is a Hilbert–Schmidt operator, provided I is

bounded.

(4) C∞(I) is dense in W 1,p(I).
(5) C∞

c (R) is dense in W 1,p(R) but C∞
c (I) is not dense in W 1,p(I) whenever I is

bounded.

Remark B.4 In order to explain some notions used in Lemma B.3, let us recall that

a linear operator T from H1 to H2, where H1,H2 are Hilbert spaces, is said to be of

p-th Schatten class (short: T ∈Lp(H1,H2)) for p ∈ [1,∞) if it is compact and

‖T‖Lp
:= ‖(sn)n∈N‖ℓp < ∞},

where sn is the nth eigenvalue of
√

T ∗T . An operator is called of trace class or

Hilbert–Schmidt if it is of p-th Schatten class for p = 1 or p = 2, respectively.

One can show that Lp(H1,H2) is for each p a Banach space (a Hilbert space for

p = 2) and an ideal, in the sense that the composition of two operators is of p-

Schatten class already if either of them is of p-Schatten class, as soon as the other

operator is merely bounded. Because of Hölder’s inequality for sequence spaces,

Lp(H1,H2) ⊂ Lq(H1,H2) for all p ≤ q, and for instance the composition of two

Hilbert–Schmidt operators is of trace class.
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Roughly speaking, in the following a Banach space is referred to as lattice if it
carries some order structure that is compatible with its norm. We refer to [293] for a
general introduction to this theory, but in the present book we will not deal with any
Banach lattices but their most elementary cases, viz spaces of continuous functions
over locally compact spaces and Lp-spaces with respect to some σ -finite measure1.

Following [335] and [336, Chapter 2] we adopt throughout this book a rather
general notion of lattice ideal (more general, e.g., than the one in [316, 371]).

Definition B.5 Given U,V subspaces of Lp(Ω ,µ), U is said to be a lattice ideal of

V if

• u ∈U implies |u| ∈V and

• vsgnu ∈U provided u ∈U and v ∈V such that |v| ≤ |u|.

Then one checks the following, see e.g. [336, Thm. 4.21]. We use the fact that any
function f ∈W 1,p(I) has well-defined boundary values provided I has a nonempty
boundary ∂ I – in fact, the trace operator is bounded.

Lemma B.6 Let I ⊂ R be an open interval. Let

W̊ 1,p(I) := { f ∈W 1,p(I) : f|∂ I = 0}, 1≤ p < ∞,

and let V be any closed subspace of W 1,p(I) that contains W̊ 1,p(I). Then for all

p ∈ [1,∞) W̊ 1,p(I) is a lattice ideal of V .

Sobolev spaces can also be defined if one replaces the open interval I by an open
domain in Rn, but continuity of W 1,p-functions is peculiar to the case of n = 1.

The proof of Lemma B.3.(2) is based on the Ascoli–Arzelà Theorem. In other
cases it may be necessary to prove, more simply, precompactness of subspaces of
Lp-spaces – i.e., compactness of the embedding operator from W 1,p(I) to Lq(I) for
some p,q∈ [1,∞]. The classical way of doing so is to apply the Fréchet–Kolmogorov

Theorem, which has been recently generalized as a consequence of the following
Hanche-Olsen–Holden Lemma, cf. [201, Lemma 1].

Lemma B.7 Let (M,dM) be a metric space. Then M is totally bounded if for all

ε > 0 there is δ > 0, a metric space (W,dW ), and a mapping Φ : M→W such that

• Φ(M) is totally bounded and

• for all x,y ∈M dW (Φ(x),Φ(y))< δ implies dM(x,y)< ε .

Lemma B.8 Let I ⊂ R be an open interval. Then the following assertions hold.

(1) If ∂ I 6= /0, then C∞
c (I) is dense in W̊ 1,p(I) for all p ∈ [1,∞).

(2) There exists C > 0 such that

‖u‖3
L2 ≤C‖u′‖L2‖u‖2

L1 , u ∈W 1,2(R)∩L1(R). (B.3)

1 We stress that this concept of lattice has nothing to do with the physical notion of lattice at the
core of Example A.11, but we keep this contradictory terminology as we believe that there is very
little danger of confusion.
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(3) If I = (α,β ) for some α,β ∈ R, then there exists C > 0 such that

‖u‖L∞ ≤C‖u′‖L1 + |u(α)|, u ∈W 1,1(I). (B.4)

(4) If I is bounded, then there exists C > 0 such that

‖u‖L∞ ≤C‖u′‖L1 , u ∈ W̊ 1,1(I). (B.5)

(5) If I is bounded, then for all p,q,r ∈ [1,∞] such that q ≤ p there exists C > 0
such that

‖u‖Lp ≤C‖u‖a
W 1,r‖u‖1−a

Lq , u ∈W 1,r(I), (B.6)

where

a :=
q−1− p−1

(1+q−1− r−1)
.

In particular,

‖u‖L∞ ≤C‖u‖
1
2
W 1,2‖u‖

1
2
L2 , u ∈W 1,2(I). (B.7)

Both estimates (B.4)-(B.5) are referred to as Poincaré inequality, whereas (B.3)
and (B.6) are usually called Nash inequality and Gagliardo-Nirenberg inequality,
respectively. They have important consequences for the long-time behavior of dif-
fusion equations. Observe that the Poincaré inequality shows that

( f ,g) 7→ ( f ′|g′)L2(I)+ f (α)g(α)

defines an equivalent inner product on W̊ 1,2(α,β ).

Example B.9 Consider the operator S : f 7→ ih̄ f ′, which in mathematical physics

is called the momentum operator – in fact, it is the quantum mechanical observable

associated to the classical momentum. Then the linear operator S is not bounded

on L2(R), but is indeed bounded from W 1,p(R) to L2(R). Likewise, ∆ : f 7→ f ′′ is a

bounded linear operator from H2(R) to L2(R).

One of the reasons for introducing the Sobolev spaces W k,p(I), in particular for
p = 2, is that they allow for a convenient operator theoretical setting for studying
those operators that are not bounded on usual L2-spaces, as is typically the case
for differential operators; and for solving elliptic problems by means of the follow-
ing Lax–Milgram Lemma, proved in [270].

Lemma B.10 Let V be a Hilbert space and a a sesquilinear mapping from V ×V

to K. Let a be bounded and coercive. Then, for any φ ∈V ′ there is a unique solution

u =: T φ ∈V to a(u,v) = 〈φ ,v〉 – which also satisfies ‖u‖ ≤ 1
c
‖φ‖V ′ . Moreover, T is

an isomorphism from V ′ to V .

We conclude this appendix briefly explaining how to treat weakly differentiable
vector-valued functions. For the sake of simplicity we focus on the Hilbert case,
which is the most interesting for our purposes.
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Definition B.11 Let W be a separable Hilbert space and I be an open interval.

(1) The space L2(I;W ) is the set of all weakly measurable functions f : I→W such

that x 7→ ‖ f (x)‖W is of class L2(I;R), which is a normed space with respect to

the norm

‖ f‖L2(I;W ) :=
∫

I
| f (x)|2W dx.

(2) The space W 1,2(I;W ) is the set

W 1,2(I;W ) :=
{

f ∈ L2(I;W ) : ∃ f ′ := g ∈ L2(I;W ) s.t.
∫

I f (x)h′(x)dx =−∫I g(x)h(x)dx for all h ∈C∞
c (I;R)} ,

(B.8)
which is a normed space with respect to the norm

‖ f‖W 1,2(I;W ) :=
∫

I

(

| f (x)|2W + | f ′(x)|2W
)

dx.

The following has been proved in [82].

Lemma B.12 Let W be a separable Hilbert space, p ∈ (1,∞), and I be an open

interval. The following assertions hold.

(1) If G : W →W is a Lipschitz continuous mapping and if

• G(0) = 0, or

• I is finite,

then G◦ f ∈W 1,p(I;W ) whenever f ∈W 1,p(I;W ).
(2) Let W be a complex Hilbert lattice. If u∈W 1,p(I;W ), then also its real and com-

plex parts Reu, Imu belong to W 1,p(I;W ), and so do the positive and negative

parts (Reu)+,(Reu)− of its real part, with

(Reu)′ = Re(u′), ((Reu)+)′ = Re(u′)1{u≥0}.

Proof. We start observing that the proof of [70, Prop. 8.5] holds also in the
vector-valued case with minor changes. In other words, if f ∈ Lp(I;W ), then
f ∈W 1,p(I;W ) is equivalent to the existence of a positive constant C with the prop-
erty that for all open bounded ω ⊂ I and all h ∈ R with |h| ≤ dist(ω,∂ I) one has

∫

ω
‖ f (x+h)− f (x)‖p

W dx≤C|h|p. (B.9)

Assume G to be Lipschitz with constant L. First we note that the estimate
∫

ω
‖G( f (x+h))−G( f (x))‖p

W dx≤
∫

ω
Lp‖ f (x+h)− f (x)‖p

W dx≤CLp|h|p

holds for every f ∈W 1,p(Ω ;W ), since by assumption f satisfies (B.9). It remains to
show that G◦ f ∈ Lp(Ω ;W ).

If G(0) = 0, it suffices to observe that
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∫

I
‖G( f (x))‖p

W dx=
∫

I
‖G( f (x))−0‖p

W dx=
∫

I
‖G( f (x))−G(0)‖p

W dx≤Lp

∫

I
‖ f (x)‖p

W dx<∞.

Thus G◦ f ∈ Lp(I;W ) and the above criterion applies.
Let now I be bounded. Fix an arbitrary vector w ∈W and estimate

‖G( f (x))‖W = ‖G( f (x))−G(w)+G(w)‖W
≤ L‖ f (x)−w‖W +‖G(w)‖W
≤ L‖ f (x)‖W +L‖w‖W +‖G(w)‖W .

Taking the pth power and integrating on I with respect to x we obtain a finite number,
since I has finite measure. ⊓⊔

Remark B.13 The analog of Lemma B.12.(2) does not hold for Sobolev spaces of

higher order: Consider u : (−2,2) ∋ x 7→ x2−1 ∈ R, which belongs to W k,p(−2,2)
for any k ∈ N, p ∈ [1,∞], but whose positive part has discontinuous derivative, so

that (u+)′ 6∈W 1,p(−2,2) by Lemma B.3.(1).
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