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SEMIGROUP OF OPERATORS ON DUAL BANACH SPACES

ANTHONY TO-MING LAU1

Abstract. In this paper, we give a short and simple proof to a more general

version of a recent result of Yeadon for semigroups of weak*-continuous

operators on a dual Banach space. Our result has application to amenable

groups and property P of a von Neumann algebra.

1. Introduction. Let £ be a dual Banach space with a (fixed) predual Et, i.e.

Em is a Banach space such that (E^)* = E. Let § be a semigroup of linear

operators from E into E satisfying:

(1) \\sx\\ = ||x|| for all s G S and x G E.

(2) Each j£§ is a continuous linear map from (E, weak*) into (E,

weak*).

Let 7s s = {x G E; s(x) = x for all ^ G S } and Kx = weak*-closure of

co{s(x); i G S } (here co A will denote the convex hull of a subset A of a

linear space) for each x G E. Then E s is a weak*-closed linear subspace of

E. Recently, Yeadon [12], ultilizing a method in [9, Lemma 5], proved that if

Kx n 7s s is nonempty for each x G E, then there exists a bounded linear

operator P from E onto 7s s such that P(x) G Kx n 7s s for each x G E.

Furthermore, P commutes with any weak*-continuous linear operator Q

commuting with each 5 in S .

In this paper we prove a more general version of Yeadon's result. Our

proof is simple and different from that of Yeadon. In §3, we concentrate on

various applications of our theorems to obtain some of the results on

invariant mean in [2], [3], [5], [6], [7], [10] and [11], and on property P of a von

Neumann algebra in [9].

2. The main theorem. Let % (E) be the space of bounded linear operators

from E into E. By the weak*-operator topology on © (E), denoted by

W*OT, we shall mean the locally convex topology determined by the family

of seminorms {px^; x G E and tb G 7J„} wherepx^(T) = |jo(7jc)|. As known

[4, p. 973], the unit ball of <$> (E) is compact in the W*OT. Let co § denote

the closure of co S in the W*OT. Then (co S , W*OT) is a semigroup and a

compact Hausdorff space such that for each fee coS, and each s a S, the

following mappings from (co S, W*OT) into (co S, W*OT) are continu-

ous:
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(l)k-^hk,
(2) h->sk.
Let § C co S be a closed subsemigroup of co S and let

80)- [gix);gG 3).

A subset X C E is § -invariant if S(x)Cl for each x G X.

If F C F s, an operator F G ® (F) is F-stationary on A- if for each x G X,

Pix) G F.

Theorem 2.1. Le/ X be a @ -invariant subset of E and let F be a

weak*-closed subset of Es. If § ix) n F is nonempty for each x G X, then §

contains an F-stationary operator on X. In this case, § ix) n F= {P(x);

P G 3 and P is F-stationary on X) for each x G X.

Proof. For each x G X, let %(x) = (g G § ; gix) G F). Then %(x) is a

nonempty closed subset of §. Furthermore, if a = {xx, . . . , xn} is any finite

subset of X and g£ fl {%(xi); i = 1, . . . , n - lj, pick g  G §  such that

g'igixn)) G F- It follows that ig' ■ g)(x,) = g(x,) for all i = 1.n - 1 and

g' • g G fl {9CO,-); i = 1, . . . , n). Consequently, if x0 G X and z G

§ ix0) n F, the sets %'(x) = {g G 3 ; gix) G F and g(x0) = z) are closed in

§ and have finite intersection property. By compactness, fl (%'ix); x G X)

is nonempty, and any P in this intersection is F-stationary and F(x0) = z.

Remark. If § = co S and E^ = F, then 8 (x) = weak*-closure of co{.sx;

s£oi), Hence, the first part of Theorem 2.1 yields the proposition in [12].

3. Applications.

A. Invariant means on discrete semigroups. Let 5 be a semigroup and lxiS)

be the Banach space of bounded real-valued (or complex-valued) functions

on S with supremum norm. For each a G S, define the left and right

translation operators on lxiS) by ilj)it) = fias) and irj)is) = fisa) for all

s G S, f G lxiS). Let X be a closed translation invariant linear subspace of

lxiS) containing constant one function 1. A linear functional <p on X is called

a mean if ||d>|| = 1 and d> > 0. A mean on X is called a left invariant mean if

4>iU) = <K/) for all a G 5 and all/ G X (see Day [1]).
The subspace X is called left introverted [respectively, left m-introverted] if

for each mean [respectively, multiplicative mean] <p on lxiS), the function

J -> W) is in X. (See [1, p. 540] and [8, p. 121].)
Let S = {ra; a G S). Since the weak*-topology and the topology of

pointwise convergence agree on bounded subsets of lxiS), it follows from [3,

Lemma 2 and the proposition following] that X is left introverted [respec-

tively, left /n-introverted] if and only if X is co 5 - [respectively, §-] invariant.

Theorem 3.1 (Granirer and Lau [3]). If X is left introverted and for each

f G X, co S (/) contains a constant function, then X has a left invariant mean.

In this case for each f G X, a ■ 1 G co > if) if and only if mif) = a for some

left invariant mean m on X.

Proof. Let F be the one-dimensional subspace of lx (5) consisting of

constant functions. If P G co S  is F-stationary on X, define mif) = iPf)ia)License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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for  some fixed a G S. Since left and right translations commute, m is a left

invariant mean on A. Now use Theorem 2.1.

Similarly we have

Theorem 3.2 (Granirer and Lau [3]). 7/A is a left m-introverted subalgebra

of lx(S) and for each / G A, £>(/) contains a constant function, then X_has a

multiplicative left invariant mean. In this case for each / G A, A • 1 G S(/) (/

and only if m(f) = X for some multiplicative left invariant mean m on X.

Remark. 1. Theorem 3.1 is proved by Mitchell [5, Theorem 3] for the case

A = lx(S) and Theorem 3.2 is proved by Granirer [2, Theorem 1] for the

case X = lx(S). Their proofs are completely different.

2 (Granirer and Lau [3]). If A is introverted and for each / G A and each

a G S, co S (/ — IJ') contains the zero function, then A has a left invariant

mean. To see this, let F = {0}. Apply Theorem 2.1; we obtain T G co S

such that T(f - lj) = 0 for all / G A and a E S.

3. If for each A C S, S(lA) contains either the zero function or the one

function, then lx(S) has a multiplicative left invariant mean. Indeed, let

F = {0,1}. By Theorem 2.1, there exists T G S such that T(\A) G F for all

ACS. Then_r defines a multiplicative left invariant mean on lx(S).

Note that S(l^) contains the one function [respectively, the zero function],

if and only if A [respectively, S - A] is left thick (see [7, p. 256] for

definition). Hence, this yields [6, Theorem 1(f) —> (a)] and [5, Theorem 3].

B. Invariant means on locally compact groups. Let G be a locally compact

group with a fixed left Haar measure A. Let P(G) = {tb G LX(G); \\<p\\ = 1

and <J> > 0}. For each <b G P(G), define the translation operators on LX(G)

by /<(,(/) = 4> * /and r^(f) = / * <j> for all/ G LX(G). Let A be a closed linear

subspace of LX(G) which is invariant under r and /^ for each tb G P(G) and

containing constants. An element m G X* is called a mean if ||w|| = 1 and

m > 0. A mean m on A is called a topological left invariant mean if m(llA~)

= m(f) for each tb G P(G) and each/ G A.

Let S = {r^; tb G P(G)}. Then S is a semigroup of weak*-continuous

contractions on LX(G). Furthermore, X is S-invariant (note that o> = co S)

if and only if A is topologically left introverted, i.e. for each mean m on

LX(G) and each/ G A, the functional tb -h> m(A~'<j> */) defined on LX(G) is

in A (see Wong [10, p. 356]). Indeed, if A is S-invariant, and m is a mean on

LX(G), let {tba} be a net in P(G) such that <£a converges to m in the

weak*-topology. By compactness of S, we may assume that the net {r^ }

converges to some T G S in the W*OT. Hence, for each tb G T.,(G),

w(A-'z£*/) = lim tba(A~ '<M/)

= limtb(f * tla)       (see [10, Lemma 3.1(c)])

= lim^/) = ^(r/).

Hence, A is topologically left introverted. The other direction can be proved

similarly.

Theorem (Wong [10, Theorem 5.4]). Assume that X is topologically leftLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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introverted. If for each f G X, $>(/) contains a constant function, then X has a

topological left invariant mean. In this case for each f G X, R ■ 1 G §(/) if and

only if there is a topological left invariant mean m on X such that mif) = fi.

Proof. Apply Theorem 2.1 with F being the one-dimensional subspace of

F consisting of the constant functions.

Remark. Recently, Wong [11, Theorem 3.1(1) => (4)] proved a similar

theorem for locally compact topological semigroups. It is easy to see that this

result is also a consequence of Theorem 2.1. We omit the details.

C. von Neumann algebras with property P. Let AT be a von Neumann

algebra acting on a Hilbert space TT and let AT' be the commutant of

AT. Assume that AT contains the identity operator on TT. Let AT" be the group

of unitary elements in AT. For each u G M", define Tu(x) = u*xu for each

x G <S (TT). Let § = {Tu; u G AT"}. Then AT is said to have property P if

for each x G $ (TT) co S (x) n AT' is nonempty. It is easy to see that the

following slight improvement of Schwartz's result [9, Lemma 5] is also a

consequence of Theorem 2.1.

Theorem. Let § be a closed subsemigroup of co S containing S . If

§(x) n AT' ¥= 0 for each x G % (TT), there exist P G § such that

(*) P(x) G AT'   for each x G <$(TT).

Tn this case, for each x G "3J (TT), z G § (x) n AT' // and only if there exist

P G § satisfying (*) and P(x) = z.
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