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To Harvey Jackins

Abstract. A generalization of the concept of a decomposition

of a ring into a direct sum of ideals is introduced. The question of

semisimplicity of the ring in terms of the semisimplicity of its

summands is investigated. The results are applied to semigroup

rings.

1. Introduction. Many substantial results in the theory of rings

either concern themselves with or use a decomposition of the ring into a

direct sum of ideals. In this paper we introduce a generalization of direct

sum decompositions. A ring is a supplementary semilattice sum of sub-

rings if as an additive abelian group it is a direct sum of the additive

groups of the subrings and if the subrings multiply in a certain natural

way. We begin the investigation of semilattice sum decompositions by

showing that in certain cases the semisimplicity of the subrings implies the

semisimplicity of the ring. The investigation is carried out in the context

of 7r-semisimplicity where 77 is a hereditary, homomorphic invariant

property of rings and thus the result holds for Jacobson semisimplicity,

nil semisimplicity and nilpotent semisimplicity (semiprime). The results

are then applied to semigroup rings. We prove that if R is a commutative

ring with identity and D is a commutative semigroup such that a power

of each element lies in a subgroup then the semigroup ring RD is semi-

prime if and only if D is a semilattice of groups Ga, a e Q, and RGa is

semiprime for every a e O. This generalizes Theorem 5.21 of Clifford and

Preston [1]. In the paper subsequent to this one Janeski and the author

study regularity of semilattice sum decompositions.

2. Preliminaries. Some concepts from the theory of semigroups may

be useful to the reader. A band is a semigroup in which every element is

idempotent (x2=x). A semilattice is a commutative band. If fí is a semi-

lattice, the natural partial order is defined on Q by e^/if and only if

ef=fe=e.
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If R is a ring and Ra, a e £2, a collection of subrings then 2«=n ^«=

{',, + • -^J^e-RE-
DEFINITIONS.    A ring R is a semilattice sum of subrings Ra, on eü., if

£2 is a semilattice, R=ZaECl Rx and RxRß^Raß.

A ring R is a supplementary semilattice sum of subrings Ra, a e £2, if

Ä is a semilattice sum of subrings Rx, a. e £2, and if for every «eu,

Ra^Hß*« R/¡ = {0}; i-e> if tne sum is direct considered as abelian groups

under addition.

We shall often use the abbreviated expression, /?=2asQ ^« 's a (supple-

mentary) semilattice sum.

Remark. The concept of supplementary sum is mentioned in Divinsky

[2]. Obviously the concepts of semilattice sum and supplementary semi-

lattice sum can be generalized to band sum and supplementary band sum

by removing the condition that £2 be commutative. If R is a direct sum of

ideals /„, »eu, then it is a supplementary semilattice sum of the subrings

Ix, a £ O, for if a, ß e £2 then IxIß = {0} and therefore multiplication on Q

can be defined by oc/9 = a0 where a0 is a fixed element of £2.

If Ä=2aSn ^« is a supplementary semilattice sum and x=xXi+- ■ • +

xx e R with xx e R , then we write x(a.i)=xx. This defines a function

x: £2—>R. It is well defined since in a supplementary sum the representation

of each element is unique. Using this notation we have that if x, y e R

and y e Q then xy(y)=%xß=y x(a.)y(ß).

Continuing with the assumption that R=^RX is a supplementary

semilattice sum, we define, for x e R, Supp(x)={a e Q|x(a)?£0} and

r(x)=(Supp(jc)) the semigroup generated by Supp(x). F(x) is called the

support semigroup of x and is a finite subsemigroup of £2. Also for

yefl, define

*'-   2   *-•
aeíKaáy

Lemma 1. If R=^¿aeíi Rx is a supplementary semilattice sum then for

every yeÛ, R7 is an ideal of R and Ry is a homomorphic image of R7.

Proof. If a = y then oiß^y for every /Se £2. Hence RxRßC Rxß<^ R7.

So R7 is an ideal.

For x e R' define qp(x)=x(y). Then <p: R7^-Ry. Clearly <p is onto and

qp(x+y)=<p(x) +<p(y) for every x,y € R7. If x, y e R7 then <p(xy)=xy(y) =

J.Xß=y x(a.)y(ß). Now x(<x)y(ß)=0 if either a <£ Supp(x) or ß $ Supp(y).

But a e Supp(x) implies that <x_y and ßeSupp(y) implies that ß^y.

Hence x(a)y(ß)^Q implies that y = a/S^a^y. We conclude that <x=y and

similarly ß=y. Therefore <p(xy)=xy(y)=x(y)y(y)=(p(x)(p(y) and hence <p

is a homomorphism.
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3. 7T-semisimplicity. Let tt be a property of rings. We say R is a

7T-ring if it has property tt. An ideal of a ring is said to be a 77-ideal if as a

ring it has property 7r.

We assume henceforth that the property tt satisfies: (i) homomorphic

images of 7r-rings are 7r-rings, and (ii) ideals of 7r-rings are 7r-rings. For

example, the properties of being nil, left quasi-regular, locally nilpotent,

nilpotent are such properties. A ring is said to be ir-semisimple if it has

no 7r-ideals.

Lemma 2. Let R=^RX be a supplementary semilattice sum where R„,

is TT-semisimple for every a e Q. Suppose I is a rr-ideal of R and let x e I.

Then Supp(jc) does not contain a maximum element with respect to the

natural partial order on Q..

PROOF. Let x=x(ol1) + - • -+x(cin) el with as^a¡, ;=1, • • • , n. We

will derive a contradiction. Since an^a¿ for i=\, ■ ■ ■ , n, we have that

x e R"«. Let J=R"nC\I. Then x eJ and / is an ideal of / since R"n is an

ideal of R. Hence /isa 7r-ring. Let <p : R"n C\RX be the epimorphism defined

in Lemma 1. Now J is an ideal of R*n, so <p(J) is a 7r-ideal of Rx . Since

0^x(an) e cp(J), q>(J) is nonzero. This is the desired contradiction.

The main theorem on semisimplicity is proven for rings which are

supplementary semilattice sums of subrings having the following property:

(A) For every x^O e R, there exist x , x" e R such that 0^xx' = xx'x".

Any ring with an idempotent which is not a zero divisor satisfies (A).

Theorem 1. Suppose ^=2cten^a 's a supplementary semilattice sum

where each Ra satisfies condition (A). If R„ is ir-semisimple for every a. e Q

then R is rr-semisimple.

Proof. Suppose / is a 7r-ideal of R. Choose x e I, x¿¿0, such that T(x)

is minimal. Say x=x(a.1)+- ■ -+x(a„) with x(a¿)5¿0, i=\, ■ ■ ■ ,n. Fix j

such that 1 ̂ j^n and let

y = xictjxixi)' + ■ ■ ■ + x(a.n)x(a.„)'

- xiaJxia-iYxixi)"-x(<xn)x{a.n)'(a.,)"

where x(a.t)', x{a.¡)" are as hypothesized by condition (A). Now Supp(^)£

(ocj, • • ■ , a„) = r(x) so Y(y)<^Y(x). Also x(o.^x{a.t)'^0 for i=l, ■ ■ • , n

and xia^xioii)'xioLj)" e Rxx. so if ^=0 then for every /=1, • • • , n there

exists i' such that a¿aí = a¿. This implies aiaJ = a¿ which says that «,- is a

maximum element in Supp(x) contrary to Lemma 2. Therefore 75^0 and
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by minimality of T(x) we have F(y)=T(x). Hence

a, e r(x) = roo
= (a1; • • • , %_!, a)+i, • ' ' , a„, «i«,-, " • * , <*;-!«,■, <x,-+ia;> ' * * » «««>)

Therefore there exists ¿c,?^/ such that ai = at.ai or in other words aj<aJfci.

Since the above argument works for every j= 1 ,•••,«, we can apply it

to kj and successively to each greater element that is obtained. Since

Supp(x:) is finite we would eventually obtain elements ak, a¡ such that

ajt<a¡<ai. This contradiction establishes the theorem.

In general the converse is not true. Let n be the property right-quasi

regular. Then R is 77-semisimple if and only if R is Jacobson semisimple.

Let T be any integral domain which is not Jacobson semisimple (for

example let T be the power series ring in one indeterminate over a field)

and let Q be the quotient field of T. Let R be the subring of the ring of

countably infinite row finite matrices over Q consisting of all matrices A

for which there exists « such that, for i,j">n,

Aij = Q, i^j,

Aij = aeT,    if / = y.

Let P be the ideal of R consisting of all matrices A for which there exists «

such that if i,j>n, Aij=0. P is a prime ideal. Let S be the subring of R

consisting of all matrices A for which Aij=0, i^j and Au = a e T for all

positive integers ;', j. Then R is a supplementary semilattice sum of the

subrings S and P. But 5^ T so S is not Jacobson semisimple. However R

is a primitive ring (see [4, p. 36]) so certainly semisimple.

We observe without proof the following: Suppose that fi=2K()Ä,

is a supplementary semilattice sum of subrings Rx where each Rx has an

identity element which lies in the center of R. If for every a e O there are

no nonzero nilpotent elements in Rx, then there are no nonzero nilpotent

elements in R. The proof is similar to that of Theorem 1.

4. Semigroup rings. If D is a semigroup and R is a ring, the semigroup

ring of D over R, written RD, is defined to be the set of all functions from

D into R which are zero off a finite set. We write elements of RD as finite

formal sums x=rld1 + - • --\-rndn where x(dl)=ri e R. Addition is point-

wise and multiplication is convolution. Thus if x, y e RD then (x+y)(d)=

x(d)+y(d) and xy(d)=^ab=d x(a)y(b). Under these operations RD is a

ring.

Note that if the semigroup D has a zero z we will not identify z with

the zero of the semigroup ring RD. Thus rz=0 if and only if r=0 in R.

Semigroup rings have been studied in [1], [5], [8] and [10].
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A semigroup D is a semilattice (band) of semigroups Da, a e £i, if Í2 is a

semilattice (band), D is a disjoint union of the subsemigroups Dx, aeil,

and DxDß^Daß, for all a, ß e Í2. Semilattice decompositions of semigroups

have been extensively studied (see [1], [6], [7], [9]). Observe that if D is a

semilattice of semigroups Da, a e Q, then the semigroup ring RD is a

supplementary semilattice sum of the semigroup ring RDX, a. e Ü. Thus

we have the following corollary to Theorem 1.

Corollary 1. Let R be a ring satisfying condition (A). Suppose D

is a semilattice of semigroups Da, a e Q, where each Da has an identity. If

RDX is TT-semisimple, for every a e Q then RD is Tr-semisimple.

Proof.    If R satisfies (A) and Dx has an identity then RDX satisfies (A).

Corollary 1 applies in particular to the case when R has an identity

and D is a semilattice of groups. It would be interesting to know if the

converse holds when D is a semilattice of groups. We can answer the

question for a wide class of properties, but only in the very special case

when the groups have one element; i.e., when D is a semilattice.

Lemma 3. Suppose tt is a property such that R/I and I being n-rings imply

that R is a -rr-ring. Let R='Z0iea -^a be a supplementary semilattice sum,

where Q. is a finite semilattice. If each Ra is a -rr-ring then R is a ir-ring.

Proof. In the following paper [3, Lemma 3] we show that there

exist disjoint nonempty subsemilattices A, B of £2 with Q.=A,UB such

that RA — ̂ eA R*> ̂ B=J.ßeB Rß ar>d R=K4 + ^ii are an supplementary

semilattice sums where A2=A, B2=B=AB=BA. So an induction argu-

ment will complete the proof once we prove the theorem when |Q| = 2.

So let T—Ta+Tß be a supplementary semilattice sum. Then since {a, ß}

is a semilattice either a/?=/Sa = oc or a.ß=ß<x=ß. Suppose aß=ßa. = ß.

Then Tß is an ideal of T. Hence T\Tß^Ja\TxC\Tß. Therefore T\Tß being

a homomorphic image of a 7r-ring is a 7r-ring. Since Tß is a 77-ring, we

conclude that T is a 7r-ring. Consider the following condition on properties

of rings :

A supplementary semilattice sum of 7r-rings 2aen ^cover ^

(F) is  a  7T-ring  if,   for  every  finite subsemilattice Q'çii,

the supplementary semilattice sum 2«=n' ^« 's a '''■ring-

The properties of right quasi-regular, nil and regular satisfy (F).

Theorem 2. Assume tt satisfies (F) and the hypothesis of Lemma 3.

Let D. be a semilattice. If the semigroup ring RQ. is TT-semisimple then R is

TT-semisimple.
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Proof. RQ. is a supplementary semilattice sum of the subrings Rol—

{Rol\Q. e R}, a e £2. If R has a 77-ideal P, then by Lemma 3 and condition

(F), .PQ=2«=n P* is a 7r-ideal of R£2. Hence P={0}.

Corollary 2. Assume tt is as in Theorem 2. Let £2 be a semilattice and

R a ring with identity. Then RD. is ■n-semisimple if and only if R is it-

semisimple.

We now prove a generalization of Theorem 5.21 in [1]. If D is a semi-

group, D1 will denote the semigroup obtained from D by adjoining an

identity element. Recall that if a semigroup D has a zero, rz considered as

an element of the semigroup ring RD is zero if and only if r=0 in the ring R.

Lemma 4. Suppose D is an ideal extension of a group G by a commutative

nil semigroup. If RD has no nilpotent ideals then D is a group.

Proof. We first show that D is separative (a2=ab=ba=b2 implies

a=b). Let e be the identity of G. Then ed=de, for every de D. Assume

that a, b e D with a2=ab=ba=b2. Then (ae)2=(ae)(be) = (be)2 and

ae, be e G. Hence ae=be. Therefore for every g e G, ag=bg and similarly

ga=gb. Since DjG is commutative, then cd $ G implies cd=dc. Now

consider a—be RD. We show that the principal ideal / generated by a—b

is nilpotent. In fact, 72={0}. It suffices to show that (a—b)d(a—b)=0

for all deD1. If d=\, it is clear. Let y=(a—b) d(a—b)=ada—bda—

adb+bdb. If ad, bd are both in G, then (ad)a=(ad)b and (bd)a=(bd)b.
So y=0. Suppose one of ad, bd is not in G. Without loss of generality

assume adeG and bd$G. Then (ad)a=(ad)b and (bd)a=dba=db2=

bdb. So y = 0.
A ring is semiprime if it has no nonzero nilpotent ideals. A commutative

ring is semiprime if and only if it has no nil ideals.

Theorem 3. Suppose R is a commutative ring with identity and that D

is a commutative semigroup such that a power of each element lies in a

subgroup. Then RD is semiprime if and only if D is a semilattice of groups

Gx, a e £2, and RGa is semiprime for every ol e £2.

Proof. Suppose RD is semiprime. If D is as stated then D is a semi-

lattice of semigroups Dx, a e £2, where each Dx contains a group-ideal

Gx with DJGX a nil semigroup (see [1, §4.3, Exercise 5]). Now if RDX had

a nilpotent ideal Nx, then since RD is commutative, Nx would generate a

nilpotent ideal of RD. Hence, for every a e £2, RDX has no nonzero

nilpotent ideal and, by Lemma 4, Dx is a group. The converse follows

from Theorem 1.

Remark. Let D be a union of groups and F a field. In [4], Munn

proved that if D is finite then FD semisimple implies D is a semilattice of
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groups. The preceding theorem shows that the same conclusion holds if D

is commutative and FD is semiprime. Janeski and Weissglass have proven

the identical conclusion under the assumption that FD is regular (without

assuming either commutativity or finiteness). One might be led to con-

jecture that if D is a union of groups and FD is Jacobson semisimple then

D is a semilattice of groups. This is false. Let D=<J?(G°, 2, 2, P) be the

Rees 2x2 matrix semigroup over the group with zero G° with sandwich

matrix P (cf. [1, p. 88]) where G is the infinite cyclic group with generator

a and

P =
1    á

1    1

By applying Theorem 3.8 of [10], QD is Jacobson semisimple. But D is a

union of groups (in fact D is a completely simple semigroup) which is not

a semilattice of groups.

Questions. 1. Find a condition on Ü. such that if R is the supplementary

semilattice sum of Rx, oc e Q, then R 7r-semisimple implies Rx is 7r-semi-

simple.

2. If R=^RX, a e Q, is a supplementary semilattice sum and R is

commutative, does R Jacobson semisimple imply that each Rx is Jacobson

semisimple?

3. Can any of the results in this article be generalized to the case where

Q is a band?

4. Can condition (A) be removed in Theorem 1 ?

5. Find necessary and sufficient conditions that a ring be a supple-

mentary semilattice sum of division rings.

6. Find conditions to insure that a ring be a supplementary semilattice

sum of semilattice sum indecomposable rings. Characterize semilattice

sum indecomposable rings.

7. Let D={JxeííGx be a semilattice of groups. Does the Jacobson

semisimplicity of RD imply the Jacobson semisimplicity of RGX for every

aeQ?

8. Find a property 7r of rings such that if D is any semigroup then RD

is a 7r-ring if and only if D is a semilattice of groups Gx and RGX is a

7r-ring, for every a e Í2.

9. Can the commutativity of R be removed in Theorem 3 ?

The author would like to thank Mohan Putcha for many helpful

discussions.
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