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SEMIGROUP RINGS AS WEAKLY KRULL DOMAINS

GYU WHAN CHANG, VICTOR FADINGER, AND DANIEL WINDISCH

Abstract. Let D be an integral domain and Γ be a torsion-free commutative

cancellative (additive) semigroup with identity element and quotient group

G. In this paper, we show that if char(D) = 0 (resp., char(D) = p > 0),

then D[Γ] is a weakly Krull domain if and only if D is a weakly Krull UMT-

domain, Γ is a weakly Krull UMT-monoid, and G is of type (0, 0, 0, . . . ) (resp.,

type (0, 0, 0, . . . ) except p). Moreover, we give arithmetical applications of this

result.

1. Introduction

Let D be an integral domain and X1(D) be the set of height-one prime ideals of

D. We say that D is a Krull domain if D satisfies the following three properties:

(i) D =
⋂

P∈X1(D) DP ,

(ii) each nonzero nonunit of D is contained in only finitely many height-one

prime ideals of D, and

(iii) DP is a principal ideal domain (PID) for all P ∈ X1(D).

Krull domains include UFDs and Dedekind domains. However, many well-studied

rings are close to being Krull by satisfying (i) and (ii), but property (iii) fails, e.g.

non-principal orders in number fields and Q[X2, X3] for an indeterminate X over

the field Q of rational numbers. An integral domain satisfying (i) and (ii) is called

a weakly Krull domain. Hence, Krull domains and one-dimensional noetherian

domains are weakly Krull, but the backwards implications need not hold true. The

notion of weakly Krull domains was first introduced and studied by Anderson, Mott

and Zafrullah [3]. A weakly factorial domain (WFD) is an integral domain whose

nonzero elements can be written as finite products of primary elements. Then UFDs

are WFDs, and D is a WFD if and only if D is a weakly Krull domain and each

t-invertible t-ideal of D is principal [4, Theorem].

Let Γ be a monoid, i.e., a commutative cancellative (additive) semigroup with

identity element andD[Γ] be the semigroup ring of Γ overD. Then Γ has a quotient

group [28, Theorem 1.2], and D[Γ] is an integral domain if and only if Γ is torsion-

free [28, Theorem 8.1]. It is well known that D[Γ] is a Krull domain (resp., UFD) if

and only if D is a Krull domain (resp., UFD), Γ is a Krull monoid (resp., factorial

monoid), and 〈Γ〉, the quotient group of Γ, satisfies the ascending chain condition

on its cyclic subgroups [28, Theorem 15.6] (resp., [28, Theorem 14.16]). In [10],
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Chang characterized when D[Γ] is a WFD under the assumption that 〈Γ〉 satisfies
the ascending chain condition on its cyclic subgroups. Then, he asked when D[Γ]

becomes a weakly Krull domain [10, Question 14]. Furthermore, in [13], Chang

and Oh completely characterized the weakly factorial property of D[Γ]. Recently,

in [16], Fadinger and Windisch gave a partial answer to Chang’s question using the

concept of weakly Krull monoids. These are defined analogously to weakly Krull

domains by properties (i) and (ii) above, which were introduced and characterized

by Halter-Koch in [30]. There he proved that D is weakly Krull if and only if its

multiplicative monoid D \ {0} is a weakly Krull monoid.

Now, in this paper, we give a complete characterization of weaky Krull semigroup

rings D[Γ]. Precisely, we show that if char(D) = 0 (resp., char(D) = p > 0), then

D[Γ] is a weakly Krull domain if and only if D is a weakly Krull UMT-domain, Γ

is a weakly Krull UMT-monoid, and the quotient group of Γ is of type (0, 0, 0, . . . )

(resp., type (0, 0, 0, . . . ) except p). As a corollary, we recover Matsuda’s results

[37, 38] that if char(D) = 0 (resp., char(D) = p > 0), then D[Γ] is a generalized

Krull domain if and only if D is a generalized Krull domain, Γ is a generalized Krull

monoid, and 〈Γ〉 is of type (0, 0, 0, . . . ) (resp., type (0, 0, 0, . . . ) except p).

Moreover, in the final section we use the main result in order to obtain arith-

metical statements on weakly Krull semigroup rings. For instance, we provide a

large class of weakly Krull numerical semigroup rings that have full systems of sets

of lengths. Also for a certain class of affine semigroup rings we prove a result about

the connection of its class group and its system of sets of lengths. Thereby, we are

the first to give a fairly broad but sufficiently concrete class of non-local weakly

Krull domains that are not Krull, but whose arithmetic is still accessible.

2. Definitions related to the t-operation and monoids

Let D be an integral domain with quotient field K, Γ be a torsion-free monoid

with quotient group 〈Γ〉; so D[Γ] is an integral domain, D̄ be the integral closure

of D in K, and Γ̄ be the integral closure (i.e., root closure) of Γ in 〈Γ〉. If we say

that D is local, we do not impose that D is noetherian.

2.1. The t-operation on integral domains. Let F (D) be the set of nonzero

fractional ideals of D. For I ∈ F (D), let I−1 = {x ∈ K | xI ⊆ D}. It is easy to see

that I−1 ∈ F (D). Hence, the v- and t-operations are well-defined as follows:

(1) Iv = (I−1)−1 and

(2) It =
⋃{Jv | J is a finitely generated subideal of I}.

Let ∗ = v or ∗ = t. Then, for any nonzero a ∈ K and I, J ∈ F (D), (i) aI∗ = (aI)∗,

(ii) I ⊆ I∗; I ⊆ J implies I∗ ⊆ J∗, (iii) (I∗)∗ = I∗, and (iv) (IJ)∗ = (IJ∗)∗. An

I ∈ F (D) is called a ∗-ideal if I∗ = I.

A t-ideal is a maximal t-ideal of D if it is maximal among proper integral t-ideals

of D. It is easy to see that each maximal t-ideal is a prime ideal, each t-ideal is

contained in a maximal t-ideal, a prime ideal minimal over a t-ideal is a t-ideal,

each nonzero principal ideal is a v-ideal, each v-ideal is a t-ideal, I ⊆ It ⊆ Iv for

all I ∈ F (D), and It = Iv if I is finitely generated. Let Max(D) (resp., t-Max(D))

be the set of maximal ideals (resp., maximal t-ideals) of D. It is easy to see that

D =
⋂

M∈Max(D)DM =
⋂

P∈t-Max(D) DP . By t-dim(D) = 1, we mean that D is not
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a field and each prime t-ideal of D is a maximal t-ideal, and in this case, X1(D) = t-

Max(D). It is well known that if D is not a field, then D is a weakly Krull domain

if and only if t-dim(D) = 1 and D is of finite t-character (i.e., each nonzero nonunit

of D is contained in only finitely many maximal t-ideals) [3, Lemma 2.1].

An I ∈ F (D) is said to be invertible (resp., t-invertible, v-invertible) if II−1 = D

(resp., (II−1)t = D, (II−1)v = D). Let T (D) be the abelian group of t-invertible

fractional t-ideals of D under the t-multiplication I ∗ J = (IJ)t and Prin(D) be

the set of nonzero principal fractional ideals of D. Then Prin(D) is a subgroup

of T (D), and Clt(D) = T (D)/Prin(D) denotes the factor group of T (D) modulo

Prin(D). We denote the group of all v-invertible fractional v-ideals by Fv(D)×

and the monoid of all v-invertible integral v-ideals by I∗
v (D) where multiplication

is defined via I ·v J = (I · J)v. Then Fv(D)× is the quotient group of I∗
v (D). By

Cv(D) we denote the quotient of Fv(D)× modulo Prin(D) and call it the (v-)class

group of D. If we denote the set of all non-zero (integral) principal ideals of D

by H(D), then the embedding H(D) → I∗
v (D) is a cofinal divisor homomorphism

and I∗
v (D)/H(D) = Cv(D) (for more in this direction see [24, Chapter 2.10]). It is

easy to see that a t-invertible t-ideal is a v-invertible v-ideal. Hence, Prin(D) ⊆
T (D) ⊆ Fv(D)×, and thus Clt(D) is a subgroup of Cv(D), and equality holds if D

is a Mori domain (e.g., Krull domain). An integral domain is a Mori domain if it

satisfies the ascending chain condition on its integral v-ideals.

2.2. Monoids. Let H be a monoid with quotient group 〈H〉. As in the case of

integral domains, we can define the v-operation, the t-operation, t-Max(H), t-

invertibility, the class groups, and the Mori monoid. The reader is referred to [31]

for more on the v- and t-operation on monoids. A monoid H is a Krull monoid

if and only if H is a completely integrally closed Mori monoid, if and only if each

ideal of H is t-invertible [31, Theorem 22.8].

Let G be a torsion-free abelian group. We say that G is of type (0, 0, 0, . . .) if G

satisfies the ascending chain condition on its cyclic subgroups (equivalently, for each

nonzero element g ∈ G, there exists a largest positive integer ng such that ngx = g

is solvable in G) [28, Theorem 14.10]. For a prime number p, G is said to be of type

(0, 0, 0, . . .) except p if G satisfies the following two conditions; for each nonzero

element g ∈ G, (i) an infinite number of prime numbers do not divide g and (ii) for

each prime number q 6= p, qn does not divide g for some positive integer n. Clearly,

a torsion-free abelian group of type (0, 0, 0, . . .) is of type (0, 0, 0, . . .) except p for

all prime numbers p, but not vice versa. For example, let G =
⋃∞

n=1(1/p
n)Z for a

prime number p, then G is of type (0, 0, 0, . . .) except p but not of type (0, 0, 0, . . .).

The notion of type (0, 0, 0, . . .) except p was introduced by Matsuda [37, 38] in order

to study when D[G] is a generalized Krull domain for an integral domain D with

char(D) = p.

Remark 1. (1) Let G be a nonzero torsion-free abelian group and p > 0 be a

prime number. In [13], Chang and Oh say that G is of type (0, 0, 0, . . .) except p if

G satisfies the following two conditions for each nonzero element g ∈ G;

(i′) the number of prime numbers dividing g is finite and

(ii) for each prime number q 6= p, qn does not divide g for some integer n ≥ 1.
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Then, in [13, Theorem 4.2], they prove that if D is an integral domain with

char(D) = p > 0, then D[G] is of finite t-character if and only if D is of finite

t-character and G is of type (0, 0, 0, . . .) except p. But, in order to prove [13, Theo-

rem 4.2], they actually used Matsuda’s original definition of type (0, 0, 0, . . .) except

p. Thus, there is no problem when we cite the results of [13].

(2) Let S be an infinite set of prime numbers such that there are also infinitely

many prime numbers in Z \ S and p 6∈ S. Let m be a positive integer and

G = { a

pe11 · · · pekk pn
| a ∈ Z, pi ∈ S, 0 ≤ ei ≤ m for i = 1, . . . , k, and n ≥ 1}.

Then G is a torsion-free abelian group under the usual addition. Moreover, G is

of type (0, 0, 0, . . .) except p, but G does not satisfy (i′) (for example, 1 ∈ G and

each q ∈ S divides 1 because 1 = q · 1
q
and 1

q
∈ G). Thus, (i′) together with (ii) is

stronger than (i) and (ii).

2.3. Semigroup rings. Let Γ be a torsion-free monoid. It is well known that Γ

admits a total order < compatible with its monoid operation [28, Corollary 3.4].

Hence each f ∈ D[Γ] is uniquely expressible in the form f = a1X
α1 +a2X

α2 + · · ·+
akX

αk , where ai ∈ D and αj ∈ Γ with α1 < α2 < · · · < αk. For an ideal I (resp.,

J) of D (resp., Γ), let I[J ] = {a1Xα1 + a2X
α2 + · · · + akX

αk ∈ D[Γ] | ai ∈ I and

αj ∈ J}. Then I[J ] is an ideal of D[Γ] [15, Lemma 2.3], and I[J ] is a prime ideal

if and only if either I is a prime ideal of D and J = Γ or I = D and J is a prime

ideal of Γ (cf. [28, Corollary 8.2] and the proof of [16, Lemma 3.1]).

2.4. UMT-domains and UMT-monoids. Let X be an indeterminate over D

and D[X ] be the polynomial ring over D. A nonzero prime ideal Q of D[X ] is

called an upper to zero in D[X ] if Q ∩ D = (0). So Q is an upper to zero in

D[X ] if and only if Q = fK[X ]∩D[X ] for some irreducible polynomial f ∈ K[X ].

Following [32], we say that D is a UMT-domain if each upper to zero in D[X ] is a

maximal t-ideal of D[X ]. It is known that D is a UMT-domain if and only if D̄P

is a Prüfer domain for all P ∈ t-Max(D) [19, Theorem 1.5].

In [12, Theorem 17], it was shown that D[Γ] is a UMT-domain if and only if D

is a UMT-domain and Γ̄S is a valuation monoid for all maximal t-ideals S of Γ.

Hence, the following is a natural generalization of UMT-domains to monoids.

Definition 2. Let Γ be a torsion-free monoid with quotient group G and Γ̄ be the

integral closure (i.e., root closure) of Γ in G. We say that Γ is a UMT-monoid if

Γ̄S is a valuation monoid for all maximal t-ideals S of Γ.

A Prüfer v-multiplication domain (PvMD) is an integral domain whose nonzero

finitely generated ideals are t-invertible. Then D is a PvMD if and only if DP is

a valuation domain for all maximal t-ideals P of D [29, Theorem 5], if and only if

D is an integrally closed UMT-domain [32, Proposition 3.2]. Now, a monoid Γ is

called a Prüfer v-multiplication monoid (PvMM) if every finitely generated ideal

of Γ is t-invertible. It is known that Γ is a PvMM if and only if ΓS is a valuation

monoid for all S ∈ t-Max(Γ) [31, Theorem 17.2], hence we have

Proposition 3. Let Γ be an integrally closed torsion-free monoid. Then Γ is a

UMT-monoid if and only if Γ is a PvMM.
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By Proposition 3, UMT-monoids include valuation monoids, PvMMs, Krull

monoids, and monoids of t-dimension one whose integral closure is a PvMM.

3. Weakly Krull domains; Preliminary Results

Weakly Krull domains are of finite t-character. The class of integral domains of

finite t-character includes Krull domains and Noetherian domains. In this section,

we recall a couple of results on weakly Krull domains some of which are already

known. The following proposition seems to be of this kind, but we could not find

a proper reference, so we provide a full proof.

Proposition 4. Let D be an integral domain with quotient field K, and assume

that D 6= K.

(1) Let D be a weakly Krull domain and S be a multiplicative subset of D.

Then DS is also a weakly Krull domain.

(2) Let {Sλ} be a set of multiplicative subsets of D such that D =
⋂

λ DSλ

and DSλ
is a weakly Krull domain for all λ. If D =

⋂
λ DSλ

has finite

character, then D is a weakly Krull domain.

Proof. (1) [2, Proposition 4.7].

(2) Let X1(DSλ
) be the set of height-one prime ideals of DSλ

. Then

D =
⋂

λ

(
⋂

P∈X1(DSλ
)

(DSλ
)P )

and this intersection has finite character. Now, for P ∈ X1(DSλ
), let Q = P ∩D.

Then DQ = (DSλ
)P , and hence D =

⋂
Q∈T DQ for some T ⊆ X1(D) and this

intersection has finite character. Next, let Q′ be a height-one prime ideal of D.

Then DQ′ =
⋂

Q∈T (DQ)D\Q′ because the intersection has finite character. Since

DQ is a one-dimensional local domain, (DQ)D\Q′ = K or (DQ)D\Q′ = DQ. Also,

since DQ′ is a one-dimensional local domain, DQ′ = DQ for some Q ∈ T . Thus,

T = X1(D), so D is a weakly Krull domain. �

LetD be an integral domain with quotient field K and Γ be a torsion-free monoid

with with quotient group G. For any f = a1X
α1+a2X

α2+· · ·+akX
αk ∈ D[Γ] with

α1 < · · · < αk, let C(f) be the ideal ofD[Γ] generated by a1X
α1 , a2X

α2 , . . . , akX
αk

and c(f) be the ideal of D generated by a1, . . . , ak, so C(f) ⊆ c(f)D[Γ]. For

convenience, we always assume that f 6= 0 when we study the v-closure C(f)v of

C(f). Let N(H) = {f ∈ D[Γ] | C(f)v = D[Γ]} and H = {aXα | 0 6= a ∈ D and

α ∈ Γ}. It is easy to see that H and N(H) are saturated multiplicative subsets of

D[Γ], D[Γ]H = K[G], and D[Γ] = D[Γ]N(H) ∩D[Γ]H .

Lemma 5. Let D be an integral domain with quotient field K, Γ be a torsion-free

monoid with quotient group G, and N(H) = {f ∈ D[Γ] | C(f)v = D[Γ]}.
(1)

t-Max(D[Γ]) = {P [Γ] | P ∈ t-Max(D)}
∪ {D[S] | S ∈ t-Max(Γ)}
∪ {Q ∈ t-Max(D[Γ]) | QK[G] ( K[G]}.

(2) Max(D[Γ]N(H)) = {P [Γ]N(H) | P ∈ t-Max(D)}∪{D[S]N(H) | S ∈ t-Max(Γ)}.
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(3) t-Max(D[Γ]N(H)) = Max(D[Γ]N(H)).

Proof. (1) [6, Corollary 1.3] and [15, Corollary 2.4]. (2) [7, Proposition 1.4 and

Example 1.6]. (3) [7, Example 1.6 and Proposition 1.8]. �

Proposition 6. Let D be an integral domain with quotient field K, Γ be a torsion-

free monoid with quotient group G, and N(H) = {f ∈ D[Γ] | C(f)v = D[Γ]}. Then
D[Γ] is a weakly Krull domain if and only if D[Γ]N(H) is a one-dimensional weakly

Krull domain and K[G] is a weakly Krull domain.

Proof. Let H = {aXα | 0 6= a ∈ D and α ∈ Γ} and N = N(H). Then K[G] =

D[Γ]H and D[Γ] = D[Γ]N ∩D[Γ]H , and hence D[Γ] is a weakly Krull domain if and

only if both D[Γ]N and K[G] are weakly Krull domains by Proposition 4.

Now, by Lemma 5(3), t-Max(D[Γ]N(H)) = Max(D[Γ]N(H)). Note that if D[Γ]

is a weakly Krull domain, then t-dim(D[Γ]) = 1, thus D[Γ]N is a one-dimensional

weakly Krull domain. �

Let K be a field and G be an additive torsion-free abelian group. Then K[G]

is a Krull domain if and only if G satisfies the ascending chain condition on its

cyclic subgroups [14, Theorem 1]. Hence, the following result recovers the result by

Fadinger and Windisch [16, Theorem 3.7].

Corollary 7. Let D be an integral domain with quotient field K, Γ be a torsion-free

monoid with quotient group G, and assume that K[G] is a weakly Krull domain.

Then D[Γ] is a weakly Krull domain if and only if D is a weakly Krull domain

with ht(P [Γ]) = 1 for all P ∈ t-Max(D) and Γ is a weakly Krull monoid with

ht(D[S]) = 1 for all S ∈ t-Max(Γ).

Proof. By Lemma 5(2), D[Γ]N(H) is one-dimensional if and only if ht(P [Γ]) = 1 for

all P ∈ t-Max(D) and ht(D[S]) = 1 for all S ∈ t-Max(Γ). Thus, the result follows

directly from Lemma 5(2), Proposition 6 and the fact that D[Γ] = D[Γ]N(H) ∩
K[G]. �

Corollary 8. [2, Proposition 4.11] Let D[X ] be the polynomial ring over an integral

domain D. Then D[X ] is a weakly Krull domain if and only if D is a weakly Krull

UMT-domain.

Proof. Let K be the quotient field of D. We may assume that D is not a field, since

if D = K the statement is trivial. Let Γ = {0, 1, 2, . . .}. Then Γ is a torsion-free

monoid under addition, D[X ] = D[Γ], and S := Γ \ {0} is the unique nonempty

prime ideal of Γ. Furthermore, Γ is a weakly Krull monoid, ht(D[S]) = 1, and

K[〈Γ〉] is a UFD. Hence, by Corollary 7, D[Γ] is a weakly Krull domain if and only

if D is a weakly Krull domain with ht(P [Γ]) = 1 for all P ∈ t-Max(D), if and only

if D is a weakly Krull UMT-domain (because t-dim(D) = 1). �

4. Weakly Krull semigroup rings

In this section, we completely characterize when D[Γ] is a weakly Krull domain.

Let H be a monoid and S be the set of non-invertible elements. As in [31, Theorem

15.4], we say that H is primary if S is the only non-empty prime ideal of H .
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Lemma 9. Let Γ be a primary monoid with quotient group G, S be the maximal

ideal of Γ, and Γ̄ be the integral closure of Γ in G. Let K be a field, and assume that

K[G] is a weakly Krull domain. Then ht(K[S]) = 1 if and only if Γ̄ is a valuation

monoid.

Proof. Note that Γ̄ = {α ∈ G | nα ∈ Γ for some integer n ≥ 1}, so Γ̄ is a primary

monoid. Hence, if we let S̄ be the set of nonunits of Γ̄, then S̄ is the unique

non-empty prime ideal of Γ̄ and S̄ ∩ Γ = S.

Claim. ht(K[S]) = ht(K[S̄]). (Proof. Let Q0 ( Q1 ( · · · ( Qn = K[S̄] be a

chain of prime ideals of K[Γ̄]. Then, since K[Γ̄] is integral over K[Γ],

Q0 ∩K[Γ] ( Q1 ∩K[Γ] ( · · · ( Qn ∩K[Γ] = K[S]

is a chain of prime ideals of K[Γ] [35, Theorem 44]. Hence ht(K[S]) ≥ ht(K[S̄]).

Next, let P0 ( P1 ( · · · ( Pm = K[S] be a chain of prime ideals ofK[Γ]. Then there

is a chain M0 ( M1 ( · · · ( Mm of prime ideals of K[Γ̄] such that Mi ∩K[Γ] = Pi

for i = 0, 1, . . . ,m [35, Theorem 44]. Note that Mm∩K[Γ] = K[S], so K[S̄] ⊆ Mm.

Note also that K[S̄] ∩ K[Γ] = K[S]. Thus, Mm = K[S̄] [35, Theorem 44], so

ht(K[S̄]) ≥ ht(K[S]). Hence, ht(K[S̄]) = ht(K[S]).)

Now, by Claim, we may assume that Γ is integrally closed.

(⇒) Assume to the contrary that Γ is not a valuation monoid. Then there are

a, b ∈ Γ such that neither a divides b nor b divides a in Γ. Now, let f = Xa +Xb ∈
K[Γ]. Since K[G] is a weakly Krull domain, fK[G] = Q1 ∩ · · · ∩ Qk for some

primary ideals Qi of K[G] with ht(
√
Qi) = 1 [3, Theorem 3.1]. Hence,

fK[G] ∩K[Γ] =

k⋂

i=1

(Qi ∩K[Γ])

and each Qi ∩K[Γ] is a primary ideal.

Now, assume fK[G] ∩K[Γ] * K[S]. Then there is an element g ∈ K[G] such

that fg ∈ K[Γ] \ K[S]. Hence, C(fg) * K[S], and since (C(f)C(g))v = C(fg)v
[1, Corollary 3.9], we have C(f)C(g) * K[S]. Note that K is a field, so C(f) =

(Xa, Xb)K[Γ] and C(g) = (Xα1 , . . . , Xαl)K[Γ] for some αi ∈ G, whence either

Xa+αi = XaXαi 6∈ K[S] for some i or Xb+αj = XbXαj 6∈ K[S] for some j. We

may assume that Xa+αi 6∈ K[S]. Then a + αi ∈ Γ \ S, so a + αi is a unit of Γ,

whence a+αi+β = 0 for some β ∈ Γ. Thus, b = a+(b+αi)+β and (b+αi)+β ∈ Γ,

which means that a divides b in Γ, a contradiction.

Hence, fK[G] ∩ K[Γ] ⊆ K[S], and thus Qi ∩ K[Γ] ⊆ K[S] for some i with

1 ≤ i ≤ k. Note that ht(K[S]) = 1 by assumption, so K[S] =
√
Qi ∩K[Γ], which

implies (K[S])K[G] ( K[G], a contradiction. Thus, Γ is a valuation monoid.

(⇐) Assume that (0) 6= Q ( K[S] is a chain of prime ideals of K[Γ]. Then,

for 0 6= f ∈ Q, there is an α ∈ Γ such that f = Xαg for some g ∈ K[Γ] with

C(g) = K[Γ]. Hence, g 6∈ K[S], so g 6∈ Q, and thus Xα ∈ Q. But, in this

case, if S1 = {α ∈ Γ | Xα ∈ Q}, then S1 is a non-empty prime ideal of Γ and

K[S1] ⊆ Q ( K[S]. Thus, S1 ( S, a contradiction. Therefore, ht(K[S]) = 1. �

Lemma 10. Let G be a torsion-free abelian group, D be a one-dimensional local

domain with maximal ideal P , K be the quotient field of D, and D̄ be the integral
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closure of D in K. Assume that K[G] is a weakly Krull domain. Then ht(P [G]) = 1

if and only if D̄ is a Prüfer domain.

Proof. The proof of this lemma is similar to that of Lemma 9, but we give the proof

for the convenience of the reader.

Claim. ht(P [G]) = max{ht(Q[G]) | Q is a maximal ideal of D̄}. (Proof. Let

Q be a maximal ideal of D̄, and let Q0 ( Q1 ( · · · ( Qn = Q[G] be a chain of

prime ideals of D̄[G]. Then, since D̄[G] is integral over D[G],

Q0 ∩D[G] ( Q1 ∩D[G] ( · · · ( Qn ∩D[G] = P [G]

is a chain of prime ideals of D[Γ]. Hence ht(P [G]) ≥ ht(Q[G]). Next, let P0 (
P1 ( · · · ( Pm = P [G] be a chain of prime ideals of D[G]. Then there is a chain

M0 ( M1 ( · · · ( Mm of prime ideals of D̄[G] such that Mi ∩ D[G] = Pi for

i = 0, 1, . . . ,m. Note that Mm∩D[G] = P [G], so if we let Q′ = Mm∩ D̄, then Q′ is

a maximal ideal of D̄ and Q′[G] ⊆ Mn. Note also that Q′[G] ∩D[G] = P [G], thus

Q′[G] = Mn [35, Theorem 44]. Hence, ht(P [G]) ≤ ht(Q′[G]).)

Now, by Claim, we may assume that D is an integrally closed one-dimensional

domain (which need not be local). Then it suffices to show that ht(P [G]) = 1 for

all maximal ideals P of D if and only if D is a Prüfer domain.

(⇒) Assume to the contrary that D is not a Prüfer domain. Then there are

a, b ∈ D\{0} such that (a, b) is not an invertible ideal ofD. Hence (a, b)(a, b)−1 ⊆ Q

for some maximal ideal Q of D. For 0 6= α ∈ G, let f = a + bXα. Then, by [1,

Corollary 3.9],

fK[G] ∩D[G] = fc(f)−1[G],

hence fK[G] ∩D[G] ( Q[G]. Since K[G] is a weakly Krull domain, fK[G] has a

primary decomposition whose associated prime ideals have height-one [3, Theorem

3.1], say, fK[G] = Q1 ∩ · · · ∩Qk. Then

fK[G] ∩D[G] =

k⋂

i=1

(Qi ∩D[G])

and each Qi ∩D[G] is a primary ideal. Moreover, at least one of the Qi ∩D[G] is

contained in Q[G], so ht(Q[G]) ≥ 2, a contradiction. Thus, D is a Prüfer domain.

(⇐) Let Q be a maximal ideal of D. Then ht(Q[G]) = ht(QDQ[G]) and DQ is

a valuation domain. Hence, we may assume that D is a valuation domain. Then it

is easy to see that ht(Q[G]) = 1 as in the proof (⇐) of Lemma 9. �

Theorem 11. Let D be an integral domain with quotient field K and Γ be a torsion-

free monoid with quotient group G. Then D[Γ] is a weakly Krull domain if and only

if D is a weakly Krull UMT-domain, Γ is a weakly Krull UMT-monoid, and K[G]

is a weakly Krull domain.

Proof. (⇒) By Proposition 6, D[Γ]N(H) is a one-dimensional weakly Krull domain

andK[G] is a weakly Krull domain. Also, by Corollary 7, D and Γ are weakly Krull.

Now, if P ∈ t-Max(D), then 1 = ht(P ) = ht(P [Γ]) = ht(P [G]) = ht(PDP [G])

(see Corollary 7 for the second equality), thus D̄P is a Prüfer domain by Lemma

10. Thus, D is a UMT-domain. Next, if S ∈ t-Max(Γ), then ht(K[S + ΓS ]) =
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ht(K[S]) = ht(S) = 1 by Corollary 7, whence Γ̄S is a valuation monoid by Lemma

9. Thus, Γ is a UMT-monoid.

(⇐) Note that ht(P [Γ]) = ht(P [G]) = ht(PDP [G]) = 1 for all P ∈ t-Max(D) by

Lemma 10 and ht(D[S]) = ht(K[S]) = ht(K[S + ΓS ]) = 1 for all S ∈ t-Max(Γ) by

Lemma 9. Recall that

Max(D[Γ]N(H)) = {P [Γ]N(H) | P ∈ t-Max(D)} ∪ {D[S]N(H) | S ∈ t-Max(Γ)}.
Thus, D[Γ]N(H) is a one-dimensional weakly Krull domain. Therefore, D[Γ] is a

weakly Krull domain by Proposition 6. �

The following lemma is from [13, Corollaries 3.2 and 4.3].

Lemma 12. Let D be an integral domain with quotient field K and char(D) = 0

(resp., char(D) = p > 0). Then K[G] is a weakly Krull domain if and only if G is

of type (0, 0, 0, . . . ) (resp., of type (0, 0, 0, . . . ) except p).

By Theorem 11 and Lemma 12, we have the following two corollaries which are

complete characterizations of semigroup rings D[Γ] that are weakly Krull domains.

Corollary 13. Let D be an integral domain, Γ be a torsion-free monoid with quo-

tient group G, and assume char(D) = 0. Then D[Γ] is a weakly Krull domain if

and only if D is a weakly Krull UMT-domain, Γ is a weakly Krull UMT-monoid,

and G is of type (0, 0, 0, . . . ).

Corollary 14. Let D be an integral domain, Γ be a torsion-free monoid with quo-

tient group G, and assume char(D) = p > 0. Then D[Γ] is a weakly Krull domain

if and only if D is a weakly Krull UMT-domain, Γ is a weakly Krull UMT-monoid,

and G is of type (0, 0, 0, . . . ) except p.

Let N0 be the additive monoid of nonnegative integers under the usual addition.

Then N0 is a torsion-free monoid with quotient group Z. A numerical monoid Γ is

a submonoid of N0 such that 0 ∈ Γ and N \ Γ is finite. Hence, Γ is a torsion-free

monoid with quotient group Z.

Corollary 15. [36, Theorem 1.3] Let D be an integral domain and Γ be a numerical

monoid with Γ ⊆ N0. Then D[Γ] is a weakly Krull domain if and only if D is a

weakly Krull UMT-domain.

Proof. Clearly, N0 is the integral closure of Γ in Z and N0 is a valuation monoid.

Moreover, Γ \ {0} is the unique nonempty prime ideal of Γ, so Γ is a weakly Krull

UMT-monoid. Note that if K is the quotient field of D, then K[Z] is a UFD, and

hence a weakly Krull domain. Thus, the proof is completed by Theorem 11. �

A generalized Krull domain D is a weakly Krull domain such that DP is a

valuation domain for all P ∈ t-Max(D). The next result was proved by Matsuda

([37, Proposition 10.7] for the case of char(D) = 0 and [38, Theorems 1.5 and 4.3]

for the case of char(D) = p > 0).

Corollary 16. Let D be an integral domain, Γ be a torsion-free monoid with quo-

tient group G, and assume char(D) = 0 (resp., char(D) = p > 0). Then D[Γ] is

a generalized Krull domain if and only if D is a generalized Krull domain, Γ is
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a generalized Krull monoid, and G is of type (0, 0, 0, . . . ) (resp., type (0, 0, 0, . . . )

except p).

Proof. Let P be a prime ideal of D. Then DP is a valuation domain if and only

if D[Γ]P [Γ] is a valuation domain. Also, if S is a prime ideal of Γ, then ΓS is a

valuation monoid if and only if D[Γ]D[S] is a valuation domain. Thus, the result

follows directly from Corollaries 13 and 14. �

It is well known that a domain D is a WFD if and only if it is weakly Krull with

Clt(D) = {0} [4, Theorem]. We next use the main result of this section to recover

Chang and Oh’s result [13] which completely characterizes when D[Γ] is a WFD.

Corollary 17. [13, Theorems 3.4 and 4.5] Let D be an integral domain, Γ be

a torsion-free monoid with quotient group G, and assume char(D) = 0 (resp.,

char(D) = p > 0). Then D[Γ] is a WFD if and only if D is a weakly factorial

GCD-domain, Γ is a weakly factorial GCD-monoid, and G is of type (0, 0, 0, . . . )

(resp., (0, 0, 0, . . . ) except p).

Proof. This follows directly from Proposition 3, Corollaries 13, 14, and the following

observations: (i) If D and Γ are integrally closed, then Clt(D[Γ]) = Clt(D)×Clt(Γ)

[15, Lemma 2.1 and Corollary 2.11], (ii) if Clt(D[Γ]) = {0}, then D and Γ are

integrally closed and Clt(D) = Clt(Γ) = {0} by [15, Theorems 2.6 and 2.7], (iii)

D[Γ] is a PvMD if and only if D is a PvMD and Γ is a PvMM [1, Proposition

6.5], (iv) D is a PvMD if and only if D is an integrally closed UMT-domain [32,

Proposition 3.2], (v) D is a GCD-domain if and only if D is a PvMD with Clt(D) =

{0} [8, Proposition 2], (vi) Γ is a GCD-monoid if and only if Γ is a PvMM with

Clt(Γ) = {0} [31, Theorem 11.5], and (vii) Γ is a weakly factorial monoid if and

only if Γ is a weakly Krull monoid with Clt(Γ) = {0} [31, p. 258]. �

5. Arithmetical applications of the main result

Building on the algebraic results of the previous section and on a recent work

on the distribution of prime divisors in the class groups of affine semigroup rings

[17], we will study the factorization theory of weakly Krull semigroup rings. What

is known up to now concerning factorizations in weakly Krull domains are on the

one hand a few very general results lacking examples and on the other hand very

concrete examples lacking generality. This is mainly due to the fact that the class

group and the distribution of the prime divisors play a key role in the investigation

of the factorization behaviour of a weakly Krull domain. But determining class

groups and prime divisors in the classes is in general very hard. Nevertheless, the

structure of sets of lengths of one-dimensional local Mori domains (equivalently

local weakly Krull Mori domains) is given in [23].

We are the first who give a fairly broad but sufficiently concrete class of non-local

weakly Krull domains that are not Krull domains, namely certain affine semigroup

rings, where we can understand the arithmetic. For example, up to now the knowl-

edge of domains having full system of sets of lengths was restricted to a class of

certain Krull domains (see [33]) and a class of integer-valued polynomial rings (see

[21, 22]). Our results show that there is also a class of weakly Krull domains, which

are not Krull but have full system of sets of lengths.
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We recall some concepts from factorization theory (for details see [24, Chapter

1]). Let H be a monoid and let A(H) be its set of atoms. We denote by Hred =

H/H× the associated reduced monoid. Consider the free abelian monoid Z(H) =

F(A(Hred)) with the epimorphism π : Z(H) → Hred via π(uH×) = uH× for all

u ∈ A(H). For a ∈ H ,

• Z(a) = π−1({aH×}) is the set of factorizations of a, and

• L(a) = {|z| : z ∈ Z(a)} is the set of lengths of a, where |z| = m if z =

u1 · · ·um for ui ∈ A(Hred).

Then H is said to be atomic if L(a) is non-empty for all a ∈ H and is said to be

a BF-monoid if H is atomic and L(a) is finite for all a ∈ H . Note that if R is

a Mori domain, then the multiplicative monoid R \ {0} is always a BF-monoid.

We consider the system L(H) = {L(a) : a ∈ H} of all sets of lengths of H . For

convenience, we denote L(R \ {0}) by L(R) for an integral domain R. A system

of sets of lengths of a BF-monoid is called full if it equals {{0}, {1}} ∪ {L ⊆ N≥2 |
L finite non-empty}. The set of distances of H is ∆(H) =

⋃
L∈L(H) ∆(L), where

∆(L) = {d ∈ N : there is l ∈ L such that L ∩ {l, l + 1, . . . , l + d} = {l, l + d}}. For

k ∈ N, we define Uk(H) =
⋃

k∈L∈L(H) L.

Let R be a weakly Krull Mori domain with non-zero conductor fR = (R : R̂) 6=
(0). Then H = R \ {0} is a weakly Krull Mori monoid with non-empty conductor

fH = (H : Ĥ) 6= ∅. It follows by [24, Proposition 2.4.5.1] that the canonical map

H → I∗
v (H) ∼=

∐
p∈X1(H)(Hp)red ∼= F(P ) ×D1 × . . . ×Dn is a divisor homomor-

phism, where P = {p ∈ X1(H) | p 6⊇ fH}, F(P ) is the free abelian monoid with

basis P , and Di = (Hqi
)red for i ∈ {1, . . . , n} and X1(H) \ P = {q1, . . . , qn}. The

existence of the first isomorphism is proven in [26, Proposition 5.3.4] and the second

isomorphism as well as the finiteness of X1(H)\P follows from [24, Theorem 2.6.5].

Let G = Cv(H) ∼= Cv(R) be the divisor-class group of H and let G0 be the set of all

classes containing prime divisors, that is, prime ideals p ∈ P . Let T = D1×· · ·×Dn

(so T is a reduced monoid, i.e. T× is trivial) and let ι : T → G be the canonical

map induced by the isomorphisms from above and the projection I∗
v (H) → G. The

T -block monoid over G0 defined by ι is

B = B(G0, T, ι) = {(g1 · · · gk, t) ∈ F(G0)× T | g1 + . . .+ gk + ι(t) = 0}.
Then the monoid B(G0) = {g1 · · · gk ∈ F(G0) | g1 + . . . + gk = 0} is a divisor-

closed submonoid of B. By [26, Lemma 4.3], there exists a transfer homomorphism

β : H → B. Thus, L(R) = L(H) = L(B) by [24, Proposition 3.2.3.5]. Moreover,

it follows that L(B(G0)) ⊆ L(R) by the previous equality and B(G0) ⊆ B being

divisor-closed. It is easy to see that B(G1) ⊆ B(G0) is a divisor closed submonoid

for every subset G1 ⊆ G0, whence L(B(G1)) ⊆ L(B(G0)).

The notion of Hilbertian fields is a classical one whose origin lies in Galois theory

and is to be found in [20]. For our purpose, we need a generalization of it.

Definition 18. A field K is called pseudo-Hilbertian if, for all n ∈ N0 and for all

a0, . . . , an ∈ K with a0 6= 0, there exists an irreducible polynomial in K[X ] whose

coefficient at the monomial X i equals ai for all i ∈ {0, . . . , n}.
Note that every Hilbertian field is an infinite pseudo-Hilbertian field. In particu-

lar, algebraic function fields over an arbitrary field and algebraic number fields are
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pseudo-Hilbertian. See [20] for more on Hilbertian fields. Moreover, finite fields are

pseudo-Hilbertian [39].

For the following theorem, note that if D is noetherian and Γ is a numerical

monoid, then D[Γ] is noetherian and hence Mori.

Theorem 19. Let D be a weakly Krull UMT-domain with non-zero conductor

fD = (D : D̂) 6= (0) and infinite pseudo-Hilbertian quotient field K. Let Γ 6= N0

be a numerical monoid and suppose that D[Γ] is a Mori domain. Then L(D[Γ]) is

full.

Proof. By Corollary 15 and assumption, D[Γ] is a weakly Krull Mori domain. Then

fD[Γ] = (D[Γ] : D̂[Γ]) 6= (0)

by [17, Lemma 3.1], whence we are in the situation that we explained at the

beginning of this section. The class group of D[Γ] is of the form Cv(D[Γ]) ∼=
Cv(D[X ]) ⊕ Pic(K[Γ]) [5, Theorem 5]. Since K is infinite and pseudo-Hilbertian,

K[Γ] has infinitely many prime divisors in every class by [17, Theorem 1] and

Pic(K[Γ]) is infinite by [17, Propositions 3.4 & 3.7]. So if G0 ⊆ Cv(D[Γ]) de-

notes the set of classes containing prime divisors, then G0 contains the infinite

abelian group Pic(K[Γ]). Hence B(Pic(K[Γ])) ⊆ B(G0) ⊆ B(G0, T, ι). There-

fore L(B(Pic(K[Γ])) ⊆ L(D[Γ]) and the statement follows by Kainrath’s Theorem

[33]. �

To give two important special cases of Theorem 19, we apply it to orders in

algebraic number fields and to polynomial rings.

Corollary 20. Let Γ 6= N0 be a numerical monoid.

(1) If D is an order in an algebraic number field, then L(D[Γ]) is full.

(2) If D is a noetherian weakly Krull UMT-domain with non-zero conductor,

then L(D[X ][Γ]) is full.

Proof. (1) If D is an order in an algebraic number field, then D is a noetherian

weakly Krull UMT-domain (the integral closures of the localizations at maximal

t-ideals are one-dimensional Krull by Mori-Nagata Theorem, whence Prüfer) with

non-zero conductor and infinite pseudo-Hilbertian quotient field. Now the assertion

follows from Theorem 19.

(2) IfD is a noetherian weakly Krull UMT-domain with non-zero conductor, then

D[X ] is noetherian and a UMT-domain [19, Theorem 2.4]. It follows from Corollary

15 that D[X ] is weakly Krull and from [17, Lemma 3.1] that the conductor fD[X] is

non-zero. Since the quotient field K(X) of D[X ] is infinite and pseudo-Hilbertian,

we can apply Theorem 19. �

Recall that a monoid H with quotient group 〈H〉 is said to be seminormal if for

all x ∈ 〈H〉 we have that x2, x3 ∈ H implies x ∈ H . For the next theorem, note

that seminormal affine monoids are characterized in terms of their geometry, e.g.

see [9, Proposition 2.42]. Also, for seminormal weakly Krull affine monoids, either

statement (1) or statements (2) and (3) of the next theorem are true always. The

theorem is particularly interesting because even in the case of orders O in algebraic

number fields, min(∆(O)) > 1 can occur.
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Theorem 21. Let K be a field, Γ be a weakly Krull affine monoid that is not a

numerical monoid, and assume that the root closure Γ̄ is factorial. Then either

K[Γ] is half-factorial or min(∆(K[Γ])) = 1. Moreover, the following hold true.

(1) If Cv(K[Γ]) is infinite, then L(K[Γ]) is full.

(2) If Cv(K[Γ]) is finite, then K[Γ] satisfies the Structure Theorem for Sets of

Lengths (see [24, Definition 4.7.1]).

(3) If Cv(K[Γ]) is finite and Γ is seminormal, then both ∆(K[Γ]) and Uk(K[Γ])

are finite intervals for all k ≥ 2.

Proof. Note that every weakly Krull affine monoid is a UMT-monoid, because its

localizations at maximal t-ideals are finitely generated primary monoids, whence

their integral closures are primary Krull monoids, that is, discrete rank one valu-

ation monoids. Thus, K[Γ] is a weakly Krull domain by Corollary 15. Moreover,

K[Γ] is noetherian, K[Γ̄] = K[Γ̂] = K̂[Γ] and there is a one-to-one correspondence

of height-one prime ideals X1(K[Γ̄]) → X1(K[Γ]) given by P 7→ P ∩K[Γ] using a

combination of Lemma 5 and [40, Proposition 2.7]. Since every finitely generated

monoid always has a non-empty conductor [24, Theorem 2.7.13], it follows from

[17, Lemma 3.1] that K[Γ] has a non-zero conductor. Thus, we are in the situation

that we explained at the beginning of this section. Moreover, by [17, Theorem 2],

there are infinitely many prime divisors in all classes of Cv(K[Γ]).

The statement on the half-factoriality and the minimum of ∆(K[Γ]) follows from

[27, Theorem 1.1].

(1) Let Cv(K[Γ]) be infinite. Then B(Cv(K[Γ])) ⊆ B(Cv(K[Γ]), T, ι). Therefore

L(B(Cv(K[Γ]))) ⊆ L(K[Γ]) and the statement follows by Kainrath’s Theorem [33].

(2) This is immediate by [24, Chapter 4.7].

(3) If Γ is seminormal, then K[Γ] is seminormal by [9, Theorem 4.75]. Thus

Uk(K[Γ]) (resp., ∆(K[Γ])) is a finite interval for all k ≥ 2 by [26, Theorem 5.8.2

(a)] (resp., [27, Theorem 1.1]). �

Remark 22. Let R be a weakly Krull Mori domain. Then the monoid H = I∗(R)

is a weakly Krull Mori monoid. If R has a nonzero conductor, then H has a nonzero

conductor; if R is seminormal, then H is seminormal; if the v-class group Cv(R)

of R has (infinitely) many prime divisors in the classes, then the same is true for

H (see [25, Theorem 4.4 & Corollary 4.7]). Thus, all the mentioned arithmetical

properties for R hold true for H too.

We close this section with an application of Theorem 21(1). We first need the

following lemma.

Lemma 23. Let K be a field and S1, . . . , Sn be numerical monoids with n > 1.

Then

Cv(K[

n⊕

i=1

Si]) ∼=
n⊕

i=1

Cv(K(X1, . . . , Xn−1)[Si]).

Proof. Note that Cv(K[Zm]) is trivial for all integers m ≥ 1, so it suffices to show

that for all positive integers m with m ≤ n,

Cv(K[

n⊕

i=1

Si]) ∼= Cv(K[Zm ⊕ Sm+1 ⊕ . . .⊕ Sn])⊕
m⊕

i=1

Cv(K(X1, . . . , Xn−1)[Si]).
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We prove the isomorphism by induction on m ≤ n. First if m = 1, then

Cv(K[
n⊕

i=1

Si]) ∼= Cv(K[
n⊕

i=2

Si][S1])

∼= Cv(K[
n⊕

i=2

Si][Z])⊕ Cv(K(X1, . . . , Xn−1)[S1])

∼= Cv(K[Z⊕
n⊕

i=2

Si])⊕ Cv(K(X1, . . . , Xn−1)[S1]),

where the second isomorphism follows from [5, Theorem 5]. Now assume that

m > 1. Then by the induction hypothesis,

Cv(K[

n⊕

i=1

Si]) ∼= Cv(K[Zm−1 ⊕ Sm ⊕ . . .⊕ Sn])⊕
m−1⊕

i=1

Cv(K(X1, . . . , Xn−1)[Si])

∼= Cv(K[Zm−1 ⊕
n⊕

i=m+1

Si][Sm])⊕
m−1⊕

i=1

Cv(K(X1, . . . , Xn−1)[Si])

∼= Cv(K[Zm−1 ⊕
n⊕

i=m+1

Si][Z])⊕
m⊕

i=1

Cv(K(X1, . . . , Xn−1)[Si])

∼= Cv(K[Zm ⊕ Sm+1 ⊕ . . .⊕ Sn])⊕
m⊕

i=1

Cv(K(X1, . . . , Xn−1)[Si]).

Thus, the isomorphism holds for all positive integers m with m ≤ n. �

Corollary 24. Let K be a field, S1, . . . , Sn be numerical monoids with n > 1 such

that Si 6= N0 for at least one of the Si, and Γ =
⊕n

i=1 Si. Then L(K[Γ]) is full.

Proof. Clearly, Γ is an affine monoid and by [18, Proposition 5.8] it is weakly Krull,

so we only need to show that K[Γ] has an infinite class group. Then we can apply

Theorem 21(1). But this follows immediately from Lemma 23 in combination with

[17, Propositions 3.4 and 3.7]. �
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