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Abstract

For a set X , an equivalence relation ρ on X , and a cross-section R of the partition
X/ρ induced by ρ, consider the semigroup T (X, ρ, R) consisting of all mappings a
from X to X such that a preserves both ρ (if (x, y) ∈ ρ then (xa, ya) ∈ ρ) and
R (if r ∈ R then ra ∈ R). The semigroup T (X, ρ, R) is the centralizer of the
idempotent transformation with kernel ρ and imageR. We determine the structure of
T (X, ρ, R) in terms of Green’s relations, describe the regular elements of T (X, ρ, R),
and determine the following classes of the semigroups T (X, ρ, R): regular, abundant,
inverse, and completely regular.

2000 Mathematics Subject Classification: 20M20.

1 Introduction

Let X be an arbitrary nonempty set. The semigroup T (X) of full transformations on X
consists of the mappings from X to X with composition as the semigroup operation.

Let ρ be an equivalence relation on X and let R be a cross-section of the partition
X/ρ induced by ρ. Consider the following subset of T (X):

T (X, ρ, R) = {a ∈ T (X) : Ra ⊆ R and (x, y) ∈ ρ ⇒ (xa, ya) ∈ ρ}.

Clearly T (X, ρ, R) is a subsemigroup of T (X). The family of semigroups T (X, ρ, R)
includes the semigroup T (X) (T (X) = T (X,∆,X) where ∆ = {(x, x) : x ∈ X}) and
the semigroup PT (X ′) of partial transformations on X ′ where X ′ is X with one element
removed (if X ′ = X − {r} then PT (X ′) is isomorphic to T (X,X ×X, {r})).

Another way of describing the semigroups T (X, ρ, R) is through the notion of the
centralizer. Let S be a semigroup and a ∈ S. The centralizer C(a) of a is defined as

C(a) = {b ∈ S : ab = ba}.
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It is clear that C(a) is a subsemigroup of S.
The full transformation semigroup T (X) is the centralizer of the identity mapping idX

on X: T (X) = C(idX). More generally, the semigroups T (X, ρ, R) are the centralizers of
the idempotent transformations: T (X, ρ, R) is the centralizer of the idempotent in T (X)
with kernel ρ and image R [1].

Centralizers in T (X) for a finite set X have been studied by Higgins [4], Liskovec
and Fĕınberg [10], [11], and Weaver [14]. The second author has studied centralizers in
the semigroup PT (X) of partial transformations on a finite set X [6], [7], [8]. In [1], the
authors determined the automorphism group of T (X, ρ, R).

In this paper, we study the structure and regularity of the semigroups T (X, ρ, R)
for an arbitrary set X. In Section 2, we determine Green’s relations in T (X, ρ, R). In
particular, we find that, in general, the relations D and J are not the same in T (X, ρ, R),
and that the J -classes of T (X, ρ, R) do not form a chain. We characterize the relations
ρ for which D = J and the relations ρ for which the partially ordered set of J -classes
is a chain. In Section 3, we describe the regular elements of T (X, ρ, R) and characterize
the relations ρ for which T (X, ρ, R) is a regular semigroup. In Section 4, we show
that abundant semigroups T (X, ρ, R) are precisely those that are regular. Finally, in
Section 5, we determine that T (X, ρ, R) is never an inverse semigroup (if |X| ≥ 3) or a
completely regular semigroup (if |X| ≥ 4).

2 Green’s Relations in T (X, ρ, R)

For a ∈ T (X), we denote the kernel of a (the equivalence relation {(x, y) ∈ X×X : xa =
ya}) by Ker(a) and the image of a by ∇a. For Y ⊆ X, Y a will denote the image of Y
under a, that is, Y a = {xa : x ∈ Y }. As customary in transformation semigroup theory,
we write transformations on the right (that is, xa instead of a(x)).

Let ρ be an equivalence relation on X and R a cross-section of X/ρ. If x ∈ X then
there is exactly one r ∈ R such that x ρ r, which will be denoted by rx. Of course, for
s ∈ R, we have rs = s.

For the remainder of the paper, ρ will denote an equivalence relation on X and R
will denote a cross-section of X/ρ.

If S is a semigroup and a, b ∈ S, we say that aR b if aS1 = bS1, aL b if S1a = S1b,
and aJ b if S1aS1 = S1bS1, where S1 is the semigroup S with an identity adjoined,
if necessary. We define H as the intersection of L and R, and D as the join of L and
R, that is, the smallest equivalence relation on S containing both L and R. These five
equivalence relations on S are known as Green’s relations [5, p. 45]. The relations L and
R commute [5, Proposition 2.1.3], and consequently D = L ◦R = R ◦ L. If T is one of
Green’s relations and a ∈ S, we denote the equivalence class of a with respect to T by
Ta. Since R, L, and J are defined in terms of principal ideals in S, which are partially
ordered by inclusion, we have the induced partial orders in the sets of the equivalence
classes of R, L, and J : Ra ≤ Rb if aS1 ⊆ bS1, La ≤ Lb if S1a ⊆ S1b, and Ja ≤ Jb if
S1aS1 ⊆ S1bS1.

Green’s relations in the semigroup T (X) are well known [5, Exercise 16, p. 63].

Lemma 2.1 If a, b ∈ T (X) then:

(1) aR b ⇔ Ker(a) = Ker(b).
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(2) aL b ⇔ ∇a = ∇b.

(3) aD b ⇔ |∇a| = |∇b|.

(4) D = J .

Our aim in this section is to describe Green’s relations in the semigroups T (X, ρ, R).

2.1 Relations R and L

The relation R in T (X, ρ, R) is simply the restriction of the relation R in T (X) to
T (X, ρ, R) × T (X, ρ, R). This result will follow from the following lemma.

Lemma 2.2 Let a, b ∈ T (X, ρ, R). Then Ra ≤ Rb if and only if Ker(b) ⊆ Ker(a).

Proof: Suppose Ra ≤ Rb. Then there is c ∈ T (X, ρ, R) such that a = bc, and so for all
x, y ∈ X, xb = yb implies xa = (xb)c = (yb)c = ya. Thus Ker(b) ⊆ Ker(a).

Conversely, suppose Ker(b) ⊆ Ker(a). We shall construct c ∈ T (X, ρ, R) such that
a = bc. Consider an equivalence class rρ where r ∈ R. If r /∈ ∇b, define yc = y for every
y ∈ rρ. Suppose r ∈ ∇b. Then, since b ∈ T (X, ρ, R), r = tb for some t ∈ R. Since
a ∈ T (X, ρ, R), ta = p for some p ∈ R. Let y ∈ rρ. If y = xb ∈ ∇b, define yc = xa; if
y /∈ ∇b, define yc = p. Note that c is well defined since for all x, x′ ∈ X, if xb = x′b then
xa = x′a (since Ker(b) ⊆ Ker(a)) and so (xb)c = xa = x′a = (x′b)c. It is clear by the
construction of c that bc = a. It remains to show that c ∈ T (X, ρ, R).

If r /∈ ∇b then rc = r ∈ R and (rρ)c = rρ. Suppose r ∈ ∇b. By the definition of c,
rc = (tb)c = ta = p ∈ R. Next we show that (rρ)c ⊆ pρ. Let y ∈ rρ. If y /∈ ∇b then
yc = p ∈ pρ, and so (rρ)c ⊆ pρ, in this case. Let y = xb ∈ ∇b. Then x ∈ qρ for some
q ∈ R. Since x ∈ qρ and xb ∈ rρ, qb = r. Since Ker(b) ⊆ Ker(a), tb = qb (= r) implies
ta = qa. Thus qa = ta = p, and so (qρ)a ⊆ pρ. Hence yc = xa ∈ pρ. It follows that
c ∈ T (X, ρ, R), and so Ra ≤ Rb.

Theorem 2.3 Let a, b ∈ T (X, ρ, R). Then aR b if and only if Ker(a) = Ker(b).

Proof: It follows immediately from Lemma 2.2.

Let A and B be families of sets. We write A ↪→ B if for every set C ∈ A there is a
set D ∈ B such that C ⊆ D. If A ↪→ B and B ↪→ A, we write A ↔ B.

Our characterization of the relation L in T (X, ρ, R) will follow from the following
lemma. For a ∈ T (X, ρ, R), we denote by !a the family {(rρ)a : r ∈ R}.

Lemma 2.4 Let a, b ∈ T (X, ρ, R). Then La ≤ Lb if and only if !a ↪→ !b.

Proof: Suppose La ≤ Lb. Then there is c ∈ T (X, ρ, R) such that a = cb. Let A ∈ !a.
Then A = (rρ)a = ((rρ)c)b for some r ∈ R. Since c ∈ T (X, ρ, R), (rρ)c ⊆ tρ for some
t ∈ R. Thus A ⊆ (tρ)b ∈ !b, and so !a ↪→ !b.

Conversely, suppose !a ↪→ !b. To construct c ∈ T (X, ρ, R) such that a = cb, con-
sider rρ (r ∈ R). Since !a ↪→ !b and b ∈ T (X, ρ, R), (rρ)a ⊆ (tρ)b ⊆ pρ for some
t, p ∈ R. Thus, for every x ∈ rρ, we can select yx ∈ tρ such that xa = yxb (if x = r, we
may assume that yx = t since ra = tb = p) and define xc = yx. By the construction of
c, a = cb and c ∈ T (X, ρ, R) (since (rρ)c ⊆ tρ and rc = t). Thus La ≤ Lb.
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Theorem 2.5 Let a, b ∈ T (X, ρ, R). Then aL b if and only if !a ↔ !b.

Proof: It follows immediately from Lemma 2.4.

For a ∈ T (X, ρ, R), denote by m(!a) the family of all sets maximal in !a (with
respect to inclusion). Suppose X is finite. Then for every A ∈ !a, there is A′ ∈ m(!a)
such that A ⊆ A′. (This is not necessarily true if X is infinite.) It easily follows that for
all a, b ∈ T (X, ρ, R), !a ↔ !b if and only if m(!a) = m(!b). Thus in the finite case,
aL b if and only if m(!a) = m(!b) [7].

2.2 Relations D and J

Let f : Y → Z be a function from a set Y to a set Z. For a family A of subsets of
Y , f(A) denotes the family {f(A) : A ∈ A} of subsets of Z. The following theorem
characterizes Green’s D-relation in T (X, ρ, R).

Theorem 2.6 Let a, b ∈ T (X, ρ, R). Then aD b if and only if there is a bijection f :
∇a → ∇b such that f(R ∩ ∇a) ⊆ R and f(!a) ↔ !b.

Proof: Suppose aD b. Since D = R ◦ L, there is c ∈ T (X, ρ, R) such that aR c and
cL b. Then, by Theorem 2.3 and Theorem 2.5, Ker(a) = Ker(c) and !c ↔ !b.

Next we shall construct a bijection f : ∇a → ∇c such that f(R ∩ ∇a) ⊆ R and
f(!a) = !c. For every xa ∈ ∇a, define f(xa) = xc. For all xa, x′a ∈ ∇a, f(xa) =
f(x′a) ⇔ xc = x′c ⇔ xa = x′a (since Ker(a) = Ker(c)). Thus f is well defined and one-
to-one. It is obviously onto since for every xc ∈ ∇c, xc = f(xa). Suppose r ∈ R ∩ ∇a.
Then there is t ∈ R such that r = ta, and so f(r) = f(ta) = tc ∈ R. Thus f(R∩∇a) ⊆ R.
For every (rρ)a ∈ !a (r ∈ R), f((rρ)a) = {f(xa) : x ∈ rρ} = {xc : x ∈ rρ} = (rρ)c. It
follows that f(!a) = !c, and so f(!a) ↔ !b.

Conversely, suppose there is a bijection f : ∇a → ∇b such that f(R ∩ ∇a) ⊆ R
and f(!a) ↔ !b. Define c ∈ T (X) by xc = f(xa). Let r ∈ R. Then ra ∈ R and
so rc = f(ra) ∈ R. Thus Rc ⊆ R. Moreover, (rρ)c = f((rρ)a) ∈ f(!a). Since
f(!a) ↔ !b, there is B ∈ !b such that (rρ)c ⊆ B. Since B ∈ !b, B ⊆ tρ for
some t ∈ R. Thus (rρ)c ⊆ tρ. It follows that c ∈ T (X, ρ, R). For all x, x′ ∈ X,
xc = x′c ⇔ f(xa) = f(x′a) ⇔ xa = x′a (since f is one-to-one). Thus Ker(a) = Ker(c).
Since for every r ∈ R, (rρ)c = f((rρ)a), we have !c = f(!a). Thus !c ↔ !b. Hence,
by Theorem 2.3 and Theorem 2.5, aR c and cL b, which gives aD b.

Suppose X is finite and let f : ∇a → ∇b be as in the statement of Theorem 2.6.
Since f is a bijection, f(m(!a)) = m(f(!a)). Thus, by the argument after Theorem 2.5,
f(!a) ↔ !b if and only if f(m(!a)) = m(!b). Hence in the finite case, aD b if and only
if there is a bijection f : ∇a → ∇b such that f(R∩∇a) ⊆ R and f(m(!a)) = m(!b) [7].

In the semigroup T (X), D = J (Lemma 2.1). In general, this result is not true
for T (X, ρ, R). A characterization of the J -relation in T (X, ρ, R) is provided by Theo-
rem 2.8. We start with the theorem that determines the partial order of the J -classes
in T (X, ρ, R).

Theorem 2.7 Let a, b ∈ T (X, ρ, R). Then Ja ≤ Jb if and only if there is a function
g : ∇b → ∇a such that g(R ∩ ∇b) ⊆ R and !a ↪→ g(!b) ↪→ X/ρ.

4



Proof: Suppose Ja ≤ Jb. Then a = cbd for some c, d ∈ T (X, ρ, R). Fix r0 ∈ ∇a and
define g : ∇b → ∇a by:

g(x) =

⎧

⎨

⎩

xd if x ∈ ∇(cb)
rxd if x /∈ ∇(cb) but xρ ∩ ∇(cb) ̸= ∅
r0 if xρ ∩ ∇(cb) = ∅.

Let x ∈ ∇b. If x ∈ ∇(cb) then xd ∈ ∇a (since a = cbd). If x /∈ ∇(cb) but xρ∩∇(cb) ̸= ∅
then rx ∈ ∇(cb), and so rxd ∈ ∇a. Thus g indeed maps ∇b to ∇a.

We have g(R ∩ ∇b) ⊆ R since Rd ⊆ R. Let C ∈ !b. Then C = (rρ)b for some
r ∈ R. By the definition of g, either g(C) = {r0} ⊆ r0ρ (if xρ ∩ ∇(cb) = ∅) or
g(C) = (C ∩ ∇(cb))d ⊆ Cd = (rρ)bd ⊆ qρ for some q ∈ R (since b, d ∈ T (X, ρ, R)). It
follows that g(!b) ↪→ X/ρ.

Let A ∈ !a. Then A = (pρ)a for some p ∈ R. Since c ∈ T (X, ρ, R), (pρ)c ⊆ rρ for
some r ∈ R. Let C = (rρ)b. Then C ∈ !b and A = (pρ)a = (pρ)(cbd) ⊆ (C ∩∇(cb))d =
g(C) ∈ g(!b). Thus !a ↪→ g(!b)

Conversely, suppose there is a function g : ∇b → ∇a such that g(R ∩ ∇b) ⊆ R
and !a ↪→ g(!b) ↪→ X/ρ. Let A ∈ !a. Then there is a unique qA ∈ R such that
A ⊆ qAρ. Since !a ↪→ g(!b), there is CA ∈ !b such that A ⊆ g(CA). Since CA ∈ !b,
there is rA ∈ R such that CA = (rAρ)b. Let tA = rAb. Since b ∈ T (X, ρ, R), tA ∈ R
and CA = (rAρ)b ⊆ tAρ. For every z ∈ A, select uA

z ∈ CA such that z = g(uA

z ) (since
g(tA) = qA, we may assume that uA

z = tA if z = qA). Let C ′

A
= {uA

z : z ∈ A} and note
that C ′

A
⊆ CA. For every y ∈ C ′

A
, select wA

y ∈ rAρ such that y = wA

y b (since rAb = tA, we
may assume that wA

y = rA if y = tA).
We shall construct c, d ∈ T (X, ρ, R) such that a = cbd. To construct c, let x ∈ X.

Then there is a unique p ∈ R such that x ∈ pρ. Let A = (pρ)a and z = xa. Then A ∈ !a
and z ∈ A. Let y = uA

z and note that y ∈ C ′

A
. Define xc = wA

y . By the definition of c,
we have (pρ)c ⊆ rAρ. Since pa = qA (from the paragraph above), we have pc = rA (since
uA

z = tA for z = qA and wA

y = rA for y = tA). It follows that c ∈ T (X, ρ, R).
To construct d, let y ∈ X. Then there is a unique t ∈ R such that y ∈ tρ. We define

yd as follows:

(i) If y ∈ C ′

A
for some A ∈ !a, define yd = g(y).

(ii) If y /∈ C ′

B
for every B ∈ !a but CA ⊆ tρ for some A ∈ !a, define yd = qA.

(iii) If there is no A ∈ !a such that CA ⊆ tρ, define yd = y.

If CA, CB ⊆ tρ for some A,B ∈ !a then qA = g(t) = qB, and so the definition of d in (ii)
does not depend on the choice of A. Thus d is well defined.

Let t ∈ R and consider tρ. Suppose CA ⊆ tρ for some A ∈ !a. Then, by (i),
td = g(t) = qA. Let B ∈ !a be such that CB ⊆ tρ. Then qA = g(t) = qB. It follows that
B ⊆ qAρ and so, by (i) and (ii), (tρ)d ⊆ qAρ. If there is no A ∈ !a such that CA ⊆ tρ
then, by (iii), td = t and (tρ)d = tρ. It follows that d ∈ T (X, ρ, R).

Let x ∈ X. Then there is a unique p ∈ R such that x ∈ pρ. Let A = (pρ)a and z = xa.
Then A ∈ !a and z ∈ A. Let y = uA

z and note that y ∈ C ′

A
. By the definition of c and d,

xc = wA

y (recall that wA

y was selected so that wA

y b = y) and yd = g(y) = g(uA

z ) = z = xa.
Thus x(cbd) = wA

y (bd) = yd = xa. Hence a = cbd and so Ja ≤ Jb.
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Theorem 2.8 Let a, b ∈ T (X, ρ, R). Then aJ b if and only if there are functions f :
∇a → ∇b and g : ∇b → ∇a such that f(R∩∇a) ⊆ R, !b ↪→ f(!a) ↪→ X/ρ, g(R∩∇b) ⊆
R, and !a ↪→ g(!b) ↪→ X/ρ.

Proof: It is immediate by Theorem 2.7.

Let a, b ∈ T (X, ρ, R) with aJ b, and let f and g be functions as in the statement of
Theorem 2.8. We make the following observations.

(1) The functions f and g are onto.

(2) |∇a| = |∇b|.

(3) For every r ∈ R, there are s, t ∈ R such that f(rρ∩∇a) ⊆ sρ and g(rρ∩∇b) ⊆ tρ.

To illustrate Theorems 2.6 and 2.8, consider T (X, ρ, R), where X = {0, 1, 2, 3, 4, . . . },

X/ρ = {{0, 2, 4}, {6, 8}, {10, 12}, {14, 16}, . . . , {1, 3}, {5, 7}, {9, 11}, . . . },

and R = {0, 6, 10, 14, . . . , 1, 5, 9, . . . }. Let a, b ∈ T (X, ρ, R) be such that

!a = {{0, 2}, {0, 4}, {6, 8}, {10, 12}, {14, 16}, . . . },

!b = {{1, 3}, {5, 7}, {9, 11}, {13, 15}, {17, 19}, . . . }.

It is clear that such a and b can be defined. It is also clear that we can define f : ∇a → ∇b
and g : ∇b → ∇a such that f(R ∩ ∇a) ⊆ R, g(R ∩ ∇b) ⊆ R, and

f({0, 2}) = {1, 3}, f({0, 4}) = {1, 3}, f({6, 8}) = {5, 7}, f({10, 12}) = {9, 11}, . . .

g({1, 3}) = {0, 2}, g({5, 7}) = {0, 4}, g({9, 11}) = {6, 8}, g({13, 15}) = {10, 12}, . . .

Then f and g satisfy the conditions given in Theorem 2.8 (in fact, !b = f(!a) and
!a = g(!b)), and so aJ b. However, there is no bijection f : ∇a → ∇b such that
f(R ∩ ∇a) ⊆ R and f(!a) ↔ !b since if such an f existed, there would have to be
C ∈ !b such that f({0, 2}) ⊆ C and f({0, 4}) ⊆ C, which is impossible because every
C ∈ !b has 2 elements. Thus, by Theorem 2.6, a and b are not in the same D-class of
T (X, ρ, R).

The above example shows that, in general, D ̸= J in T (X, ρ, R). This is in contrast
with the semigroups T (X) and PT (X) of, respectively, full and partial transformations
on X, in which D = J [5, Exercises 16 and 17, p. 63]. We shall characterize the
equivalence relations ρ on X for which D = J in T (X, ρ, R).

Lemma 2.9 Let ρ be a relation such that exactly one ρ-class has size at least 2. Then
for all a, b ∈ T (X, ρ, R), if aJ b then aD b.

Proof: Let a, b ∈ T (X, ρ, R) be such that aJ b. Then, by Theorem 2.8, there are
functions f : ∇a → ∇b and g : ∇b → ∇a such that f(R∩∇a) ⊆ R, !b ↪→ f(!a) ↪→ X/ρ,
g(R∩∇b) ⊆ R, and !a ↪→ g(!b) ↪→ X/ρ. Let rρ be the ρ-class of size at least 2 (r ∈ R).

Suppose ∇a ⊆ R. Then every element of !a has size 1, and so, since !b ↪→ f(!a),
every element of !b also has size 1 and ∇b ⊆ R. Since |∇a| = |∇b| (see observation (2)
after Theorem 2.8), there is a bijection h : ∇a → ∇b. Since ∇a,∇b ⊆ R, we clearly
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have h(R ∩ ∇a) ⊆ R. Since !a = {{s} : s ∈ ∇a} and !b = {{t} : t ∈ ∇b}, we have
h(!a) = !b. Thus aD b by Theorem 2.6.

Suppose ∇a ̸⊆ R. This can only happen when |rρ ∩ ∇a| ≥ 2 (since rρ is the only
ρ-class of size at least 2). We claim that |rρ∩∇a| = |rρ∩∇b| and |∇a− rρ| = |∇b− rρ|.

To see that this claim is true, note that since g(R∩∇b) ⊆ R, g is onto, and g preserves
ρ-classes (see observations (1) and (3) after Theorem 2.8), we have that |rρ ∩ ∇a| ≥ 2
implies rρ ∩ ∇a = g(rρ ∩ ∇b). Thus |rρ ∩ ∇a| ≤ |rρ ∩ ∇b|. By a similar argument,
|rρ ∩ ∇b| ≤ |rρ ∩ ∇a|. Now rρ ∩ ∇a = g(rρ ∩ ∇b) and ∇a = g(∇b) imply ∇a − rρ =
g(∇b− rρ). Thus |∇a− rρ| ≤ |∇b− rρ|. By a similar argument, |∇b− rρ| ≤ |∇a− rρ|.

The claim has been proved. Thus there is a bijection h : ∇a → ∇b such that h(r) = r,
h(rρ∩∇a) = rρ∩∇b, and h(∇a− rρ) = ∇b− rρ. Note that if s ∈ (R∩∇a)− {r} then
s ∈ ∇a− rρ, and so h(s) ∈ ∇b− rρ. Since ∇b− rρ ⊆ R, it follows that h(R ∩∇a) ⊆ R.
Since !a = {{rρ∩∇a}}∪{{s} : s ∈ ∇a−{r}} and !b = {{rρ∩∇b}}∪{{t} : t ∈ ∇b−{r}},
we have h(!a) = !b. Thus aD b by Theorem 2.6.

Lemma 2.10 Let ρ be a relation such that all ρ-classes are finite and only finitely many
of them have size at least 2. Then for all a, b ∈ T (X, ρ, R), if aJ b then aD b.

Proof: Let a, b ∈ T (X, ρ, R) be such that aJ b. Then, by Theorem 2.8, there are
functions f : ∇a → ∇b and g : ∇b → ∇a such that f(R∩∇a) ⊆ R, !b ↪→ f(!a) ↪→ X/ρ,
g(R ∩ ∇b) ⊆ R, and !a ↪→ g(!b) ↪→ X/ρ.

Since only finitely many ρ-classes have size at least 2, there are finitely many ρ-classes
rρ such that |rρ ∩ ∇a| ≥ 2, say r1ρ, . . . , rkρ (ri ∈ R, k ≥ 0), and finitely many ρ-classes
sρ such that |sρ ∩ ∇b| ≥ 2, say s1ρ, . . . , smρ (sj ∈ R,m ≥ 0).

Note that for every i ∈ {1, . . . , k} there is j ∈ {1, . . . ,m} such that g(sjρ∩∇b) ⊆ riρ.
(Indeed, otherwise, since g preserves ρ-classes, there would be an i such that riρ ∩
g(sjρ ∩ ∇b) = ∅ for all j ∈ {1, . . . ,m}. But then, since g(R ∩ ∇b) ⊆ R, we would have
riρ ∩ g(∇b) ⊆ {ri}, which would contradict the fact that g is onto.) Since r1ρ, . . . , rkρ
are pairwise disjoint, it follows that k ≤ m. By a similar argument, we have m ≤ k, and
so k = m.

Suppose k = 0. Then !a = {{r} : r ∈ ∇a} and !b = {{s} : s ∈ ∇b}. Since
|∇a| = |∇b|, there is a bijection h : ∇a → ∇b. Note that h(R ∩ ∇a) ⊆ R (since
∇a,∇b ⊆ R) and h(!a) = !b. Thus aD b by Theorem 2.6.

Suppose k ≥ 1. Let {t1ρ, . . . , tpρ} be the set of all ρ-classes of size at least 2 (ti ∈ R).
(Note that each riρ and each siρ (i = 1, . . . , k) is an element of this set.) Let

X0 = t1ρ ∪ . . . ∪ tpρ, Y = r1ρ ∪ . . . ∪ rkρ, and Z = s1ρ ∪ . . . ∪ skρ.

Note that X0 is finite, Y ∪ Z ⊆ X0, f(Y ∩ ∇a) ⊆ Z, and g(Z ∩ ∇b) ⊆ Y . (Indeed, if,
say, g(Z ∩∇b) ̸⊆ Y then for at least one i ∈ {1, . . . , k} there would be no j ∈ {1, . . . , k}
such that g(sjρ ∩ ∇b) ⊆ riρ, which would contradict the observation made in the third
paragraph of the proof.)

Consider the semigroup T (X0, ρ0, R0), where X0 is the set defined above, ρ0 is the
equivalence relation on X0 with the partition {t1ρ, . . . , tpρ}, and R0 = {t1, . . . , tp}.
Define a0, b0 ∈ T (X0) by:

xa0 =

{

xa if xa ∈ Y
r1 otherwise

and xb0 =

{

xb if xb ∈ Z
s1 otherwise.
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Then a0, b0 ∈ T (X0, ρ0, R0), ∇a0 = Y ∩∇a, and ∇b0 = Z ∩∇b. Moreover, there are sets
(possibly empty) R′ ⊆ {r1, . . . , rk} and S′ ⊆ {s1, . . . , sk} such that

!a0 = {A ∈ !a : |A| ≥ 2} ∪ {{r} : r ∈ R′} and

!b0 = {B ∈ !b : |B| ≥ 2} ∪ {{s} : s ∈ S′}.

Define f0 : ∇a0 → ∇b0 and g0 : ∇b0 → ∇a0 by: f0 = f |(Y ∩ ∇a) and g0 = g |(Z ∩ ∇b).
Then f0(R0 ∩ ∇a0) ⊆ R0, !b0 ↪→ f0(!a0) ↪→ X0/ρ0, g0(R0 ∩ ∇b0) ⊆ R0, and !a0 ↪→
g0(!b0) ↪→ X0/ρ0. Thus a0 J b0 in T (X0, ρ0, R0) by Theorem 2.8. Hence a0D b0 in
T (X0, ρ0, R0) (since T (X0, ρ0, R0) is finite and D = J in any finite semigroup).

Thus, by Theorem 2.6, there is a bijection h0 : ∇a0 → ∇b0 such that h0(R0∩∇a0) ⊆
R0 and h0(!a0) ↔ !b0. It follows that |Y ∩ ∇a| = |Z ∩ ∇b| (since Y ∩ ∇a = ∇a0 and
Z∩∇b = ∇b0). Thus, since |∇a| = |∇b| and Y ∩∇a is finite, we have |∇a−Y | = |∇b−Z|.
Hence there is a bijection h1 : ∇a− Y → ∇b− Z. Define h : ∇a → ∇b by:

h(x) =

{

h0(x) if x ∈ Y ∩ ∇a
h1(x) if x ∈ ∇a− Y .

Since h0 : Y ∩ ∇a → Z ∩ ∇b and h1 : ∇a− Y → ∇b− Z are bijections, we have that h
is a bijection. Note that

!a = {A ∈ !a : A ⊆ Y } ∪ {{r} : r ∈ ∇a− Y } and

!b = {B ∈ !b : B ⊆ Z} ∪ {{s} : s ∈ ∇b− Z}.

Let r ∈ R ∩ ∇a. If r ∈ Y ∩ ∇a then h(r) = h0(r) ∈ R0 ⊆ R. If r ∈ ∇a − Y then
h(r) = h1(r) ∈ R (since h1 : ∇a−Y → ∇b−Z and ∇b−Z ⊆ R). Thus h(R∩∇a) ⊆ R.

Now, h0(!a0) ↔ !b0 implies h({A ∈ !a : A ⊆ Y }) ↔ {B ∈ !b : B ⊆ Z}. Indeed,
let B ∈ !b and B ⊆ Z. Then B ⊆ siρ for some i ∈ {1, . . . , k}. Since |siρ∩∇b| ≥ 2, there
is B0 ∈ !b such that |B0| ≥ 2 and B ⊆ B0 ⊆ siρ. Then B0 ∈ !b0, and so B0 ⊆ h0(A)
for some A ∈ !a0. Note that |A| ≥ 2, and so A ∈ !a, A ⊆ Y , and h0(A) = h(A). Thus
B ⊆ B0 ⊆ h0(A) = h(A), and so {B ∈ !b : B ⊆ Z} ↪→ h({A ∈ !a : A ⊆ Y }). By a
similar argument, we have h({A ∈ !a : A ⊆ Y }) ↪→ {B ∈ !b : B ⊆ Z}.

Finally, since h1({{r} : r ∈ ∇a − Y }) = {{s} : s ∈ ∇b − Z}, it follows that
h(!a) ↔ !b. Hence aD b by Theorem 2.6.

With the previous two lemmas, we are ready to describe the equivalence relations ρ
on X for which D = J in T (X, ρ, R).

Theorem 2.11 In the semigroup T (X, ρ, R), D = J if and only if ρ satisfies one of the
following conditions:

(1) Exactly one ρ-class is infinite and all other ρ-classes (if any) have size 1; or

(2) All ρ-classes are finite and only finitely many of them have size at least 2.

Proof: If (1) or (2) holds then J ⊆ D by Lemma 2.9 and Lemma 2.10, and so D = J
(since D ⊆ J in any semigroup). Conversely, suppose that neither (1) nor (2) holds.
Then there are two possible cases to consider.

Case 1. There is an infinite ρ-class and another ρ-class of size at least 2.
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Let rρ be infinite and sρ be of size at least 2, where r, s ∈ R and r ̸= s. Select x0 ∈ rρ
such that x0 ̸= r, and y0 ∈ sρ such that y0 ̸= s. Consider the mappings

a =

(

x y
x r

)

and b =

(

z x0 y0 w
z r x0 r

)

,

where x is an arbitrary element of rρ, y is an arbitrary element of X − rρ, z is an
arbitrary element of rρ− {x0}, and w is an arbitrary element of X − (rρ ∪ {y0}). Then
a, b ∈ T (X, ρ, R) with ∇a = ∇b = rρ,

!a = {rρ, {r}} and !b = {rρ− {x0}, {r, x0}} or {rρ− {x0}, {r, x0}, {r}}.

Define f : rρ → rρ by f(x) = x. Since rρ is infinite, there is g : rρ → rρ such that
g(r) = r and g(rρ− {x0}) = rρ. Then f and g satisfy the conditions from the statement
of Theorem 2.8, and so aJ b.

Let h : rρ → rρ be a bijection. Then h(rρ) = rρ. Note that rρ is not included in
rρ−{x0} or {r, x0} or {r}. Since rρ ∈ !a, it follows that it is not true that h(!a) ↪→ !b.
Thus a and b are not D-related by Theorem 2.6, and so D ̸= J .

Case 2. There are infinitely many ρ-classes of size at least 2.

Let r1ρ = {r1, x1, . . . }, r2ρ = {r2, x2, . . . }, . . . be an infinite sequence of ρ-classes of size
at least 2 (ri ∈ R, xi ̸= ri, i = 1, 2, . . . ). We may assume that there is a ρ-class not in
the sequence. Consider the mappings

a =

(

ri xi yi y
ri xi ri r1

)

and b =

(

ri x1 xj yi y
ri r1 xj ri r1

)

,

where i ≥ 1, j ≥ 2, yi is an arbitrary element of riρ − {ri, xi}, and y is an arbitrary
element of X − (r1ρ ∪ r2ρ ∪ . . . ). Then a, b ∈ T (X, ρ, R) with

∇a = {r1, x1, r2, x2, r3, x3, . . . }, ∇b = {r1, r2, x2, r3, x3, . . . },

!a = {{r1}, {r1, x1}, {r2, x2}, {r3, x3}, . . . } and !b = {{r1}, {r2, x2}, {r3, x3}, . . . }.

Define f : ∇a → ∇b and g : ∇b → ∇a by:

f =

(

r1 x1 rj xj
r1 r1 rj xj

)

and g =

(

r1 rj xj
r1 rj−1 xj−1

)

,

where j ≥ 2. Then f(!a), g(!b) ↪→ X/ρ, f(!a) = !b, and g(!b) = !a. Thus aJ b by
Theorem 2.8.

Let h : ∇a → ∇b be such that h(!a) ↪→ !b. Then, since {r1} ∈ !b, there is A ∈ !a
such that h(A) ⊆ {r1}. If A = {ri, xi} for some i then h is not one-to-one. Suppose
A = {r1}. Then h(r1) = r1. Since {r1, x1} ∈ !a, we have h({r1, x1}) ⊆ B for some
B ∈ !b. Since h(r1) = r1 and {r1} is the only element of !b containing r1, B must be
{r1}. Then h(x1) = r1, and so again h is not one-to-one. It follows from Theorem 2.6
that a and b are not D-related, and so D ̸= J .

Recall that the J -classes of any semigroup S are partially ordered by the relation
≤ defined by: Ja ≤ Jb if S1aS1 ⊆ S1bS1. The poset (S/J ,≤) of J -classes of S is
isomorphic to the poset {S1aS1 : a ∈ S},⊆) of principal ideals of S.
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In the semigroup T (X) of full transformations on X, the poset of J -classes is a chain
[9, Proposition 4.1]. We find that this never happens in the semigroup T (X, ρ, R) except
in the two extreme cases when ρ is the identity relation on X or the universal relation
on X.

Theorem 2.12 The partially ordered set of J -classes of T (X, ρ, R) is a chain if and
only if ρ = {(x, x) : x ∈ X} or ρ = X ×X.

Proof: Suppose ρ = {(x, x) : x ∈ X}. Then T (X, ρ, R) = T (X) and it is well known
that the J -classes of T (X) form a chain [9, Proposition 4.1].

Suppose ρ = X ×X. Then R is a one-element set, say R = {r}, and rρ = X. Let
a, b ∈ T (X, ρ, R). Note that r ∈ ∇a∩∇b. Suppose |∇a| ≤ |∇b|. Then there is a function
g : ∇b → ∇a such that g(r) = r and g(∇b) = ∇a. We have g(R∩∇b) = g({r}) = {r} and
!a ↪→ g(!b) ↪→ X/ρ (since !a = {∇a}, g(!b) = g({∇b}) = {∇a}, and X/ρ = {X}).
Thus Ja ≤ Jb by Theorem 2.7. Similarly, if |∇b| ≤ |∇a| then Jb ≤ Ja. It follows that
the J -classes of T (X, ρ, R) form a chain.

Conversely, suppose that ρ ̸= {(x, x) : x ∈ X} and ρ ̸= X × X. Then there are
two distinct ρ-classes of which at least one has size at least 2, say rρ = {r, x, . . . } and
sρ = {s, . . . } (r, s ∈ R). Consider the mappings

a =

(

x y
x r

)

and b =

(

z w
r s

)

,

where y is an arbitrary element of X − {x}, z is an arbitrary element of rρ, and w is an
arbitrary element of X − rρ. Then a, b ∈ T (X, ρ, R) with

∇a = {r, x}, ∇b = {r, s}, !a = {{r, x}, {r}}, and !b = {{r}, {s}}.

Thus there is no f : ∇a → ∇b such that !b ↪→ f(!a) ↪→ X/ρ (since otherwise we would
have f({r, x}) = {r} and f({r}) = {s} or f({r, x}) = {s} and f({r}) = {r}, which is
impossible). Similarly, there is no g : ∇b → ∇a such that !a ↪→ g(!b) (since {r, x} ∈ !a
has size 2 and, since !b = {{r}, {s}}, every element of g(!b) would have size 1).

It follows from Theorem 2.7 that Ja ̸≤ Jb and Jb ̸≤ Ja. Hence the partially ordered
set of J -classes of T (X, ρ, R) is not a chain.

We recall that if ρ = X×X and |X| ≥ 2 then the semigroup T (X, ρ, R) is isomorphic
to the semigroup PT (X ′) of partial transformations on X ′, where X ′ is the set X with
one element removed. Thus, the poset of J -classes of T (X, ρ, R) is a chain if and only
if T (X, ρ, R) = T (X) or T (X, ρ, R) is isomorphic to PT (X ′).

3 Regular T (X, ρ, R)

An element a of a semigroup S is called regular if a = axa for some x in S. If all elements
of S are regular, we say that S is a regular semigroup. If a D-class D in S contains a
regular element then all elements in D are regular [5, Proposition 2.3.1], and we call
D a regular D-class. In a regular D-class, every L-class and every R-class contains an
idempotent [5, Proposition 2.3.2]. It follows that an element of S is regular if and only
if it is L-related (R-related) to an idempotent in S.
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Let A be a nonempty subset of X. An equivalence relation ρ on X induces a partition
A/ρ of A:

A/ρ = {xρ ∩A : x ∈ X and xρ ∩A ̸= ∅}.

The semigroup T (X) is regular [5, Exercise 15, p. 63]. This is not true in general about
T (X, ρ, R). The next theorem characterizes the regular elements of T (X, ρ, R).

Theorem 3.1 Let a ∈ T (X, ρ, R). Then a is regular if and only if ∇a/ρ ⊆ !a.

Proof: Suppose a is regular, that is, a = aba for some b ∈ T (X, ρ, R). Let rρ ∩ ∇a ∈
∇a/ρ (r ∈ R). Since b ∈ T (X, ρ, R), there is p ∈ R such that (rρ)b ⊆ pρ and rb = p.
Since rρ ∩ ∇a ̸= ∅, r = ta for some t ∈ R, and so r = ta = ((ta)b)a = (rb)a = pa. It
follows that (pρ)a ⊆ rρ∩∇a. For the reverse inclusion, if xa ∈ rρ∩∇a then (xa)b ∈ pρ
and so xa = ((xa)b)a ∈ (pρ)a. It follows that rρ∩∇a = (pρ)a ∈ !a, and so ∇a/ρ ⊆ !a.

Conversely, suppose ∇a/ρ ⊆ !a. We shall construct b ∈ T (X, ρ, R) such that a =
aba. Consider rρ (r ∈ R). If rρ ∩ ∇a = ∅, define xb = x for every x ∈ rρ. Suppose
rρ∩∇a ̸= ∅. Then rρ∩∇a ∈ ∇a/ρ ⊆ !a and so there is p ∈ R such that rρ∩∇a = (pρ)a.
Let x ∈ rρ. If x ∈ ∇a then x = wa for some w ∈ pρ (if x = r, we may assume w = p),
and we define xb = w. If x /∈ ∇a, we define xb = p.

By the construction of b, b ∈ T (X, ρ, R) and a = aba. Thus a is regular.

Using the fact that a ∈ T (X, ρ, R) is regular if and only if aR e for some idempo-
tent e ∈ T (X, ρ, R), we can obtain another characterization of the regular elements of
T (X, ρ, R).

For a ∈ T (X, ρ, R), let ρa = ρ ∨ Ker(a), that is, ρa is the smallest equivalence
relation on X that contains both ρ and Ker(a). Note that every ρa-class xρa is a union
of ρ-classes and a union of Ker(a)-classes.

Lemma 3.2 For every x ∈ X, (xρa)a ⊆ rρ for some r ∈ R.

Proof: Let x ∈ X. Then xa ∈ rρ for some r ∈ R. We claim that (xρa)a ⊆ rρ. Let
y ∈ xρa. Since ρa = ρ ∨ Ker(a), there are z1, z2, . . . , z2n−1 ∈ X (n ≥ 1) such that

(x, z1) ∈ ρ, (z1, z2) ∈ Ker(a), (z2, z3) ∈ ρ, . . . , (z2n−1, y) ∈ Ker(a).

Since a ∈ T (X, ρ, R), (xa, z1a) ∈ ρ and so z1a ∈ rρ. Thus, since z1a = z2a, z2a ∈ rρ. It
follows by induction on n that ya ∈ rρ, and so (xρa)a ⊆ rρ.

We say that an element a ∈ T (X, ρ, R) is normal if for every ρa-class xρa there is a
ρ-class rρ that intersects all Ker(a)-classes included in xρa. (Note that such a ρ-class
rρ must be included in xρa.)

Lemma 3.3 Let a ∈ T (X, ρ, R) with X/ρa = {Ei : i ∈ I}. Then a is normal if and only
if for every i ∈ I there is xi ∈ Ei such that for every y ∈ Ei, (xi, y) ∈ ρ ◦ Ker(a).

Proof: Suppose a is normal and let i ∈ I. Then there is xi ∈ Ei such that (xiρ)∩K ̸= ∅
for every Ker(a)-class K included in Ei. Let y ∈ Ei. Then y ∈ K for some Ker(a)-class
K. Let z ∈ (xiρ) ∩K. Then (xi, z) ∈ ρ and (z, y) ∈ Ker(a). Thus (xi, y) ∈ ρ ◦ Ker(a).
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Conversely, suppose that the given condition holds and let i ∈ I. Then there is
xi ∈ Ei such that (xi, y) ∈ ρ ◦ Ker(a) for every y ∈ Ei. Let K be a Ker(a)-class in-
cluded in Ei and let y ∈ K. Then, since (xi, y) ∈ ρ ◦ Ker(a), there is z ∈ xiρ such that
(z, y) ∈ Ker(a). Thus z ∈ (xiρ) ∩ K. It follows that xiρ intersects all Ker(a)-classes
included in Ei, and so a is normal.

Lemma 3.4 Let e ∈ T (X, ρ, R) be an idempotent. Then e is normal.

Proof: Consider xρe (x ∈ X). By Lemma 3.2, (xρe)e ⊆ rρ for some r ∈ R. We claim
that rρ intersects all Ker(e)-classes included in xρe. Let K be a Ker(e)-class included
in xρe. Then Ke = {y} for some y ∈ rρ. Since e is an idempotent and y ∈ ∇e, y = ye.
Thus y ∈ K and so rρ ∩K ̸= ∅. It follows that e is normal.

Corollary 3.5 Let a, e ∈ T (X, ρ, R) such that e is an idempotent and Ker(a) = Ker(e).
Then a is normal.

Proof: Since Ker(a) = Ker(e), ρa = ρe. Thus the result follows from Lemma 3.4 and
the definition of normal elements.

Theorem 3.6 Let a ∈ T (X, ρ, R) with X/ρa = {Ei : i ∈ I}. Then the following are
equivalent:

(1) a is regular.

(2) a is normal.

(3) (∀i ∈ I)(∃xi ∈ Ei)(∀y ∈ Ei) (xi, y) ∈ ρ ◦ Ker(a).

Proof: (2) is equivalent to (3) by Lemma 3.3. Suppose a is regular. Then aR e for
some idempotent e ∈ T (X, ρ, R). By Theorem 2.3, Ker(a) = Ker(e). Thus a is normal
by Corollary 3.5. Hence (1) implies (2).

It remains to show that (2) implies (1). Suppose a is normal. Then for every i ∈ I
there is xi ∈ Ei such that (xiρ) ∩ K ̸= ∅ for every Ker(a)-class K included in Ei. We
shall construct an idempotent e ∈ T (X, ρ, R) such that Ker(e) = Ker(a). Let K be a
Ker(a)-class. Then there is a unique i ∈ I such that K ⊆ Ei. Select yi ∈ xiρ∩K in such
a way that yi = rxi

if rxi
∈ xiρ ∩K. Define e ∈ T (X) by Ke = {yi}.

It is clear that Ker(e) = Ker(a) and that e preserves ρ (since it maps all ρ-classes
included in Ei to xiρ). By Lemma 3.2, all elements of R contained in Ei are in the
same Ker(a)-class. Thus e maps all such elements to rxi

and so it preserves R. Hence
e ∈ T (X, ρ, R). By Theorem 2.3, aR e and so a is regular.

Let ρ be an equivalence relation on X. We say that ρ is a T -relation if there is at
most one ρ-class containing two or more elements. If there is n ≥ 1 such that each ρ-class
has at most n elements, we say that ρ is n-bounded .

The following theorem characterizes the equivalence relations ρ on X for which the
semigroup T (X, ρ, R) is regular.
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Theorem 3.7 The semigroup T (X, ρ, R) is regular if and only if ρ is 2-bounded or a
T -relation.

Proof: Suppose ρ is neither 2-bounded nor a T -relation. Then there are r, s ∈ R such
that r ̸= s and

rρ = {r, x1, x2, . . . } and sρ = {s, y1, . . . }.

Consider the mapping

a =

(

r x1 x2 s y1 z
r x1 x1 r x2 r

)

,

where z denotes an arbitrary element in X − {r, x1, x2, s, y1}. Then a ∈ T (X, ρ, R) with
∇a/ρ = {{r, x1, x2}} and either !a = {{r, x1}, {r, x2}} or !a = {{r, x1}, {r, x2}, {r}}.
In either case, ∇a/ρ is not included in !a, which implies that a is not regular (by
Theorem 3.1).

Conversely, suppose that ρ is 2-bounded or a T -relation and let a ∈ T (X, ρ, R). We
shall prove that ∇a/ρ ⊆ !a. Let rρ∩∇a ∈ ∇a/ρ. Then there is p ∈ R such that r = pa
and (pρ)a ⊆ rρ.

Suppose rρ has at least 3 elements. Then ρ is not 2-bounded and so it must be
a T -relation. Thus every ρ-class except rρ has 1 element. Hence rρ ∩ ∇a = (rρ)a
(if (rρ)a ⊆ rρ) or rρ ∩ ∇a = {r} = (pρ)a (if (rρ)a is not included in rρ). Suppose
rρ = {r, x} has 2 elements. If x ∈ ∇a then x ∈ (sρ)a for some s ∈ R, and so rρ ∩ ∇a =
{r, x} = (sρ)a. If x /∈ ∇a then rρ ∩∇a = {r} = (pρ)a. Finally, if rρ has 1 element then
rρ ∩ ∇a = {r} = (pρ)a.

It follows that rρ ∩ ∇a ∈ !a, and so a is regular by Theorem 3.1.

There is an asymmetry between the relations R and L in T (X, ρ, R): while the R-
relation is simply the restriction of the R-relation in T (X) to T (X, ρ, R) × T (X, ρ, R),
the corresponding result is not true in general for the L-relation. The following theorem
determines the semigroups T (X, ρ, R) in which the L-relation is the restriction of the
L-relation in T (X).

Theorem 3.8 The L-relation in T (X, ρ, R) is the restriction of the L-relation in T (X)
to T (X, ρ, R) × T (X, ρ, R) if and only if T (X, ρ, R) is regular.

Proof: Suppose T (X, ρ, R) is not regular. Then, by Theorem 3.7, there are r, s ∈ R
such that r ̸= s and

rρ = {r, x1, x2, . . . } and sρ = {s, y1, . . . }.

Consider the mappings

a =

(

r x1 x2 s y1 z
r x1 x1 r x2 r

)

and b =

(

r x1 x2 s y1 z
r x1 x2 r r r

)

,

where z is an arbitrary element in X − {r, x1, x2, s, y1}. Then a, b ∈ T (X, ρ, R) with
∇a = ∇b = {r, x1, x2}. Thus, by Lemma 2.1, aL b in T (X). However, {r, x1, x2} ∈ !b
and {r, x1, x2} is not included in any A ∈ !a (since !a = {{r, x1}, {r, x2}} or !a =
{{r, x1}, {r, x2}, {r}}). Thus, by Theorem 2.5, a and b are not L-related in T (X, ρ, R).
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The converse follows from a general result saying that if T is a regular subsemigroup
of a semigroup S then the relations L and R in T are the restrictions of the relations L
and R, respectively, in S to T × T [5, Proposition 2.4.2].

4 Abundant T (X, ρ, R)

Let S be a semigroup. We say that a, b ∈ S are L∗-related if they are L-related in a
semigroup T such that S is a subsemigroup of T . We have the dual definition of the
R∗-relation on S [3]. The relations L∗ and R∗ are equivalence relations. They have been
studied by J. Fountain [2], [3] and others. A semigroup S is called abundant if every
L∗-class and every R∗-class of S contains an idempotent [3]. As stated in [3], where the
concept was introduced, the word “abundant” comes from the fact that such semigroups
have a plentiful supply of idempotents.

It is clear from the definition of L∗ and R∗ that L ⊆ L∗ andR ⊆ R∗ in any semigroup
S. Since in a regular semigroup, every L-class and every R-class contains an idempotent,
we have that regular semigroups are abundant. Of course, the converse is not true. For
example, A. Umar [12] proved that the semigroup of non-bijective, order-decreasing
transformations on the set X = {1, . . . , n} is abundant but not regular.

We first note that every L∗-class of T (X, ρ, R) contains an idempotent.

Proposition 4.1 Let a ∈ T (X, ρ, R). Then there is an idempotent e ∈ T (X, ρ, R) such
that ∇a = ∇e.

Proof: Select r0 ∈ ∇a ∩R and define e ∈ T (X) as follows:

xe =

⎧

⎨

⎩

x if x ∈ ∇a
rx if x /∈ ∇a but xρ ∩∇a ̸= ∅
r0 if xρ ∩ ∇a = ∅.

By the definition of e and the fact that a ∈ T (X, ρ, R), we have that e ∈ T (X, ρ, R), e is
an idempotent, and ∇e = ∇a.

The statement preceding Proposition 4.1 follows since, by Lemma 2.1, the elements a
and e are L-related in T (X). The corresponding statement for R∗-classes of T (X, ρ, R)
is not true, and so not every semigroup T (X, ρ, R) is abundant. Similar results have been
obtained by A. Umar [13] for the semigroup of order-decreasing transformations on an
infinite totally ordered set X. In contrast with Umar [13], who showed that in the class
he studied the abundant semigroups are not regular, we find that abundant semigroups
T (X, ρ, R) are precisely those that are regular.

Theorem 4.2 A semigroup T (X, ρ, R) is abundant if and only if it is regular.

Proof: If T (X, ρ, R) is regular then it is abundant (since every regular semigroup is
abundant). Conversely, suppose that T (X, ρ, R) is abundant, and let a ∈ T (X, ρ, R).
Then there is an idempotent e ∈ T (X, ρ, R) such that aR∗e. By [3, the dual of Corol-
lary 1.2], ea = a and for all c, d ∈ T (X, ρ, R), ca = da implies ce = de. We claim that
Ker(a) = Ker(e).
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The inclusion Ker(e) ⊆ Ker(a) follows immediately from ea = a. Suppose (x, y) ∈
Ker(a), that is, xa = ya. Since (x, rx) ∈ ρ, (y, ry) ∈ ρ, and a ∈ T (X, ρ, R), we have
(xa, rxa) ∈ ρ and (ya, rya) ∈ ρ. Thus, since xa = ya, we have (rxa, rya) ∈ ρ, which
implies rxa = rya (since rxa, rya ∈ R and R is a cross-section of X/ρ).

Define c, d ∈ T (X) by : (X−R)c = {x}, Rc = {rx}, (X−R)d = {y}, and Rd = {ry}.
It is clear that c, d ∈ T (X, ρ, R), and that there is z0 ∈ X such that z0c = x and z0d = y.
Let z ∈ X. If z ∈ X − R then z(ca) = xa = ya = z(da). If z ∈ R then z(ca) = rxa =
rya = z(da). Hence ca = da, which implies ce = de. In particular, z0(ce) = z0(de),
which implies xe = ye (since z0c = x and z0d = y). Hence Ker(a) ⊆ Ker(e), and so
Ker(a) = Ker(e).

Thus a is normal (by Corollary 3.5), and so a is regular (by Theorem 3.6). It follows
that T (X, ρ, R) is a regular semigroup.

5 Inverse T (X, ρ, R) and Completely Regular T (X, ρ, R)

An element a′ in a semigroup S is called an inverse of a ∈ S if a = aa′a and a′ = a′aa′.
If every element of S has exactly one inverse then S is called an inverse semigroup. An
alternative definition is that S is an inverse semigroup if it is regular and its idempotents
commute [5, Theorem 5.1.1]. If every element of S is in some subgroup of S then S is
called a completely regular semigroup. Of course, both inverse semigroups and completely
regular semigroups are regular semigroups.

Theorem 5.1 Suppose |X| ≥ 3. Then T (X, ρ, R) is not an inverse semigroup.

Proof: We shall construct idempotents e, f ∈ T (X, ρ, R) such that ef ̸= fe.
Suppose there are at least two ρ-classes, that is, there are rρ and sρ (r, s ∈ R) such

that r ̸= s. Define e, f ∈ T (X) by:

e =

(

y z
r z

)

and f =

(

y z
s z

)

,

where y is an arbitrary element in rρ∪ sρ and z is an arbitrary element in X− (rρ∪ sρ).
Note that r(ef) = s and r(fe) = r.

Suppose there is only one ρ-class, say rρ. Since |X| ≥ 3, rρ = {r, x1, x2, . . . }. Define
e, f ∈ T (X) by:

e =

(

x1 y
x2 y

)

and f =

(

x2 z
x1 z

)

,

where y is an arbitrary element in X − {x1} and z is an arbitrary element in X − {x2}.
Note that x1(ef) = x1 and x1(fe) = x2.

In both cases we have: e, f ∈ T (X, ρ, R), e, f are idempotents, and ef ̸= fe. It
follows that T (X, ρ, R) is not an inverse semigroup (since idempotents in an inverse
semigroup commute).

When |X| = 2, T (X, ρ, R) is an inverse semigroup if X/ρ = {{r, x}} and T (X, ρ, R)
is not inverse if X/ρ = {{r}, {s}}.
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Theorem 5.2 Suppose |X| ≥ 4. Then T (X, ρ, R) is not a completely regular semigroup.

Proof: We shall construct a ∈ T (X, ρ, R) such that ∇a ̸= ∇a2.
Suppose there is a ρ-class with at least three elements, say rρ = {r, x1, x2, . . . }

(r ∈ R). Define a ∈ T (X) by:

a =

(

x1 z
x2 r

)

,

where z is an arbitrary element in X − {x1}. Note that ∇a = {r, x2} and ∇a2 = {r}.
Suppose there are at least three ρ-classes, that is, there are rρ, sρ, and tρ with

r, s, t ∈ R pairwise distinct. Define a ∈ T (X) by:

a =

(

y z
s t

)

,

where y is an arbitrary element in rρ and z is an arbitrary element in X− rρ. Note that
∇a = {s, t} and ∇a2 = {t}.

Since |X| ≥ 4, the only remaining case to consider is when there are exactly two
ρ-classes with two elements each, say rρ = {r, x} and sρ = {s, y} (r, s ∈ R). Define
a ∈ T (X) by:

a =

(

x z
y s

)

,

where z is an arbitrary element in X − {x}. Note that ∇a = {s, y} and ∇a2 = {s}.
In all cases we have: a ∈ T (X, ρ, R) and ∇a ̸= ∇a2. By Lemma 2.1, ∇a ̸= ∇a2

implies that a and a2 are not H-related in T (X) (not even L-related in T (X)), and so
they are not H-related in T (X, ρ, R). It follows that T (X, ρ, R) is not completely regular
(since for every element a in a completely regular semigroup, a and a2 are H-related [5,
Proposition 4.1.1]).

When |X| = 3, T (X, ρ, R) is completely regular ifX/ρ = {{r, x}, {s}}, and T (X, ρ, R)
is not completely regular if X/ρ = {{r}, {s}, {t}} or {{r, x1, x2}}. When |X| = 2,
T (X, ρ, R) is completely regular.

References
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[10] V.A. Liskovec and V.Z. Fĕınberg, On the permutability of mappings, Dokl. Akad.
Nauk BSSR 7 (1963), 366–369 (Russian).
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