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ABSTRACT. A semigroup over a tree is a compact semigroup S such that H
is a congruence on S and S/K is an abelian tree with idempotent endpoints. Each
such semigroup is characterized as being constructible from cylindrical subsemi-

groups of S and the tree S/K in a manner similar to the construction of the hormos.
Indeed, the hormos is shown to be a particular example of the construction given
herein when S/K is an /-semigroup. Several results about semigroups whose un-
derlying space is a tree are also established as lemmata for the main results.

Introduction. Recall that a tree is a continuum in which any two points can
be separated by a third point. In [3], Hof mann and Mostert prove the following:

Theorem. Let S be a compact semigroup. X is a congruence on S and S/K
is an ¡-semigroup if and only if S = Horm(X, S , mx ) for some chainable collec-

tion (X, Sx, mxy).

This theorem completely describes the semigroup 5 in terms of S/K and
cylindrical subsemigroups of S. Our purpose here is to generalize this result by
obtaining a similar characterization of those compact semigroups S with S/ii an
abelian tree with idempotent endpoints, thus giving a partial solution to Problem

43 of [1, p. 99] and also to Problem P5 of [3, p. 160].
K txJa£D  is a net in a SP3Ce   X *nd  X £ X>  l*JaeD   ~* *» CXJa£D    ~*  *>

will denote the fact that {a e D: xa e U] is cofinal (residual) in D for each open
set U containing x. Otherwise, the notation and terminology will be that of [3].
This work forms part of the author's doctoral dissertation, and he wishes to ex-
press his deep gratitude to Professor J. H. Carruth for his many helpful sugges-
tions and his advice, and for his patient listening during its preparation.

The following will be referred to as Koch's theorem throughout this work.

Theorem (Koch [6]). Let S be a compact connected semigroup with identity
1 and minimal ideal M(S) / S. // each subgroup of S is totally disconnected,
then there is a standard thread I in S from  1 to M(S).
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384 M. W. MISLOVE

Semigroups on trees. The structure of trees and of semigroups whose under-
lying space is a tree has been studied in [7], [12], [13], and [14]. We now list
some properties established in these works, and we shall use these properties
throughout this work without specific reference.

If X is a continuum, X is a tree if and only if X is hereditarily unicoherent and lo-
cally connected [13]. If X is a tree and p £ X, define ¿   on X by x ¿ y if and only if
x = y,x=p,orx separates y and p. If x e X, let M(x) - \y £ X: x g  y \ and L(x) -.
[y £ X: y ¿p x). Then, ¿p is a closed partial order on X, M(x) and L(x) are
closed subsets of X, and M(x) - |x| is anopen subset of X for each x £ X [14].
If A and B are connected subsets of X, then A n ß is connected. If a, b £ X,
there is a unique arc in X from a to b, denoted [a, b], and [a, b] ■> \a, b\ U

[* £ X: x separates a and b\. If a £ X and i*a>aeD C X with i*alaeD -^ x € X,
then {[a, «all^o —» [a, x], where convergence in the latter case is in the
lim sup-lim inf sense [7]. From this it is easily shown that if lya}a£D C X,
hJa£D  -^ y e X> and Va e ifl» * J    for each a e D> thcn itVa» *JlaeD "^ ^y, *^
Finally, each subcontinuum of a tree is itself a tree [12].

Definition 1.1. Let T be a tree, x £T is an endpoint of T if x separates

no arc in T.

Lemma 1.2. Let T be a tree and let x £ T. If x is not a outpoint of T, then

x is an endpoint of T.

Proof. If A is an arc with endpoints a and b, then A ■ [a, b\ since T is
uniquely arcwise connected. If x separates A, then x £ (a, b), whence x sep-
arates a and b. But, in that case, x sepatates T, and so x is a cutpoint of T.

The result follows by contraposition.
Our concern will be with semigroups on trees with idempotent endpoints in

which the idempotents commute. The following results show we can assume that
the trees with which we work are abelian.

Lemma 1.3  (Hunter [4]). Suppose T is a semigroup with zero on a heredi-

tarily unicoherent arcwise connected continuum. If the endpoints of T commute,

one with another, then T is abelian.

Lemma 1.4. Suppose T is a semigroup on a tree with idempotent endpoints

in which the idempotents commute. Then the maximal subgroups of T are totally

disconnected, and hence T has a zero.

Proof. If e £ E(T), then HQ(e), the identity component of 77(e), is a subcon-
tinuum of T, and so it is a tree. Thus, 770(e) = \e\ by homogeneity, whence 77(e)

is totally disconnected.
If, now, e £ E(T) H M(T), then 77(e) = eTe is connected and totally discon-

nected, and so 77(e) = {e}. Thus, M(T) C E(T), and we have M(T) is a singleton,
since E(T) is abelian.
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SEMIGROUPS OVER TREES 385

Lemma 1.5. // T is an abelian semigroup on a tree with idempotent endpoints,
then [0, e] is a standard thread and H(e) = \e\ for each e e E(T). Consequently,

if s e [0, f], then s </.

Proof.  According to Lemma 1.4, each maximal subgroup of T is totally dis-
connected, and so, if e e B(T), then Koch's theorem implies the existence of a

standard thread / running from e to 0. But, since [O, e] is the unique arc in T
from e to 0, / = [0, e].

Now, since T has idempotent endpoints, T =U![0, /]: / e E(T)\, and so
eTe =U![0, ef]: f e E(T)\. Thus, as eTe is a subcontinuum of T, eTe is a tree

with idempotent endpoints, and, by [7], no point of /7(e) is a cutpoint of T. Hence,
H(e) = \e\ by Lemma 1.2.

Finally, if s e [O, f], then s, t e [0, e] for some e e E(T) since T has idem-
potent endpoints. Then, s e t[0, e] <~l [o, e]t C tT P Tt, whence s g   t.

Let T be an abelian semigroup on a tree with idempotent endpoints, and let
0 be the zero of T. The relation defined on T by x g y if and only  x e [O, y]
will be called the cutpoint order on T, and if x eT, M(x) and L(x) will denote
the upper and lower sets at x, respectively, with respect to this order only.
Since ¿ is a closed partial order on T, T  is locally convex with respect to Ú
[10, Proposition 3 and Corollary 4], If X = E(T), we define X' = {x e X: x is iso-
lated in [0, x] O X!, and if x e X\ we let x' = sup([0, x)i~iX). We shall also
use this notation consistently throughout this work. We now establish some con-

vergence properties in T.

Proposition 1.6. Let T be an abelian semigroup on a tree with idempotent

endpoints, let X = E(T), and let i*ataeD C X with {xJoeD  -^ x e X.
(a) If xaeX' for each aeD, x eX', and {x^ \a£D  -^ x', then there is

ß e D with x'a=x'   for a>ß.
(b) If x e X'   and xax = xa for each aeD, then there is ß e D with xa e X'

and x'a e X    for each a ~¿ ß.

Proof. For part (a), if t e(x', x), then x   e M(t) ~\t\ is open in T. Thus,
there is ßy e D with xa e M(t) ~\t\ tot a ^ ßy, and so [0, i\ C [0, xa] for a ^
j8j. Now, M(t) is closed, and, as x' e T - M(t), there is ß2&D with x'a  e
T - M(t) fot a > ß2, whence x 'a e [0, t) for a ^ ßy, ß2. Thus, if ß e D with
ß>ßy,ß2, then x¿ = x'   for a> ß since [x', t] nx = {x'|.

For part (b), suppose xg = xa tot each aeD and x e X'. Then, x e M(x )
-\x'\ and M(x') -\x'\ is an open subset of T, and so there is ß e D with xa
e M(x ') - \x'\ for a ^ ß, whence x' e [0, xj for a ^ /3. Now, for a ^ ß,
xa[x', x] =[xax', xj; and, as x' e [0, xa), xjc' = x'   by Lemma 1.5. Moreover,

as T is abelian and xa is idempotent, translation by xa is a homomorphism,
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and hence (x', xa) n X = D. Thus, for a ^ ß, xa £ X'   and x' = x¿, concluding
the proof.

Lemma 1.7. Leí T be an abelian semigroup on a tree and let X = E(T). If

x £ X    and x is not isolated in xX, then

D = \y £ X : xy = y and y is isolated in yX\

is a directed set under y úz if and only if yz = y, and \y\ eD —» x.

Proof. If y j, y2 £ D, then, for i = 1, 2, yx = y. and y; isolated in y X im-
ply there is an open set U containing x with yJJC\X = \y \ for each /'. But x
is not isolated in xX and x £ X , whence a simple application of Koch's theorem
yields the existence of y £ U -\x\ with yx = y and y isolated in yX. Clearly

y eD and yx, y2¿y.
To show iyi eD   -^*   x, it suffices to show this convergence in X. But,

since ^ is a closed partial order on X, X is locally convex with respect to ¿.
Now, if x £ U and U is open and convex, a simple application of Koch's theorem
yields DC\U 4 O, and if y £ D O U and z £ D with y ¿ z, then y ¿z ¿x, and so
z £ U by convexity. This proves the result.

Semigroups over trees. We now turn our attention to the first of our main re-
sults. The following definition is very similar to that of a chainable collection

[3, p. 1391.
Definition 2.1. (T, X, Sx, m    , r\x) is a generalized collection if:

(a) T is an abelian semigroup on a tree with idempotent endpoints and X = E(T).
(b) For each x £ X, S    is a cylindrical semigroup with identity lx and minimal

ideal Mx satisfying:
(i) If x s^X', then Sx = 77x = Mx is a group, 77 x being the group of units

ofSx.
(ii) If x £ X ', n : S  —»[%', x] is a surmorphism, and there is an isomor-

phism lf/x: Sj/HaT'tx » *]  so tnat ll/xvx = ''x' wnere   vx' Sx~* Sx^x IS tne

natural map.
(iii) If x^y, then S   <~i S  =n.x y

(c) If x, y £ X with xy = x, then m    : S  —* Sx is a homomorphism with:

(i) m      is the identity,
(ii) If x £ [0, y), then mxy(Sy) C Hx.

(iii) If xy = x and yz = y, then mxy °myz = mxz.

(d) (i) If x £ X', then mx/x|Mx is an injection.
(ii) If   x, y  £ X1, xy = x, and x' = y ', then mxy\rIy fy', <] is an injection

into rj~ Kx', i\, where r = sup([x', x] O [y1 f y]).
(iii) Suppose UalaeD C X with ¡xa!aeD -^x so that xax = xa for each a e D
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and xaxß = xa if a g ß e D. Then,  <f>x: Sx -» n\Sx¿ a e D\ defined by <f>x(s) =
(wxa*(s^aeD is an isomorphism of Sx onto proj limiS^ , mxax„, a g ß e D\.

(iv) If x, y e X with xy » x, then V^m^s)) = x • r¡ (s) fot each s e S .

If (T, X, 5x, >»xy, r/x) is a generalized collection and S' = U^x: x e *!>
define p: S ' —» X by p(s) = x if and only if s e S^. p is well defined by (b)(iii).

Proposition 2.2.  Let (T, X, Sx, m      r¡x) be a generalized collection and let

S' - \J\Sx: x e X}. If s,t eS', let s- r = mxp(s) (s)mxp{t)(t)„ where x = p(s)p(t).
With this multiplication, S' is an algebraic semigroup and S' is abelian if and

only if each Sx is abelian.

Proof. The proof is straightforward.

Proposition 2.3. Let the assumptions and notation be as in Proposition 2.2.
Let Y be the basis of all open connected subsets of T; and, if U eY and z e
U n X, define (¡J, z) = U if z is isolated in zX, while (U, z) = U O M(z) - \z\
otherwise. If, then, V C Sz is open, let

W(U, z, V) = \s e S': p(s) e ((/, z), zp(s) = z, and mzp,s)(s) e V\.

Then, T= ÍW(U, z, V): U e T, z e (J n X, and V CSZ is open] is a basis for a
topology on S ' relative to which S' is a topological semigroup when endowed with

the multiplication of Proposition 2.2.

Proof. We first show T is a basis: Clearly S'= W(T, 0, S„), and so S' =L)T.
Suppose s e W(Uy, Zy, Vy) H W(U2, z2, V2). For each i, if z{ is isolated in zX,
then there is U'.  eY with p(s) e (/.' C (/. and z.U'.  (*l   z.X= \z{}. If, on the other

hand,   p(s)  e (U{, z{) = í/¿ n M(.z{) - \z A, then, since (l/¿, z{) is open
in T, there is U¡  6 Y with p(s) e U¡ C ((/., z.). If   (/ = C\\U¡ : i = 1, 2}, clearly
p(s) e (J and (7 is open and connected. If p(s) e x', then Koch's theorem implies
the existence of z e U n X with z isolated in zX and zp(s) = 2, while if p(s)

^ X ', pick z e ((/ n [0, p(s)) n X). In either case, p(s) e(U, z)CU C U¡ C
((/., z.), and z^ = z. since z.fj D zX = [z^ for i = 1, 2. Thus, if V =

Oí»2~?z(V¿): ¿ = 1, 2|, V is an open subset of Sz and "2zf)(s)(s) e V since

mz.p{'s)(s) e V. for each i. Then, s 6 W(U, z, V), and clearly W(U, z, V) C .

now/,, *¿, vp-. f -1,2i.
The topology is Hausdorff: Let S y s, € S*. If p(Sy)¿ p(s2) or p(Sj) = p(s2)

= x is isolated in xX, then it follows easily that s y and s2 can be separated

by disjoint open sets.
Next, we suppose x f. (X' U  \0\), and let D = [0, x)OX. Direct D by y ¿ z

if and only if yz = y, and note that iy! eD  -^ *• Then, by (d)(iii) of Definition
2.1, s y 4 s2 implies there is w e D with m    (s y) /= myx(s2) fot w ¿y e D. Since
x e M(w) - \w\, there is U e T with x e U C M(w) - \w\. Let z e (/ O X n [0, x),
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and note that mzx(sx) 4 mzx(s2)- Hence, there are disjoint open subsets V. of
Sz with mzx(s.) £ V. for i = 1, 2. Thus, s. £ W(U, z, y.) for each i, and these
sets are clearly disjoint.

Lastly, if x £ X', but x is not isolated in xX, then D = \y £ xX - \x\: y is
isolated in yXl is directed under y g z if and only if yz = y, and {y! ££>  ^x by
Lemma 1.7. Again applying (d)(iii) of Definition 2.1, if w £ D with m x(sx) 4 m   (sA for
w ¿y £ D, then there is U £ Y with x £ U and wU ^ X = \w\ as w is isolated
in wX. By Koch's theorem there is z £ t/n D, and if Vj and    V2 are disjoint

open subsets of Sz with mzx(s¿ £ V; for each i, then clearly s. £ W(U, z, V\)
for each i and these sets are disjoint. This exhausts the possible cases.

Multiplication is continuous: Let s, t £ S ' with st £ W(U, z, V) and let x =
P(s)P(t). Then x e ((/, z), and if z is isolated in zX, there is 0 £ Y with x £ 0
and zO n X = \z\. Let t/' » (7/, z) if ((/, z) = 7/ n M(z) - {zi, while we let   U' =
0 H 1/ if z is isolated in zX. Now, there are U{ £ Y fot i = I, 2 with p(s) e
(7j, f(t) e U2, and i7it/2 C (/'. Again, we pick z¿ e 1/  for each i so that 5 £
W(UX, «,, SZ1) and í e W((/2, *2, S,^, and note that (0,, zx) (U2, z2) C (/',
whence z(XjX ) = z for any idempotents x. £ U.. Since si e W(U, z, V), mzx(st)
£ V, whence w(ziZ2)x(s<). € «-^^^(V), and this set is open in S,^. But,

m(^z2)x(sí) = m(Zlz2>2l(mZlí,(^(s)),"(Z^2^2(m^2P(0(í))'

and so there are open sets v\   in ^Zj22 for i = 1, 2 with

w(V2*1(,V(s)(s)) £ Vi    and OT(z1z2)Z2K2P(1)(/)) £ V2«

and KjV* Cmz¡ziZ2)(V). If V,. = «('¿^,,/V;) for i = 1, 2, then a»,^,/*)
e v'i 7 rnz pifft) e V2, Vj. is open in SZ( tot each i, and so s £ W(U x, «x, V^
and r e W(l/2> z2, V*2). A simple calculation now yields

W(Ux,zx, VX)W(U2, z2, V2)C W(U, z, V).

Lemma 2.4. Let everything be as in Propositions 2.2 and 2.3. For each
x £ X, the topology induced on Sx as a subset of S ' is the same as the original

tqpology   on Sx.

Proof. This follows from the facts that Sx is compact, 5    is Hausdorff, and

the natural embedding of S    into S    is continuous.

Proposition 2.5. Let everything be as in Propositions 2.2 and 2/3. Then,
endowed with the topology of Proposition 2.3, S ' is a compact space.

Proof. Let UJa£DCS'. Then, \p(sa)\a€D C X and X is compact, whence
there is x £ X with \p(sa)\a£D -*• *> and bY Possibly picking a subnet, we may
assume \p(sa)\aeD  ^ x. By again picking a subnet, we have one of the following
cases.
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Case 1. xp(sa) = x fot each aeD. Then \mxpçSa)(sa)^aeD C Sx' anc* so tnere
is s e Sx with lmxp(sa)isa) Leo  —* s ln sx' Suppose s eW(U, z, V). Then, as
lp(?o)îa£D -^ x and x e ((/, z), there is /3j e D with p(sa) e ((/, z) for /Sj g a e
D. Moreover, if ß e D, there is a e D with a ^ j8lt ß so that mxp,s .(sa) e
m'liV), whence «a e «/((/, z, V). Thus {sala£D L s in S'.

Case 2. xa= xp(sa)¿ x fot each aeD. Since \p(sa)]aeD   -^ x, {xa]aeD -Î,
x • x = x. We distinguish two subcases.

The first subcase is x ¿ (X' U iOj). Let E = [0, x) O X, and direct E by
ygz   if and only if yz = y.   By (d)(iii) of Definition 2.1,   S    =*
proj lim|Sy, myz, y ¿L z e E\. We now define a net !iala£D in UÍ5y: y e E\ by

(ía)y = !y if yPiso) ¿ y> while (*a)y - my/>(ia)(sa)   if yP(sa) - *• Then, as

n{S : y e E\ is compact, there is í e Hi S : y e E\ with if alaeD —* t, and stan-
dard  arguments show / e proj limjS , rn    , y <z e E\.

Thus, there is s e Sx with (™yx(s))yeE = t-^e now snow Uä'agD —» «•
If s e W(U, z, v), then p(s) = x e ((/, z) and zx = z. It follows that there is

an open set U ' with x e U' Ç(U, z) and z(J ' l~l X = \z\. Since \y] eE     ^-» x,
there is w e E with yeu'totwgyeE. Moreover, as \p(sc))aeD  -^+* and x
e f7'n M(w)-M, there is ß e D with p(sa) e/j'n M(w)-\w] tot ßga e D.
Now, since s e W((/, z, V) and zw = z, m     (s) e m~w(V), and this set is open in

Sw. Thus, as mwx(s) = tw and fia}aeD -Ir, {a e D: (/„)„ € m"l (V)i is cofinal
in D. Thus

ß = |aeD:(ü   e^'M   and p(sn ) e u' P M(w)~ {w\\
ÇL  \JJ ZW ft

is cofinal in D. If a e B, then p(sc) e ((/, z) and zp(sa) = z. Moreover, wp(sa)
= w, so

m „,    >CO-*    0»     ,    s(s„))e»2    U'1 (V))C V,

whence sa e W((/, z, V). Thus, a e ß implies sae W(l/, z, V), and so «sa!a£D
—► s.

The second subcase is x e X*. Since }*aiaeD  —* x and xax = xa/= x for
each a e D, x is not isolated in xX. Thus, if E = \y e xX - \x\; y is isolated in
yX\, \y\ eE —» x by Lemma 1.7, and so Sx a¡ proj lim{S , m    , y ¿ z e D}. We
define the net {za}aeD exactly as in the previous subcase, and pick t €
nl5y: y eE] with if a}aeD -» f.. Again, there is s e Sx with (mxy(s))y€E = *•
The proof that isaia££) -L> s    follows as in the previous case.

As this exhausts the possible cases, the result is established.

Lemma 2.6. Let everything be as in Propositions 2.2 and 2.3. Define p:

S' —» X by p(s)= x if and only if s e Sx, and define r¡: S'—*T by rj(s) = n ,s)(s).
Then, p and r¡ are continuous surmorphisms of s' onto X and T, respectively.
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Proof, p is  clearly a surmorphism, and if  U £ Y, then  p-I(í/) «
\J\W(U, z, Sz): z e (y n Xi, and so p is indeed continuous.

We now turn our attention to 77. Since rjx is well defined for each x e X
and the Sx's ate pairwise disjoint, j? is well defined. If t £ T - X, then there is
x £ X with / £ [O, x] since T has idempotent endpoints. Thus, there is y £ x'
with / £ [y ', y], and so t £ J7y(Sy) C n(S ')• If t £ X, then n(lt) = r¡t(lt) = r , and
so 77 is surjective. That n is a homomorphism follows essentially from (dXiv)
of Definition 2.1.

We now show n is continuous. Let s £ Sx CS ' with r](s) = n (s) £ U £ Y.
We distinguish two cases:

Case 1. x = T](s). Then, pick z e 7/ n X with zx = z and x £ (U, z), and let
V = r¡~ !((/). Then V is an open subset of Sz, *?z(»"zx(s)) = zr¡x(s) = z £ U, and

so wzx(s) £ V, whence s e W(U, z, V). Moreover, if t £ W(U, z, V), p(t) £ (U, z)
C U, and since 7/ is connected, if r = sup([0, z]n [O, p(t)]), then [r, z]u [r, p(/)]
= [z, p(t)\ C U. If lpU)U) = P(t), then np(t)(t) £ U. Suppose f(i) £ X' and
fiXoCO e tpCO'. »*('»• Since r e W(U, z, V), m,p(()(0 e V, and so z^j«) =
r}z(mzp,t)(t)) £ rjz(V) C (7. As i,p(<)(t) e[p(r)', p(0), fy0)G) e [0, r]u [r, p(t)]. If
J,i(l)(i) e [0, r], then, since r e [O, z], 1^ (|)(/) = 2î?m<)(0 « 17. If 9^)*c (r. P(0),
then 17^(^(0 e (7 as [r, p(r)] C U. In either case, r/(0 = Vp^)^ £ U> and so
i,(W(l7, z, V)) C Í7.

Case 2. x £ X ' and vx(s) £ tx', x). Pick r £ (r¡ (s), x) and let Ux £ Y with
x £ i/j C M(r) - \r\. Then, by Koch's theorem, there is z e (/] n xX with z iso-
lated in zX since x e X '. If r j = sup([0, z] H [O, x]), then, as U x is connected,
[r j, z] U [rx, x] = [z, x] C 17r Since Ux C M(r) - M, r £ [O, r^, and so [rp x] n X
= lx}. Moreover, \rx, z] = z[rx, x] implies [rx, z] O X = {z} as translation by z is
a homomorphism, and so z ' = x'. If V = n~ '(U', r) n I/), then V is open in Sz
since tjz is continuous. Now, p(s) = x e (Í7, z) by choice of z, and r]z(mzx(s)) =

*»/x(s) = »?x(s) since r¡x(s) £ [x', r), = W, r). Hence, as r¡x(s) £ U, mzx(s) £ V,
and so s £ W(U, z, V). Arguments similar to those given in Case 1 show

r¡(W(U,z,V))CU.

Proposition 2.7. Let everything be as in Propositions 2.2 a»a* 2.3. If R is
the relation on S    whose cosets are

R[s] = \t £ S':r](s) = r¡(t) and mxp,s)(s) = mxpU)(t)\,

where x = p(s)p(t), then R is a closed congruence on S'.

Proof. R is clearly reflexive and symmetric. Suppose (s, /), (t, u) £ R.

Then, r¡(s) = r](t) = 77(a). Let
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x = p(s)p(u),   y = p(s)p(t)p(u),   z = p(s)p(t),   w = p(t)p(u).

We must show mxp{s)(s) » mxp{u)(u) to show (s, u) e R. Now, since r¡(s) - r¡(t)

= n(u), T](s) e r,(Sp{s))n ij(Sp(()n ^(5^^,). Moreover, mxp,s)(s), mxp,u)(u) e Sx,
and by (d)(iv) of Definition 2.1, -q(mxp{s)(s)) - xr/(s) and r¡(mxp{u)(u)) = xr/(zz).
Bur, as   r/(s) = r/(zz),

xr¡(s) = p(s)p(«)7?(s) = p(s)p(u)r¡(u) = p(s)r/(a) = p(s)r/(s) = r¡(s).

Similarly, n(m xp,u)(u)) = r/(«), and so r/(s) e Sx and n(mxp,s)(s)) = r](mxp(u)(u)).
A similar argument yields the fact that r/(s) = r¡(myp,s)(s)) = r¡(myp{u)(u)), and so
T}(s) e r/(Sy). Hence r/(s) e r/(5x) O r/(Sy), and, if q = inf(r/(5y)n 77(5,)) and r =
sup(rj(Sy)n 7j(5x)), then r¡(s) e [q, r]. Moreover, as T¡(mxp,s)(s)) = rj(m xp{u)(u)) -

7/(s), we have "^(s/»' mxp{u)iu) £ Vx 1»» fl» and as t****»)^ ^«ypte/"))
= ^s). myp(s)(s)> myp(uiu^ e ''y '^' ^' Furthermore, using the facts that (s, f)
and (f, u) are in R, it is easily shown that f"yx(mxp,s)(s)) = myx(mxp,u)(u)). But,
by (d)(i) and (d)(ii) of Definition 2.1, zzz    |r/~ Kq, r] is an injection into r¡~l[q, r],
whence mxp/ss(s) = mxptu-[u)- Thus R is indeed transitive. A simple calcula-
tion using the fact that r/ is a homomorphism and the definition of multiplication
in S    yields R is a congruence.

A simple argument, using the continuity of rj and p and the fact that   m   (s)xy
= 1    • 5 if xy = x shows that R is closed.

Definition 2.8. Let (T, X, Sx, m   , 77x) be a generalized collection and let
S ' =Ui^x: x e ^ ke the semigroup constructed in Propositions 2.2 and 2.3. If
R is the congruence on S ' defined in Proposition 2.7, then S = S '/R is called
the semigroup over the tree T generated by the generalized collection

(T, X, Sx, mxy, r/x), and is denoted S = S(T, X, Sx, mxy, r¡x).

Lemma.2.9. // (T, X, Sx, m , r/x) is a generalized collection and 0 is the
zero of T, then S =S(T, X, Sx, mxy, 77x) is connected if and only if SQ is con-

nected.

Proof. An argument utilizing the structure of S similar to that given in the
proof of [15, Proposition 3.6, p. 128] is straightforward.

Two of the motivations for this work were a desire to generalize the con-
struction of the hormos to non totally-ordered semilattices, and a desire to ob-
tain a generalization of the following theorem.

Theorem (Hofmann and Mostert [3]). Let S be a compact semigroup. H is
a congruence on S and S/K is an ¡-semigroup if and only if S = Horm(X, Sx, jzz

for some chainable collection (X, Sx, mx ).

The last section of this paper is devoted to. the latter of these. As to the

xy'
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former, we note that, in constructing a hormos from a chainable collection, there
was no question as to how to sew the semigroups \Sx: x £ X\ together. However,
it is easy to find examples of semilattices which can be embedded in each of the
several nonisomorphic trees so as to contain the endpoints of the tree in each
case, and so we include the tree T in the definition of a generalized collection.
We now show that the construction given in this section indeed generalizes that

of the hormos.

Theorem 2.11. Let (T, X, Sx, m    , rjx) be a generalized collection, and let

0 be the zero of T. If T is an arc and 0 is an endpoint of T, then (X, S , m    )x      xy
is a chainable collection and û(T, X, S . mr , n A ** Horm(X, S , rn    ).x        y     x x     *^y

Proof. Since T has idempotent endpoints and the cutpoint order agrees with
the H-order by Lemma 1.5, the endpoint other than 0 is an identity for T. Thus
T is an /-semigroup, and if 1 = sup T, then   1 is the identity of T. If x £ X

with x not isolated in [0, x] O X, then h h* (m x(h)) <x is an isomorphism of Hx

onto proj limi/7 , m    , y ¿z < x\ after (c)(ü) and (d)(iii) of Definition 2.1, and
it is now clear that (X, Sx,-m    ) is a chainable collection. If R is the congru-
ence defined on S' =(J\Sx: x £ X\ in Proposition 2.7, and if R ' is the congru-
ence defined on S    as a chainable collection, it is routine to check R = R .

Let   T, be the topology on S    as a chainable collection, and let   T2 be the
topology on S' as described in Proposition 2 3. We show i: (S'.Tj) —* (S , T2)
by i(s) = s is continuous. Let s £ SXC S1 with s £ W(U, z, V). Then U is an

open connected subset of T, p(s) = x £ (U, z) with zx = z, and mzx(s) £ V with
V an open subset of T. Now, (U,z)=U if z £ (X ' U {Oi), while ((/, z) = U
n (z, 1] otherwise, and we let 17 ' - 17<"» [z, l] d X if z £ (X ' U }0i), while U ' =
Un (z, 1] n X otherwise. Then W(U', m~*(V)) eT¡, where p - inf U', and
clearly s £W(U', w_1(V)) and i(W(U ', mZ*(V)))C Vf(U, z, V). Thus i is indeed
continuous, and since (S', T j) is compact and (5 ', T2) is Hausdorff, i is an iso-

morphism.   Since   R = R',   the   induced  map   i   :   Horm(X, Sx, m    )xy
S(T, X, Sx, mx , 7?^)    is an isomorphism, thus proving the theorem.

We note that, as a result of this theorem, the inclusion of the basis for Sx -
H   for each x £ X ' in the definition of the topology for a chainable collection

is superfluous.

Proposition 2.12. Let (T, X, Sx, mxy, rjx) be a generalized collection and

let f be a subtree of T with idempotent endpoints. If X = T C\ X, then (T, X,
Sx, mx , r)x) is a generalized collection and S(f, X, S x, m xy, t\x) is a subsemi-

group of S(T, X,  Sx, mxy, T}x).

Proof. The proof is straightforward and uninteresting.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SEMIGROUPS OVER TREES 393

A characterization of semigroups over trees. We are now ready to turn our
attention to the main result of this work, a characterization of those compact semi-
groups S with K a congruence on S and S/H an abelian tree with idempotent
endpoints. In particular, we show that each such is S(S/H, E(S/K), S , m    , rj ),
where Sx is a suitably chosen cylindrical subsemigroup of S for each x e E(S/K),
and mxy is translation by lx. Conversely, if S = S(T, X, Sx, mxy, nx), then we
show that H is a congruence on S and S/X^T. It is because of this fact that
we call such a semigroup a semigroup over the tree T. We first establish some
technical lemmata we shall need for the proof of our main result, and we begin by
quoting the following theorem, which is proved in [2],

Theorem 3.1.(Hofmann and Mislove[2]). Let S be a compact semigroup with
identity such that S/M(S) is connected. If sH(l) Ç 77(l)s for each s £ S, then the
identity component of the centralizer of 77(1) in S meets M(S).

Lemma 3.2. Let S be an algebraic semigroup and let e e E(S). If es £ Se
and se £ eS, then es = ese = se. 7« particular, (es, se) £ H implies es ■ ese =
se. Finally if H is a congruence and 5/H is abelian, then E(S) Ç Z(S), the cen-

tralizer of S.

Proof. We prove only the last statement. If s £ S and e £ E(S), then (es, se)
e Has S/H is abelian, and so es = se by the first part.

Lemma 3.3. Let S be a compact semigroup with H a congruence and S/H
an abelian tree with idempotent endpoints. Let X = E(S/H), /er x eX1, and sup-
pose <px: 2 —► r¡~l[x', x] and <f>2: 2—»t/'Hx', x] are bomorphisms with
r¡(<¡> ß,)) - r](<f>2(l)) = [x', x], r¡: S -» S/K being the natural map. Then <f>x(2) • 77x

= <pp.)-Hx.
Proof. We show this first for x isolated in xX.
Claim 1. There is t £ [0, x) with [0, y] O [O, x] C [0, il for each y £xX-\x\.
Proof. Suppose not, and let D = \y £xX- \x\l If, then, fy = sup([0, y]n[0, x])

for  each    y £ D,    we have     Uy\y€D ¿* x, where we direct  D by y Çz if
and only if t   e[0, tj. Since xX is compact, there is z e xX with \y\yeD —* z,
and by possibly picking a subnet, we may assume convergence.  Now
{[0, y]\ €D Í* [0, z], and ty e[0, y] foe each y € D, whence x £ [0, z] as
Ii I        i x. But z € xX, and so zx - z. Therefore z =x, contradicting the fact

y y£D g
that x is isolated in xX, since {yiyfrD -» z. This establishes the claim.

Let r £ [0, x) with [0,y]n[0, x] C [0, t] for each y £ D, and let A = rf^x'.x].
Then A is clearly a compact subsemigroup of S with group of units 77x. Pick

s £A with n(s) £(tyx\.
Claim 2. Hs(s)=sHx = Hxs.
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Proof. First note that E(S) C Z(S) by Lemma 3.2. If a e Hs(s), then there
are a, b e S with a = sa and s = ub, whence s ■ sab. Thus, s - si    for 1    6

Y(ab) H E(S), and so aly «sas (s, a) e H. If z = xy, then slz = si 1  » s and

alz = a, whence   zrj(s) = r)(s). Now z e xX and r¡(s) = zr/(s) € z[0, x] - [O, z], so
T)(-s) e[0, z]n [0, x]. Since r](s) € (/, x], we have z = x. Hence, «lx, fclx e f/
since ly e Y(ab) and lxly - lx. Moreover, s(alj - (sa)l x * zzlx= a, and so

f/s(s) C s/7x.
If a e //x, then 7?(sa) = r¡(s)r¡(a) = r/(s)x «= r/(s), and so sHx C H^s). Therefore Ejís)

= sHx, and a similar argument shows Hs(s) = H S, proving the claim.
Now, A = HxUr/-1[x', x), and ri(/7x)n 17(77" Hx', x)) =□. Hence, since Hx

is closed in A  and rj is a closed map, Hx is not open in A as [x', x] is con-

nected.
It follows that there is a one parameter semigroup in A containing 1    whose

closure meets M(A), and from this that A/M(A) is connected. This, along with
Claims 1 and 2 imply that A satisfies the hypotheses of Theorem 3.1. Therefore,

the identity component of the centralizer of //(l^ in  A, C, meets M(A), and since
lx is isolated in C, there is a one-parameter semigroup in C containing lx
whose closure meets M(C) Ç M(A). Thus there is a homomorphism <p: 2 x Hx—»

A with <p((0, 0), i) « b for each ¿> e Hx and <p(2 x f7x) £ Hx [3, p. 87, 2.3l.
Hence, 77(9*1(2 x H^) = [x ', x], and it now suffices to show çj>(2 x Hx) = <£>'&)• Hx

tot any cf> ': 2—» 4 with r/(ç5'(2)) - [x', x].
Let s eç</(2) with r/(s) e(/, x]. Then there is   s'ecp(lx HJ with r¡(s')

- r¡(s), and so there is h € fíx with s = s' h by Claim 2. Hence s = s '¿ e
#2 x H^/j^ - 0(2 x Hx), and so <p'(2) C <p(2 x H^ since <p '(2) is generated

by is € <p'(2): 7j(s) € (/,. x]j. Therefore, 0 '(2) -^C^Sx //x) • //x = #2 x Hx).
Now, there is r e H with r > 0 and <¿((p, s(p)), 1^ Cr/"1^,. x] for r > p e H,

and so r¡(<p((p, s(p)), 1J) » r/(s) for some s £ <p'(2). Moreover, by Claim 2, there

is ¿p € Hx with çS((p, s(p)), 1^ = shp, whence

<p(\ip, s(p)) :p<r]x \lj) C <p'(2) - Hx.

But 2 x ilx} = (\(p, s(p)): p<r] x UJ)*, and so

0(2x[lxD-<P«Kp, s(p)): p< r} x}lx})*)C <p'(2) • Hx.

Finally, ç6(2 x Hx) = #2 x {lj>- Hx C <p'(2) • Hx • ffx = <p'(2) • tfx. This  es-
blishes the desired result in the case that x is isolated  in xX.

Now, suppose x e X*  and x is not isolated in xX. If D - ly € xX: y i»
isolated in yX], then D is directed under y < z if and only if yz = y and
ly] -Î, x by Lemma 1.7. Moreover, by possibly picking a residual subset of

D, we may assume y' = x'   for each y € D by Proposition 1.6. Now, if \¡¡a]aeE
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is a universal subnet of Í77 ! €D [5, p. 8l], then \Ha\aeE converges to some sub-
semigroup 77 of S. Moreover, as n: S—*S/K is continuous, if ih \ eD —» h eS,
then \r)(hy)\ ££) —♦ r¡(h), and so r)(h) =■= x since n(h ) = y for each y £D and

{yly£D -» x. Thus 7> £HX, and we have 77 C77x. But Hx C // since  ly77x C77y
for each y £D, and so 7/ = 7/ .

Now, let 0j: 2—»77    [x', x] and 02: 2-• 77" [x', x] be homomorphisms with
77(0j(2)) = 7/(cS (2)) = [x', x]. If y eD, since £(5) C Z(5) by Lemma 3.2, transla-
tion by 1    is a homomorphism, and moreover,

7?(ly . r,-l[x, x]) = 7,(1 y) . [x\ x] = [7,(ly)x', 7,(ly)x] = [r,(ly)', „(ly)],

whence ly • n_1[x ', x] C »/"^[»»(y',»»(1 )]. Hence, if y £ D, then 0; : S -»
V~ [»/(ly) '» »/(fy)] by 0¿y(s) = 1   • 0(s)y i = 1, 2, are homormophisms and

7?(0;y(2)) = L77(ly)', 7?(ly)] for each i. Thus, 0ly(2) ■ Hy = 02y(2) • 77y by the
first part of this proof. Therefore,

0,(2)-//   =0,(2). lim 77   = lim 0,(2). 77   = lim 0,  (2) • 77~1 x     rl y r\ y ly y

= lim02y(2)./7y  =02(2).77x.

This concludes the proof of the lemma.

Main theorem.  Let S be a compact semigroup. H is a congruence on S and
S/H.   is  an  abelian   tree  with   idempotent  endpoints   if and only   if
§(T, X, Sx, 7?îxy, 77x) for some generalized collection (T, X, 5X, 772xy, 77x).

Proof. We first establish necessity. Suppose  Sisa compact semigroup with
H a congruence on S and S/K an abelian tree with idempotent endpoints. We now

construct a generalized collection (T, X, Sx, m    , 77x).
Let T - S/H and let X - E(S/K). Then T has a zero by Lemma 1.4. Let

x £ X' and consider 77" Tx', x], 77: S —» S/K being the natural map. If x is iso-
lated in xX, then, as in the proof of Lemma 3.4, there is a homomorphism 0: 2 x

Hx-* 77- lW, x] with 0((O, 0), b)~h tot each * £ 77x and n(0(2)) = [x', x]. If
(r, r') e2 and h £ Hx, then

0((r, r'), 1X)A = 0((r, r'O, i) = 0((O, O), h\j>((r, r'), lj = 7>0((r, r'), lx),

and so 0(2 x j lj) C Z(HX). Thus, if Cx, is the identity component of the central-

izer of 77x in 77" [x', x], then Cx contains lx».
If, on the other hand, x is not isolated in xX, then arguments similar to those

given in the consideration of the analogous part of the proof of Lemma 3.3 show
that lx» £ C, the identity component of the centralizer of 77    in 77" [x', x].

If now, 77 is the group of units of C, then 77 is closed in C, H /= C, and, as
C is connected, 77 is not open in C. Since C C77    [x', x], 1    is isolated in the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



396 M. W. MISLOVE

set of idempotents of C, and so there is a one-parameter semigroup /: H —♦ C with
/(0) = 1    and /(H) Í- H. Since C is a subset of the centralizer of H    in

77" [x', x], there is a homomorphism <f>: 2 x Hx —♦ 77     [x'f x] with cS((0, 0), h) «
b fot each h e Hx and T7(çS(2 x HJ) = [x', x] [3, p. 87, 2.3].

Thus, in either case, if x eX ', there is a homomorphism çS: 2 x Hx —*
r/_1[x', x] with <p((0, 0), è) = h tot each A e //x and 77(96(2 x Hx)) = [x', x]. Pick
one such, and let Sx - çS(2 x Hx). U x i X'', let Sx = Hx. If x, y eX with xy =
x, let »nxy: 5y —» Sx be defined by m^s) - lxs. Since S/K is an abelian tree
with idempotent endpoints, E(S) CZ(S) by Lemma 3.2, and so mx    is a homomor-
phism. Il y 4 X', then Sy - r7y and, if h e Hy

ib)mx (b-1)= (1 i)(l Ä-1)= 1 (M"1)- 1 1   - 1 ,

whence mxy(Sy) CHXCSX. Suppose y e X'. If x / x\ then x[y', y] C[0, x]
and, as translation by x  isa homomorphism, x[y ', y] O X = {xy ', xj, whence xy '
: x. Hence if s e S ,

77U    (s)) = 77(1 s) = 77(1 )r](s) = xr/(s) = x,xy

and so m    (s) €//   CS .  Suppose x e X'.  Then x[y', y] C [O, x], and x[y', y]xy
HX = Ixy', x} as above. Thus xy' =x or xy ' =x', and so, if s eS   C77    [y', y],
then r/(m    (s)) = 7/(lxs) =• X77(s) e[x', x], whence rn^S ) C77_1[x', x]. Therefore,
if S  = <p(2 x HA, then m     o çS|(2 x 11  }) is a homomorphism of 2 x {1 } intoxy
77     [x', x], and so m    (çS(2 x 11   j)) CS    by Lemma 3.3. Thusxy y x

M*y(V = mxy{*{1 X Wy)} = w*y(<¿(2 * * V^y*
= «xy(çi(2xlly}Wxy(Hy)Sx.//x=Sx,

the containment following from the obvious fact that m   (HA C Hx.
In any case, mxy(Sy) CSX, and mxy(Sy) CHX if x e [O, y). In particular, if

y eX' and x = y , M   C Hx, and so >hxJM    is the identity map, and hence it is
an injection. M x eX,\et r¡x = r¡\Sx. If x, y e X with xy = x and s eS ,
r¡x(mxy(s)) = r?(lxs) = xt¡(s) = XT/y(s). As Sx is cylindrical, Ks   = Hs <">(Sx x Sx)
[9, Lemma 2.4], and so (b)(ii) of 2.1 holds. Moreover, if xy = x and yz = y, then

mxy °myz'mxz'lS Clear aS   1xly ' 1x'
Suppose x, y e X*, xy = x, and x ' = y '. Then, if f = sup([x', x] f~l [y ', y])

and if s €77" Hy' , t], then 77(s) 6 [x', t], and so xrjís) = 77(s) by Lemma 1.5.
Hence mx (s) = lxs = s, and so mxy\r¡~ ty'. f] is an injection into 77"ax', /].

We have shown that (T, X, Sx, m    , 77^ satisfies all the conditions of Defini-
tion 2.1 except (d)(iii) and (b)(iii). We consider these in that order.

Suppose \xa]aeD CX suchthat l*a}a£D   —♦ x eX with xjc=xa for each

a € D and a £ ß implies x uXß = x^ Let <f>x: Sx~» IBSX: a e D] be defined by
«rV5) = Kax(s)W
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0    is a homomorphism as each mXaX is, and clearly 0,/S^ C

proj limiSXa, mXaXß, a gß £ Dl Since UXaJaeD   "^ lx, if <px(s) = 0x(i),
then

s = (lim 1     )s = lim 1    s = lim(0v (s))   = lim(0v (t))„ = /,
X ~. X ^- X A '* X — u.a CL CL a

whence 0x is one-to-one. To show 0x is surjective, fix (sa)a£D £
proj limiSXa, m      g a < ß £ Dl  We distinguish two cases.

Case 1. x $X', in which case Sx= 77x. By possibly picking a subnet, either
x    £ X ' for each a e 7) or x a ^ X ' for each   a ^ /). In the former case, if Í/ is
a connected open subset of T containing x, then there is y £ 7/ rï [O, x)OX so
x e UO/M(y) - jy|. Thus there.is ß £ D with xa £ U O Af(y) - fyi for ß ¿ a £ D,
whence y e[0, xj for ß ¿a £D. As y, xa £U and U is connected, [y, xj C 7/
for ß < a £ D, and, since y £ [0, xj O X, x'a £ U fot ß g a £ D. Thus
!*^¡ o£D   —» x, and therefore, since x'a ¿ »?(sa) ¿ xa for each a e D, we have
ií?(sa)lae0  —» x if xa e X ' for each a £ D, this fact being obvious if xa 4 D.

As S is compact, there is s £ S with \sa)aSD —» s, and, by the above, s £
Sx. Standard arguments now show lx   • s = sa for each a £D, so 0(s) = (sa)a£D'

Case 2. x £ X'. According to Lemma 1.6, we may assume  xa £ x'  and
xtt' = x ' for each a £ D. Let Sx - 0(2 x /7X) with 0((O, 0), A) = h fot each è £ 77x.
Then, by Lemma 3.3, SXa= [(»2XaX o 0)(2 x {lj)] • 77Xa> and so, for each a £ D,
there are ta £0(2x jlxD and 7>a £/7     with sa=mxJ,t()ha. There is t £<f(lx UJ)
0(2 x |lxD with !raiaeD —» t, and so there is a subnet Uß\ßeE with\tJL^-^ i. Since S

is compact, there is h £S with I^aI/jee —+ ̂ » and' since 77: S —♦ S/H is contin-
uous and \xß\ß€E   —» x, h £ 7/x. By possibly picking another subnet, we may

assume \hß\ß£E   —* h. Now, s ■= th €0(2 x Uxi) • Hx = Sx, and again standard
arguments show 0(s) = (sa)a€D.

Thus, property (d)(üi) of Definition 2.1 is fulfilled, and, to accomplish (b)(iii),
we make the following inessential changes:   for      x £X, let Tx = ix¡ x Sx, and,

if x, y £X with xy = x, define *':Ty-*Tx by m'xy(y, s) - (x, mxy(s)). Let

Or*-* [x'> *] bedefinedby •?/<*»s)-nxM- aearly c» x> Tx>mxy>O
is a generalized collection.

Let S" - S(T, X, Tx, 777x'y, 77x). We show Ss S. Let S' = \J\TX: x £X} be
the semigroup constructed in Propositions 2.2 and 2.3, and define /: S' —» S by
/(xj s) = s for each (x, s) £S\ We will show that / is a continuous surmorphism
and that pi=R, the congruence defined in Proposition 2.7.

Clearly / is well defined. Let s eS. If rj/(s) = x £X, then s £//   C S , and
so (x, s) £Tx and f(x, s) -s. Suppose rj(s) £(x', x) for some x £X'. Then,
since 77(SX) - [x', x], there is t £Sx with 77(0 = n(s), whence (s, /) fiH , and so
there are a, b £ S with sa = t and tb = s. Then, s = sab, and, therefore s = si
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where ly eY(ab). Now, a\y, bly eSly and \(alybly)\ecu - ly, whence «ly,
£>ly eHy. If z = xy, then

mzy(Sx)CSz,    and    mzx(t)mzy(bly) = Üzf)U^ly) = l„tb - lj = s.

Thus, s e Sz, and so (z, s) e TJ. and /(z, s) = s. Therefore, / is surjective.^

To show the continuity of /, let i(xa, sa)| a£D CS   with l(xa, sa)toeD —»
(x, s). Then i-sj^ is a net in S, and so there is f eS with fs Ja£D 1> t. By

picking a subnet, we may assume lsa}a£D —» f. If ya= xxa for each a £ D> tnen>
by possibly picking a subnet, we may assume that either ya¿x for each aeD
or ya= x for each aeD. In the first case, x is not isolated in xX, and as in the
last case of the proof of Proposition 2.5, we pick a net ly} £g CxX with yz = y

if y £ z and iy! Œ   —» x. Moreover, as is shown in that proof fa e D: yy a= y\
is residual in D for each y eE. If ya = x for each a e D, we let  ly| £„ be the
constant net ¡x|. Fix y e E and let ß e D with yya = y tot ßca e D. Then,

lmyx(sa))ßeaCSy and ¡myXa(s a)\ßsa "^ myxis'> ia Sy as a subset of  S'. More-
over, il saLSa —* It in 5 as multiplication in S is continuous. But, m      (s„)

y       r* y yX(x    Q*
= lysa ior eacft ß á a e D, and since Sy is a closed subset of S, 1 ¡6Î. But,

by Lemma 2.4, the topology on Sy as a subset of 5' is the same as the topology
on Sy as a subset of 5, and so wyx(«) = lyf. Since y eE is arbitrary and 1 s =

myx(s) for each y e E, s = lxs - (lim Iy)s = lim lys = lim 1 yt = t, the last equal-
ity following from the fact that fsa}aeo  i f and ilxJaeD  -Î* 1     Thus,

i/(xa» sa)^aeD ~~* ̂ x> *)» an(* / *s indeed continuous.
Suppose (x, s), (y, f) €S*. Then, if z = xy,

/(Of, s)(y, /)) = /(z, zzz2x(s)^y(z)) = /(z, (l2s)(lzi))

" lzSt " 1x1ySt = 1x5ly/ " St " /(X> SV(y> f)>

whence / is a homomorphism.

We now show pf=R. If f(x, s) = /(y, f)„ then s = í, and so r/(s) = 77(f). More-
over, if z = xy, then

w2X(x, s) = (z, mzx(s)) = (z, l^s) = (z, lzf) = (z, zzzjry(/)) = mzy(f).

Therefore, since -qx(x, s) = 77(5) « 77(f) = 77y (y, t)„ ((x, s), (y, t)) e R, and so pf C R.
If, conversely, «x, s), (y, f)) e R, then r¡(s) = 77x(x, s) = r)y(y, t) - 77(f). But,

lxs = s and lyf = f as se Sx and f e S , and so Is = s and lj = t since (s, í),

eK. Now, If * - xy, then s = 1^1 ys - lzs = mzx(s) = mzy(t) = y = lxlyr = t, and
we have /(x, s) - s - t - /(y, r), whence ((x, s), (y, f)) Cp^ Therefore RC p., and
so R = p«
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We therefore have the following commutative diagram:

and i is an isomorphism since R = p¡. This concludes the proof of the necessity.

To show sufficiency, suppose S - S(T, X, Sx, m%y, 77^ is the semigroup over
the tree T generated by the generalized collection (T, X, Sx, mxy, 77^. First,
to see that H is a congruence, let (a, b) £H and let c £S. If a £Sx and 6 £ S ,

then \a = I a = a and lxè • le ■ b. Thus, a, è £SZ, where z = xy, and so
(a, ¿>) eHc   [9, Lemma 2.4]. If c £ S,„ and y - zw, then (m(a), m(b)) eHc

as mvz is a homomorphism, and, since Sv is cylindrical, Hs    is a congruence,
whence (m Aa)m„(c),m   (b)m    (c)) eHr . But, ac = m    (a) ttz    (c) and ¿>c =

mvz(b)mvw(c) and Hs   C H and so (ac, èc) eH. Similarly, (ca, cb) £ H, and so
H is indeed a congruence on S.

Let 77: S' =UlSx: x e X| —»T be defined by ?7(s) » 77x(s), where s eSx, and
let 0: S  —* S = S /R be the natural map, R being the congruence defined in Pro-
position 2.7, and, lastly, let v: S —» SA( be the natural map. We show S/H ^ T

by showing that pv = pvo^, thus establishing that S/K is an abelian tree with
idempotent endpoints.

If (s, t) £pv, then T]p(^s)(s) = rjpUy(t), where p: s' -♦ X is defined by f(s)
-x if and only if s £ Sx. If x = p(s)p(t), then

^K?(-)(s)) = *WS) = *Wrt - 'Aí«)(í))'
and so K0(«x¿,(s)(s))) = K0("zxí,(í)(O)) as nx is the H-class map on Sx. Thus,
(mxp(s)(s)> mxp(t)(t)) e Pvo4" and« furthermore,

^xpJ3» ' *Ws) - P^P(s\(sis) - ^(>) = Mí^c/r)

and so (s, mxp{s)(s)) £ R. Similarly, (mxp(t)(t), t) £ R, and therefore, (s, mxp,s)(s)),

KMt)(i), 0 £R C p^, and, since K^/s), rcxí,(í)W) e P^, (s, r) £ pv^.

Suppose now that (s, r) £ p^. Then 0(s) £ 0(i)S H S0(O, and so there is

b £ S' with 0(s) = 0(j&). Hence, (s, rè) £ R, and so ?7(s) - r¡(tb) = n(t)r)(b). There-
fore, 77(5) ̂  77(f), and similar arguments yield 77(5) ¿  rj(t), r¡(t) £„ 77(5), and 77(1) ¿f
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77(s). Thus, (t7(s), 77(f)) e S H £ = KT, and, since all the subgroups of T ate triv-
ial,  rj(s) = r/(t), whence (s, /) ePr], and pVo¡p C pr We therefore have the de-
sired result.

The author is indebted to Professor Thomas Hays for the argument for the
continuity of the function / in the proof of the necessity in this theorem.

We note that, in view of Lemmas 1.3 and 1.4, we have really characterized
those compact semigroups S with H a congruence on S and S/K a tree with idem-

potent endpoints in which the idempotents commute as semigroups over trees.
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