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SEMIGROUPS THAT ARE THE UNION OF A
GROUP ON E3 AND A PLANEO

BY

FRANK KNOWLES

Abstract. In Semigroups on a half-space, Trans. Amer. Math. Soc. 147 (1970),
1-53, Home considers semigroups that are the union of a group G and a plane L
such that G v L is a three-dimensional half-space and G is the interior. After proving
a great many things about half-space semigroups, Home introduces the notion of a
radical and determines all possible multiplications in L for a half-space semigroup
with empty radical. (It turns out that S has empty radical if and only if each G-orbit
in L contains an idempotent.) An example is provided for each configuration in L.
However, no attempt was made to show that the list of examples actually exhausted
the possibilities for a half-space semigroup without radical. Another way of putting
this problem is to determine when two different semigroups can have the same
maximal group. In this paper we generalize Home's results, for a semigroup without
zero, by showing that if S is any locally compact semigroup in which L is the
boundary of G, then 5 is a half-space. Moreover, we are able to answer completely,
for semigroups without radical and without a zero, the question posed above. It turns
out that, with one addition (which we provide), Home's list of half-space semigroups
without radical and without zero is complete.

Introduction. A semigroup on a half-space is a topological semigroup 5 whose
underlying space is homeomorphic to the set {(xl5 x2, x3) e E3 : x3 ̂ 0} and which
has a maximal group G corresponding to the set {(xx, x2, x3) e F3 : x3>0}. All
possible multiplications in L, the boundary of G, and the corresponding maximal
groups are determined in [8] for semigroups without radical, and examples are
given for each allowable pair G, L. We will not define the radical of a semigroup
here, but it turns out that a semigroup on a half-space has empty radical if and
only if each C-orbit in L contains an idempotent. (See Theorems 6.7 and 6.8 of
[8].) The question of when G, L, separately, determine Cu L was not pursued in
[8], but it was conjectured there that the collection of examples given actually
exhausted the possibilities for a semigroup of a half-space without radical. In this
paper we answer this question for semigroups without radical and without zero,
and we show that 5 need only be locally compact in order to be a half-space. More
precisely: We assume that 5 is a locally compact semigroup without a zero which
is the union of a Lie group G on F3 and its boundary L which is assumed to be
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homeomorphic to F2. (We mean by the boundary of a set A, the set A~\A. u is a
zero for S if uS=Su = u.) We show that S must be a half-space. Moreover, with
one addition (see Theorem 10), the examples given by Home constitute all of the
semigroups without radical and without a zero on a half-space.

There are basically three difficulties to be faced if S is no longer assumed to be a
half-space topologically. We will briefly look at each of them. Let e be an idem-
potent in the boundary of G, and let H be the left isotropy subgroup of e. One
must either prove again or manage to do without:

(i) e is in the closure of H.
(ii) Ge is simply connected.

(iii) H ~ is a semigroup on a half-plane.
Home gives a proof for (i) that is valid if Ge is locally euclidean and S is a

manifold with boundary. Theorem 1 asserts that (i) is true without the latter
assumption. This theorem is invoked chiefly to get us into the situation of either
Theorem 3 or Lemma 11. The homeomorphisms constructed in these theorems
are the principal motifs underlying the arguments that piece together G and its
boundary. Moreover, the question of when G, L, separately, determine Culis
decided by exploiting these maps.

Problem (ii) above is circumvented by considering idempotents whose orbits are
closed in L. (See Preliminaries, P4. In this paper, P«, where « is an integer, refers
to a similarly-numbered paragraph in the Preliminaries.) Thus Ge = L if dim Ge = 2,
and if Ge = 1, it is easy to show that Ge cannot be a simple closed curve (Lemma 7).
The results concerning actions of a group in the plane contained in [4] and [7] are
fundamental here as they are in [8]. Finally, P7 and Lemma 11 suffice for (iii).
Many of the arguments used in [8], where S is assumed to be a half-space carry
over here. This is particularly true when determining the maximal groups that are
possible for a given situation in L. In almost every case we include such arguments
here for the sake of continuity. The Preliminaries represent our attempt to render
this paper fairly self-contained and, in particular, to make the body of the paper
independent of [8], However, to make this paper completely independent of Home's
work would involve too much duplication and is not a desirable object anyway.

P4 states that there is an idempotent e in L such that Ge and eG are each closed
subsets of L. The plan of this paper is a case-by-case analysis: dim Ge = i and
dim eG=j, where 0^i,j^2, except for dim Ge = 0 = dim eG. If e is a zero for S,
then a different approach is needed. In a forthcoming paper we will examine this
case in detail.

1. Preliminaries. All topological spaces here are assumed to be Hausdorff.
Unless specified otherwise, "group" means "topological group," "semigroup"
means "topological semigroup" and, in the statements of theorems, "isomorph-
ism" denotes a one-to-one multiplicative function that is a homeomorphism
onto. A double arrow -»■ always denotes an onto function. If G is a group acting
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1971] SEMIGROUPS OF A GROUP ON Ez AND A PLANE 307

on a space X, and xe X, then G¡(x)={g e G | gx=x} is the left isotropy subgroup
of x with respect to G. G¡(x) is a closed subgroup of G. The left G-orbit through x is
the set {gx \ g e G} which we denote by Gx. Similar remarks apply to Gr(x) and xG.
We sometimes say "right isotropy group of x," etc., when the group is understood.

Suppose now that G is an open, dense, connected subgroup of a semigroup, and
that L is the boundary of G. Let xe L. Proofs of the following two results can be
found in [8, p. 4] : (i) If Gx is open in L, then xG<= Gx, and Gr(x) is normal. (There
is a dual theorem to this.) (ii) If x2 e Gx n xG, then Gx r\ xG is, algebraically, a
group. Also, it is easily verified that if Gx is closed in L, then Gx is an ideal in the
closure of G. These results, and certain easy consequences of them will be used
often and without comment in what follows. (For instance, if e is an idempotent
and Ge is open in L, then eG is a group, algebraically.)

If G is a Lie group, then we denote the Lie algebra of G by L[G]. If 77 is a sub-
group of G, then the connected component of the identity in 77 is a closed normal
subgroup of 77 and is denoted by 770. If 77 is a closed subgroup of G, and V is a
subspace of G such that V n 77={1}, and the multiplication map of G restricted to
77x Fis a homeomorphism onto G; then we write "G = 77K." Clearly, if G = HV,
then, after supplying the obvious definition, we know that G = WH, for some W<=- G.

For easy reference we will refer to certain facts by numbers. It should be under-
stood that when a reference is made to [8] in this paper, the proof that appears in
[8] may have to be rewritten somewhat to yield the result as stated here. Also,
some of the results in these Preliminaries require Theorem 1.

PL Let G be a Lie group acting on a locally compact space X, and let xe X.
If there is a neighborhood V of the identity of G such that, for i> e V, vx = x implies
v= 1, then there is a compact set C in X, containing x, such that the group action
a: Vx C—> X is a homeomorphism onto a neighborhood of x in X [2, p. 314].
We will refer sometimes to C and sometimes toa: KxC-s-A'asa local cross-section
to the local orbits of G at x.

P2. Let G be a simply connected Lie group, and let 77 be a closed subgroup of G.
Then 77/770 is isomorphic to tt^G/TF) [16, p. 617].

P3. 5 is a semigroup on a half-plane if (i) 5 is a semigroup whose underlying
space is homeomorphic to the set {(x, y) | x = 0, where x, y are real numbers}, and
(ii) the subset of 5 corresponding to {(x, y) | x>0} is a group. Let 5=77uF,
where 77 is the group in (ii), and L is the boundary of 77. There are only two groups
on the plane, the abelian vector group and the nonabelian affine group, Af (1).
The affine group can be represented by real matrices of the form (% \) where x > 0.
Thus there are but two possibilities for 77, and the corresponding possibilities for
multiplication in L are as follows:

(A) 77 is abelian:
1. Lisa group.
2. L has a zero 0 dividing L into two components A, B such that AB = BA =0,

and for all x in A, Hx = xH=A, and for all x in B, Hx = xH=B; and one of the
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following is true: 2(i) A2 = B2 = 0. 2(ii) A and B are groups. 2(iii) A2=0, and F is a
group.

(B) H is nonabelian:
1. L is a group.
2(i). L has a zero, and A2 = B2=0 (see above).
3. L is a left (right) zero semigroup, and every left (right) orbit of L is all of F

[14], [15].
P4. Let G be a Lie group on F3 embedded in a locally compact semigroup, and

let L, the boundary of G, be homeomorphic to E2. If TY is a closed connected sub-
group of G and H C\L^ 0, then there is an idempotent e in H~ c\L such that
He and eH are closed subsets of L [8, p. 4].

P5. Suppose a connected Lie group acts on a space X and suppose that dim C7x
= 1 for some x e X. Then there is a one-parameter subgroup P of G such that
Gx = Px. Furthermore, a necessary and sufficient condition that a particular one-
parameter subgroup P of G have the property Gx = Px is that no conjugate of F
is contained in the left isotropy subgroup of x. Moreover, Gx is homeomorphic to
either a line or a circle if X is a plane [8, p. 4].

P6. Let F, the positive reals under multiplication, act on M, a locally compact
semigroup, and let e be an idempotent such that Fe#{e}. If Fe is locally compact,
then there is a local cross-section to the local orbits of F at e (see PI) such that right
multiplication by e is one-to-one on the fibres Vc, where Fis a neighborhood of the
identity in F and c is any element of the cross-sectioning subset C in M [8, pp. 8-9].

P7. Let G be a Lie group on F3 embedded in a locally compact semigroup.
Let L, the boundary of G, be homeomorphic to the plane, F2. Let e be an idem-
potent in L such that Ge is a line, and let H=Gl(e). Then (i) if eH^e, then H~ is a
semigroup on a half-plane (see P3) such that H ~~ nL = eH is a closed line in L
that crosses Ge at e and eH is a right zero semigroup; (ii) if eH=e, then H~ C\L
is a half-ray with e as endpoint or a line, and 77 ~ is topologically a plane or a half-
plane, respectively [8, pp. 8-10].

P8. Let G, L be as in P7 and let e be an idempotent in L such that Ge and eG
are lines in L, and Ge + eG. Then G,(e)#Gr(e) [8, pp. 11-12].

P9. If H is a planar group embedded in a locally compact semigroup, and if
the boundary of H is a line, then H ~ is a half-plane. If the boundary of 77 is a
half-line, then 77 ~ is a plane. In the latter case, if F is the boundary of 77, then the
endpoint of L is a zero 0 for H and L2 = 0 [8], [14].

P10. Let G be a semidirect product V2R of the two-dimensional vector group
and the additive reals (V2 is normal here). If G is isomorphic to the group of real
matrices of the form

'ar   0    x"

0    br   y

.0    0     1.
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where r e R, (x, y) e V2, and a and b are fixed positive real numbers such that
0 <b < 1 <a; then we say that G is a hyperbolic semidirect product. (Compare this
definition with the one given in [8, p. 13]. Also, on the same page is a list of the
possible semidirect products on F3 which is somewhat finer than the list that we
will give below.) The paragraph beginning at the bottom of [8, p. 15] should be
amended with the result that the maximal group G of Theorem 2.5, p. 14, must be
hyperbolic instead of nonhyperbolic as stated. The examples following the proof
of Theorem 2.5 are hyperbolic instead of nonhyperbolic as stated. The change
required in the proof is a trivial one: The boundary of 77" is a right zero semi-
group, and the boundary of J~ is a left zero semigroup. Consequently, using
Theorem 2 of [5], one sees that the action of p is expanding on Qx and contracting
on Q2, not contracting on each as stated.

We conclude these preliminaries with a description of those Lie groups whose
underlying space is euclidean three-space, F3. It can be shown, using the list of
three-dimensional Lie algebras given in [11], that the following list of possibilities
is complete:

(1) The three-dimensional vector group, V3.
(2) The nonabelian nilpotent group A' of 3 x 3 real matrices

1 x y

0 1 z
0   0    1

(3) The direct product of the affine group Af (1) with the additive reals, Af (1) x R.
(4) The semidirect products V2R of 3 x 3 real matrices

Px(t) p2(t) x

P3(') PAO y
0 0 1

where the map

t^P(t) =
Pi(t) p*{ty
p3(t) PÁt).

is a continuous homomorphism of R into the group of nonsingular 2x2 real
matrices. It should be noted at once that we reserve the term "semidirect product"
for those semidirect products that do not yield groups isomorphic to either V3 or
Af(l)xF.

(5) The simple group S 1(2) which is the universal covering group of the group of
real 2x2 matrices of determinant 1.

It is necessary that we examine the semidirect products more closely. V2 is
normal in V2R and, since we do not include the direct product, all normal one-
parameter subgroups of V2R are in V2. The set of linear transformations in the
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plane {P(t) | f e R} is either reducible or not. If it is, then there is a one-parameter
subgroup of V2 that is invariant under the action of each P(t) and this is equivalent
to saying that this one-parameter subgroup of V2 is normal in V2R. If the set
{P(t) | f e R} is irreducible, then V2R has no normal one-parameter subgroup.
Suppose that V2R has at least one normal one-parameter subgroup. Then we may
assume that p3(f) = 0 for all t e R. It follows that, for all t e R, p1(t) = at and
P2Ít) = b\ for some fixed real numbers a, b>0. Using this fact, one can show that
if a = b, then p2it) = Ala1 and, if a#Zz, then p2it) = A(tf - a1), where A is a fixed real
number. One can show, by switching bases in V2, that the group obtained in the
latter case is isomorphic to that obtained if A=0. Thus we may assume that Pit)
is given by one of the following forms, where a, b>0:

(i)

(ii)

(iii)

a t¿ b and a,b j- 1,

a1   Ata1

0      a<
A ±0,

aï 1.

Notice that if a or b is 1 in (i) then the corresponding semidirect product is iso-
morphic to Af (l)xF. Also, the direct product V3 is obtained by letting a=l in
(iii).

Consider the following special case of (i):

a1      0   '

0    (I/a)*.'
Because of Theorem 5 it is convenient to adopt the following convention. If G is
of type (i) and is not the special case just above, then we say "G = G2." If G is a
semidirect product having at least one normal one-parameter subgroup and G=£G2,
then we say "G = Gy." Thus, if G is a semidirect product then precisely one of the
following is true: G = Gy, G = G2, or G has no normal one-parameter subgroup.

2. Theorem 1. Let G be a connected, locally compact group of finite dimension
embedded in a semigroup, and let e be an idempotent in the closure of G such that Ge
is locally compact. Then e e G¡(e) ~.

Proof. Let H=Gt(e). Since 77 has a local cross-section in G [17], there is a
compact neighborhood of 1 in H, V, and a compact subset F of G such that
K n V={1), and the multiplication map of G restricted to Vx K is a homeomor-
phism onto a neighborhood of 1 in G. Let d be the projection of G onto the coset
space {gH \ g e G}. Then d \ K: K -»- d(K) is a homeomorphism onto a neighborhood
of H in G/H. Since Ge is locally compact, the map gH —> ge is a homeomorphism
of G/H onto Ge [1]. Thus the map k-+ ke is a homeomorphism of K onto a
neighborhood of e in Ge. There is a net {g¡} in G that converges to e. So gte -> e
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and, eventually, for each i, there is a kt e K such that gie = kie. Necessarily, kt -»• 1,
and for each g¡ there is an hi e 77 such that gi = kihi. Thus we have kth¡ -> e and
hi = k~1kih, -> 1 e = e.

Remarks. The conclusion of the theorem implies that Gt(e) cannot be compact if
e e G'\G. Hence, under these hypotheses, (G, G") cannot be a Cartan space in the
sense of Palais [On the existence of slices for actions of noncompact Lie groups,
Ann. of Math. (2) 73 (1961), 295-323]. The assumption "Ge is locally compact"
cannot be entirely eliminated as the following example shows.

Example. Let P' be the nonnegative reals, let F=F~\{0}, and let F be any
torus group of finite dimension greater than one. Let /: F -»■ F be a one-to-one
continuous but not open homomorphism of F into F such that f(P) is a dense
proper subgroup of T. It is well known that such a homomorphism exists [1].
F " x F is a locally compact semigroup that contains the group G = {(//, f(p)) \p e P}
which is isomorphic to P. Let e denote the point (0, 1) in F^ x F. e is the identity
of the group {0} x F, and Ge is a dense subgroup of {0} x F isomorphic to f(P).
By the lemma below, we may assume that there is a sequence {//¡} in F such that
Pi -»■ 0 in F" and f(pt) -*■ 1 in F. Thus e e G~. Consequently, we have a group G
isomorphic to the positive reals that is dense in a locally compact semigroup G~
such that the boundary of G is a torus group isomorphic to F. Moreover, Ge is
not locally compact, where e is an idempotent in the boundary of G. Clearly,
e i Gt(e)~, since G¡(e) consists only of the identity of G.

Lemma (for the Example). Let P~ be the nonnegative reals and let F=F ~\{0}.
Let T be a locally compact group with a countable base for the neighborhood system
of the identity 1. Letf: F —s- Tbe a one-to-one continuous but not open homomorphism
such that f(P) is a proper dense subgroup of T. Then there is a sequence {p¡} in P
such that f(Pi) —> 1 in T and either p¡ —>■ 0 in P ~ or //f1 —s- 0 in P ".

Proof. Let {A^} be a countable base for the neighborhood system of 1 in F such
that each Nt is open and N^x^N^ For each /', A/¡ <^f(P) is not compact. Thus,
for each i, there is a sequence {/(//,¡)}; contained in N¡ n f(P) such that {ph)j
has no convergent subsequence in F. Thus we may pick//¡, equal to pn for somey,
such that \Pi\>i. Fhe sequence {//¡} thus obtained, or some subsequence of it,
must satisfy the conclusion of the lemma.

Theorem 2. Let G be a connected, locally compact group embedded in a locally
compact semigroup in such a way that the boundary of G is a single left G-orbit, Ge,
where e is an idempotent. If there is a subspace V of G such that V C\ G,(e) = {l}
and the multiplication map of G restricted to VxG¡(e) is a homeomorphism onto G;
then (i) G,(e) ~ = G ¡(e) u {e}, and (ii) the multiplication map m: VxG¡(e)~ -»- G"
is a homeomorphism.

Proof. The hypotheses imply that the map v -> ve is a homeomorphism of V
onto Ge. Let H=G¡(e). Then e e 77", by Theorem 1. Since e is a right zero for H
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and a right identity for Ge, it is clear that H~ n Ge = {e). Thus we have (i). To
prove (ii), we have only to show that m is an open map. Suppose gt —> e where
{gi}cG- Let gi = vini with tZj e V and «¡ e H. Then ü(«,e ->■ e, v(e -*■ e; thus p( -> 1.
Consequently, hi = v,rlvih¡ -» e. So we have shown that zj¡/7¡ —^ e implies (fi; «¡)
-►(1, e) in VxH~. A similar argument will work for any net in G~. Thus «î is
open.

3. Notation. Throughout the remainder of this paper, the following notation
will be adhered to. Sis a locally compact semigroup consisting of a dense subgroup
G and the boundary of G, 7. G is a Lie group on F3, and L is homeomorphic to
F2. Since G is locally compact, G is open in S. P, R, T, and Q will denote one-
parameter subgroups of G isomorphic to the additive reals. 77 and 7 will denote
planar subgroups of G; that is, subgroups of G which are isomorphic to V2 or
Af (1). It should be kept in mind that since G is a group on a euclidean space,
any closed connected subgroup of G is also a group on a euclidean space [10].
e is an idempotent in 7 such that Ge and eG are closed subsets of 7. (The existence
of such an idempotent in S is asserted in P4.) We also remind the reader of the
notation introduced in the Preliminaries for the various Lie groups on F3.

4. Theorem 3. 7ef u be an idempotent in L such that Gu is open in L and is
simply connected. Then (i) Gt(u) ~ = G¡(u) u {«} is isomorphic to the multiplicative
nonnegative reals, (ii) There is a subspace V of G such that the multiplication map
m: Vx G¡(ü)~ -*- G u Gu is a homeomorphism. (iii) G u Gu is a half-space semi-
group.

Proof. Since Gu is locally compact, G/Gt(u) is homeomorphic to Gu. This
implies, by P2, that G¡(«) is connected, and since dim Gu = 2 it follows that G,(w)
is isomorphic to the positive reals. Theorem 1 implies that u is in the closure of
G¡(u). By a theorem of [6], (i) is established. Since G,(w) is a solid topological space,
there is a cross-section V to the right orbits of G¡(u) in G [18, p. 55]. That is,
G= VG¡(u). G u Gu is an open subset of S, hence G u Gu is a locally compact
subsemigroup of S. Now, Theorem 2 establishes (ii). (iii) follows since Fis homeo-
morphic to Gu which must be a planar subset of L [M. H. A. Newman, Elements
of the topology of plane sets of points, 2nd ed., University Press, Cambridge, 1961,

p. 149].

Corollary 4. Dimension Ge = 2, or dimension eG = 2 implies that S is a half-
space semigroup.

Theorem 5. Let G be a semidirect product on euclidean three-space, V2R. (1) If
G has precisely two normal one-parameter subgroups, then (la) these subgroups lie
in V2, and any automorphism of V2 that leaves each of them invariant can be extended
to an automorphism of G. Also, (lb) there is an automorphism of G that carries one
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of these subgroups onto the other if and only if G is isomorphic to the matrix group

~ar      0      x"

0    (I/a)'   y

.0       0       1.
where r e R, (x, y) e V2, and a is a positive number not equal to 1.

(2) If G has more than two normal one-parameter subgroups, then any auto-
morphism of V2 can be extended to an automorphism of G.

(3) If P is a one-parameter subgroup of G that is not contained in V2, then there
is an automorphism of G that carries P to R and leaves each one-parameter subgroup
of V2 invariant.

(4) G = G2 (see Preliminaries) if and only if there are precisely two normal one-
parameter subgroups of G, and there is no automorphism of G that carries one of
these onto the other.

Proof. We may assume that G is the group of 3 x 3 matrices

~ar   0    x"

br

0

where r e R, (x, y) e V2, and a, b are fixed positive numbers not equal to 1. Let
R, T, and Q denote the subgroups consisting, respectively, of matrices of the form

0
br

0

0
1
0

and

0
1
0

Fand Q are normal in G and V2 = TQ. If a + b, then Fand Q are the only normal
one-parameter subgroups of G. Let a + b, and let the matrix [c0 %] represent a
nonsingular linear transformation F of V2 onto V2 that leaves F and Q invariant.
The map

0
br

0

0
br

0

ex

dy
1

is an automorphism of G that is also an extension of F. This establishes (la).
Suppose now that a = b and that A is the matrix of an automorphism F of V2.
Then the following map is an automorphism of G that is also an extension of F:

0
ar

0

0
A

0
0    0    1

0
ar

0 0   0
This gives us (lb).
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We now show (3). Let 7[G], the Lie algebra of G have the basis ie,f,g) where
L[V2] = (e,/>, the vector subspace generated by (e,/), and L[R] = (g}. Then
[7[G], 7[G]] = <e,/>, and adg, restricted to <e,/>, is a nonsingular linear trans-
formation (compare [11, p. 12]). Let cg + xe7[G] such that exp ((cg + x))=P,
where c^O and x e <e,/>. Consider the linear map b defined by b(e) = ce, b(f) — cf
and b(g) = (l/c)g', where g' = cg + x. b carries <g> onto <g'> and is a Lie algebra
automorphism of L[G]. Since G is simply connected there is a Lie group auto-
morphism a of G such that a° = b. Consequently, a(R) = P and, since all subspaces
of L[V2] are invariant under a°, it follows that all one-parameter subgroups of V2
are invariant under a. This gives us (3).

We are ready now to prove (lb). G is the matrix group in the proof of (la) and
a + b. By (3) we may assume that d is an automorphism of G that switches the two
normal one-parameter subgroups and leaves R invariant. Clearly d has the form

~ar   0    xl       Yar'   0      By'

0     br   y   f->   0     br'    Ax

.0    0    lj      [o    0      1 .

where A and B are fixed nonzero real numbers. It is easily verified that (ry + r2)'
= r'y + r2, A(arix2 + Xy) = A(br'ix2 + Xy), and B(briy2+yy) = B(ar'iy2+yy). Thus ari =
Z>rí, and bri=aA. This implies that for all r e R\{0}, (loga)/(\ogb) = r'/r and
(logè)/(logd) = r'/r. It follows then that r'= —r and b=l/a. On the other hand, if
b=l/a, then the map above is an automorphism of G that maps one normal one-
parameter subgroup of G onto the other one. Thus (lb) is proven. (4) follows
from the definition of "G = G2," as given in the Preliminaries, and (lb).

We will frequently encounter the following situation: a: S-^-S' is a homeo-
morphism, where S, S' are semigroups. G is a dense subset of S, and a(gyg2)
= a(gy)a(g2), for all gy,g2 in G. It is straightforward to show that this implies
that a(syS2) = a(sy)a(s2), for all su s2 in S. Thus we have the following result:

Sublemma. Let a:S^$*S' be a homeomorphism, where S, S' are semigroups,
and G is a dense subset of S. If a(gyg2) — a(gy)a(g2),for all gy, g2 in G, then a(syS2)
= a(sy)a(s2),for all Sy, s2 in S. Thus an isomorphism between the maximal groups of
two half-space semigroups extends to an isomorphism of the semigroups if it extends
to a homeomorphism.

Theorem 6. Dimension Ge = dimension eG = 2 implies that L is a group and S is
isomorphic to a semigroup Cu G/Q as constructed in [8], where Q = G¡(e) is a normal
one-parameter subgroup of G. Moreover, (i) if G is nilpotent, then G determines S.
(ii) If G = Af (1) x R, then there are precisely two semigroups G u G/Q. (iii) G = G¡
(see Preliminaries) implies that there exist i nonisomorphic semigroups G U G/Q.

Proof. Both Ge and eG are open and closed in L, so each must be F. Conse-
quently, 7 is a group and Gx(e) is a normal one-parameter subgroup of G isomorphic
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to the additive reals. Let Q — G^e) and let m: Vx Q~ -»- 5 be as in Theorem 3. Let
G u G j Q denote the disjoint union of G and the coset space {gQ | g e G}. We define
a multiplication by retaining the multiplication in G and letting x(yQ) = (xy)Q,
(xQ)y = (xy)Q, and (xQ)(yQ) = (xy)Q, for all x, y e G. We define the topology on
G u GjQ as that topology generated by the topology of G together with all sets of
the form Wx(e,q) u h(Wx), where Wx is an open neighborhood of x in G; (e,q)
is the open interval of Q~ with endpoints e and q; and /z is the projection of G
onto GjQ. We mean by Wx(e, q), the set {w/z | w e Wx, p e (e, q)}. It is immediate
that G and G\Q, as subspaces of G u GjQ, have their original topologies and that
G is an open dense subset. Since Q is normal and G= Kg, it is not difficult to see
that G v GjQ is a locally compact, Hausdorff topological semigroup. This con-
struction is due to Home (see [8, pp. 46-47]).

We now show that 5 is isomorphic to G u GjQ. Consider the map k: VQ~ —;►
G u GjQ defined by k(vq)=vq and k(ve) = vQ, for all v e V, qe Q. Clearly k is a
topological group isomorphism when restricted to G. Suppose v^-^-ve in VQ'.
Then v¡ —> v, q¡ —>• e, so t'j —s-1> andzft —> Q in G u G/Ö- Thus v^ -> vQ in G u G/Ö,
and /V is continuous. It is not difficult to see that a basic neighborhood of ve in
VQ~ maps onto a basic neighborhood of vQ in G u G/G\ (Let TVj, 7V2, N3, Né be,
respectively, an open neighborhood of v in V, of 1 in ß, of 1 in V, of e in Q~.
Then NXN2N3= Wv, and k(N1N2N3Ni)=Wv(e, q) u /z(IF„), where 7V4 = [e, ?).) We
have shown that /V is a homeomorphism. Thus 5 is isomorphic to G u GjQ.

Suppose now that 5! and 52 are two semigroups that satisfy the hypotheses of
this theorem concerning 5. If a: Cj-)- G2 is an isomorphism of the maximal group
of Sx onto the maximal group of 52, and a(Qx)= Q2, then we may assume that a
maps Qx onto Q2 in such a way that if we define a(ex) to be e2, then a maps Qx
homeomorphically onto a(Qx). Also, G2 = a(Vx)a(Qx). Thus the map that com-
pletes the following diagram is an extension of a and a homeomorphism of Sx
onto S2:

Vx x Qx
m Si

a\ Vx x a\ Qx

a(V1)xa(Q)xnX>S2

We now apply this observation to each of the possibilities for G. Clearly, (i) is
true if G= V3. If one carries out the following multiplication then it will be clear
that there is only one normal one-parameter subgroup of N, and, in fact, it is the
center:

1    a   0
0   1   b
0   0   1

1 x(t) y(t)
0 1 z(t)
0      0        1

1 -a 0
0 1 -b
0       0       1

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



316 FRANK KNOWLES [October

(ii) follows since Af(l)x/? has precisely two normal one-parameter subgroups,
one of which is the center, (iii) follows from Theorem 5.

Lemma 7. (i) Suppose P is a subgroup of G isomorphic to the additive reals such
that Px + {x],for all x in L. Suppose that C is a line in L such that k is one-to-one on
C and k(C) = L/P, where k is the projection of L onto L/P. Then the multiplication
map m: P x C -»- L is a homeomorphism.

(ii) Ifx e L, then Gx cannot be a simple closed curve. Consequently, z/dim Gx= 1,
then G,(x) is a planar subgroup of G.

Proof, (i) will be a consequence of [13] if we show that L/P is Hausdorff. Let
Px, Py be distinct points of 7/P. We may assume x, y e C. Let A%, A2 be disjoint
subarcs of C which are neighborhoods in C of x and y, respectively. Let V be a
compact neighborhood of the identity in P. The multiplication map m: VxAy
-»■ VAy is a homeomorphism since it is one-to-one. This implies, by a dimension
argument, that VAy is a neighborhood of x in 7. Clearly then, k(PAy) and k(PA2)
are disjoint neighborhoods of Px and Py, respectively, in 7/P.

To show (ii), suppose that Gx is a simple closed curve. Then Gx is a compact
semigroup (since it is an ideal), so there is an idempotent / such that Gf=Gx
[2, p. 15]. Now, the map y-> yf is a retraction of 7 onto G/which is impossible.
The last statement of the lemma is clear.

Theorem 8. If dimension Ge = 2 and dimension eG=l, then S is isomorphic to
H~ x R, where R is the additive reals and H~ is the half-plane semigroup whose
boundary is a left-zero semigroup. Of course, G = Af(l)xR.

Proof. Let H=Gr(e). His normal in G since eG<=Ge. Now, e e H~, and He^eH.
Thus H is not abelian. Since Af (1) is a complete group (trivial center and all auto-
morphisms are inner), it follows that G = Af(l)xF. By P7, H~ is a half-plane
semigroup and H~ n L = He is a left-zero semigroup. Let Q = Ht(e). If Q were
normal in H then hQ~h~1=hQh~1 u he, for all he H. This contradicts the fact
that Q~ = Qv{e} [9]. Thus we see that He = Pe, where F is the normal one-
parameter subgroup of H, and Ge = RPe = (Pe)R since R is the center of G. It
follows that the line Pe satisfies the hypotheses of Lemma 7(i), so m: Pex F -»- 7
is a homeomorphism. Since R commutes with all elements of 5, this map is also
an algebraic isomorphism. To show that the multiplication map m: H~ x /? -»- S
is a topological semigroup isomorphism, we have only to show now that it is an
open map. Let «¡z-j ->■ zr, where «¡ e H, r¡, r e R and z e H~ n 7. Then, multiplying
on the left by e, we get eri -> er and thus r¡ -*■ r. Consequently h¡ ->■ z, and we are
through.

Theorem 9. If dimension Ge = 2 and dimension eG = 0, then G is a semidirect
product and S is a semigroup on a half-space. Moreover, if S, S' are two such
semigroups with the same maximal group, then S is isomorphic to S'.
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Proof. Ge = L and eG = e. Let P=Gt(e). P is isomorphic to the additive reals,
and the center C of G must be a closed subgroup of F. Theorem 3 implies that
F" =F u {e}. Consequently, if C were dense in F, then e would be in the center of
5, a contradiction. Thus C = {1}. This rules out all of the possibilities for G except
the semidirect products. Since, for any geG, gP~g~1=gPg~1 u {ge}, it is clear
that F cannot be a subgroup of V2. Hence, by Theorem 5, G=V2P. Now, by
Theorem 3, we know that m: V2xP" ^ S is a homeomorphism. We consider
now the question of when two such semigroups 5, 5' are isomorphic assuming
that G is isomorphic to G'. Again, Theorem 5 implies that we may assume that
a: G -»* G' is an isomorphism such that a(P)=P'. Clearly we could follow a by
an automorphism of G', if necessary, to insure that the half-line F " is carried
homeomorphically onto (P')~ where we define a(e) to be e'. Also, since G' =
a(V2)a(P), we know that m': V x(P')~ -*• 5' is a homeomorphism, where
V =a(V2). We define a(ve) = a(v)e', for all v e V2. Clearly, this extension of a is
the homeomorphism that completes the following diagram:

m
V2xP~-> 5

iz|F2xfl|F'

V'x(P')- ->S'

Thus a is a homeomorphism of 5 onto 5'. By the sublemma, a is an isomorphism.

Theorem 10. If dimension eG = dimension Ge=l and eG + Ge, then S is a semi-
group on a half-space and G is a hyperbolic semidirect product. In fact, G = G2 (see
Preliminaries for an explanation of this notation and for the definition of a hyperbolic
semidirect product), and there are two nonisomorphic semigroups S with the same
maximal group G.

Proof. By P8, G,(e) + Gr(e). Let 77=G,(e) and J=Gr(e). Since eeH~ r\J~,
77 and J must be noncommutative planar subgroups of G. By P7, 77 ~ n L = eH
is a right-zero semigroup, and J' n L=Je is a left-zero semigroup. Since e77 is a
closed line in eG, eH=eG. Similarly, Je = Ge. Consequently, Ge n eG = {e}. Clearly
no inner automorphism of G may carry 77 onto J since this would extend to an
automorphism of 5 that would map 77" isomorphically onto J', an impossibility.
Let F, Q he the normal one-parameter subgroups of J, H, respectively. Then
Ge = Pe and eG = eQ (P5). Let q e Q. Then q~lJ~q=q'lJq u {eq}, and eq$J~ if
q+l. Thus y cannot be normal in G. Similarly, 77 is also nonnormal. Consequently,
G is a group on F3 with at least two conjugacy classes of nonnormal, noncommuta-
tive planar subgroups. G cannot be nilpotent since 77 and J are not nilpotent
groups. Each copy of Af (1) in Af (l)xF is normal. All noncommutative planar
subgroups of S 1(2) are conjugate to each other [8, p. 28]. Thus G must be a semi-
direct product. Moreover, the argument of Theorem 2.5 of [8], as amended by
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PÍO, shows that G must be hyperbolic. Thus we have G = (PQ)R, where PQ= V2,
R = H n 7, and F, Q are normal one-parameter subgroups of G, and are normal in
J, H respectively.

Consider the multiplication map m: PxeQ —>■ 7. If pyeqx =p2eq2, then p2lpye
= eq2ql1 which implies that p2=py and q2=qy. Thus m is one-to-one. Suppose
pie<fr->xe7. Then ep¡eqi-^- ex = eq, for some q e Q, since eG is a right ideal.
e/?(e e (eG)~ n (Ge)~ ={e}. Thus eq¡ -* eç and #¡ -*■ ç. Similarly, p¡ —>p. Thus PeQ
is closed in 7, and we have shown that m is open onto PeQ. PeQ is two-dimensional
and homogeneous. ThusPe Cms open and closed in 7 ; Peg = 7. Thus«): PxeQ-^-L
is a homeomorphism. Suppose pjti^peq, where px,peP, and «¡ e/7, q e Q.
Then p¡e —>• p(eqe) =pe, and thus p¡^p. So, hi^-eq. This suffices to show that
the multiplication map m: PxH~ -^- S is a homeomorphism. Consequently, S is
a half-space semigroup.

Let Sy, S2 be two semigroups satisfying the hypotheses of S. Assume that Sy
and S2 have the same maximal group G. Then G=PyRyQy=P2R2Q2, where
RlQi = Hi = Gl(ei), RlPi=Jl = Gr(ei), and Ä, = Ä, n /,. Also, Ff =F¡ u {e¡}. Suppose
that a is an automorphism of G such that a(Hy) = H2, and a(Jy)=J2. By Theorem 5,
this could happen if and only if G is hyperbolic and G = Gy. We may assume that a
carries Ff homeomorphically onto R2, where we define a(e,) to be e2. We define
a(eyq) to be e2a(q), where g e Qy. (Notice that a must map Qy to ö2.) Clearly, a
now maps //f n Lx homeomorphically onto H2 n 72. We now show that a\Hx
is a homeomorphism of //f onto //2. Let r#| —>• e^i. Then e,^ -^ exqx, and thus
9, -»• qx, and r, -*• ex. Consequently, a(q¡) -*■ a(?i), a(r¡) -»■ e2, and a(riqi) = a(ri)a(qi)
-> e2a(qy) = a(eyqy). Thus a is continuous on Hy. A similar argument will show
that a'1 is continuous on H2. Thus a|//f: H y -^ H2 is a homeomorphism.
Clearly, the map that completes the diagram below is an extension of a and is a
homeomorphism of Sy onto S2.

nuPyXHy-^XSy

a\PyXa\Hy

P2 x H2 —^> S2

Thus Sy is isomorphic to S2.
If G is any hyperbolic semidirect product, then G has a representation as a

matrix group of 4 x 4 real matrices of the form

"1    a
0    tc

td   b

10
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where t is any element of the multiplicative positive reals, (a, b) e V2, and, since G
is hyperbolic, both c and d are fixed positive real numbers. The closure of G in
the semigroup of 4x4 real matrices consists of all those matrices above with r^O.
The boundary of G is a plane (here, we mean by "the boundary of G," the set
G~\G) L, and it is easy to verify that 77, the subgroup of matrices of the form

1    a
0    tc

td   0

0     1

is G¡(e), and that /, the subgroup of matrices of the form

1    0
0    tc

td   b

is Gr(e), where e is

1    0
0   0

0   0
0    1

Ge and eG are closed lines in L intersecting in e. This construction is given in the
proof of Theorem 2.5, referred to earlier. If G = G2, then we may obtain a second
semigroup, not isomorphic to the one above but with a maximal group isomorphic
to G. We proceed as follows. The map x —^ (xr) ~1 = x* is an automorphism of
GL(R, 4). The closure of G* in the semigroup of 4 x 4 real matrices is a locally
compact semigroup, and the boundary K of G* is a plane, e is in K, 77* = G*(e),
J* = G*(e), and G*e, eG* are closed lines in K intersecting in e. Thus G* u K is a
semigroup that satisfies the hypotheses of this theorem, and G* is isomorphic to G.
If b: G* u Tyh*- G u L were an isomorphism, then b(H*) would have to be
Gr(e) which is /. Consequently, the automorphism of G, x -> x* -> b(x*), would
map 77 to /, which is impossible if G = G2. This concludes the proof.

For the definition of the radical of a half-space semigroup and a discussion of it,
one may consult [8, pp. 40^14]. It suffices for us to know that 5 has empty radical
if and only if each right G-orbit and each left G-orbit in L contains an idempotent.
Also, if 77 " is a half-plane semigroup with a zero 0 and x is in the boundary of 77,
then x is a nilpotent element of 77" if x#0 and x2 = 0 [5].
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Lemma 11. Let eG = eP, where P is a one-parameter subgroup of G, and let
eH= He, where 77= Gr(e). Then the multiplication map m: 77" xF-^- 5 is a homeo-
morphism, and 77" is a half-plane. Each component of L\eG is a right orbit, and S
has no radical if and only if 77 " has no nilpotent elements.

Proof. Let Cx and C2 be the components of L\eG. By Theorem 1, ee77",
where 77=Gr(e). Also, G = HP, where F is a one-parameter subgroup of G such
that eG = eP. (That G = HP is easy to show since for each g e G, there is a p e P
such that eg = ep, so ge Hp, etc.) By P7, 77" n L is either a line or a half-line.
In either case, 77" n eG = {e}. Let us assume that 77" n Cx+ 0, and let xe Cx
n 77", x + e. Each point of 77 lies on a one-parameter subgroup of 77, and e is a
zero for 77 that is not a limit point of idempotents in 77" (P3, P9). Consequently
(see Lemma 2.9 of [8]), there must be a one-parameter subgroup F of 77 such that
F"=Fu{e}.xF is one component of (77" n L)\{e}. Let Q = Hr(x). Clearly, Q + R,
and since 77x = x77, (? is a normal subgroup of 77. Thus H=QR. G = HP=QRP,
and xG = xRP. If xrxpx = xr2p2, where ri, r2e R and //i,//2 eF, then epx=ep2, so
Px=p2- Thus rx=r2 and the map /•// -» xrp is one-to-one. This implies that xG is
two-dimensional, and being homogeneous it is open in L. We now show that
xRP=Cx. Suppose xr¡Pi -*y eL. Then e/z¡ -> ey = ep, for some// eF since eG is a
right ideal. Thus p¡^-p and xz-j-^j//"1. This implies that either jy7-1 = e or
yp'1 =xr for some r e R. In either case, we see that xRP is an open subset of Cx
whose boundary is contained in eG. This implies that xRP=Cx- Since QcGr(x),
it follows that Q = Gr(x), and thus the map rp —s- xrp is a homeomorphism. At this
point, one should notice that if 77" n L is a line, then the argument above implies
that C2=yRP, and the map rp -+ yrp is a homeomorphism, where y is any point
of 77 " n C2, and /- e R, p e P.

We now show that the multiplication map m : [77 u (x7?) " ] x F -»■ [G u xG u eG]
is a homeomorphism. Each of the following numbered statements has a quick
proof if one "multiplies on the left by e." Together, they are sufficient to show
that m is open and thus a homeomorphism: (1) q^pi-^xrp ^-q^^xr and
Pi -> p. (2) q^iPi -* ep => ̂ ¡/"i -*■ e and /z¡ -> //. (3) xr¡//¡ -»■ x/yz => xr¡ -> xr and
Pi->p. (4) xr¡Pi^ep =>jçr(-»-e and //¡->-//. We are now ready to show that
77" n L cannot be a half-line. Suppose that 77" =77 u (xF)". Then 77" is homeo-
morphic to F2 (P9), and thus G u xF u eG must be homeomorphic to F3. This is
impossible since G u xR u eG is not locally compact at any point of eG. Thus
77 ~ nlisa line that crosses eG at e (P7). By an obvious elaboration of an argu-
ment above, it follows that the multiplication map m:77"xF-»5is a homeo-
morphism. The last assertion of the lemma follows easily from the following two
facts: First, if Cx contains an idempotent u, then uG is a subsemigroup of 5,
which implies that x2#e. On the other hand, if x2 + e, then xF must be a
group.

Theorem 12. If 5 does not have a zero, then S is a half-space semigroup.
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Proof. Recall that « is a zero for S if and only if Su = uS=u. The remaining
possibilities to be considered for eG and Ge—leaving aside the obvious dual cases—
are (i) Ge = eG is a closed line; (ii) Ge = e and eG is a closed line; (iii) Ge = eG — e.
Let H=Gr(e). Clearly (ii) implies that He — eH, and (iii) implies that e is a zero for
5. Now consider (i). e e H ~, and 77 is a planar subgroup of G. If /F is commutative
or Gt(e) = Gr(e), then He = eH, and we are through. Suppose then that J=Gr(e),
H==J, and H, J are isomorphic to Af (1). By P7, H~ f~\ L = He is a left-zero semi-
group and 7" n 7 = e7 is a right-zero semigroup. Since He is a closed line in Ge,
He = Ge. Similarly, eJ=eG. Thus He = eJ, an impossibility. Thus 77e = e77. Now
the theorem follows from Lemma 11.

Theorem 13. 7ef dimension eG = dimension Ge= 1, a«i/ Ge = eG. Let P be a one-
parameter subgroup of G such that eG = eP, and let 77=G,(e). Then H is a normal
planar subgroup of G, and the multiplication map «7: 77 ~ x P -»- S is a homeo-
morphism.

Let S' be a half-space semigroup with maximal group G'. Let e' be an idempotent
in the boundary of G' such that dimension e'G' = dimension G'e' = 1, and G'e' = e'G'.
Assume that G' is isomorphic to G. Then

(i) If G is nilpotent, or H is nonabelian, then S is isomorphic to 5" if and only if
H~ is isomorphic to (H')~.

(ii) S has empty radical if and only if H' has no nilpotent elements. If both S
and S' have empty radical, then S is isomorphic to S'. Thus, if S has empty radical,
G determines G~.

(iii) If S has empty radical, then H is abelian and G has at least two normal one-
parameter subgroups. (Thus G=£N.)

(iv) In any case, G must have at least one normal one-parameter subgroup. (Thus
G #57(2).)

Proof. The dimension of eG and the fact that eG = Ge together imply that eG
is a group isomorphic to the additive reals and that 77=G,(e) is a normal planar
subgroup of G. By Lemma 11, the multiplication map «i:/7~xP-»Sisa homeo-
morphism and H ~ is a semigroup on a half-plane. If G = V3, m is an isomorphism.
If H is nonabelian, then G = Af (1) x F, and we may take F to be the center of G.
Hence, again, m is an isomorphism. If G = N, the nonabelian nilpotent group on
F3, or if G is a semidirect product, then H must be abelian. Clearly G is not S7(2)
since H is normal.

Let Cy, C2 be the components of 7\eG, and let P be a one-parameter subgroup
of G such that Ge=Pe. e is a zero for 77", so there is a one-parameter subgroup F
of H such that F~=Fu {e}. (See the argument of Lemma 11.) Let Ti = Hl(x¡),
where x¡ e C¡ n 77~, for z'= 1, 2. F¡ must be normal in 77 since Hxi = xlH (P3).
If Xy (say) is an idempotent, then Ty =Ty u {xy} which implies that Ty#F2.
Thus, in this case, 77 must be abelian. Notice that for any ge G, geg'1 e Ge and
is an idempotent. Hence ge = eg, and e is in the center of S. Hence Pe = eP and
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the dual of Lemma 11 tells us that Gxi = xiG=Ci, for /'= 1, 2. Thus Tx and T2 are,
in fact, normal in G. So G must have at least one normal one-parameter subgroup,
and if 5 has no radical, G must have two. This gives us (iii) and (iv).

We assume, for the remainder of the proof, that 5 and 5' are half-space semi-
groups that satisfy the hypotheses mentioned in the theorem. To simplify the
notation a bit, we let G denote the maximal group of each of the semigroups 5, 5'.
Suppose now that a is an automorphism of G such that a(H) = H', where 77' =
G,(e'). Then we may assume that a(P)=P'. (P, P' are assumed merely to have no
conjugate in the appropriate isotropy subgroups.) If a can be extended to an
isomorphism of 77" onto (77')", then the diagram below implies that 5 is iso-
morphic to 5':

m77"xF_>>5

a|77"xa|F

(H'YxP'LW^S'

Let G=K3, or 77=Af(I). If k: 77" -*~(H')~ is an isomorphism, then k\H can
be extended to an isomorphism of G. Consequently, by the remarks above, 5 is
isomorphic to 5' if and only if 77 ~ is isomorphic to (77')". Now let G — N and let
k: 77" -*- (77')" be an isomorphism. We show now that k\H can be extended to
an automorphism of G. Thus, in this case also, 5 is isomorphic to 5' if and only
if 77" is isomorphic to (77')". If xe 77 " \77 and x + e, then 77r(x) = Gr(x) is a normal
one-parameter subgroup of G. Thus Gr(x) is the center of G and is invariant under
k\H.lt suffices now, since G is simply connected, to show the following proposition:
If L[H], L[H'] are two-dimensional ideals in L[G], and b is an isomorphism of one
onto the other that leaves invariant the center of L[G], then b extends to an auto-
morphism ofL[G]. We prove this now. Let L[G] = <<?,/, g>, wherefg = e, ef=eg = 0,
and L[77] = <e, g}. Let k(e) = ce and k(g) = aie + a2f+a3g, where c, ax, a2, a3 are
fixed real numbers, and c#0. It is easy to extend k to all of L[G]. (If a3^0, let
k(f) = (bja3)f; if «3 = 0, let k(f) = (-bja2)g.) This gives us (i).

We now prove (ii). Let 5 and 5' have empty radical. Then 77" and (77')" are
abelian half-plane semigroups with zero and without nilpotent elements. This
implies that there is an isomorphism a: 77" -»-(77')" [Home, Real commutative
semigroups on the plane, Pacific J. Math. 11 (1961), pp. 981-997]. It will suffice now
to show that ö|77 can be extended to an isomorphism of G. This is clear if G= V3.
If G is a semidirect product, then 77=77'= V2. The list of semidirect products on
F3, given in the Preliminaries, and Theorem 5 shows us that a difficulty arises if
G—G2 and a switches the two normal one-parameter subgroups of G. However,
using the technique of the paper cited just above, it is not difficult to show that we
may assume that a leaves both normal one-parameter subgroups of G invariant.
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(Remark. One can show that any automorphism of 77 that either switches the
isotropy subgroups of the nonzero idempotents in the boundary or leaves them
invariant will extend to an automorphism of 77~, provided that the map does not
reverse the orientation of the isotropy subgroup.) Theorem 5 implies now that a
extends to an automorphism of G. Let G = Af (1) x F, the only remaining possibility
for G. Then 77=77' = RQ, where R is the center of G, and Q is the normal one-
parameter subgroup of Af ( 1 ). By the Remark above, we may assume that a(R) = R,
oiQ)=Q, and P=P'. There is an extension of a\Q to an automorphism of Af(l)
[5]. Thus a extends to an automorphism of G.

Theorem 14. 7ef dimension Ge = 0, dimension eG=l, and assume that S has
empty radical. Then G = Af (1) x F, and there are precisely two isomorphism classes
of semigroups that satisfy these hypotheses. One class consists of those semigroups
in which the center of G is not closed in S, which implies that one component of
L\eG is a group ; and the other class consists of those semigroups in which neither
component of L\eG is a group.

Proof. Ge = e and there is a one-parameter subgroup P of G such that eG = eP.
Let H=Gr(e). By Lemma 11, the multiplication map m: H '~ xP -*► S is a homeo-
morphism, and 7/" is a half-plane semigroup. Let C,, C2 be the components of
7\eG and let e,, e2 be idempotents in the boundary of 77 such that e¡ e 77f n C¡,
í=l, 2. Since S is a half-space semigroup, Theorem 2.12 of [8] applies. We list
some facts that follow from Theorem 2.12: (1) G = Af (1) x R. (2) 77 is not normal
and is abelian; hence R<=H. (3) Dimension Ge¡ = 2 if and only if C¡ is a group.
(4) Not both Cy, C2 are groups. Thus we may assume that Cy is not a group. (5)
Therefore, G¡(ey) is a noncommutative planar subgroup Hy of G, and G = HxxR.
(6) 77, n H=Ty = Gr(ey), and Ty =TyU {e,}. (7) We may assume that F is the
noncentral normal one-parameter subgroup of G. Thus Hy=PTy.

An example of each type of semigroup mentioned in the theorem is given in
[8, p. 47]. We must show that any two semigroups of the same type are isomorphic.
If C2 is a group, then G,(e2) is a normal one-parameter subgroup of G in 77. So
G¡(e2) = F, since if F were in 77, 77 would be the normal abelian planar subgroup
of G. Thus F" =R u {e2}. On the other hand, if C2 is not a group, then G,(e2) = 772
is isomorphic to Af (1). In this case, the right isotropy subgroup of e2 relative to
772 is nonnormal and is also Gr(e2). Let Gr(e2) = T2. Similarly, Gr(e1) = F1 is non-
normal. Since eiR = eiH, for z'=l,2, it follows that if R~ r\L^0, then R~ =
F u {e}. But this implies thatp_1F"p = F u {ep}, for any p eP. This is impossible
[6] since e is a zero for F. Thus R' n 7= 0, if C2 is not a group. We have shown,
then, that 77= F xT2 = TyxR, and C2 is a group if and only if R = Gr(e2) = Hr(e2).

Suppose now that S, S' are two semigroups satisfying the hypotheses of S in
the theorem. If a is an isomorphism of G onto G' such that a|77 extends to an
isomorphism of 77 ~ onto (77')", then the diagram below shows that Sis isomorphic

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



324 FRANK KNOWLES [October

to 5' (we may assume a(P) = P')'-

a\H~xa\P

H-xpJH~S

(77')" xF' m^S'
We consider now the case where C2 and C2 are not groups. The argument for

the other possibility is similar (and simpler), and we omit it. Let Gr(e2) = F2, and
G'r(e'2) = T2. Let d: T2 -> T2 be an isomorphism with the property: tx —*-e2 => d(t¡)
-> e2, for {iJcFa. Let c: Hx^ H[ be an isomorphism, where 771 = G,(e1), 77i =
G¡(t?í), and let c have the property: f{—»•«, => c(/¡) ■** eí, where {fJcFi. Then the
map, c\Ti xd is an isomorphism of 77 onto 77' which induces an isomorphism,
b: R^*R'. Consequently, the map, cxb is an isomorphism of G onto G'. We
must show that c\Tx xd extends to an isomorphism of 77f onto (77Í)". However,
this follows from the Remark in the proof of Theorem 13 and the fact that 77{" is
isomorphic to (H'x)'.

Theorem 15. If S has no zero, then S is a half-space semigroup. If in addition,
S has empty radical, then S is isomorphic either to one of the semigroups mentioned
in Theorem 10, or to one of the examples constructed in the proof of Theorem 7.1
of ¡il

Proof. The first statement is Theorem 12. The rest of the theorem is merely the
result of checking the statements of Theorems 6, 8 through 10, 13, 14; and the
collection of examples referred to in [8].
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