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SEMIGROUPS  WITH INVARIANT  RADON  MEASURES

CHANDRA  GOWRISANKARAN

Abstract. Let S be a commutative semigroup which is a

topological space such that the translations are both continuous

and open maps. The main result states that if (1) either S is Suslin

such that there is at least one point of continuity for the semigroup

mapping 5 x S-*S or S is polish and (2) 3 a nontrivial Radon meas-

ure on S such that /¡i(V)=p(x+V) for Fopen e S and x e S, then

S can be embedded as an open subsemigroup of a locally compact

group. It is also shown that if S is polish and a cancellation semi-

group then S can be embedded as an open subsemigroup of a group.

In [6], R. Rigelhof proved that if 5 is a locally compact abelian semi-

group such that the translations are both continuous and open and 3

a Radon measure p such that V x e S, V nonvoid open set Kc S,

p(x+V)=p(V)>0, then S can be embedded as an open subsemigroup

of a locally compact group. In the context of our main result (stated in

the abstract) we first show that V nonvoid open set V^S, p(V)>0. We

then follow the methods of [6] to get a topology on the abelian group G

generated by S. At this stage, we cannot conclude that G is a topological

group. We proceed as follows to show that G is a locally compact space.

We first construct a translation invariant Radon measure X on G which

extends the measure p on S. Then, modifying an idea of D. Montgomery

[5] we conclude that the images of certain 'good' subsets of G under

inversion are universally measurable, enabling us to get a compact set

K<=G with the property X(K)>0 and — K is compact. Then, as in [3],

we show that G is locally compact.

A small modification of the above method (Lemmas 2 and 6) and a

result of Wu [9] yield an embedding theorem (Theorem 2) for polish

commutative cancellation semigroups in which translations are also open

maps. This embedding theorem gives an alternative and somewhat simpler

proof of the main result for the case of polish semigroups.

In the sequel 5 will be a semigroup and p a Radon measure on it

satisfying the conditions stated in the main result.
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Lemma 1. For every nonvoid open subset V<^S, p(V)>0 and hence S

is a cancellation semigroup. Further for every Borel subset B^S, x+B

is Borel and p(x+B)=p(B).

Proof. Suppose 3 a nonvoid open subset V such that p(V)=0. Let K

he an arbitrary compact subset of S. Then, the open set K+V is the

union of open sets x+ V, x e K, of p measure zero and so u(K+ V)=0.

Let x 6 V and W={y e S:x+y e K+ V}. Then W is open and p(W) =

p(x+W)^p(K+V)=0. But K<= w and hence ^(70=0. This is clearly a

contradiction. With the observation that a Radon measure is by definition

locally finite, we can deduce exactly as in [6, p. 175], that S is a cancella-

tion semigroup. Now, for every x e S, y^-x+y is a homeomorphism of

S onto the open subset x+S. It follows immediately that x+B is a Borel

set for every Borel set £<=£'. Finally, p(B)=p(x+B) is an easy consequence

of the outer regularity of/*. The lemma is proved.

Let us now suppose that G is the abelian group generated by S; i.e.

consider Sx S and define an equivalence relation (x, y)~(x', y') u

x+y'=x'+y. Then G is the set of equivalence classes and S is identified

as a subsemigroup by the monomorphism x—>-the class containing

(x+y, y). Clearly, every element in G can be written in the form x—y

where x e S,y e S. Now, exactly as in [6, p. 174] we deduce the following

lemma.

Lemma 2. £e/ x0 e S, and N the filter of all neighborhoods of x0 e S.

Let N(x) be the filter generated on G by {V+x—x0: V e N} V x e G. Then

there is a Hausdorff topology on G which is locally Suslin, such that N(x)

is precisely the filter of all neighborhoods of x eG. Further, S is an open

subset of G and the translations x^-x+y are homeomorphisms of G.

Lemma 3.    The mapping (x, y)—>-x+y is continuous from GxG^-G.

Proof. If the space S is polish, then (x, y)^-x+y is of Baire class 1

and therefore has at least one point of continuity [4]. But S<^G and

SxS^GxG are both open and hence this point is also a point of con-

tinuity of (x, y)-*x+y on GxG. The rest of the proof is standard. Obvi-

ously the same conclusion can be derived by starting with the assumption

that there is a point of continuity onSxS for the mapping (x, y)~^x+y.

The proof is complete.

Lemma 4. Let X^G be such that with the induced topology X is a

Suslin space. If — X={—x:x e X}, then for every point of G there is an

open neighborhood V such that —XC\V is Suslin. In particular —X is v-

measurable for every positive Radon measure v on G.
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Proof. Let y e G and let V be an open neighborhood of y such that

F is a Suslin space (Lemma 2). By Lemma 3, the set

M = {ix, z)eG x G:x + z = 0}

is closed. Hence, MniVxX), a closed subspace of VxX, is a Suslin

space. But VC\ — X is precisely the (one-one, continuous) projection of

Mn(FxA')andishencea Suslin space. Hence, —Xis locally r-measurable

and it follows that —X is r-measurable [8, Part I]. The lemma is proved.

Lemma 5. There exists an invariant Radon measure X on G which

extends the measure p on S.

Proof. Let x0 be fixed in 5 and V a Suslin neighborhood of x0 in S

such that 0<,«(F)<co. Let xeG and Vx=V—x0+x. Let Xx be the

Radon measure on Vx which is the image of p restricted to V under the

homeomorphism y~*y—x0+x of V->VX. We shall see that measures Xx

defined on Vx, x e G, are consistent. Suppose, B is a Borel set contained

in VxC\Vy for x^y, x, y eG. Suppose Bx = {z+x0—x:z e B) and 2?2=

{z+x0— y:z e B}. Then, Bx and B2are Borel subsets of Vand Bx + ix— y) =

B2 and XxiB)=piBx) and XyiB)=piB2). But since x—y=x'—y', where

x', y' e S, we get from Lemma 1,

piB2) = piBx + x' - /) = piBx + x - y' + y')

= piBx + x') = p(Bx).

Hence these Radon measures are consistent and we can glue them up

to get a unique Radon measure A on G [8]. It is quite easy to verify that

X restricted to S is exactly p. It remains to show that X is invariant. Let

z e G. If B is a Borel set <= some Vx, then X(B)=p(B—x+x0) and

z+Bcz Vx+Z and X(z+B)=p(B+z—z+x+x0) = X(B). If A" is any compact

set cz rj, K^ U*=i Vx ar|d K can be written as a disjoint union of Borel

sets Bx, B2, ■ ■ , Bm such that each B¿ is contained in some x(+V. Now,

X(K)=J_ X(B{)=2 X(z+Bi)=X[U(z+Bi)] = X(z+K). The translation in-

variance follows from the inner regularity of X. The proof is complete.

Lemma 6. G can be covered by a countable number of open sets Vn such

that, for every «, (1) Vn with the induced topology is Suslin and (2) A(Fn)<

+ 00.

Proof.    Let {Wn} be a covering of S by open sets of finite ¿-measure.

t» 00 00 OO

g = s - s = U wn - U wm = u U iwn - wmy
n=l 771=1 71=1 m=l

To prove the lemma, it is enough to show that Wn— Wm can be covered by

a countable number of Suslin open sets of finite measure. \*et{v.k}k=x be a

dense subset of Wm. We assert that Wn-Wm=(Jk=x iWm-xk). Clearly

Wn—Wm  contains   the   set   on   the   right   side.   Conversely,   suppose
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z e Wn— W,„, say z=x—y where x e Wn, y e Wm. Then y is in Wn—z

and hence there is a neighborhood U of y such that U is contained in

Wv — z and <7 is contained in Wm. Hence we can find an xk in U such that

xk is in Wn—z, that is z is in Wn — xk. Now, by the choice, each Wn — xk

is Suslin and X(Wn — xk) = X(Wn)< + co. The lemma is proved.

Corollary 1.    3 at ¡east one Suslin open set fc G such that X(— V)>0.

Proof. Consider the countable family {Vn} given by the lemma.

Then, — Vn is A-measurable (Lemma 4) and G=(J^=1 — Vn. This com-

pletes the proof.

Corollary 2. 3 at least one compact set £c G such that A(£)>0 and

— K is compact.

Proof. Let V he a Suslin open set of G such that A(—I/)>0. Since

every Borel set £c y is Suslin, by Lemma 4, —£c — K is A-measurable.

Again, since V is Suslin, this implies that the mapping — x of —V-+V

is A-Lusin measurable [8, Part I]. Hence 3 a compact subset K of — V

of A measure >0 such that x—► — x is continuous when restricted to K.

This implies in particular that — K is compact, completing the proof.

Theorem 1. G is a locally compact topological group and A is a Haar

measure on G. Consequently S is locally compact and p is the restriction to S

of a Haar measure on G.

Proof. Let £cG compact such that —K is compact and A(£)>0.

Let 0<e<A(£) and W an open set =>£ such that X(W)<X(K) + e. We

can choose a neighborhood F of 0 such that V+Kc W. Hence, V x e V,

x+Kc W and X(x+K) = X(K)>X( W)-e. It follows that A(x+£A£)<2fi.

Now

K+ (-£)=> {xeG:(x + K) n K ^ 0}

=> {x e G:X(x + K AK) < 2e} => V.

But, again by Lemma 3, K+( — K) is compact and we get that G is locally

compact. Now this implies that G is a topological group [1]. The proof

is complete.

Corollary. £ef G be a locally compact Hausdorff group and S a

subsemigroup such that with the induced topology S is a Suslin space and

the Haar measure of S is >0. Then S is locally compact.

Remark 1. G (as in the theorem) is the continuous image of Sx S

under the mapping (x,yy-*x— y and is hence Suslin; also, G is locally

compact and we deduce that G is necessarily polish.

Remark 2. It is fairly straightforward to see that the topology con-

structed here is the same as the quotient topology given by the mapping

SxS~*G.
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A slightly different but somewhat simpler proof of Theorem 1 can be

given in the case of polish semigroups. The proof is based on Lemma 5

[3, p. 383] and the following result which is itself of independent interest

([2], [7]).

Theorem 2. Let S be a commutative cancellation semigroup which is

a polish space such that x—>x+y is both open and continuous for every y e S.

Then S can be algebraically and topologically embedded as an open sub-

semigroup of a metrizable Lusin group G.

Proof. Let G be the group generated by S and provide the locally

polish topology on G, as in Lemma 2, such that S is identified as an open

subsemigroup of G. It follows immediately that G is a regular space and is

of second category. The proof of Lemma 6 shows that G is a countable

union of polish open sets KncG. Clearly, {ßn, « = 1, 2, ■ ■ •}, where ßn is

a countable base for the open sets of Vn, for each «, is a countable base

for the topology of G. It follows by a theorem of Wu [9] that G is a

topological group. It is easy to deduce the other topological properties of

G, completing the proof.

Remark. Using the results in [2bls, pp. 314, 207], G can be shown to

be a polish space.
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