SEMIHEREDITARY POLYNOMIAL RINGS

VICTOR P. CAMILLO

ABSTRACT. It is shown that if the ring of polynomials over a commutative ring R is semihereditary then R is von Neumann regular. This is the converse of a theorem of P.J. McCarthy.
P. J. McCarthy [2] has recently proved that for the ring of polynomials $R[x]$ over a commutative ring to be semihereditary, it is sufficient that R be von Neumann regular. The purpose of this note is to show that this condition actually characterizes von Neumann regular rings.

The lattice of ideals of a commutative von Neumann regular ring is distributive, but not all such rings are von Neumann regular. If the lattice of ideals of $R[x]$ is distributive then the lattice of ideals of R is, since R is a homomorphic image of $R[x]$. In the process of proving the converse of McCarthy's theorem, we show that this latter condition characterizes von Neumann regular rings. Summarizing:

Theorem. The following are equivalent for a commutative ring R :

1. R is von Neumann regular.
2. $R[x]$ is semibereditary.
3. $R[x]$ bas a distributive lattice of ideals.

Proof. 1 implies 2 is McCarthy's theorem. The fact that a commutative semihereditary ring has a distributive lattice of ideals may be found in [1], which yields 2 implies 3 .

To show 3 implies 1 , we use the fact that a ring R has a distributive lattice of ideals if and only if, for $r, s \in R,(r: s)+(s: r)=R$ where $(s: r)=$ $\{x \in R \mid s x \in r R\}[1]$. The above statement is easily seen to be equivalent to the existence of u, v, and $w \in R$ with: $r(1-u)=s v$ and $s u=r w$. Now, let $a \in R$. We must show $a^{2} R=a R$. The fact that $R[x]$ has a distributive lattice of ideals yields $u(x), v(x)$ and $w(x)$ with:

[^0](1) $x u(x)=a v(x)$,
(2) $a[1-u(x)]=x w(x)$.

Multiplying both sides of (2) by x, we obtain $a x-a x u(x)=x^{2} w(x)$, and using (1) to substitute $a v(x)$ for $x u(x)$ in this we have:
(3) $a x-a^{2} v(x)=x^{2} w(x)$.

But, if v_{1} is the x coefficient of v, then the x coefficient of the left side of (3) is $a-a^{2} v_{1}$, while the x coefficient of the right side is zero, so $a=a^{2} v_{1}$ and we are done.

Remark. The above proof actually shows that if $I=a R[x]+x R[x]$ is projective, then $a R$ is generated by an idempotent. Since Lemma 1 of [1] asserts that if R is commutative and $x R+y R$ is projective, then $(x: y)+$ $(y: x)=R$. The converse is also true, for if $a R=e R$, then $((1-e) / x) I \subset R$, and $1=((1-e) / x) x+e$, so that I is invertible.

BIBLIOGRAPHY

1. V. P. Camillo, A note on semi-hereditary rings, Arch. Math. 24 (1972), 142143.
2. P. J. McCarthy, The ring of polynomials over a von Neumann regular ring, Proc. Amer. Math. Soc. 39 (1973), 253-254.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOWA, IOWA CITY, IOWA 52240

[^0]: Received by the editors October 9, 1973.
 AMS (MOS) subject clas sifications (1970). Primary 16A30, 13F20; Secondary 13A15.

 Key words and phrases. Von Neumann regular ring, semihereditary ring, distributive lattice.

