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Abstract. We prove existence, multiplicity and bifurcation results for
a family of semilinear Neumann problems with nonlinear terms that are
indefinite in sign and exhibit sublinear growth near zero. The solutions
are non-negative, but the combined effect of indefiniteness and the non-
Lipschitz character of the nonlinear term yields solutions which may
vanish on large sets. Combining variational methods with bifurcation
analysis and the sub- and super-solution technique, we produce solu-
tions in a special class: positive on the set where the nonlinear term
is positive. The family of problems we consider includes an equation
used in population ecology.

1. Introduction. Let Ω ⊂ R
N be a bounded domain with C2-smooth

∂Ω, and consider the Neumann boundary value problems,⎧⎨
⎩

−Δu − λu = a(x)uq + γup,
u ≥ 0 in Ω,

∂u
∂ν = 0 on ∂Ω,

(1.1)λ,γ

with 0 < q < 1 < p and parameters λ ∈ R, γ ≥ 0. We also assume
a(x) ∈ Cβ(Ω) for some β ∈ (0, 1].

In case λ = γ = 0, solutions u of (1.1)λ=0,γ=0 correspond to stationary
solutions of the parabolic equation

∂ρ

∂t
= Δ(ρm) + a(x)ρ, m > 1, (1.2)
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under the transformation ρ = u1/m. The evolution equation (1.2) has been
proposed as a model for the population density ρ(x, t) of a single mobile
species in a heterogeneous environment. (See Namba [17] or Gurtin & Mac-
Camy [15].) In (1.2) the coefficient a(x) represents the local growth rate,
and in [17], a(x) is assumed to change sign and to take only negative values
outside of a fixed region. Indeed, Bandle, Pozio, & Tesei [9] observed that
stationary solutions to (1.2) can exist only if a changes sign, and that the
condition ∫

Ω
a(x) dx < 0 (1.3)

is necessary and sufficient for the existence of solutions which are strictly
positive in the set where a(x) > 0.

When γ > 0, the nonlinearity in (1.1)λ,γ exhibits sublinear growth near
u = 0 and superlinear growth for large u. Boundary-value problems incorpo-
rating this structure have been recently studied by many authors, beginning
with the work of Ambrosetti, Brezis, & Cerami [5] on the Dirichlet problem
for the constant-coefficient equation,

−Δu = νuq + up, (1.4)

with 0 < q < 1 < p and ν ≥ 0. In [5] it is observed that the combined
effect of sublinear and superlinear terms yields existence and multiplicity
results which are surprisingly different from the case when only one of the
two terms is present. (See also Ambrosetti, Garcia Azorero, & Peral [6],
Bartsch & Willem [10], Huang [16], and Tehrani [21] for related results.)

The novelty in problem (1.1)λ,γ is that the indefiniteness of a(x) and
the non-Lipschitz character of uq (0 < q < 1) near u = 0 can combine to
allow a much richer solution set. From the technical point of view this is
because the strong maximum principle cannot be applied in the set where
a(x) < 0, giving rise to solutions which may vanish identically on large
regions within Ω. Such solutions are expected (and even desired) in the
application to population ecology. For example, Namba [17] presents an
example in Ω = R

1 of a stationary solution with compact support in an
interval containing the “viable habitat”, the set where a(x) > 0. In this
paper we will primarily consider this class of solutions (those which are
positive on the viable habitat,) although the existence of solutions which
vanish identically in some connected component of the set Ω+ = {x : a(x) >
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0} is an extremely interesting question. Some examples of solutions with
“dead cores” (those which do vanish in some components of Ω+) and an
analysis of the structure of the solution sets appear in [8],[9]. However, a
more complete study of existence, nonexistence, and multiplicity of solutions
with dead cores is complicated by the fact that these solutions are not local
minima of the usual variational functional (see Remark 4.2), and do not
seem to be created by bifurcation from trivial solutions (see Theorem 3.1.)

The approach of this paper is in the spirit of the work of Alama &
Tarantello [1], [4] on semilinear elliptic equations with superlinear indefinite
nonlinearities. By introducing the parameters λ and γ the problem (1.1)0,0

is embedded in a family of problems, each with similar variational struc-
ture and related by monotonicity with respect to the two parameters. The
approach combines bifurcation theory, variational methods, and sub- and
supersolutions. In contrast to the treatment in [5], the case γ > 0 will be
treated as a perturbation of the γ = 0 case.

In order to present a precise statement concerning existence and multi-
plicity of solutions to (1.1)λ,γ we must introduce our hypotheses concerning
the function a(x). Define the (open) sets, Ω+ = {x ∈ Ω : a(x) > 0},
Ω− = {x ∈ Ω : a(x) < 0}, Ω0+ = int ({x ∈ Ω : a(x) ≥ 0}) . We assume that
a changes sign in Ω:

Ω+ �= ∅, Ω− �= ∅. (1.5)

We must make more stringent hypotheses on the shape of the set Ω0+:{
Ω0+ has m < ∞ connected components, Ω0+ = ∪m

k=1Ω
0+
k

and for each k = 1, . . . , m, ∂Ω0+
k is C2-smooth.

(1.6)

Finally, the zero set of a(x) should always be connected to Ω+:

Ω0+
k ∩ Ω+ �= ∅ for every k = 1, . . . , m. (1.7)

Assumption (1.6), which also appears in Bandle, Pozio, & Tesei [9] for the
case λ = 0 = γ, allows us to apply the Hopf Lemma in the components
Ω0+. Hypothesis (1.7) will be essential in proving that solutions obtained
by the sub- and supersolution technique correspond to local minima of an
appropriate functional. In the case of superlinear problems (treated in [4] for
example) or when a(x) > 0 (as in [5], [21]) this is done via the observation of
Brezis & Nirenberg [11] (see also [3]) that for well-behaved functionals, local
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minimizers with respect to the C1-topology are also minimizers with respect
to the H1-topology. In our situation the solutions we obtain may coincide
with the subsolution or the supersolution at some points inside Ω, and hence
it is not obviously true that the constrained minimizers (lying between a
subsolution and a supersolution) are C1-minimizers. A more careful direct
analysis in an H1-neighborhood is required. This task is carried out in
Lemma 5.2, which is the most important step in solving the problem.

For the sublinear problem (γ = 0) we prove:

Theorem 1.1. Assume 0 < q < 1, γ = 0, and a ∈ Cβ(Ω) satisfies (1.5),
(1.6), and (1.7).
(i) There exists a number −∞ < Λ0 < +∞ such that for all λ ∈ (−∞,Λ0),
(1.1)λ,0 admits a solution uλ,0 ≥ 0 with the additional property

u(x) > 0 for all x ∈ Ω0+ . (∗)

If λ ≤ 0, this is the unique solution which is positive in Ω0+.
(ii) If

∫
Ω a(x) dx ≥ 0, Λ0 = 0, and the problem (1.1)λ,0 admits no solutions

satisfying (∗) when λ ≥ Λ0 = 0.
(iii) If

∫
Ω a(x) dx < 0, then Λ0 > 0, and

(a) the problem (1.1)λ,0 admits a solution uΛ0,0 at λ = Λ0 satisfying (∗),
and there is no such solution for λ > Λ0.

(b) for all λ ∈ (0,Λ0) the problem (1.1)λ,0 admits a second solution wλ,0

with wλ,0 ≥ uλ,0 in Ω.

It is typical that a sign condition for some integral of a(x) enter into
the solvability of indefinite problems at (or near) the first eigenvalue of the
linear part. Kazden and Warner arrived at (1.3) as a necessary condition
for existence of solutions to the equation of prescribed scalar curvature on
a compact manifold, and the same condition was found to be necessary and
sufficient for existence of solutions to (1.1)0,0 by Bandle, Pozio, and Tesei.
For the Dirichlet problem with superlinear nonlinearity, an analogous con-
dition was derived by Alama and Tarantello [1]. Here, as in the superlinear
problem considered in [1], the role played by the sign of

∫
Ω a(x) dx is made

clearer by a bifurcation analysis at λ = 0, the first eigenvalue of the Neu-
mann Laplacian in Ω. In Theorem 3.1 we adapt an argument of Ambrosetti
and Hess [7] to show that solutions bifurcate from infinity at λ = 0. Just as
in [1], the sign of

∫
Ω a(x) dx determines the direction of bifurcation.

We now turn to the more general case.
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Theorem 1.2. Assume 0 < q < 1 < p, p < N+2
N−2 if N ≥ 3, and a ∈ Cα(Ω)

satisfies (1.5), (1.6), and (1.7).
(i) For every γ > 0 there exists a number −∞ < Λγ ≤ Λ0 such that for
every λ ∈ (−∞,Λγ ], (1.1)λ,γ admits a solution uλ,γ satisfying (∗). If λ > Λγ,
no such solution exists.
(ii) For every λ < Λ0, there exists a number 0 < Γλ < +∞ such that (1.1)λ,γ

admits a solution ũλ,γ satisfying (∗). If γ > Γλ, no such solution exists.
(iii) If λ > Λ0, then there does not exist any solution to (1.1)λ,γ which is
positive on Ω0+, for any γ ≥ 0.
(iv) For every γ ≥ 0 and every λ < Λγ there exists a second solution
wλ,γ ≥ uλ,γ for the problem (1.1)λ,γ.

Note that the sign condition
∫
Ω a(x) dx < 0 enters into Theorem 1.2 as

a necessary condition for solutions with λ > 0 via the relation Λγ ≤ Λ0.
We obtain solutions for (1.1)λ,γ with γ > 0 by treating the equation as

a perturbation of the γ = 0 problem, then using the monotonicity of the
variational functional with respect to the parameter γ to obtain global in-
formation about the solution sets. We remark that Theorem 1.2 is consistent
with the results of [5] for equation (1.4) with Dirichlet conditions imposed on
∂Ω. Note that in (1.4) the small parameter ν appears as the coefficient of uq,
but the change of dependent variable u → ũ = γ

−( 1
p−1

)
u converts a solution

u of (1.1)0,γ into a solution ũ of (1.4) with ν = γ
1−q
p−1 . Since 0 < q < 1 < p,

small γ in (1.1)0,γ corresponds to small ν in (1.4).
Although we do not have uniqueness for solutions of (1.1)λ,γ satisfying

(∗) when either γ > 0 or λ > 0, there is a minimal solution for each such
λ, γ. Since the result is tangential to the above theorems we have relegated
it to an Appendix. (See Proposition 4.9.)

The paper is organized as follows: in section 2 we discuss nonexistence
results and the consequences of (∗). Section 3 presents a bifurcation result
for (1.1)λ,γ with γ = 0, including the observation that (∗) forces solutions
to bifurcate with λ > 0. The values Λγ and Γλ are introduced in section 4,
and the interval of existence is established via the variational formulation of
Perron’s method. In section 5 we prove that solutions defined by the varia-
tional Perron’s method are in fact local minima of the associated functional,
and in Section 6 the second solution is obtained as a mountain-pass from
these local minima.
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2. Preliminaries. Many of the statements of Theorems 1.1 and 1.2
hold for nonlinearities which are not powers, but which behave like powers
near zero or infinity. In order to present some slightly more general results
we introduce the following family of Neumann problems:⎧⎨

⎩
−Δu − λu = a(x)f(u) + γg(u),

u ≥ 0 in Ω,
∂u
∂ν = 0 on ∂Ω.

(N)
λ,γ

Throughout the entire paper we will assume (without further mention) the
following basic hypotheses:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(x) ∈ Cβ(Ω), 0 < β ≤ 1;
Ω ⊂ R

N is a bounded domain with C2-smooth ∂Ω,
and (1.5), (1.6), (1.7) are satisfied;

f : R → R is differentiable on R \ {0}
and (locally) Hölder continuous on R;

g : R → R is differentiable on R and g(0) = 0 = g′(0);
f(u) > 0, g(u) > 0 for all u > 0.
f(u) = 0 = g(u) for all u ≤ 0.

(2.1)

Note that under the above hypotheses any (weak) solution u ∈ H1(Ω) ∩
L∞(Ω) of (N)λ,γ is a classical solution: u ∈ C2,α(Ω) for some α ∈ (0, 1).

The following lemma is a slightly stronger version of Lemma 2.2 of [9]
(or Lemma 2.1 of [8].)

Lemma 2.1. Suppose u is a classical solution of (N)λ,γ . If Ω0+
k is any

connected component of Ω0+, then either u ≡ 0 in Ω0+
k , or u(x) > 0 for all

x ∈ Ω0+
k .

Proof. Suppose u �≡ 0 in Ω0+
k . Since u ≥ 0 satisfies −Δu−λu = a+(x)f(u)+

γg(u) ≥ 0 in Ω0+
k , the strong Maximum Principle applies and hence u > 0

in Ω0+
k . If u attains its minimum value of zero at x ∈ ∂Ω0+

k we apply the
Hopf Lemma, to obtain ∂u

∂ν > 0, with ν the exterior unit normal to ∂Ω0+
k at

x. Clearly x �∈ ∂Ω0+
k ∩ Ω, since ∇u(x) = 0 at an interior minimum. But,

if x ∈ ∂Ω0+
k ∩ ∂Ω the exterior normal to ∂Ω0+

k coincides with the exterior
normal to ∂Ω, and we violate the Neumann boundary condition. Hence
u > 0 in Ω0+

k . �
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Following [8], [9], the previous lemma motivates us to separate the so-
lutions of (N)λ,γ into classes determined by their vanishing sets. If J is a
subset of the finite set M = {1, . . . , m},

NJ =

⎧⎪⎨
⎪⎩

u(x) ∈ H1(Ω) ∩ C0(Ω) such that
u(x) > 0 for all x ∈ Ω0+

k , k ∈ J , and
u(x) ≡ 0 for all x ∈ Ω0+

k , k �∈ J

⎫⎪⎬
⎪⎭ .

We will mainly be concerned with solutions in NM, in other words solutions
which are strictly positive on all of Ω0+. As we will see in Section 4, these are
the solutions which arise naturally as local minima of a variational functional.
However, we may prove the following property about the solutions of (N)λ,γ

lying in NJ , J �= ∅:

Proposition 2.2. Suppose

lim
u→0+

f(u)
u

= +∞, lim
u→+∞

g(u)
u

= +∞. (2.2)

Let J ⊂ M, J �= ∅.
(a) There exists λ∗ ∈ R such that when λ > λ∗, (N)λ,γ admits no solution
in NJ for any γ ≥ 0.
(b) For each λ < λ∗ there exists γ∗ = γ∗(λ) ≥ 0 such that (N)λ,γ admits no
solution in NJ for any γ ≥ γ∗.

Proof. By Lemma 2.1, if k ∈ J , then u > 0 in Ω0+
k . Choose a disk D with

D ⊂ Ω0+
k , with the additional property that a(x) ≥ a0 in D, for a0 > 0 a

constant. Let ψ be the principal eigenfunction of the following eigenvalue
problem: ⎧⎪⎨

⎪⎩
Δψ = λ∗ψ, in D;
ψ = 0, on ∂D;
ψ > 0, in D.

A simple computation shows that

(λ∗ − λ)
∫

D
ψu dx >

∫
D

(a0f(u) + γg(u))ψ dx. (2.3)

Since the right side is positive, we must have λ ≤ λ∗.
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Now for fixed λ, by our hypotheses on f, g we may choose γ∗ so that

(λ − λ∗) < a0
f(u)

u
+ γ∗ g(u)

u

holds for all u > 0. So if γ ≥ γ∗ the inequality (2.3) can never hold. �
From the previous lemma we see that solutions to (N)λ,γ cannot exist for

λ, γ too large, which will motivate our definition (in Section 4) of Λγ and Γλ

as the least upper bound of solvability of (N)λ,γ . We finish this section with
the proof that (1.3) is necessary for the existence of solutions to (N)λ,γ for
any λ ≥ 0. This fact was already proven for λ = 0 = γ in [9], and the proof
presented here is a very simple extension:

Proposition 2.3. Assume

f ′(u) > 0 for all u > 0; (2.4)
u

f(u)
is bounded near u = 0. (2.5)

If u �≡ 0, u ≥ 0 is a solution to (P)λ,γ with λ ≥ 0, then∫
supp u

a(x) dx < 0.

Proof. Divide the equation by f(u + ε), ε > 0, and integrate by parts:

−
∫

supp u
a(x)

f(u)
f(u + ε)

dx = λ

∫
Ω

u

f(u + ε)
dx + γ

∫
Ω

g(u)
f(u + ε)

dx

+
∫

Ω

|∇u|2f ′(u + ε)
[f(u + ε)]2

dx ≥ λ

∫
Ω

u

f(u + ε)
dx +

∫
{u≥δ}

|∇u|2f ′(u + ε)
[f(u + ε)]2

dx,

for any δ > 0. By Dominated Convergence we may pass to the limit to
obtain ∫

supp u
a(x) dx ≤ −λ

∫
Ω

u

f(u)
dx −

∫
{u≥δ}

|∇u|2f ′(u)
[f(u)]2

dx ≤ 0.

If equality holds in the above, we must have that ∇u ≡ 0 in the set {x :
u(x) ≥ δ}. Since δ > 0 is arbitrary and u is smooth, it then follows that
u ≡ c, a constant, in Ω. But no nonzero constant solves the equation, and
hence we obtain strict inequality, as desired. �
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3. Bifurcation from infinity. In this section we consider only the
sublinear problem (N)λ,0, so γ = 0. We will show that there exist large
solutions near λ = 0 by means of a bifurcation argument used by Ambrosetti
and Hess [7]. Note that one may prove existence of solutions with λ < 0
by minimization of an appropriate functional on H1(Ω) (see (4.1)), and the
existence of a solution satisfying (∗) at λ = 0 was derived in [9] by means
of a sub- and supersolution construction. However, the bifurcation analysis
reveals the connection between the sign of

∫
Ω a(x) dx and the existence of

solutions with λ ≥ 0, and justifies the inclusion of the linear term λu in our
equations.

Since we are interested in nonnegative solutions, we consider the modified
equation, {

−Δu + u = (1 + λ)u+ + a(x)f(u),
∂u
∂ν = 0 on ∂Ω,

(3.1)λ

As usual, u+(x) = max{u(x), 0}. A simple and familiar calculation shows
that weak H1(Ω) solutions to (3.1)λ are nonnegative and hence also solve
(N)λ,0. (Recall that f(u) = 0 when u ≤ 0, by hypothesis (2.1).)

We choose as our space X = C0(Ω) with the supremum norm, ‖ · ‖∞,
and prove the following result:

Theorem 3.1. Suppose

f(u)
u

→ 0 as u → +∞. (3.2)

Then λ = 0 is a bifurcation point from infinity for (3.1)λ . More precisely,
there exists a continuum Σ∞ of positive solutions of (3.1)λ which meets
(0,∞) ∈ R × X. In addition, if λ �= 0, then λ is not a point of bifurcation
from infinity.

Proof. First, denote by K : X → X the solution operator for the Neumann
operator Lu = −Δu + u. In other words, u = Kh is the unique (weak)
solution to∫

Ω
(∇u · ∇ϕ + uϕ) dx =

∫
Ω

hϕ dx for all ϕ ∈ H1(Ω).

Since h ∈ X is bounded, by elliptic regularity theory we obtain u ∈ C1,α(Ω)
for some α ∈ (0, 1], and ‖u‖C1,α ≤ C‖h‖X for a constant C > 0. In partic-
ular, K is a compact operator on X. If in addition h ∈ Cβ(Ω), then u will
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be a classical solution to Lu = −Δu + u = h satisfying Neumann boundary
conditions, and u ∈ C2,α(Ω), for some α ∈ (0, 1)

Define the family of maps Φλ : X × [0, 1] → X,

Φλ(u, t) = u − K
[
(λ + 1)u+ + ta(x)f(u)

]
.

If Φλ(u, t) = 0 for some u ∈ E, then by the above observations u ∈ C2,α(Ω)
solves (3.1)λ .
Claim 1: If J is a compact interval and 0 �∈ J , then there exists R > 0
(independent of t ∈ [0, 1]) so that Φλ(u, t) �= 0 for all λ ∈ I, t ∈ [0, 1], and
all u ∈ X with ‖u‖∞ > R.
Note: As a corollary of Claim 1, λ = 0 is the only point of bifurcation from
infinity for (3.1)λ .

To prove Claim 1 we suppose the contrary: there exist sequences λn →
λ′ �= 0, tn ∈ [0, 1], and un ∈ X with ‖un‖∞ → ∞ and Φλn,tn(un) = 0. Set
vn = un/‖un‖∞, so vn is bounded in X and

vn = K
[
(1 + λn)vn + tna(x)

f(un)
‖un‖∞

]

By hypothesis (3.2), f(un)/‖un‖∞ → 0 in X, and the compactness of the
operator K implies that (for some subsequence) vn → v0 in X with ‖v0‖∞ =
1 and v0 is a weak solution of Lv0 = (1 + λ′)v+

0 . Using v−0 as a test function
in this equation, we obtain ‖v−0 ‖H = 0, so v0 ≥ 0 and solves Lv0 = (1+λ′)v0,
v0 �≡ 0. This is impossible, since λ′ �= 0 = λ1. This completes the proof of
Claim 1.

To study the behavior of solutions near infinity, we perform an inversion:
for u �= 0 let z = u/‖u‖2

∞, and for z �= 0,

Ψλ(z, t) = z − K
[
(1 + λ)z+ + ta(x)‖z‖2

∞f
( z

‖z‖2∞

)]
.

When z = 0 we set Ψλ(0, t) = 0. Clearly Ψλ(z, t) = 0 has small solutions
exactly when Φλ(u, t) = 0 has solutions near infinity. We denote the degree
of Ψλ(·, t) in the ball BR with respect to zero by deg(Ψλ(·, t), BR, 0), and
i(Ψλ, z0, 0) the Leray–Schauder index of the solution z0 to Ψλ(z0, 1) = 0.
Claim 2: If λ < 0, then i(Ψλ, 0, 0) = 1.

When λ < 0, Ψλ(z, λ, 0) = 0 if and only if Lz = (1 + λ)z+, which (as in
the proof of Claim 1) implies z ≥ 0 is an eigenfunction of L with eigenvalue
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λ < 0. Hence the only solution is z ≡ 0, and for any ball B we have
deg(Ψλ(·, 0), B, 0) = 1.

By Claim 1, there exists R > 0 independent of t so that Ψλ(z, t) �= 0
for all z with 0 < ‖z‖∞ < 1/R and all t ∈ [0, 1]. Consequently, for any
ε ∈ (0, 1/R), deg(Ψλ(·, 1), Bε, 0) = deg(Ψλ(·, 0), Bε, 0) = 1, which implies
Claim 2.

Denote by λ2 the first non-zero eigenvalue of the Laplacian in Ω with
Neumann boundary condition.

Claim 3: For every λ ∈ (0, λ2) there exists R > 0 (possibly depending
on λ,) so that for any τ ≥ 0, the equation Φλ(u, 1) = τ admits no solutions
u ∈ X with ‖u‖∞ > R.

Suppose the contrary: there exist sequences un with ‖un‖∞ → ∞, τn > 0
so that Φλ(un, 1) = τn. First, note that un ≥ 0 in Ω. Indeed, if Φλ(un, 1) =
τn, then τn = Lun−(1+λ)u+

n −a(x)f(un), and using −u−
n as a test function

in the equation,

0 ≥ −τn

∫
Ω

u−
n = ‖un‖2

H .

We now decompose X into two components, along the eigenfunction ϕ1 = 1
and along its complement. For v ∈ X, define projections

Pv =
1

meas (Ω)

∫
Ω

v dx, P⊥v = v − Pv.

Note that both projections commute with L and K. Write un = sn + wn,
with sn = Pun ∈ R, wn = P⊥un with average value zero. Note that
un ≥ 0 implies that sn = Pun > 0. Applying either P or P⊥ to the equation
Φλ(un, 1) = τn, we obtain the following two equations:

τn = sn − K [(1 + λ)sn − P [a(x)f(un)]] = −λsn + K [P [a(x)f(un)]] (3.3)

0 = wn − k
[
(1 + λ)wn − P⊥[a(x)f(un)]

]
. (3.4)

We now distinguish two cases: either
(i) limn→∞ sn/‖wn‖∞ = 0, or
(ii) lim supn→∞ ‖wn‖∞/sn ≤ C.

In case (i) we have ‖un‖∞ ≤ sn+‖wn‖∞ = ‖wn‖∞(1+o(1)). In particular,
‖wn‖∞ → ∞, so (3.4) implies

0 =
wn

‖wn‖∞
− K

[
(1 + λ)

wn

‖wn‖∞
+ P⊥

(
a(x)

f(un)
‖un‖∞

‖un‖∞
‖wn‖∞

)]
.
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Since K is compact we may pass to the limit: wn
‖wn‖∞ → w̃ in X with

w̃ ∈ E⊥, ‖w̃‖∞ = 1 and w̃ = K[(1 + λ)w̃]. Since by hypothesis (1 + λ) is
not an eigenvalue of L, this is impossible, and case (i) cannot occur.

In case (ii) we have ‖un‖∞ ≤ sn(1 + O(1)), so sn → ∞. Then from (3.3)
we obtain

0 ≤ τn

sn
= −λ + K

[
P

(
a(x)

f(un)
‖un‖∞

‖un‖∞
sn

)]
= −λ + o(1).

Since by hypothesis λ > 0 this is also a contradiction, and hence the state-
ment of the claim must hold.

Note that Claim 3 directly implies the following statement:

Claim 3′. For every λ ∈ (0, λ2) there exists R > 0 so that for any σ ∈ [0, 1],
the equation Ψλ(z, 1) = σ admits no solutions z ∈ X with 0 < ‖z‖∞ < 1/R.

Claim 4. If λ ∈ (0, λ2) is fixed, then i(Ψλ(·, 1), 0, 0) = 0.

Consider the family of maps H(z, σ) = Ψλ(z, 1) − σ, z ∈ X, σ ∈ [0, 1].
Then for every t ∈ (0, 1], the equation H(z, σ) = 0 has no solutions in the ball
B1/R, and no solution in B1/R \ {0} when σ ∈ [0, 1]. Hence, for any ball Bε

with radius ε < 1/R we have deg(Ψλ(·, 1), Bε, 0) = deg(H(·, σ), Bε, 0) = 0.

Claim 5. λ = 0 is a bifurcation point for Ψλ(z, 1).
This claim follows directly from Lemma 1.2 and Theorem 1.3 of Rabi-

nowitz [18]. First, note that by Claim 1, λ = 0 is the only possible bifurcation
point (from 0) for Ψλ, and hence we may already discard possibility (ii) of
Lemma 1.2 and Theorem 1.3 of [18]. Then the arguments of [18] may be
repeated exactly, with function Ψλ rather than Φ(λ), and with μ = 0, up
to line (1.11). The contradiction is then obtained by comparing (1.11) with
Claim 2 and Claim 4 above.

Finally, we show that the solutions obtained are actually positive in Ω.
More precisely, we prove that there exists R > 0 such that any solution u to
(3.1)λ with λ ∈ [−1, 1] and ‖u‖∞ > R must satisfy infΩ u(x) > 0.

We suppose the contrary: that there exists a sequence of solutions un

to (3.1)λn with λn ∈ [−1, 1] and ‖un‖∞ → ∞, such that infΩ u(x) = 0.
From Claim 1, we must have λn → 0. Decompose un = sn + wn, with
sn = Pun > 0, wn = P⊥un. Note that it suffices to prove that:

Claim 6. limn→∞ ‖wn‖∞/sn = 0.
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Suppose the contrary. Then sn ≤ C‖wn‖∞, so ‖un‖∞ ≤ C‖wn‖∞. Ap-
plying (3.4), we have

wn

‖wn‖∞
= K

[
(1 + λn)

wn

‖wn‖∞

]
+ o(1),

and (as before), wn/‖wn‖∞ → w̃, with ‖w̃‖∞ = 1, w̃ ∈ P⊥, and w̃ = K[w̃].
But this last equation is equivalent to −Δw̃ = 0 with Neumann boundary
condition in Ω, so w̃ is constant. This contradicts the fact that w̃ ∈ P⊥, and
so ‖wn‖/sn → 0, as claimed.

Now we write un = sn

(
1 + wn

sn

)
. Since wn/sn → 0 uniformly in Ω we see

that in fact infΩ un → ∞ as n → ∞, which contradicts our choice of the
sequence un. This completes the proof of Theorem 3.1. �

Now that we know that there do exist large positive solutions to (3.1)λ for
λ near 0, we must determine from which side of λ = 0 do these solutions con-
nect to infinity. In particular, we would like to know under which conditions
on f is the condition

∫
Ω a(x) dx < 0 a necessary and sufficient condition for

solutions to the right of λ = 0. We prove the following:

Theorem 3.2. Suppose

There exists q ∈ (0, 1) such that lim
u→∞

f(u)
uq

= 1. (3.5)

(a) If
∫
Ω a(x) dx > 0, then Σ∞ bifurcates to the left of λ = 0. In other

words, there exists R > 0 such that if (uλ, λ) solve (3.1)λ with λ ∈ [−1, 1]
and ‖u‖∞ > R, then λ < 0.
(b) If

∫
Ω a(x) dx < 0, then Σ∞ bifurcates to the right of λ = 0. In other

words, there exists R > 0 such that if (uλ, λ) solve (3.1)λ with λ ∈ [−1, 1]
and ‖u‖∞ > R, then λ > 0.

Remark 3.3. Comparing the above result with the nonexistence result of
Proposition 2.3, we note that in Theorem 3.2 we require f ∼ uq near infinity,
but in Proposition 2.3 the same condition is imposed near u = 0.

Proof. We treat case (b); the proof for case (a) is identical. As in Claim 6,
we suppose that there is no such R, and derive a contradiction. In such a
case there would then exist a sequence (un, λn) with un solutions to (3.1)λn

with λn → 0 and ‖un‖∞ → ∞, for which λn ≤ 0. Decompose un as in
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Claim 6 above, un = sn + wn, sn = Pun > 0, wn = P⊥un. As we just
showed, sn/‖wn‖∞ → ∞. Integrating the equation over Ω we obtain:

−λn

sq
n

=
∫

Ω
a(x)

f(un)
‖un‖q

∞

‖un‖q
∞

sq
n

dx.

Since un
sn

= 1 + wn
sn

→ 1 uniformly, and f(un)
‖un‖q

∞
is bounded and also tends

to 1, the right-hand side converges to
∫
Ω a(x) dx by Dominated Conver-

gence. Hence the quantity λn
sn

must have (for all large n) the opposite sign
of

∫
Ω a(x) dx. This contradicts our choice of un. �
4. The interval of existence. We now introduce variational methods

in order to obtain some global information about the solution families of
(N)λ,γ . For v ∈ H1(Ω) ∩ L∞(Ω) we define the functional

Iλ,γ(v)=
∫

Ω

[
1
2(|∇v|2 + v2) − (1 + λ)

2
(v+)2 − a(x)F (v) − γG(v)

]
dx, (4.1)

where F (v) =
∫ v
0 f(s) ds and G(v) =

∫ v
0 g(x) ds. (Recall that we assume

that f(v), g(v) = 0 for v ≤ 0.)
Our main tool in this section is the variational formulation of Perron’s

method, as presented by Struwe [20] (Theorem I.2.4). We will use it in this
form:

Lemma 4.1. Assume f and g satisfy (2.2). Let J ⊂ M. Suppose u ∈ NJ

is a solution to (N)λ,γ for some λ ∈ R and γ ≥ 0. Then, (N)λ,γ admits a
solution u ∈ NJ for every λ ≤ λ and 0 ≤ γ ≤ γ. Moreover, u(x) ≤ u(x) in
Ω and Iλ,γ(u) < 0.

Proof. When λ ≤ λ and 0 ≤ γ ≤ γ, u is a supersolution for the prob-
lem (N)λ,γ . We consider the following minimization problem in a convex
constraint set, infv∈M Iλ,γ(v), M = {v ∈ H1(Ω) : 0 ≤ v(x) ≤ u(x) a.e.}.
By trivial modifications to Theorem I.2.4 of [20], the infimum is achieved at
some u ∈ M and (ϕ, I ′λ,γ(u)) = 0 for all ϕ ∈ H1(Ω). By routine regularity
arguments u is a solution to (N)λ,γ . Since u ∈ M , it vanishes on the compo-
nents Ω0+

k , k �∈ J . It remains to show that it does not vanish on Ω0+
k , k ∈ J .

(At the same time this will also show that u �≡ 0, the trivial solution.)
Suppose that for some k ∈ J , u �> 0 in Ω0+

k . By Lemma 2.1 we have u ≡ 0
on Ω0+

k . Choose a ball D ⊂ Ω+∩Ω0+
k , and ψ(x) with 0 ≤ ψ ∈ C∞

0 (D). Then,
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for t > 0 small, u + tψ ∈ M and Iλ,γ(u + tψ) = Iλ,γ(u) + Iλ,γ(tψ) < Iλ,γ(u)
since Iλ,γ(tψ) < 0 for all t sufficiently small. This contradicts the choice of
u as an infimum of Iλ,γ , so we must have u ∈ NJ . By the same argument,
we see that Iλ,γ(u) < Iλ,γ(0) = 0. �

Remark 4.2. Given the variational formulation of the problem as an infi-
mum, it is natural to ask whether the solutions obtained by Lemma 4.1 are
local minima of Iλ,γ in any sense. Note that this cannot be the case when
J �= M! Indeed, following the argument of the last part of the proof, we can
decrease the value of Iλ,γ near such solutions by arbitrary local perturbations
in each Ω0+

k , k �∈ J , so these solutions are very far from being minimizers
in H1(Ω). Note that even when 0 < u < u in all of Ω0+ we cannot rule
out vanishing in Ω−, so the solution u may not be an interior point of M ,
even in the stronger C1-topology. Nevertheless, in the next section we will
show that (under appropriate hypotheses on f , g) the solutions in NM will
be local H1-minimizers for Iλ,γ .

For the remainder of the paper we restrict our attention to solutions in
the class NM. For convenience, we redefine our problem:

Definition 4.3. We say u solves (P)λ,γ if u solves (N)λ,γ and u(x) > 0 for
all x ∈ Ω0+.

Given the monotonicity in the parameters λ and γ implied by Lemma 4.1
it is natural to define:

Λγ = sup{λ : (P)λ,γ admits a solution}, and
Γλ = sup{γ ≥ 0 : (P)λ,γ admits a solution}.

It is a direct corollary of Lemma 4.1 that Λγ is nonincreasing as a function
of γ, and that Γλ is also nonincreasing as a function of λ.

Lemma 4.4. Assume (2.2) and

g(u)
u

→ 0 as u → 0+. (4.2)

Then
(i) for every γ ≥ 0, −∞ < Λγ < ∞;
(ii) for each λ < Λ0, 0 < Γλ < ∞;
(iii) If λ > Λ0, then Γλ = 0.
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Proof. From Theorem 3.1 we know that Λ0 > −∞, and from Proposition 2.2
Λ0 < λ∗ < ∞. Moreover, Lemma 4.1 implies that (P)λ,0 admits a solution
for all λ < Λ0. For any λ < Λ0, take λ′ ∈ (λ, Λ0) and the corresponding
solution u′ of (P)λ′,0. Then, for

γ′ =
(λ′ − λ)

supx∈Ω[g(u′(x))/u′(x)]
(4.3)

and γ ≤ γ′, we have∫
Ω
[∇u′ · ∇ϕ − (λu′ − a(x)f(u′) − γg(u′))ϕ] =

∫
Ω
[(λ′ − λ)u′ − γg(u′)]ϕ ≥ 0

(4.4)

for all 0 ≤ ϕ ∈ H1(Ω). Therefore, u′ is a supersolution for the problem
(P)λ,γ with 0 < γ ≤ γ′. Repeating the proof of Lemma 4.1, we obtain
solutions to (P)λ,γ with 0 < γ < γ′, and hence Γλ ≥ γ′ > 0 for all λ < Λ0.
This proves (ii).

To prove (i), fix a λ′ < Λ0 with solution u′ to (P)λ′,0. Then for any
γ > 0, choose λ < λ′ sufficiently negative such that γ < γ′ with γ′ defined as
in (4.3). Again, u′ is a supersolution for the problem (P)λ,γ , and the same
argument shows that Λγ > −∞. The fact that Λγ < ∞ has already been
proven in Proposition 2.2.

Finally, if (P)λ,γ admits a solution with γ > 0 and λ > Λ0, by Lemma 4.1
the problem (P)λ,0 would admit a solution, contradicting the definition of
Λ0. This completes the proof of the lemma. �

Remark 4.5. The question of whether the problem (P)Λ0,γ admits solutions
for some γ > 0 is more delicate, and remains an open question.

As a result of the previous lemmas, we have existence of solutions of
(P)λ,γ on intervals in λ and γ. Our next task is to study the structure of
the solution sets. The following comparison lemma is based on a uniqueness
proof by Bandle, Pozio, and Tesei [9] for the sublinear problem at λ = 0.

Lemma 4.6. Assume that{
f(u) is nondecreasing, 1/f(u) is integrable near zero,
f ′(u) is strictly decreasing, f(u)/u is nonincreasing.

(4.5)
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If λ ≤ 0 and v, w ∈ C2,α(Ω) such that{
−Δv ≤ λv + a(x)f(v), in Ω,
−Δw ≥ λw + a(x)f(w), in Ω,

(4.6)

then v ≤ w in Ω.

The proof is a simple extension of Theorem 3.1 of [9], and is left to the
reader.

We now present some applications of Lemma 4.6.

Corollary 4.7. Assume (4.5). Then for all λ ≤ 0, problem (P)λ,0 admits a
unique solution vλ,0. Moreover, if λ < λ′ ≤ 0, then vλ,0 ≤ vλ′,0.

Lemma 2.1 and Corollary 4.7 can both fail to hold if Ω0+ has (countably)
infinitely many connected components. See [8] for an example of how this
may occur.

Next we consider the limiting values, λ = Λγ and γ = Γλ and show that
(P)λ,γ does admit solutions there.

Lemma 4.8. Assume f, g satisfy (2.2), (3.5), (4.5), and

g(u) ≤ C(1 + up), for all u > 0; (4.7)
0 ≤ θG(u) ≤ g(u)u for all u ≥ R, (4.8)

for constants C > 0, p ∈ (1, N+2
N−2 ], R > 0, and θ > 2. Then

(a) For all γ > 0, (P)λ,γ admits a solution at λ = Λγ;
(b) There exists a solution to (P)Λ0,0 if and only if

∫
Ω a(x) dx < 0.

(c) For all λ < Λ0, (P)λ,γ admits a solution at γ = Γλ.

Proof. Fix γ ≥ 0 and suppose λn → Λγ , λn < Λγ . The solutions un to
(P)λn,γ obtained by Lemma 4.1 satisfy Iλn,γ(un) < 0, and by Lemma 4.6 each
is bounded below by a fixed solution vλ′ of (P)λ′,0 with λ′ ≤ min{0, λ} ≤ 0.

Using the equation and the negativity of Iλn,γ(un) we have two relations,∫
Ω

{1
2
|∇un|2 −

λ

2
u2

n − a(x)F (un) − γG(un)
}

dx < 0, (4.9)∫
Ω

{
|∇un|2 − λu2

n − a(x)f(un)un − γg(un)un

}
dx = 0. (4.10)
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Using the hypotheses (3.5), (4.7), and (4.8), we have

(1
2
− 1

θ

)
‖un‖2

H <
(1
2
− 1

θ

)
(1 + λ)‖un‖2

2 +
∫

Ω
a(x)

[
F (un) − 1

θ
f(un)un

]
+ γ

∫
Ω

[
G(un) − 1

θ
g(un)un

]
≤ C1‖un‖2

2 + C2. (4.11)

We claim that ‖un‖2 is uniformly bounded. Suppose the contrary, ‖un‖2 →
∞. Then, by (4.11) vn = un/‖un‖2 is a bounded sequence in H1(Ω), with a
weakly convergent subsequence (which we continue to denote vn), vn ⇀ v0,
‖v0‖2 = 1, with strong convergence in Lp(Ω) for 1 ≤ p < 2N

N−2 . Applying a
nonnegative test function ϕ ∈ C1(Ω) to the equation and dividing by ‖un‖2

we obtain:

γ‖un‖θ−2
2

∫
Ω

vθ−1
n ϕ dx ≤ γ‖un‖θ−2

2

(∫
Ω

g(un)ϕ
‖un‖θ−1

2

dx
)

+ o(1) (4.12)

=
∫

Ω

[
∇vn · ϕ − λnvnϕ − a(x)

f(un)ϕ
‖un‖2

]
dx + o(1)

=
∫

Ω
[∇v0 · ϕ − Λγv0ϕ] dx + o(1).

If γ > 0, take ϕ = v0 so that∫
Ω

vθ
0 dx ≤ lim inf

n→∞

∫
Ω

vθ
n dx = 0,

which contradicts ‖v0‖2 = 1. If γ = 0 and
∫
Ω a(x) dx < 0, then by Theo-

rem 3.2 we know Λ0 > 0. In that case, (4.12) simplifies to∫
Ω

(∇v0 · ∇ϕ − Λ0v0ϕ) dx = 0

for each ϕ ∈ C1(Ω). Since 0 ≤ v0 �≡ 0 in Ω, this can not occur since
Λ0 > 0 = λ1. In conclusion, we must have ‖un‖H ≤ C1‖un‖2 + C2 ≤ C.

Extracting a subsequence (still denoted by un), we have un ⇀ u∗ in
H1(Ω) and pointwise almost everywhere. In particular, since each un ≥ vλ′

we have u∗ ≥ u0 in Ω. By weak convergence we may pass to the limit in the
equation to obtain the desired solution.

When γ = 0 and
∫
Ω a(x) dx ≤ 0, we have already shown that (P)0,0

admits no solution (Proposition 2.2). We have therefore proven (a) and (b).
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If we fix λ < Λ0, we have (from Lemma 4.4) that 0 < Γλ < +∞. By
repeating the exact same argument as above we arrive at the conclusion
(c). �

When λ > 0 or γ > 0 we do not expect uniqueness. In fact we will find a
second solution to problem (P)λ,γ in such a case. But we do have a minimal
solution for all λ, γ:

Proposition 4.9. Assume (4.5) holds, and g(u) is increasing. Then for all
λ, γ for which (P)λ,γ admits a solution, there is a minimal solution, vλ,γ with
vλ,γ(x) ≤ u(x) for any solution of (P)λ,γ . Moreover, vλ,γ ≤ vλ′,γ′ whenever
λ ≤ λ′ and γ ≤ γ′.

The proof involves the usual monotone iteration, with multiple appeals
to the weak maximum principle. For completeness we provide the details in
the Appendix.

5. Solutions as local minima. In this section we prove the important
and nontrivial fact that the solutions of (P)λ,γ obtained via Lemma 4.1 define
local minima for the functional Iλ,γ in the H1-topology. Recall that this will
not be the case for solutions which vanish in some component of Ω0+. (See
Remark 4.2.)

For simplicity we specialize to the case

f(u) = uq, g(u) = up, 0 < q < 1 < p, and p ≤ N+2
N−2 if N ≥ 3.

The results in the this section are true for somewhat more general f, g, and
the essential ideas are the same as in the case of powers.

First, we require the following consequence of the strong maximum prin-
ciple:

Lemma 5.1. Suppose λ ≤ λ, 0 ≤ γ ≤ γ, and either λ < λ or γ < γ. If u
is a solution of (P)λ,γ and u is a solution of (P)λ,γ with 0 ≤ u(x) ≤ u(x) in
Ω, then u(x) < u(x) for all x ∈ A = {x ∈ Ω : u > 0}.

Proof. Let v = u − u ≥ 0 in Ω. Then v satisfies

−Δv + a−
[f(u) − f(u)

u − u

]
v ≥ 0.

To derive a contradiction, we suppose that v(x0) = 0 for some x0 ∈ A. First,
we show that x0 cannot be an interior point of Ω. Indeed, if x0 ∈ A∩Ω it is
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an interior point of A, and we may choose a ball B = Br(x0) with B ⊂ A.
On B, u is bounded below away from zero and hence the quotient

0 ≤ f(u) − f(u)
u − u

≤ f(u)
u

is uniformly bounded in B. We may now apply the strong Maximum Prin-
ciple in B to conclude that v ≡ 0 in B. That is, u(x) = u(x) for all x ∈ B,
which leads to a contradiction when comparing the equations satisfied by
these functions.

It remains to show that x0 cannot lie on ∂Ω either. Since A is relatively
open in Ω, we can choose r > 0 so that B′ = Br(x0) ∩ Ω ⊂ A. Since ∂Ω
is smooth, the exterior normal to B′ at x0 coincides with the normal to Ω
at x0. Applying the Hopf Lemma to v ≥ 0 at the point x0 ∈ ∂B′, we have
∂v
∂ν (x0) < 0, which contradicts the Neumann boundary condition satisfied by
v on all of ∂Ω. �

Now we may prove the key fact which relates sub- and supersolutions to
local minima:

Proposition 5.2. Assume that λ ≤ λ, 0 ≤ γ ≤ γ, and either λ < λ or
γ < γ. Let u be a solution to (P)λ,γ suppose that v0 attains

Iλ,γ(v0) = inf{I(v) : v ∈ H1(Ω), 0 ≤ v(x) ≤ u a.e.}.

Then v0 is a local minimizer for Iλ,γ in H1(Ω); that is, there exists δ > 0
such that

Iλ,γ(v0) ≤ Iλ,γ(w) for all w ∈ H1(Ω) with ‖w − v0‖H < δ.

Proof. Define M = {v ∈ H1(Ω) : 0 ≤ v(x) ≤ u(x), a.e. in Ω}. Recall that
u is a supersolution for the problem (P)λ,γ , and Lemma 4.1 ensures that
there exists (at least one) minimizer v0 for Iλ,γ in the set M , which solves
(P)λ,γ .

Suppose that there exists a sequence {un} ∈ H1(Ω) with un → v0 and
Iλ,γ(un) < Iλ,γ(v0). Let

vn = max {0,min{un, u}} , u−
n = max{−un, 0} ≥ 0, wn = (un − u)+ ≥ 0,

so that un = vn − u−
n + wn, vn ∈ M , and u−

n and wn have disjoint supports.
Define the measurable sets Rn = {x ∈ Ω : 0 ≤ un(x) ≤ u(x)}, Sn = suppwn,
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Tn = suppu−
n , A = {x ∈ Ω : u(x) > 0}, B = Ω \ A. From Lemma 5.1 we

have u(x) > v0(x) for all x ∈ A, and Lemma 2.1 implies that B ⊂ Ω−.
Claim 1. meas (A ∩ Sn) → 0 as n → ∞.

Let ε > 0 be given. For δ > 0 (to be chosen later), set

En = {x ∈ A : un(x) > u(x) > v0 + δ},
Fn = {x ∈ A : un(x) > u and u ≤ v0 + δ}.

Since

0 = meas ({x ∈ A : u(x) ≤ v0(x)})
= meas

(
∩∞

j=1{x ∈ A : u(x) ≤ v0(x) + 1/j}
)

= lim
j→∞

meas ({x ∈ A : u(x) ≤ v0(x) + 1/j}) ,

there exists δ0 > 0 so that meas (Fn) ≤ meas ({x ∈ A : u ≤ v0 + δ0}) < ε
2 .

On the other hand, since un → v0 there exists n0 > 0 so that for all n ≥ n0,

εδ2
0

2
≥

∫
Ω
(un − v0)2 dx ≥

∫
En

δ2
0 dx = δ2

0 meas (En).

Hence meas (En) ≤ ε
2 , and meas (A∩Sn) ≤ meas (En)+meas (Fn) < ε. This

completes the proof of the claim.
For convenience, set H(x, u) = (λ − 1)(u+)2/2 + a(x)F (u) + G(u). We

calculate:

Iλ,γ(un) =
∫

Rn

(1
2
|∇vn|2 +

1
2
v2
n − H(x, vn)

)
dx +

+
∫

Sn

(1
2
|∇un|2 +

1
2
u2

n − H(x, un)
)
dx +

∫
Tn

1
2
|∇u−

n |2 +
1
2
(u−

n )2 dx

=
∫

Sn

{1
2

(
|∇(u + wn)|2 − |∇u|2 + (u + wn)2 − u2

)
− [H(x, u + wn) − H(x, u)]

}
+ Iλ,γ(vn) + ‖u−

n ‖2
H

=
∫

Sn

1
2

(
|∇wn|2 + w2

n

)
+ (∇u · ∇wn + uwn) − [H(x, u + wn) − H(x, u)]

+ Iλ,γ(vn) + ‖u−
n ‖2

H

≥ 1
2
‖wn‖2

H + Iλ,γ(v0) +
1
2
‖u−

n ‖2
H

−
∫

Sn

(H(x, u + wn) − H(x, u) − Hu(x, u)wn) dx (5.1)
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where we have used the fact that v0 minimizes Iλ,γ in M and that u is a
supersolution.

Now we estimate each term in H(x, u) on the set A, using the fact that
this set is very small:

∫
Sn∩A

w2
n dx ≤ (meas (Sn ∩ A))2/N

(∫
Ω

w
2N

N−2
n dx

)N−2
N

≤ o(1) ‖wn‖2
H ,

(5.2)

where o(1) → 0 as n → ∞. Applying Lemma 5.1, there exists k > 0 so that
u(x) ≥ k for x ∈ Ω0+. Hence,

0 ≤ F (u(x) + wn(x)) − F (u(x)) − f(u(x))wn(x) ≤ f ′(k)w2
n(x)

for all x ∈ Ω0+. Using the estimate (5.2) again, we have:

0 ≤
∫

A∩Ω0+

a(x)[F (u + wn) − F (u) − f(u)wn] ≤ o(1) ‖wn‖2
H . (5.3)

On A ∩ Ω−, we note that∫
A∩Ω−

a(x)[F (u + wn) − F (u) − f(u)wn] ≤ 0. (5.4)

To estimate the other term, we note that there exists θ = θ(x) ∈ (0, 1) so
that

0 ≤ G(u(x) + wn(x)) − G(u(x)) − g(u(x))wn(x)

= g′(u(x) + θwn(x))wn(x)2/2 ≤ C(1 + wp−1
n )w2

n. (5.5)

As a consequence of this estimate,∫
A
[G(u(x) + wn(x)) − G(u(x)) − g(u(x))wn(x)] ≤ C

∫
A

w2
n + wp+1

n

≤ o(1)‖wn‖2
H + C‖wn‖p+1

H ≤ o(1)‖wn‖2
H .

To estimate the terms on the set B we must use that fact that B ⊂ Ω−.
Since u = 0 on B, we have

0 ≥
∫

B
a(x)[F (u + wn) − F (u) − f(u)wn] = −

∫
B

a−(x)F (wn). (5.6)
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Now we must try to make the right-hand side of (5.6) dominate the remaining
terms in B. Since wn → 0 in H1(Ω) and a−(x) > 0 almost everywhere in
Ω−, by repeating the argument in the Claim we have

meas (Pn) = meas
(
{x ∈ Ω− : wn(x) ≥ (a−(x)/10(q + 1))

1
1−q }

)
→ 0

as n → ∞. Therefore we may estimate:

∫
B

w2
n ≤

∫
B\Pn

a−(x)
10(q + 1)

wq+1
n +

∫
Pn

w2
n (5.7)

≤ 1
10

∫
B

a−(x)F (wn) + (meas (Pn))2/N ‖wn‖2
H

≤ 1
10

∫
B

a−(x)F (wn) + o(1) ‖wn‖2
H .

We estimate the remaining term in a similar way,

∫
B

G(wn) dx ≤ 1
10

∫
B

a−(x)F (wn) dx + o(1)‖wn‖2
H . (5.8)

Inserting the above estimates into (5.1), we arrive at the inequality:

0 > Iλ,γ(un) − Iλ,γ(v0) ≥
1
2

[
(1 − o(1)) ‖wn‖2

H + ‖u−
n ‖2

H

]
.

For n sufficiently large, the coefficient of ‖wn‖2
H is positive, and hence

wn, u−
n ≡ 0 for large n. In other words, un = vn ∈ M , and necessarily

Iλ,γ(un) ≥ Iλ,γ(v0) = infM Iλ,γ , which contradicts our choice of un. �

Remark 5.3. One can also replace 0 with a non-negative subsolution u and
obtain the same conclusion for the minimization problem

Iλ,γ(v0) = inf{Iλ,γ(v) : u(x) ≤ v(x) ≤ u(x)}.

For our purposes we will only need the result for u = 0, and so we leave the
(straightforward) details of the extension to the reader.
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6. The second solution. When either λ > 0 or γ > 0 the functional
Iλ,γ is unbounded below. If in addition, (P)λ,γ admits a local minimizer
for such λ, γ we may expect that (P)λ,γ admits a second solution via the
Mountain-Pass Theorem. Indeed, let us seek such a solution in the form u =
uλ,γ +v, with v ≥ 0 and uλ,γ the solution of (P)λ,γ obtained by minimization:

Iλ,γ(uλ,γ) = inf{Iλ,γ(v) : v ∈ H1(Ω), 0 ≤ v(x) ≤ uΛγ ,γ}

where uΛγ ,γ is any solution of (P)Λγ ,γ , whose existence is guaranteed by
Lemma 4.8. If u is to solve (P)λ,γ , then v should solve

−Δv = λv + a(x) (f(uλ,γ + v) − f(uλ,γ)) + γ (g(uλ,γ + v) − g(uλ,γ)) .

Set

h(x, v) = a(x)
(
f(uλ,γ + v+) − f(uλ,γ)

)
+ γ

(
g(uλ,γ + v+) − g(uλ,γ)

)
,

H(x, v) =
∫ v

0
h(x, s) ds,

and define for v ∈ H1(Ω) the functional

Jλ,γ(v) =
∫

Ω

(
1
2
|∇v|2 +

1
2
v2 − 1 + λ

2
(v+)2 − H(x, v)

)
dx.

A straightforward calculation shows that

Jλ,γ(v) = Iλ,γ(uλ,γ + v+) − Iλ,γ(uλ,γ) +
1
2
‖v−‖2

H . (6.1)

In this section (as in the previous one) we make the simplifying assumption
that f(u) = uq, g(u) = up, with 0 < q < 1 < p < N+2

N−2 . With this choice
we apply Lemma 5.2 to the identity (6.1) to conclude that v = 0 is a local
minimum (in H1(Ω)) for Jλ,γ :

Lemma 6.1. There exists r > 0 such that Jλ,γ(v) ≥ 0 = Jλ,γ(0) for all
v ∈ H1(Ω) with ‖v‖H < r.

We also have:

Lemma 6.2. Assume either γ > 0 or λ > 0. There exists a constant t > 0
such that Jλ,γ(t) < 0.
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Proof. For C0 > 0 and s > 1 there exists ts > 0 so that

(t + u)s+1 − us+1 ≥ 1
2
ts+1,

for all t ≥ ts and for all any u ∈ R with 0 ≤ u ≤ C0. Since (for λ, γ fixed)
uλ,γ ≥ 0 is a fixed bounded function, we conclude that

G(uλ,γ + t) − G(uλ,γ) ≥ 1
2
tp+1, F (uλ,γ + t) − F (uλ,γ) ≥ 1

2
tq+1

for t sufficiently large.
Now we calculate

Jλ,γ(t) = Iλ,γ(uλ,γ + t) − Iλ,γ(uλ,γ)

=
∫

Ω

(
−λtu − λt2

2
− a(x)[F (uλ,γ + t) − F (uλ,γ)]

− γ[G(uλ,γ + t) − G(uλ,γ)]
)

≤ −λt

∫
Ω

u dx − λt2

2
meas (Ω) + Ctq+1 − γCtp+1. (6.2)

If λ > 0, we simply drop the (nonpositive) term containing γ, and obtain

Jλ,γ(t) ≤ −λt2

2
meas (Ω) + o(t2),

with o(t2)/t2 → 0 as t → ∞ uniformly in γ. In this case we may choose tλ
(independently of γ) so that Jλ,γ(tλ) < 0.

If λ ≤ 0 but γ > 0, the highest order term in (6.2) is the term −γCtp+1,
and again we may choose t = t(λ, γ) large enough to make Jλ,γ(t) < 0. �

Lemma 6.3. Suppose γ ≥ 0, λ ∈ R, and λ, γ are not both zero. If λn → λ,
γn → γ, and vn is a sequence in H1(Ω) such that Jλn,γn(vn) → c and
J ′

λn,γn
(vn) → 0, then vn contains an H1(Ω)-convergent subsequence. More-

over, vn → v0 ≥ 0, with u0 = uλ,γ + v0 a solution to (P)λ,γ .

Note that when γ = 0 solutions of (P)λ,0 are not a priori bounded as
λ → 0, and so the restriction on λ, γ is to be expected.
Proof. For simplicity, denote Jn = Jλn,γn , In = Iλn,γn . First,

J ′
n(vn)v−n = −‖vn‖2

H ,
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and hence v−n → 0 in H1(Ω). Therefore, if we write un = uλn,γn + v+
n we

have

In(un) → Iλ,γ(uλ,γ) + c, I ′n(un)ϕ = o(1)‖ϕ‖H , (6.3)

for any ϕ ∈ H1(Ω). We claim that ‖un‖2 is uniformly bounded. Suppose
the contrary, ‖un‖2 → ∞, then set wn = un/‖un‖2.

First, consider the case γ > 0. Proceeding as in Lemma 4.8, by (6.3) we
obtain

‖un‖2
H ≤ (λ + 1)‖un‖2

2 + o(1)‖un‖H . (6.4)

Then (6.4) implies that ‖wn‖H ≤ C, and therefore a subsequence (still
denoted by wn) converges weakly, wn ⇀ w0 in H1(Ω), with ‖w0‖2 = 1.

Since In(un) is bounded,

γ

p + 1

∫
Ω

wp+1
0 dx = lim

n→∞

∫
Ω

γG(un)

‖un‖p+1
2

dx

≤ lim
n→∞

1

‖un‖p−1
2

(1
2
‖∇wn‖2

2 −
λ

2
‖wn‖2

2 −
∫

Ω
a(x)

|wn|q+1

(q + 1)‖un‖1−q
2

dx
)
≤ 0,

which is impossible since ‖w0‖2 = 1. This proves that ‖un‖2 is bounded, so
by (6.4) we have ‖un‖H ≤ C, in the case γ > 0.

If γ = 0 but λ �= 0, we obtain (6.4) by dividing In(un) by ‖un‖2
2. Again

we may conclude that a subsequence of wn ⇀ w0 (weakly) in H1(Ω), with
‖w0‖2 = 1. For any ϕ ∈ H1(Ω), I ′n(un)ϕ = o(1) implies that∫

Ω

(
∇w0 · ∇ϕ + [w0 − (λ + 1)w+

0 ]ϕ
)

dx = 0.

Hence w0 ≥ 0 and λ is an eigenvalue of the Neumann problem for −Δ in Ω,
a contradiction when λ �= 0.

In conclusion, ‖un‖2 is uniformly bounded, and by (6.4) so is ‖un‖H

uniformly bounded. Extracting a subsequence (again denoted by un) we
may pass to a weak limit un ⇀ u0 in H1(Ω), with strong convergence in
Ls(Ω) for s ∈ [1, 2N

N−2). Therefore, as n, m → ∞,

o(1) =
(
I ′n(un) − I ′λ,γ(um)

)
(un−um) =

∫
Ω
|∇(un−um)|2+(un+um)2+o(1),

which proves that un → u0 in H1(Ω), and consequently vn → v0 as promised.
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Proposition 6.4. Suppose λ ∈ (0,Λ0) and γ ∈ [0,Γλ), or λ ≤ 0 and γ ∈
(0,Γλ). Then (P)λ,γ admits a second solution, wλ,γ = uλ,γ + vλ,γ with 0 �≡
vλ,γ ≥ 0.

Proof. Let t = tλ,γ be the value given by Lemma 6.2. We set

S = Sλ,γ = {σ ∈ C([0, 1];H1(Ω)) : σ(0) = 0, σ(1) = tλ,γ},

and cλ,γ = infσ∈S maxs∈[0,1] Jλ,γ(σ(s)). Lemma 6.1 implies that cλ,γ ≥ 0,
and the Palais-Smale condition has been verified in Lemma 6.3. If there
exists ρ ∈ (0, r) so that inf{Jλ,γ(v) : ‖v‖H = ρ} > 0, then cλ,γ > 0 and
existence of a second solution follows from the celebrated Mountain-Pass
Theorem of Ambrosetti and Rabinowitz. If inf{Jλ,γ(v) : ‖v‖H = ρ} = 0
for all ρ ∈ (0, r), then for any fixed ρ ∈ (0, r) the set F = ∂Bρ(0) satisfies the
hypotheses of Theorem (1) in Ghoussoub and Preiss [13], and their Theorem
(1.bis) asserts the existence of a solution for each ρ ∈ (0, r). �

A. Appendix: Minimal solutions. Here we prove Proposition 4.9.
Suppose λ, γ ≥ 0 are such that (P)λ,γ admits at least one solution. We will
construct the minimal solution via the following monotone iteration: Take
as v0 the (unique) solution of (P)λ̃,0, where λ̃ = min{0, λ} ≤ 0. If λ ≥ −1,
take μ = 1; otherwise choose μ = −λ. If v0, . . . , vn are already determined,
then vn+1 should solve⎧⎪⎨

⎪⎩
−Δvn+1 + μvn+1 + a−(x)f(vn+1)

= (μ + λ)vn + a+(x)f(vn) + γg(vn), in Ω,
∂vn+1

∂ν = 0 on ∂Ω.

(A.1)

Claim1: For any fixed h ∈ Cα(Ω) there exists a unique solution w ∈ C1,α(Ω)
to {

−Δw + μw + a−(x)f(w) = h(x), in Ω,
∂w
∂ν = 0 on ∂Ω.

(A.2)

Indeed, the functional

J(w) =
∫

Ω

(1
2
|∇w|2 +

μ

2
w2 + a−(x)F (w) − h(x)w

)
dx

is bounded below, coercive, and lower semi-continuous on H1(Ω). It there-
fore attains its minimum value in H1(Ω) at a solution of (A.2). By the
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usual bootstrap argument, w ∈ C1,α(Ω). If there were two solutions w1, w2

of (A.2), then subtracting the equations and integrating against (w2 −w1)+

gives:∫
Ω

(
|∇(w2 − w1)+|2 + μ[(w2 − w1)+]2

+ a−(x)(f(w2) − f(w1))(w2 − w1)+
)

dx = 0.

Since f is an increasing function, each term is nonnegative and we conclude
w2 ≤ w1. Reversing the roles of w2, w1 we see that w2 = w1, and Claim 1 is
verified.
Claim 2: For each n, vn ≤ vn+1.

By induction: first take n = 0. Subtract the equations to obtain:

−Δ(v1 − v0) + μ(v1 − v0) + a−(x)(f(v1) − f(v0)) = (λ − λ̃)v0 + γg(v0) ≥ 0.

Now if we multiply by −(v1 − v0)− ≤ 0 and integrate, we obtain∫
Ω
|∇(v1 − v0)−|2 + μ[(v1 − v0)−]2 + a−(x)(f(v0) − f(v1))(v0 − v1)+ ≤ 0.

As all of the terms in the integral are nonnegative, we must have v0 ≤ v1. If
vn−1 ≤ vn, then proceeding as above, (A.1) implies:

− Δ(vn+1 − vn) + μ(vn+1 − vn) + a−(x)[f(vn+1) − f(vn)]
= (μ + λ)(vn − vn−1) + a+(x)[f(vn) − f(vn−1)] + γ[g(vn) − g(vn−1)] ≥ 0.

As above, we multiply by −(vn+1 − vn)− to complete the argument.
Claim 3: If u is any solution to (P)λ,γ , then for all n ≥ 0, vn ≤ u.

The fact that u ≥ v0 follows from Lemma 4.6. For n ≥ 1 we use induction
as in the proof of Claim 2. We leave the details to the interest reader.

As a result of the three Claims, there exists a monotone sequence, v0 ≤
vn ≤ u for any solution u of (P)λ,γ . In particular, vn → uλ,γ ≤ u pointwise
in Ω. Since vn are uniformly bounded by any fixed solution u, from the
equations (A.1) we see that ‖vn‖C1,α is bounded as well. In particular, we
may pass to the limit in the weak form of (A.1) to obtain that uγ,λ solves
(P)λ,γ . Hence uγ,λ is the desired minimal solution.

To obtain monotonicity in λ, γ, note that when λ ≤ λ′ and γ ≤ γ′, the
minimal solution uλ′,γ′ is a supersolution for (P)λ,γ . By Lemma 4.1 there
exists a solution u for (P)λ,γ , with uγ,λ ≤ u ≤ uλ′,γ′ . �
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