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SEMILINEAR PARABOLIC PROBLEMS
DEFINE SEMIFLOWS ON Ck SPACES

BY

XAVIER MORA1

Abstract. Linear parabolic problems of a general class are proved to determine
analytic semigroups on certain closed subspaces of Ck(ü) (k integer); C*(fi)
denotes the space of functions whose derivatives or order *s k are bounded and
uniformly continuous, with the usual supremum norm; the closed subspaces where
the semigroups are obtained, denoted by Ck(Ü), are determined by the boundary
conditions and a possible condition at infinity. One also obtains certain embedding
relations concerning the fractional power spaces associated to these semigroups.
Usually, results of this type are based upon the theory of solution of elliptic
problems, while this work uses the corresponding theory for parabolic problems. The
preceding results are applied to show that certain semilinear parabolic problems
define semiflows on spaces of the type C*(fi).

In this paper we show that certain general semilinear parabolic systems of partial
differential equations define semiflows on spaces of k times continuously differentia-
ble functions. For the resulting semiflows we also prove the validity of the " principle
of linearized stability", i.e. that the stability of a stationary state u0 is determined by
the spectrum of the linearization about u0 (more precisely, by the location of this
spectrum with respect to the imaginary axis).

Let us indicate a typical example where our results will be applicable. The
equations will describe the temporal evolution of a system distributed over a certain
spatial region Q C R", possibly unbounded. The state of the system is specified by a
collection cf N + N' variables, functions of position x E ß and time t E R. We shall
assemble these variables into two vectors u = (ux,... ,uN) and v — (vx,...,vN'),
although in general we allow that N' = 0, in which case the vector v is empty. The
temporal evolution of the system is considered to obey a system of differential
equations of the following form:

.     , Dtu - V ■ (ä:(jc)vh) +f(x; u, Vu,v),
(Xa) . .

Dtv = g(x; u, Vu, v),

where Dt represents the time derivative, and v and V ■ are the gradient and
divergence operators in R". Here, A" is a positive definite N X N matrix, and/, g are
nonlinear functions of u,Vu,v which, in general, can also depend on x E Ü. The
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22 XAVIER MORA

temporal evolution is also restricted by certain boundary conditions on the variables
u'\ we shall assume that they are of the following form:

u'|ao = *'(*)        (i=l,...,S),
D,u'lQ=p'(x){b'(x)-u'\da)        (i = S+\,...,N),

where ■ |3Q denotes the restriction to 3ß, the boundary of S, and Dv denotes the
spatial derivative in the direction of the outward normal to 3ß. Here, the b' can be
considered as forming a vector of N components, which in general might depend on
x E 3ß, and the coefficients p', which also might depend on x E 3ß, will be
assumed to be positive: p'(x) > 0 (Vx E 3ß, i = 5 + 1,..., A). Lastly, in the case
of unbounded domains, the problem can optionally include a condition at infinity of
the form

(xc) «L = 4».
where • |^ denotes the limit as | x | -> oo, and ¿^ is a constant A-component vector.
In general, when 3ß has several components, then the boundary conditions (Xb)
could be different on each one, and when the domain ß has several "exits to
infinity" (for example a tube), then the condition at infinity (Xc) could be different
for each one of them. In what follows, "problem (X)" means either (Xa), (Xb), (Xc),
or (Xa), (Xb).

In particular, the problem just described includes the case of the so-called
reaction-diffusion equations, which model very interesting phenomena of morpho-
genesis and propagation of waves in chemistry and several fields of biology (see for
instance Nicolis and Prigogine [16] and Murray [15]).

To provide a framework for the mathematical study of these phenomena, it is
interesting to show that the corresponding equations determine semiflows on certain
function spaces, and to verify fundamental properties like the "principle of lin-
earized stability".

Questions of this type have been studied by a number of authors in the general
context of abstract evolution equations of semilinear type; i.e. equations of the form

(II) ù = Au + F(u),
where u is now a variable taking values in a Banach space E, ù denotes the time
derivative of u in the sense ù(t) = E-limh^0h'x(u(t + h) — u(t)), A is a linear
operator on E, with domain D, and F is a nonlinear operator X -* E, where A" is a
Banach space between D and E. The linear operator A will be assumed to be the
generator of a semigroup e7"" on the space E. A basic reference on the study of
abstract evolution equations like (II) from the qualitative-dynamical point of view is
Henry [5]. That author shows that, under certain conditions relative to A and F, the
solutions of (II) define semiflows on some of the fractional power spaces D"
(0 < a < 1), where D" is defined as the domain of the fractional power Ba
(B = col — A, lo sufficiently large) endowed with the graph norm. In §1.5 we collect
the main results in a slightly generalized form, where the semiflow is obtained on
spaces X that are not necessarily of the form Da. The proofs for this general case are
easy generalizations of the ones in the case X — Da; they are included in Mora [14]
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and the proof of Theorem 1.1 can also be found in Weissler [30]. We remark here
that in the general case one needs to assume that the semigroup eAl is analytic and
that it restricts itself to a semigroup on the space X; for the analysis of the stability
of stationary states it is also desirable that the semigroup restricted to X be analytic
too, or at least differentiable.

To apply these results to problems like (X) one is faced with the question of
verifying that strongly elliptic operators with homogeneous boundary conditions are
generators of (analytic) semigroups on suitable function spaces. For example, in the
case of problem (X) we have to consider the matrix operator V -(Kv) with the
homogeneous boundary conditions corresponding to (Xb) (for the moment we shall
forget the condition at infinity). When K is a diagonal matrix, the question of
generating an (analytic) semigroup reduces to the scalar case (N = 1), where it has
been proved on the spaces Lp(Q) (1 <p < oo) (see for example Tanabe [26,§3.8]),
and also on spaces of continuous functions vanishing at infinity (see Stewart
[24,25]). Let us remark that this property is not true in the case of Holder spaces,
where von Wähl [29] and Kielhöfer [8,9] have shown that the corresponding
semigroups are not of class C0. Most of the present paper is spent in showing the
analytic semigroup property on spaces of k times continuously differentiable func-
tions, either vanishing at infinity or not. In general, these results will be obtained for
operators A corresponding to general strongly elliptic systems, in particular includ-
ing the case corresponding to problem (X) (with general nondiagonal K ).

Usually, the (analytic) semigroup property is obtained by working with the
resolvent operator (XI — A)'x, for which one uses the theory of solution of the
corresponding elliptic problem. In this paper we shall use a different approach,
namely to work directly on the evolution operator eA' by using the theory of solution
of the corresponding parabolic problem (some precedent of this approach can be
found in Sobolevskiï [19,20]). In particular, this method is specially suitable for
C*-spaces (with or without the condition of vanishing at infinity). In addition to the
analytic semigroup property, it also provides very useful relations between the
fractional power spaces Da (0 < a =s 1) and the spaces C/i+'7(ß)(0<-n<2w)(2w
is the order of the elliptic operator).

These results will be used to treat semilinear parabolic systems like (X) (and much
more general ones). We shall show that they define semiflows on certain spaces of
the type Ck(£l), and we shall obtain a corresponding version of the principle of
linearized stability. The general class of problems where our results will be applica-
ble is described in §1.3, and the main results of the paper are Theorems 2.4, 2.5, 3.1,
4.1 and 4.2; Corollaries 4.1 and 4.2 illustrate the application of Theorems 4.1 and 4.2
to certain particular cases of problem (X).

1. Some definitions and other preliminaries.
1.1. By a semiflow we mean what is usually called a "local semiflow" or a "local

semidynamical system"; i.e. we restrict our consideration to positive times, and we
allow trajectories going to infinity in a finite time. This situation is really sufficient
for all the essential notions and results of qualitative dynamics to be applicable (see
for example Bhatia and Hájek [3]). Specifically, given a topological space W, by a
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24 XAVIER MORA

semiflow on W we mean a mapping

<t>: r C (R+ Xir) - JF,
(t,u) -<f>,M,

with r of the form {(t, u) \ u E W, t E [0, îo(u))} (0 < u(h)< oo), and satisfying
the following properties (Vw E W):

(a) Semigroup property <f>0u — u, and <f>l+su = <$>,<i>su; this second equality is
understood in the sense that, if one of the sides is defined, then the other is defined
also and the equality holds.

(b) Continuity with respect to the time: the mapping t \-> <j>tu is continuous from
[0, «(h)) to W.

(c) Continuity with respect to the initial state: the mapping ur-xo(u) is lower
semicontinuous from W to R+ or, equivalently, for any / > 0, the set T, = {« | / <
co(u)} is open in W; furthermore, the mapping u r-> <¡>tu is continuous from T, to W
(Vf > 0). '

(d) Maximality: if u(u) < oo, then the orbit of u, i.e. the set {<#>,w | 0 < / < to(u)},
is not contained in any compact subset of W.

In fact one can prove that the maximality property (d) follows automatically from
the other conditions (see Bhatia and Hájek [3,§1.10]). When u(u) — oo for every
u E W, we will say that the semiflow is global. If Wis an open set in a Banach space
and the mappings u h-> <¡>,u are of class C, then the semiflow is said to be of class Cr.

1.2. In what follows, ß denotes a domain (i.e. an open connected set) in the
«-dimensional euclidean space R" (n > 1). In general, both ß and 3ß may be
unbounded. As usual, C(ß) will denote the Banach space consisting of those
functions on ß which are uniformly continuous and bounded, with norm given by

\\u\\c = sup I u(x) I .
xEl!

For integer k > 0, C*(ß) denotes the Banach space of those functions u such that
D"u E C(ß) for | v |< k, with norm given by

||h||c* =   2  \D'u\c.
M«*

Obviously, we have the embeddings C'(ß) =-> C*(ß) for k < /; when ß is bounded
these embeddings are compact. For noninteger a > 0, say a — k + tj (k integer,
0 < T) < 1), C°(ß) will denote the Banach space consisting of those functions
belonging to Ck(Q) and such that the derivatives D"u of order | ^1= £ satisfy a
uniform Holder condition of exponent r/; as usual, the norm in this space is defined
as

ll«llc.= ll«llc*+   2   {D'u)v
\v\=k

where

{»}-,-  SUP
v(x) -v(y)\

1   _ ^ I  V  -   v II
x,y

x¥=y
Q     \x-y\
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We have the obvious embeddings C*+i:(ß) -* Ck+\Q) <=» C*(fi) (k integer > 0,
0 < T) < f < 1); they are compact whenever ß is bounded. We shall also need to use
the embeddings C*+1(Q) ■=* Ck+\ü) (k integer > 0, 0 < tj < 1); when n > 1, to
have these embeddings one needs the domain ß to satisfy the following condition:

(D) There exists a finite constant L such that any two points x, y EÜ can be
joined by a polygonal arc entirely located in ß and of length d < L | x — y | .

In the case where ß is bounded, condition (D) is automatically true if ß is a domain
of class Cx+a.

With respect to the notation of function spaces and norms, we shall use the same
symbols when referring to functions valued in R or R^; the exact meaning will
always be clear from the context. Let the letter Y denote a generic function space; in
the case of A-component functions we understand

N
uEY= u'E Y\l<i<N);        ||«||y=2 H«'lly,

i=)
where on the right-hand sides, Y stands for the corresponding space of scalar
functions.

1.3. General problem. In fact, our treatment will apply to problems much more
general than (X). Specifically, we shall cover problems of the following general form:

(la)     D,u - - &(x, Dx)u +f(x; u, Dxu,.. .,Dxu,v),

(lb)    D,v = g{x;u,Dxu,...,Dxu,v),

(Ic)     ®(x,Dx)u\ia = 0,
(Id)   [«L = o],

where u, v are vectors with N and N' components, respectively (N > 0, N' > 0),
functions of x E ß and t E R, and the square brackets are used to indicate optional
conditions. Here, ß, é£, ÍB are described by the following conditions:

(LI) ß is a domain in R" (n > 1); if n > 1 we assume that ß is uniformly of class
Cx+a for some a > 0 (see, for example, Ladyzhenskaya et al. [12, Chapter IV, §4]),
and that it satisfies condition (D) of §1.2.

(L2) & is given by an A X A matrix of differential operators of order <2m. The
elements of the matrix 6£ will be denoted by éE(.., and the coefficients of the
differential operator 6B(.. will be denoted by aijr (0 <| v | < 2m), i.e.

&tj(x,Dx)=    2   aijv{x)D;.
\v\*i2m

& is assumed to be a strongly elliptic operator in the sense of Petrovskii and Vishik
(see, for example, Ladyzhenskaya et al. [12, Chapter VII, §8, Definition 7]), and both
the ellipticity and the strong ellipticity are assumed to be uniform with respect to
x Eß.

(L3) % is given by an mN X N matrix of differential operators, i.e. equation (Ic)
represents a set of mN boundary conditions ^>¡(x, Dx)u |3a = 0 (1 < /' < »lA") where
the ©, denote the rows of %. The ¡th row consists of operators ÍB,.. of order less than
or equal to a certain integer w-, and the numbers w, are assumed to be in the
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26 XAVIER MORA

interval 0 < m, < 2m — 1. The coefficients of the operator ©,.. will be denoted by
*y,(0<|i»|<inl),i.e.

%j(x,Dx)=   S   bIJP(x)Dl

% is assumed to satisfy the parabolic complementing condition (with respect to tí
and 3ß) (see, for example, Solonnikov [21, §1] or Ladyzhenskaya et al. [12, Chapter
VII, §9]).

(L45) The boundary 3ß, and the coefficients aijv, bi]V satisfy the following
smoothness conditions:

3ß is uniformly of class cs+2m+a (if n > 1);
ay, E Ci+a(ß);     _
bjjv E Cs+2m~m'+a(dtt) (if n > 1),where s is a nonnegative integer, that we shall

fix afterwards, and a is some real number in the interval 0 < a < 1.
On the other hand, / and g stand for nonlinear functions of v, u, and the spatial

derivatives Dxu of order | v\*z I, where 0 =s / =s 2m — 1; the concrete conditions
assumed on / and g will be described in §4. We shall refer to (lb) as boundary
conditions, to (Ic) as conditions at infinity, and to both of them as accessory
conditions. The condition at infinity is optional (for unbounded ß), and when
included it has to be understood in the following sense:

sup    |«'(x)|->0    as k — oo        (1</<A/)
lEli-S,

where Bk denotes the ball of radius k, and k runs over the positive integers.
Although problem (I) considers only homogeneous accessory conditions, in the

applications it will frequently come from an analogous problem with nonhomoge-
neous accessory conditions; namely with

(IC) »(*, Dx)u |ao = b(x),
(Id') ["L = *J
substituted for (Ic), (Id). Here, b is an wA-vector that in general could depend on
x E 3ß, and bx is a constant A-vector (more generally, the boundary conditions
could be different on each connected component of 3ß, and the conditions at
infinity could be different on every "exit to infinity" of ß). The reduction of the
nonhomogeneous problem to an analogous homogeneous one would involve a mere
change of variable w(new) = n(old) — uh, where uh is any sufficiently smooth
function on ß satisfying (Ic'), (Id').

In the particular case of problem (X),

&{x, Dx) = -V • (A"(jc)v)    and   ®(jc, Dx) = Q{v(x) ■ v) + P(x),

where

/      (5) (N-S)     \
ß = diag 0,..., 0,1 ,...,   1
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SEMILINEAR PARABOLIC PROBLEMS 27

and

/       (S) (N-S) \
?(*)=diag|l,..., l,ps+x(x),..., pN(x)j

(therefore, m — \, m¡ = 0 for i — 1,2,... ,S, and m, = 1 for i — S + 1,... ,N). For
this particular case, condition (L2) is ensured if K satisfies the following condition
(M2), condition (L3) is satisfied automatically, and condition (L45) reduces to (M4f)
below:

(M2) The matrix K is positive definite, uniformly with respect to x; i.e. there exists
a constant k > 0 such that

(K{x)t,t)>K\i\2    (V|ER",V;cEß);

furthermore, there exist k,, k2 > 0 such that

k, <detÄ"(x) <k2    (VxEß).

(M4J The boundary 3ß and the coefficients kij(x), p'(x) satisfy the following
smoothness conditions:

3ß is uniformly of class Cs+2+a (if n > 1);
k,JEC5+x+a(Û);

pi eci+l+°(3ß)(if«> 1).
1.4. Some definitions and facts from semigroup theory. We collect here some

definitions and facts that we need to use from semigroup theory. Good explanations
of this theory can be found, for example, in Kreïn [11], Pazy [17], or Tanabe [26].

Given a Banach space E, by a semigroup on E we shall understand a family tp,
(t E R+ ) of bounded linear operators satisfying the following properties:

(a) <f>0 = /, <t>l+s = <í>,<k = <t>s<¡>,;
(b) (¡>,u -* u as t -» 0 (Vm E E).
It follows that the operators <f>, can always be bounded in the following way:

H,\\<Mea'    (V/>0),

where w E R and M > 1. The infimum of the co for which a bound of this type is
true is called the order of growth of the semigroup; we shall usually denote it by w0.

Let us consider a linear evolution equation in a Banach space; i.e. an equation of
the form

(1.1) « = 31«
where the unknown m is a function from (a subset of) R+ to a Banach space E, ù
denotes its derivative with respect to the time (as a Banach space valued function),
and 21 is a linear operator on E which we shall assume has a dense domain 6D.
Naturally, a solution of (1.1) in a certain interval J means a curve u: J -> E such
that, for every t E J, u(t) E 6Ï), u is differentiable at time t, and it satisfies equation
(1.1). Following Kreïn [11, Chapter I], we shall say that the Cauchy problem for (1.1)
is uniformly correctly posed if there exists some T > 0 such that, for every w0 E <5D,
(1.1) has a unique solution in [0, T] with initial state u0 (i.e. satisfying w(0) = w0),
and furthermore the solution depends continuously on the initial state in the
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following sense: if u0n -» 0 then the corresponding solutions w„ satisfy u„(t) -> 0
(0 < t < T) with the convergence being uniform with respect to t. When the Cauchy
problem for (1.1) is uniformly correctly posed, the operators </>,: u0 i-» u(t) can be
extended uniquely to continuous operators defined on the whole space E, and so
extended, they constitute a semigroup on E.

The generator of a semigroup </>, is defined as the linear operator A given by

Au =lim — (cp.u — u)
/-o f

with the domain D consisting of the u E E for which this limit exists. The generator
is always a closed and densely defined operator. We shall often use the exponential
notation eAl to denote a semigroup whose generator is the operator A. A basic
property of the generator is that, for u E D, the curves t h» <#>,« are solutions of the
differential equation

(1.2) ù = Au
in any interval of the form [0, T]. Furthermore, for fixed u E D, <#>,» is the only
solution of this equation with initial state u. Therefore, the Cauchy problem for
equation (1.2) is uniformly correctly posed. If <j>, is the semigroup determined by the
evolution equation (1.1), where we suppose that the corresponding Cauchy problem
is uniformly correctly posed, then the generator A of the semigroup is exactly the
closure of the operator 2Í (Kreïn [11, Chapter I, Theorem 2.6]).

A semigroup eAt is called differentiable when Vw E E, the mapping 1i-> eA'u is
differentiable in the open interval (0, oo); for this it suffices that eA'u E D holds for
every u E E and all t > 0, where D denotes the domain of A ; in that case, the
derivative is necessarily given by D,eA'u = AeA'u.

An important class of semigroups are the so-called analytic semigroups. A
semigroup eAt is analytic if and only if it is differentiable and the derivative satisfies
a bound of the form

(1.3) \\DteA'u\\E^Mxt-xe°"\\u\\E   (V/>0),

where w£R and A/, > 0.

Lemma 1.1. In order that a semigroup eAt be analytic it suffices that it be
differentiable and that the derivative satisfies a bound of the form

(1.4) IIDteA,u||E « Crl||m||¡¡   (VíE(0,7])

for some T > 0.    D

Proof. We shall show that (1.4) implies (1.3). This can be seen by using the
semigroup property on the semigroup

(1.5) fcse-V",
where <o E R will be taken large enough so that 4>t has strictly negative order of
growth, i.e. 3£ > 0 such that

(1.6) lit//,II ̂Me~il    (Vr>0).
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Differentiating relation (1.5)

(1.7) t,'u = -to4i,u + e-"'DteA,u,

and using (1.4) we obtain that

(1.8) h;u\\e^ctx\\u\\e  (v/E(o,r]).

This relation can be extended to an analogous one for t E (0, oo) by using the
semigroup property; this property implies that i//+J = tyips = ^$n so that

(r + s)V+su = rV(^u) + s^(xpru).

From here, application of (1.8) and (1.6) gives

\\(r + s)y+su\\E<C'(Me-(s + M<Tfr)ll"ll£.

Restricting r and s to be r, s < T/2, and taking w large enough so that
Mexp(-£r/2) <i,we obtain that

U'tu\\E<C'r]||«||E  (ViE(o,2r]),
where the constant C is the same as in (1.8). By induction it follows that

||#«||£< C'r1 II «Il £   (VrE(0,oo))
and, going back to eAl through (1.7),

\\DleA'u\\E<M}rleu'\\u\\E   (V? E (0, oo)).    Q.E.D.

As is well known, analytic semigroups can also be characterized in terms of their
generator A; for example, given a closed and densely defined operator ^4, it is the
generator of an analytic semigroup if and only if the resolvent set of A includes a
half-plane Re À > to (lo E R), where the resolvent operator satisfies an estimate of
the form ||(\7 - A)~x || < C/(l + | À - u \).

In connection with semilinear equations like (II), an important role is played by
the so-called fractional power spaces associated to the semigroup eAt. These spaces,
which we shall denote as Da, depend on a continuous parameter a, and for a
running from 0 to 1 they form a continuous scale of Banach spaces that goes from
D° = E to Dx = D, and such that, for a< ß, Dß is densely embedded in Da. For
a s* 0, the spaces Da are defined as the domains of the operators B", where
B = ul — A and <o is a real number bigger that <o0 (w0: the order of growth of the
semigroup eA'); the norm in Da is given by

\\u\\D« = \\Bau\\E

(the norms corresponding to different values of w turn out to be equivalent). The
fractional powers Ba can be defined in the following way: First one defines the
negative fractional powers B~a (a > 0) by the formula

1        r00
Bau=——-\   sa~xe-Bsuds.

T(a) J0

Of course, for a = 0 we put B° = I. The operators B~a are bounded, they satisfy
B-(«+ß) = ß-aB'ß (Va, ß > 0), and when a is an integer, say a = n, then Ba
coincides with B", understood in the sense of the nth power of the inverse
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operator of B; furthermore, the operators B~a (a 3= 0) commute with both e~Bl and
(À/ + B)~x. Then one defines the positive fractional powers Ba (a s* 0) as the
inverses of B~a, with domain given by the range of B~a:

Ba=(B-a)'\    D(Ba)=R{B-a)    (Va>0).

From these definitions it follows that the spaces Da (a s* 0) satisfy the properties
already mentioned. Furthermore, from the commutability of B" with eAl and A, it
follows easily that the semigroup eAl restricts to a semigroup on each of the spaces
D" (a > 0), and if the semigroup on E is analytic then the ones on Da (a 3* 0) have
the same character.

When the semigroup eAl is analytic, one has the crucial property

\\eA'\\E^D°<Marae"'    (Vr>0).

Lemma 1.2. Let eAl be a semigroup on a Banach space E. In order that Da =-> X ( X
being a Banach space), it suffices that eA'u E X (Vu E E, V/ > 0) with a bound of the
form

(1.9) II eA'u || x < Ct-ßeu' Il u II E    (Vi > 0)
for some ß < a.    D

Proof. Let B = Col — A, where Co > to. Let v E Da, and let w E E be such that
v — B"w. From the definitions it follows that

1 /*3C
-^'""e^wds.

T(a) J0

From the hypothesis of the lemma we know that eAsw E X (Vi > 0), and using the
bound (1.9) on (1.10) we obtain that

MIx^TTH /   s(a-/,,_1e-(w_u>,ds||w||£ *£C'IMI,.,
1(a) ^o

i.e. the integral (1.10) converges in A, and ||t>|| x < C'IIüH^..    Q.E.D.

Lemma 1.3. Let eAt be a semigroup on a Banach space E. To have a bound of the
form (1.9), it suffices to have it on a bounded interval of the form (0, T]\ i.e. to have

(1.11) Il eA'u II x ^CrB II u || E   (VrE(0, f\)
for some T > 0.    D

Proof. Let \¡/t be defined as in the proof of Lemma 1.1. From (1.11) we obtain that

II t,u || x < crB II u II £   (v/e(o, r]).
Consider now the expression (r + s)B\pr+su; using the fact that

(r + s)ß<K(ß)(rB + sB)        (K(ß) = Iif0*£ß« 1, K{ß) = 2B~l if ß > l),

we have that

\\(r + s)ä^+su\\x<K(ß)(\\r%+su\\x+\\s%+su\\x)

< K(ß)C(Hsu\\E + Hru\\E)

< K{ß)C{Me~is + Me-tr)\\u\\E.
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Taking r, s < T/2, and w large enough so that A/exp(-£r/2) < (2K(ß)) ', we
obtain that

|| +,uIIx< CrBIIuII£    (V/E(0,2r]).
Proceeding by induction, this estimate can be extended to hold V/ E (0, oo), from
which follows the estimate (1.9) for eAt.   Q.E.D.

1.5. Basic results on abstract evolution equations of semilinear type. Let us consider
the abstract equation
(II) ù = Au + F(u).

In order to obtain a semiflow on the space X, one needs the following hypotheses:
(HI) The linear operator A is the generator of an analytic semigroup eA' on the

Banach space E.
(H2) A is a Banach space between D and E, i.e. satisfying D ■*» A =* £, and it is

such that the semigroup eAt satisfies a property of the form

\\eA'u\\x<Craea'\\u\\E   (Vi>0,Vu E E)

for some a in the interval 0 < a < 1.
(H3) The semigroup eAl restricts to a semigroup on the space X.
(H4) The nonlinear operator F maps X to £, and it is Lipschitz on bounded sets

from X to E.
Remarks. 1. From Lemma 1.2 it follows that hypothesis (H2) is equivalent to the

following:
(H2') A" is a Banach space such that DB =» A ' =» E for some ß in the interval

0<ß< 1.
2. In the situation A ■=■» E, to verify hypothesis (H3) it suffices to verify the

following two conditions:
(H3a) For every t =s 0, there exists an M such that \\eA' || x^x ^ M.
(H3b) For every u E X, || e-4'« - u || * -> 0 as t -> 0.
3. In particular, both hypotheses (H2) and (H3) are automatically satisfied in the

case X = D" (0 < a < 1). In that case, properties (H3a) and (H3b) follow from the
commutability of B" with eAl (B = toi — A, to large enough).

Theorem 1.1. Under hypotheses (H1)-(H4), the differential equation (II) determines
a semiflow tpt on X. This semiflow satisfies the following maximal property (stronger
than property (a) of § 1.1 ) :

to(u) < oo =>   lim   WfyuWx= oo.
f->u(u)

If the operator A has compact resolvent, then one has also the compactness property:

if to(u) = oo and the orbit {(¡>tu \ 0 *£ t < oo} is bounded, then
it is contained in a compact set of X.

If F is of class C (1 *£fss oo)or analytic from X to E, then the semiflow on X is of
the same class.    D

Next we state the main result on the stability of a stationary state u0. For this we
shall assume that

(H5) F is of class Cx from X to E,
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and we shall consider the linearized operator L = A + DF(u0). This operator will
always be the generator of an analytic semigroup on E since the operator DF(u0) is
bounded from X to E, and therefore we have

\\DF(u0)eA'u\\E*iC\\eA'u\\x<C'\\eA'u\\D. < C"raeu'Il h II £;

from here, the claim follows by applying Theorems 13.4.1 and 13.4.2 of Hille and
Phillips [7]. We shall need to assume also that

(H6) the semigroup eu restricts to a differentiable semigroup on X?
In that case, the generator of the semigroup on X must coincide with the

restriction of L to A" (i.e. an operator with domain {u E X\ Lu E X}); this operator
will be denoted by Lx. In the following, 2£, 2^ denote the spectra of L and Lx,
respectively, and a£, ax denote the quantities sup Re 2£ and sup Re 2^.

Remarks. 4. In the particular case X = Da, the hypothesis (H6) is automatically
satisfied, and one has also 2^ = 2£ (and therefore ax — aE).

5. Property 2^ = 2£ will also be true when A has a compact resolvent, which in
the applications will occur if ß is a bounded domain and N' = 0.

6. In general, even when ß is not bounded, in many practical cases it happens that
the point spectrum is the same on both E and X, and this is where sup Re 2 is
attained; in this case we also have ax = aE.

Theorem 1.2. Let us consider equation (II) under hypotheses (H1)-(H4). Let u0 be a
stationary state, and assume that hypotheses (H5) and (H6) are also satisfied. If
ax < 0, then u0 is asymptotically stable in the semiflow on X. If ax > 0, and for some
p > 1, \\F(u0 + z) — DF(u0)z\\ E < 0(||z 11$.) as z -» 0, then u0 is unstable.

We remark that the instability part of this theorem allows the existence of a
continuous spectrum crossing the imaginary axis.

2. Linear problem.
2.1. Let us consider the linear problem corresponding to (I), i.e.

(IL) D,u = - tl(x, Dx)u,   %(x,Dx)u\dQ = 0,    [«|oo = 0].

We assume that this problem satisfies conditions (L1)-(L3) and (L4S) of §1.3, where
s is a nonnegative integer to be fixed later. Based on the existing theory about the
classical solvability of this problem, we shall show that its solutions determine a
semigroup on certain closed subspaces of Ck(tt), where A: is a nonnegative integer.
At least for 0 < k < 2m — 1, these closed subspaces, which we shall denote by
C*(ß), are essentially completions of sets of functions satisfying the accessory
conditions.

2After this paper was written, I have been able to prove that hypothesis (H6) is already implied by
(H1)-(H5).
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In general, for every real number a > 0, we shall define C°(ß) as the subspace of
C°(ß) given by

C"(ß) = (w E C(Q) | for every integer r in the

(2.1) interval 0 ^ r ^ a/2m, &ru satisfies
all the accessory conditions of order < a — 2mr).

Another way to say this is the following: let us consider the infinite collection of
conditions:

(2.2) %(x,Dx)[&(x,Dx)]ru\ä^0       (Ki<mN,0<r<co),

(2.3) [[â(x,Dx)]ru\oo = 0(0^r<oo)];

then (2.1) amounts to saying

(2.4) C°(ß) = {« E C(ñ) | u satisfies the conditions of
order < a in (2.2) and (2.3)}.

In particular, if the problem does not include any condition at infinity and the
orders of the boundary conditions satisfy mi > a for all i, then C°(ß) = C(ß). In
fact, with respect to the possible condition at infinity, if we assume that the
coefficients of & are bounded (which, in particular, will be true if condition (L40) is
satisfied), then (2.1) or (2.4) is equivalent to simply saying

C"(ß) = (m E C(ß) I u satisfies the conditions of(2.5) v   y     i v   /i
order < a in (2.2), and u ¡^ = 0}

or

C°(ß) = {« E C°(ß) | u satisfies the conditions of(2.6) l "
order < a in (2.2), and/)" u \ x = 0 for 0 <| v |< a).

Obviously, (2.6) =» (2.4) => (2.5); the fact that (2.5) => (2.6) follows from the follow-
ing lemma.

Lemma 2.1. Assuming that the domain ß is uniformly of class Cx+a, if u E C(ß)
and u \x — 0, then D"u \x = 0 for any v such that \v\<a.    D

Proof. Obviously it suffices to prove this for a an integer, and in particular for
a = 1; from this case the general result follows by induction. Recall that u E C'(ß)
means, among other things, that the partial derivatives Dxu are uniformly continu-
ous on ß; we shall see that in that situation Dx u \x ¥^ 0 (for some /') would imply
" I oo ̂  0> an(Itms will Prove the lemma. Relation Dxu \x ¥=0 means that

(2.7) 3e > 0 such that VA/ > 0 3x E ß such that

\x\>M   and   \Dxu(x)\>e.

On the other hand, the uniform continuity of Dx u implies that 35 > 0 such that

(2.8) v E B„(x) n ß -| D.u(x) - Dxu(y) |< e/2,
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where Bs(x) denotes the ball Bs(x) = {vER"||j-jc|<ô}. From (2.7) and (2.8) it
follows that

(2.9) y E Bs(x) D ß °»\Dxu(y) |> e/2.

Since the domain ß is assumed to be uniformly of class C+a, it is then ensured that
if we take 8 less than a certain 80 > 0, the set Bs(x) D ß contains a closed segment
of length 68 in the direction of the z'th axis (0 a fixed real number) (see, for instance,
Miranda [13, §33]). Let [z,, z2] denote this segment; using the mean value theorem
and the bound (2.9), we obtain that | u(zx) — u(z2) |> {e08. From z, and z2, let us
choose the point where | u( ■ ) | is larger and call it z; certainly this point will satisfy
| u(z) |> \e68. Therefore, defining e' = e68/4, and M' = M — 8, we have obtained
that

3e' > 0 such that VA/' > 0 3z E ß such that
| z |> A/'    and    | u(z) |> e',

which implies that u \x ¥= 0.    Q.E.D.
Obviously, C"(ß) is a closed subspace of Ca(ß), and assuming condition (D) of

§1.2, we have the embeddings CT(ß) =» C°(ß) (a < t). At least in the most fre-
quently encountered cases it happens that, for k integer and a > k, C"(ß) is dense in
Ck(ü) (see §3). In particular, for k an integer in the interval 0 «£ k < 2m — 1, the
space ¿'''(ß) can be thought of as the completion in Ck(Q) of a set of smooth
functions satisfying all the accessory conditions, for example the set C2m~'(ß)- To
better handle the infinite collection of conditions (2.2), it will be useful to rewrite it
as

(2.10) %(x, Dx)u |3a = 0       (1 </<<»),

where, for/ = i + Nmr(\ < i < m, r 3= 0), we define

%j(x, Dx) =%(x, Dx)[&(x, Dx)]r, m] = ml + 2mr.

(m is the order of the differential operator %X As a last remark concerning the
definition of the spaces Ca(ß), let us say that the conditions required for a function
m £ C(ß) to belong to C"(ß) are what in the theory of parabolic equations are
called "compatibility conditions of order a ".

For every nonnegative integer k, we shall reformulate problem (IL) as an abstract
equation to Ck(ti):

(2.1LJ ú = %ku.
Precisely, we shall define 2Í¿ as the operator on C^ß) given by the differential
operator & with domain 6Ùk = Ck+2m+a(Ql) (a a fixed real number in the interval
0 < a < 1). For this we shall assume that the smoothness condition (L^) is satisfied
(with that value of a); then it is clearly true that & takes Ck+2m+a(Q) to Ck(Ü). We
shall also assume that the domain ^ is dense in Ck($l):

(L5k) Ck+2m+a(ti) is dense in Ck(ti).
In §3 this condition is shown to hold in the most frequently encountered cases, in
particular those appearing in connection with problem (X). According to what we
mentioned at the beginning of §1.4, assuming that <s^k is dense in ¿''"(ß), to obtain
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the semigroup generating property on C*(ß) it would suffice to show that the
Cauchy problem for (2.1 \k) is uniformly correctly posed, and in that case, the
generator of the semigroup, which we shall denote by Ak, is exactly the closure of the
operator 91 k. This is essentially the way we shall obtain our semigroup on the spaces
Ck(ü). The semigroup on the space C*(fi) will be denoted by <pk,, or also eAk', with
the abbreviations </>0_, = <f>, and A0 = A.

For the moment we shall consider the case where the problem does not include
any condition at infinity. The case where it includes such a condition will be taken
care of a posteriori by showing that the semigroups obtained preserve the property
of functions vanishing at infinity.

2.2. For the general situation that we are considering, a basic work on the classical
solvability of problem (IL) is the one by Solonnikov [21]. This author obtains the
following result of existence and uniqueness:

Theorem 2.1 (Solonnikov [21, §19, Theorem 4.9]). Let us consider problem (IL)
without the condition at infinity and assume conditions (L1)-(L3) and (L4S), where s is
any nonnegative integer. For any T > 0 and every initial state u0 belonging to
°DS = CJ + 2m+a(ß), problem (IL) with the initial condition u |f=0 = u0 has a unique
solution u in the class Hs + 2m+a(QT) defined below. This solution satisfies an estimate
of the form

(2.12) ||«||/ï.+i.+.<C||m0||c.+î-+.,
where ||m||h,+2«,+« denotes the norm in the Banach space Hs+2m+a(QT), and the
constant C does not depend on u0.    D

For a > 0, H°(QT) denotes the Banach space consisting of the functions u,
defined on QT = Ü X (0, T), whose derivatives DfD^u of order 2m\i + \ v |< a are
uniformly continuous, and such that the following expression, which defines the
norm, is finite:

(2.13) H«H#. =M.+ M+{«}'..
where

(2.14) [«]„= 2 sup   \DfDy(x,t)\ ,
T

D?P;u{x, 0 - DfD'My, t)

0^2mß + \v\^[a] 0<t<T

(2.15) {u)xa=        2 sup
la-  a

2mii + \v\=[o] 0<t<T \X       yx, y e £2
x=/=v

(unless a is integer, in which case {u)xa = 0),

DfDvxu(x, s) - DfDvxu{x, t)
(2.16)      {uYa= 2 «Up ,|(a-2m)1-H>/2»

o-2m<2mii + \v\<a 0<t<s<T \S        t\a

In particular, the functions u belonging to H°(QT) have a unique continuous
extension to gr = i2X [0, T], for which the derivatives DfDxu of order 2m\i +
| v | < a exist and are continuous on QT. Precisely, it is in the sense of this extension
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that the u of Theorem 2.1 satisfies the boundary and initial conditions. The spaces
H°(QT) are denoted C°ja/2m(QT) by Solonnikov [21]; the present notation is taken
from Belonosov [1].

Let us look at the consequences of this result in connection with the question of
problem (IL) determining a semigroup on a suitable space. In the following, the
solution starting from the initial state w will be the denoted by </>,w.

From the definition of ||t/||w»+2»,+«, more exactly the terms of [u]s+2m+a and
{u}*+2m+a corresponding to /x = 0, we see that (2.12) implies that

(2.17)    ||^w||c,+2,„+. < CIIwile.«-.   (Vr E [0, T], Vw E Cs+2m+a(Ü)),
i.e. the operators <£, are bounded as operators on Ci+2m+a(ß), and the bound is
uniform on intervals of the form [0, T],

On the other hand, Theorem 2.1 is not sufficient to ensure that the mapping
t (-> tf>,w be continuous from [0, T] to Cs+2m+a(Q) (in norm); however, we have the
following property:

(->   9.\        ^or every w G Ci+2m+a(ß), the mapping / h» <¡>tw is continu-
'        ous from [0, T) to Ci+2m(ß).

This follows from the boundedness of [u]s+2m+a and [u}'s+2m+a, more exactly
their terms corresponding to ju = 1 and jn = 0.

In fact, from these estimates we can see that:

,       .        For every w E Cs+2m+a(Q), the mapping 11-> <¡>,w is differen-

tiable from the closed interval [0, T] to C*(ß).

To see that the differentiability is true in the sense of a Banach space valued
function, we have to see that, for |p|<í, the difference D,Dxu(t, s)—
j,[Dxu(t + h, x) — Dxu(t, x)] converges uniformly to zero as h — 0; this can be
seen by using the mean value theorem:

D,D*xu(t, x) - í[d;«(í + *,*)- Drxu{t, x)]

= D,Dy(t, x) - D,D'xu(t + i|(x), x),

where 0 < -q(x) < h (Vx E ß), and then using the boundedness of [u]s+2m+a and
{uYs+2m+a (more exactly their terms corresponding to n = 2 and jti = 1, respectively);
in this way we obtain that, for h small enough,

| D,Dvxu(t, x) - D,Dy(t + tj(jc), x) |«c C | tj(jc) \a/2m < Cha/2m   (Vx E Q).

2.3. In order to have the uniform correctness of the Cauchy problem for equation
(2.1 ls) in the space C^ß), it only remains to verify the uniform boundedness of the
operators <f>t as operators on this space. This property can be obtained by using the
known bounds for the Green's matrix of problem (IL). We recall that the Green's
matrix G(t, x; r, £), defined for 0 < t < t < T and x, | E ß, is such that, given an
initial state w, the corresponding solution of problem (IL) is given by

(2.20) [*,*](*)= [G(t,x\0,t)w(t)dt.

The following theorem collects the basic results giving bounds on G(t, x; r, |) and
its derivatives D,DxG(t, x; t, |) (the norm of a matrix H is denoted here by | H\).
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Theorem 2.2 (ÉIdel'man and Ivasishen [4]; see also Solonnikov [22]). Let us
consider problem (IL) with conditions (L1)-(L3) and (L4S), where s is any nonnegative
integer. The Green's matrix of this problem has the derivatives DfD"xG for 0 < 2 mil +
| v |< 5 + 2m, and these derivatives satisfy the following bounds:

1. ForO < 2mii + | v\< s + 2m,

x — t |2m/(2m-l)
(2.21) I D,"D;G(/, x; t, É) |< C(r - Ty<"+2"«,+M>/2'"«p

2. For 2mii + | v | = 5 + 2m, and y E ß,

(2.22) | D¡>D'xG(t, x; r, £) - />,*/>;<?(/, v; r, O |

(t~ vl/(2m-l)

C\x~y\a(t-r) -(n + s + 2m + a)/2m exp
|2 _ g|2m/(2m-l)

(i-T)1/(2m-,)

where | z — £ |
3. For í + 1

minfljc -£| ,|y-£|).
s 2m/i + | j>|< s + 2w, a«i/r'

(2.23)

(T,/),

D?D"xG(t, x; t, O - D?DvxG(t', x; r, ¿) |
^ -^/    _    A(s+2m+a-2m)i-|»|)/2ffi/   ,

_ £ |2m/(2m-l)
Xexp

-(»+i+2m+û)/2tti

(í-T)
l/(2m-l) D

Let us consider the consequences of these bounds when they are applied to (2.20).
For this, we note that the integral with respect to £ of the right-hand sides of
(2.21)-(2.23) is bounded, specifically

Iexp
_ ¿|2m/(2m-l)

-c-
a

(t-r) l/(2m-l)
</£<C(í-t) íl/2 m

For the moment we shall consider the consequences of Theorem 2.2 in the case
5 = 0.

In this case, from the bound (2.21) with /x = 0, | v | = 0, one obtains that

(2.24) H*,iHlc<ciMlc   (ViE[o,r]),
i.e. the operators </>, are bounded from C(ß) to C(ß). With this, we complete the
conditions that are needed to ensure that the Cauchy problem for equation (2.110) is
uniformly correctly posed in the space C(ß): Theorem 2.1 (with s — 0) ensures the
existence and uniqueness of a solution of (IL) for every initial state w E ^ =
C2m+a(!î), and in (2.19) we have seen that this solution is continuously differentia-
ble from [0, T] to C(ß); therefore, for w £ ^ this solution of (IL) is also a solution
of the abstract equation (2.110) on [0, T]\ finally, (2.24) gives the continuous
dependence on the initial state uniformly on [0, T], In consequence, assuming that
condition (L50) holds, the operators <i>„ initially defined only on ^q, can be extended
uniquely to a semigroup on C(ß). This semigroup will be denoted by <i>r, or also eAl,
where A stands for the corresponding generator.
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On the other hand, from the bound (2.21) with 11 = 1, | v \ = 0, we obtain that

(2.25) IIDt<¡>,w||c <Cr* ||w||c   (V/E(0, T]),
where the time derivative is understood as applied to a function valued in the
Banach space C(ß). From the same bound (2.21), but now with ii = 0 and | v |< q,
one obtains an estimate of the following form for every integer q in the interval
0 « <7=s2m:

(2.26) ||<|>fiv||c, <Cr*/2m||w|lc   (v/e(o,r]).
An analogous property, obtained from the bounds (2.21) and (2.22) together is

(2.27) ||<i,,w||c2m+„^Cr(2m+Q>/2m||w||c    (V/E(0,T]).

Initially, properties (2.25)-(2.27) are obtained only for w EtyQ, which is the set of
possible initial states for Theorem 2.1; however, as ^ is assumed to be dense in
C(ß), these properties can be extended to the whole semigroup on C(ß). This can be
seen for example in the following way: according to (2.24)-(2.27), for every
w0 E ^q, the corresponding solution of Theorem 2.1 satisfies w(-,/)E6D0 =
C2m+a(ß) and

(2.28)
2 m

t^2m+a^2m\\u(-, t)\\C2„,+. + t\\D,u(-, t)\\c +   2 tq/2m\\u(-,t)\\c.sup
0<r<7~

c\ *o"c-

Therefore, the linear mapping *%; u0 h» u is bounded from C(ß) to the Banach space

9e = c([o,r],c(ß)) n c((o, r],c2m+a(ß)) n c'((o, r],c(ß))
with norm II m II ̂ defined by the left-hand side of (2.28). As ^ is assumed to be
dense in C(ß), the linear operator '%: u0 h-> u, ^ — 9C can be extended uniquely and
with the same bound to the whole space C(ß). In this way, the operators (/>, are
extended to the whole C(ß) preserving properties (2.24)-(2.27). Furthermore, by the
uniqueness of the extension obtained previously from the uniform correctness of the
abstract Cauchy problem, it follows that the extension just obtained must coincide
with that one.

As we have seen in Lemma 1.1, property (2.25) is sufficient to establish the
analyticity of the semigroup on C(ß). On the other hand, from (2.26) and (2.27) we
can derive that, with respect to the semigroup obtained on C(ß), one has the
properties:

(2.29) DB^Cq(ü),   Vß>q/2m       (0<q<2m),
(2.30) DB^C2m+a{ti),   V/3>(2m + a)/2m.

To derive (2.29) and (2.30) from (2.26) and (2.27), we use Lemma 1.3 and 1.2 (the
condition <t>tw E C2m+a(ti) (Vi > 0, Vw E C(ß)), which is needed to apply to
Lemma 1.2, follows from the fact that the mapping t h* <¡>tw belongs to the space 90).

2.4. The bounds on the Green's matrix can also be used to obtain the uniform
boundedness of the operators </>, in the Ck norms (Ac > 0), but in the general case this
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requires one to work at the level of the proof of Theorem 2.1. This work has been
done by Belonosov [1], who obtains the result stated below; a similar result is
obtained also by Solonnikov and Khachatryan [23].

Theorem 2.3 (Belonosov [1, §4]). Let us consider problem (IL) subject to conditions
(LI)-(L3) and (L4S), where s is any nonnegative integer. Let p be any real number in
the interval 0 < p < s + 2m + a. For any T > 0, and every initial state u0 belonging
to Cp(ß), problem (IL) with the initial condition u \l=0 = u0 has a unique solution in
the class Hp + 2m+a(QT) defined below. This solution satisfies a bound of the form

(2.31) \\u\\Hs+2m+.^C\\u0\\Cp,

where \\u\\ w.,+2m+« denotes the norm in the Banach space Hp + 2m + a(QT), and the
constant C does not depend on u0.    D

For 0 < p *£ a, the Banach space H°(QT) consists of those functions belonging to
H"(Qr) and such that the following expression, which defines the norm in H°(QT),
is finite:

(2-32) || u || ̂  = || « || „, + [«]„.„ + {«};,„ + «,„,

where

(2.33)     [«]„.„ = 2 sup   [t*m*+H->)'2m\D?Dx-u{x,t)\\,

nW2JD?D>(x,t)-D?D;u(y,t)

p<2mji + |i'|<[o] 0<(<r

(2.34)     {u}l„=        2 sup
2mn+\v\ = [o] 0<f<Tx, ven

r
\x-y\°~l°]

(unless a is integer, in which case {«}* „ = 0),

(2-35)
D?Dvxu(x, s) - D*D*xu(x, t)

{"}p.o= 2 suP
a-2m<2ma + M<a 0<t<s<T

1 ' xlEtt

f(o-p)/2ml
\S —  t |(°-2""/i-|''l)/2'"

and II ii || WP is defined in (2.13). From the definition it follows that H°(QT) =*
HP(QT) -♦ Hp(QTl and, in particular, H°a(QT) = H°(QT) (equivalent norms). One
also has the embeddings H°'(QT) =» H°(QT) (a' > a), and H¡,(QT) =* H¡(QT)
(P'>P)-

We shall use Theorem 2.3 with p being an integer k > 0. For such k, <f>k , will
denote the mapping u0 k> u( ■, i), C*(fi") -» C*(ß) determined by Theorem 2.3 with
p = k. It is easily verified that the mappings <f>tj, obtained for different values of s
and a are the same; this follows from the embedding Hk'+2m+a'(QT) =*
Hsk2+2m+"2(QT) (sx + a, > s2 + a2), and the uniqueness of the solution of Theorem
2.3.

From the fact that Hsk+2m+a(QT) =* Hk(QT), we see that Theorem 2.3 implies the
following facts: First, from the definition of || u || Hk, we see that (2.31) implies that

(2.36) ll$fcilw||c*<C|Mlc*   (Vi£[0, r],Vwec*(Q)).
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Secondly, u E Hk(QT) implies that the derivatives D"u (\v\<,k) are uniformly
continuous in QT, which implies that

,. „,.        For every w £ Ck(ti), the mapping t h> <¡>k ,w is continuous
from [0, T] to C*(ß).

Properties (2.36) and (2.37) ensure that the operators <¡>k, (t > 0) constitute a
semigroup on C*(ß).

Assuming that C2m+a(ß) is dense in C'(ß) (which, in particular, will hold if we
assume (L5,)), then it is easily seen that the semigroups <j>k , coincide with the
restrictions to C*(ß) of the semigroup <i>, previously obtained on C(ß) (§2.3). Let us
consider first the case k = 1; then the claim follows from the fact that <j>, and <j>x,
coincide on C2m+a(ß), which is assumed to be dense in C'(ß): In fact, for
w E C2m+°(fi), <t>,w is the solution of Theorem 2.1 with s = 0 and ti0 = w; according
to this theorem, this solution is unique and belongs to the class H2m+a(QT); but this
space is embedded in H2m+a(QT), so that <j>,w must coincide with the unique
solution in H2m+a(QT) ensured by Theorem 2.3 with s = 0, p = 1, that is, <f>, ,vv.
From here, to see that </>,, coincides with <i>, on the whole space C'(ß), it suffices to
use the denseness of C2m+a(Q) in C'(ß), the_embedding C'(ß) ^ C(ß), and the
continuity of both operators <f>,, and <¡>, on C'(ß) and C(ß), respectively. For k > 1,
the claim can be proved as follows: for w E Ck(iï), Theorem 2.3 with p = k ensures
the existence of a unique solution 4>kJw belonging to Hk+2m+a(QT); but we know
that this space is embedded in H\+2m+a(QT), so that <$>k , must coincide with the
unique solution in Hx+2m+a(QT) ensured by Theorem 2.3 with p = 1.

Having seen that the semigroups <¡>k, are given by the same operator <J>, but
restricted to the different spaces C*(ß), we can see that the corresponding genera-
tors Ak are also given by the same operator A but restricted to different domain Dk.
In fact, from the embedding C'(ß) ^ Ck(Ü) (0 =£ k < /) it follows that

1
y(<f>,w-u) - A,u 0 t (<t>,u- u) - A,u 0,

which implies that D, C Dk and Vu E D„ A,u = Aku.
On the other hand, assuming (L4k) and (LS^) we can see that the generator Ak of

the semigroup <$>k , coincides with the closure of the operator 3ik. For this it suffices
to notice that, having shown that <¡>kJ coincides with the restriction to C*(ß) of the
semigroup obtained in §§2.2 and 2.3, and assuming conditions (L4¿) and (L5¿), then
we can apply (2.19) with s = k, which implies that the Cauchy problem is uniformly
correctly posed for the abstract equation (2.11^.) on C*(ß); obviously, the semigroup
generated by this uniformly correctly posed problem is none other than <t>k ,; from
here it follows that the operator %k is closable, its closure being the generator Ak of
the semigroup <¡>k,.

By using Theorem 2.3 with p = s — k, we can see that inequalities (2.25)-(2.27)
generalize to

(2.38) ||D&wIIc* <Crl||w||c*    (VrE(0,:r],VwEC*(ß)),
(2.39) ||</>,w||c*+,*£ er«/2'"||w||c*    (VrE(0,:r],V>vEC*(ß)),

(2.40) \\<l>,w\\cí+2m+l.<Cr(2m+aV2'"\\w\\c*    (ViE(0,r],VwEC*(ß)),
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where q is any integer in the interval 0 < q < 2m. For k > 0, these inequalities
follow from Theorem 2.3 with p = s = k by using the bounds on [u]k, [u]k k+2m+a,
{u)Xk,k+2m+a- % Lemma 1.1, property (2.38) means that the semigroups <f>k, are
analytic. On the other hand, using Lemmas 1.3 and 1.2, (2.39) and (2.40) imply the
following properties:

(2.41) DB •* Ck+"(Q),   Vß>q/2m,

(2.42) DB =* C*+2m+a(ß),   V/?>(2m + a)/2m,

where q is any integer in the interval 0 < q < 2m, and DB denotes the fractional
power spaces corresponding to the semigroup on C*(ß) (to apply Lemma 1.2 we
need to know that <#>,w E Ck+2m+a(Q) (V/ > 0, Vw £ C*(ß)); this follows from the
fact that the solution belongs to H^+2m+a(QT), and that %&ru |ao = %D,ru |8ß =
D[%u U = 0).

2.5. With this, we have proved the assertions in Theorem 2.4 for the case of no
condition at infinity. To take care of the case where there is a condition at infinity of
the type u \x = 0, we only need to verify that the semigroup just obtained preserves
the property of vanishing at infinity. This can easily be seen to be true by using the
following property of the Green's matrix:

(2.43) f \G(t,x;r,t)\dt^Q   asÄ^oo,
Ja-BR(x)

where BR(x) denotes the open ball with center at x and radius R: BR(x) = {£ E R" \
1£ — x | *s R}. This property follows by integration of (2.21) with ¡x — \ v | = 0. From
(2.43), the fact that the semigroup preserves the property of vanishing at infinity can
be derived in essentially the same way as for the heat equation: Let us consider a
sequence of balls BR(0) with R -» oo, and take x in Q\BR(0), i.e. | x \> R. Splitting
the integral (2.20) in the following way:

[<t>,w](x) = ( G{t, x; 0, €H«) dí + f G(t, x; 0, OHO ¿i,
•'ÍEÍ2 •'ieß

|{-jc|«A/ \(-x\>M

we see that when R -» oo the ¿ in the first integral tend towards infinity (because
| £ — x | *£ M implies | £ | > | jc | — M > R — M), and therefore | w(|) | tends to zero;
on the other hand, using (2.43) we see that the second integral will tend to zero if
M -» oo. Thus, it will suffice to take, for example, M = R/2, and then both integrals
will tend to zero as jR -> oo.

2.6. The results obtained in the preceding paragraphs can be summed up as
follows:

Theorem 2.4. Let us consider problem (IL), with or without the condition at infinity,
and subject to conditions (Ll)-(L5j), where s is a nonnegative integer. This problem
determines an analytic semigroup <|>, on the space C(ß), which restricts to an analytic
semigroup <f>k , on each of the spaces C*(ß) (k integer, 0 < k < s); the corresponding
generators Ak are also given by the same operator A but restricted to different domains,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



42 XAVIER MORA

and they coincide with the closure of the operators 21 ¿. For every such k, one has the
properties

(2.44) DB =* Ck+"(ä),   Vß>q/2m       (q integer, 0 < q < 2m),

(2.45) Dß ** Ck + 2m+a(Q),    Vß>(2m + ot)/2m,

where DB denotes the fractional power spaces corresponding to the semigroup on CA(ß).
D

Remark. Many of the estimates and partial results obtained in the preceding
paragraphs can be extended from the norms C* (k integer) to the norms C (p
noninteger). For noninteger p, as an abstract operator on Cp(ß) corresponding to
the linear problem (IL), we shall take the operator 21 p given by the differential
operator & with domain ty consisting in the set Cp+2m(ß). One well-known fact that
causes problems when considering the case of Holder spaces is that, for p nonin-
teger, the spaces C°(ß) (a > p) are not dense in Cp(ß). In particular this implies
that ^ is not dense in Cp(ß). In that situation it appears difficult to obtain a
semigroup on Cp(ß) by extending it from ^ On the other hand, for p < s + 2 m +
a, Theorem 2.3 gives a family of operators <f>p , defined on the whole space Cp(ß),
and satisfying the property

(2.46) \\<t>pJw\\ce<C\\w\\c,    (V»vECp(ß)).

However, the problem is that we cannot ensure that for every w E Cp(ß) the
mapping 11-» <¡>p ,w be continuous from [0, T] to Cp(ß); in general, this mapping can
only be ensured to be continuous from [0, T] to C[pl(ß). All this agrees with the
results obtained by von Wähl [29] and Kielhöfer [8,9], who, following the approach
based upon the corresponding elliptic theory, consider the question of strongly
elliptic operators being generators of semigroups in Holder spaces, and show that
the semigroups obtained are not of class C0.

2.7. We end this section by proving the following result:

Theorem 2.5. Assuming the hypotheses of Theorem 2.4, let k be a fixed integer in the
interval 0 < k < s, and let us consider the semigroup on the space Ck(Q). With respect
to this semigroup, properties (2.43) and (2.44) can be generalized to

(2.47) DB =* Ck+1>(Q),   V0>T//2m        (tj real, 0 =s r, < 2m + a).

On the other hand, one also has the following reverse property:

(2.48) C*+'(Ö)=*D*,    Vy8<r,/2m        (tj real, 0 *£ tj < 2m + a).

The combination of (2.47) and (2.48) says that the scales DB and Ck+r,($l) are
intimately related to each other, using (2.47) and (2.48), many interesting properties can
be transferred from the spaces DB to the more concrete spaces Ck+1)(ü).    D

To prove Theorem 2.5 we shall make use of the theory of interpolation of Banach
spaces; for the basic notions and results of this theory we refer the reader to Bergh
and Löfström [2] or Triebel [28]. Given a pair of Banach spaces X and Y, ( X, Y)e
will denote their real interpolation spaces (O<0<l,l</?<oo), and [X,Y]e will
denote their complex interpolation spaces (0 < 0 < 1); in our cases, the space Y will
always be embedded in X.
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Theorem 2.5 will be proved as a consequence of the following lemma, which has
also a certain interest in itself.

Lemma 2.2. Let us consider problem (IL) subject to conditions (L1)-(L3) and (L4S),
where s is any nonnegative integer; as usual, k will stand for an integer in the interval
0 *£ k < s. The spaces C°(ß) defined in §2.1 satisfy the following properties:

(2.49) Ck+*(Q)~*(Ck(Q),Ck+2m(ñ))n/2m¡x (0<Tj<2m)

(2.50) C'i+1'(ß)-(C*(ß),C'[ + 2'"+a(ß)),/(2m+a),0O        (0<Tj<2m + a).

Furthermore, if tj is not an integer, then the two spaces in (2.49) are equal (with
equivalent norms).    D

Proof of Lemma 2.2. Properties (2.49) and (2.50) follow easily from Theorem 2.3
by using the characterization of the real interpolation spaces by the method of traces
(see, for example, Bergh and Löfström [2, §3.12]). Having this characterization in
mind, properties (2.49) and (2.50) are an almost immediate consequence of the fact
that the solutions of Theorem 2.3 satisfy the following estimates (they follow from
(2.31)-(2.34) with s = k and p = k + tj):

(2.51) tf2m-r>)/2m\\<t>lw\\ci+2m^C\\w\\ct+n    (ViE(0, T]),

(2.52) í<2m-")/2'"||Z),<#)íw||cl<C||w||c*+,    (V?E(0, T]),

(2.53) í<2"' + a-"»/2'"||<í»íw||c4+2„,+„<C|k||CA+,    (Vf E(0,7]).

If we modify <j>,w to v(t) = i-(t)<j>tw, where £ is a C00 function on (0, oo) such that
£(0 = 1 for f < T/2 and £(0 = 0 for t > T, then v(t) satisfies a set of bounds
analogous to (2.51)—(2.53) but on the whole interval t E (0, oo). According to
Theorem 2.3, any w E Ck+V(£i) can be represented as the trace at t = 0 of such a
function v(t), and furthermore, this function satisfies

v(t) £ C* + 2m+a(ß) C Ck+2m(ä) C C*(ß)    (Vi > 0).

From these considerations, one obtains relations (2.49) and (2.50) ((2.49) follows
from (2.51) and (2.52), and (2.50) follows from (2.52) and (2.53); see, for example,
Bergh and Löfström [2, §§3.12.2,3.12.3, and the note in §3.14.12 saying that these
results are also true for p¡ = oo]).

The equivalence of the two spaces in (2.49) when tj is not an integer follows from
the fact that an analogous relation is true for the corresponding spaces without the
boundary conditions: if the domain ß is sufficiently smooth, then for any two
nonnegative integers k and /,

(2.54) Ck+%ä) = (C*(ß), C*+'(ß))„//>00       (t, noninteger, 0 < t, < /).

For ß = R", this property can be obtained by proceeding along the lines of Triebel
[27, p. 70], who considers the subspaces of C(R") consisting of functions such that
u\x — 0 (and therefore D"u \x — 0 for 0 =£| v\*¿ a, by Lemma 2.1). To obtain
analogous relations for a general domain ß substituted for R", it suffices to use a
linear operator S extending functions from ß to R" and such that S be continuous
from C"(ß) to C°(R") (k < o < k + I); for example, for our purposes it suffices to
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use the extension method of Hestenes [6]; this method requires ß to be uniformly of
class Ck+I.

From property (2.54) we can obtain the relation

(2.55) (¿*(5),¿*+l(B))^/iG0-<?*+,»(0)       (r, noninteger, 0<rj</),

where the C°(ß) are the spaces defined in §2.1 in connection with problem (IL). Of
course, this relation will imply that the two spaces in (2.49) are equivalent. To
establish (2.55), we start from the fact that this relation is true with Ck+TI(Q)
(without accessory conditions) substituted for the right-hand side:

(2.56) (C*(ß), C*+/(ß)),//i00 - C*+*(ß)       (t, noninteger, 0 < t, < /).

This is an immediate consequence of the embeddings C°(ß) ■* C(ß) and (2.54). On
the other hand, if the set of accessory conditions includes u \ag = 0, it is clear that
the elements of (C*(ß), Ck+'(ü))1]/loo satisfy this condition, because they belong to
C*(ß). Therefore, we only have to verify that these elements also satisfy all the
conditions of order m • < fc + tj in (2.10). To obtain this, we can proceed as follows:
Let f be such that [tj] < £ < tj; from (2.56) and the basic results of interpolation
theory, we have the following chain of embeddings:

(2.57) (C*(ß), C^'iß)),/,.« - (C*(ß), C*+'(ß))f//.,
-(C*(ß),C*+'(ß))f//.oo-C^(ß)-

Here, p is taken < oo, in which case it is known that Ck+'(Sl) is dense in
(C*(fi), Ck+'(Q))t/lp (see Bergh and Löfström [2, §3.4.2]). Now, for myj«5 k + tj, %
constitutes a continuous linear operator from C*+i(ß) to Ck+{~m*(dQ), and by
(2.57) it has the same property from (C*(5), C*+l(Q"))f „, to Ck+i"mJ(M); on the
other hand, for my «s k + tj, the operators %¡ vanish on C*+/(ß) by definition of this
space; therefore, by continuity they must vanish on the whole space
(C(ß),C*+/(Q))f//,. In particular, they vanish on (C*(5),C*+/(5))1|/,iOB, and this
establishes property (2.55)   Q.E.D.

Proof of Theorem 2.5. To obtain Theorem 2.5 we shall use the real interpolation
spaces between E = C*(ß) and D = Dk, the domain of the generator of the
semigroup <¡>k ,. The spaces (E, D)g p are known to be related to the spaces D8 by
the following relations:

(2.58) (E,D)ßiX-*DB^(E,D)ß.K       (0 < ß < \)

(see, for example, Komatsu [10]).
Let us first consider property (2.47). By Theorem 2.4 we know that it holds for rj

integer, and also for 2m < tj < 2m + a (redefine a(new) = tj — 2m and use (2.45));
our objective is to extend this property to noninteger values of tj in the interval
0 < tj < 2m. Given any such value of tj, let qx and q2 be two integers such that
0 < qx<t\<q2< 2m, and let 6 = (tj — qx)/(q2 — qx); from relations (2.44) ap-
plied to these values of q, and Lemma 2.2, we can derive that

(2.59) (D*, D^)e<œ^(Ck+"^),Ck+^))e,x = C*+'(ß),
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where ßx and ß2 are any pair of numbers such that ßx > qx/2m and ß2 > q2/2m.
Therefore, we only need to see that, for any ß > r¡/2m, Dß is embedded in some
space of the type appearing at the left-hand side of (2.59). This can be obtained from
(2.58) by using certain properties about the relation between the real and complex
interpolation spaces (see, for example, Bergh and Löfström [2, §§4.7.1,4.7.2]); using
these properties we obtain the following chain of embeddings:

Dß -(£, D)ß,x -(£, D)ß,x = [(£, />)„,.,(£, D)ßlA]t

where ß = (1 — ß)ßx + 6ß2, and ß is any number strictly larger than ß. It is easily
verified that, for any ß > Tj/2m, we can find j8, > qx/2m and ß2 > q2/2m such that
ß > ß. This establishes property (2.47).

Let us now consider property (2.48). The only property of this type that we have
at hand to use as a starting point is the embedding

(2.60) Ck+2m+a(Q) «* D.

This follows from the fact that the generator of the semigroup on Ck(Q.) is the
closure of the operator 21*, whose domain is <^k = Ck+2m+tt(Ü). From (2.60),
property (2.48) can be obtained by the following chain of embeddings:

ck+m^(ck(Q),ck+2'-+''(â))1lA2m+ahOB

•*(E,D)i/(2m+a)M -*{E,DV, -*D",

where we are using Lemma 2.2 and relation (2.60), and ß is any number strictly
smaller than rj/(2m + a). From this, (2.48) follows by taking a sufficiently small.
Q.E.D.

3. Denseness of C"(ß) in C*(ß) (A: integer, a > k). The objective of this section is
to verify the validity of properties like (L5*) at least for the most frequently
encountered cases; in general, we shall study the denseness of C"(ß) in C*(ß) for k
integer and a > k.

This property is certainly true for the corresponding spaces without boundary
conditions: When ß is a bounded domain, the denseness of C°°(ß) in C*(ß) follows
from the «-dimensional version of Weierstrass' theorem. When ß = R", this property
can be obtained by using the Sobolev-Friedrichs averaging method. For general
unbounded domains, one can take the approximating functions in the form

(3.1) uB = a*,S«,

where & denotes an extension operator from C*(ß) to C*(R"), "31 is the restriction
from R" to ß, $e are the Sobolev-Friedrichs mollifier operators, and en -* 0. Note
that, although ß is not necessarily bounded, un -> u in the uniform Ck topology,
because Sti £ C*(R") means that ti is uniformly continuous together with all its
partial derivatives of order < k. The extension Su E C*(R") can be obtained by
several methods; for our purposes it suffices to use the method of Hestenes [6],
which can be used whenever ß is uniformly of class Ck.
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To obtain similar properties for the spaces CA(ß), the idea will be to modify the
functions un in a neighborhood of 3ß U {00} in order to make them satisfy the
accessory conditions, and show that this modification can be made arbitrarily small
in the Ck norm. In what follows we show how to do this for scalar-valued functions
(i.e. A = 1) assuming that the system of boundary operators is what we call
uniformly normal. As usual, the term normal means that the boundary operators in,
(1 < i < m) satisfy the following conditions: (a) the ordersm, (1 < i < m) are
different from each other; (b) for every x E 3ß and 1 =£ 1 < m, we have j8,-(x) =
®°(x, v(x)) ¥= 0, where v(x) denotes the unit outward normal to 3ß at the point x,
and ®° denotes the principal part of <$,, i.e. %°(x, £) = 2\a\=mbia(x)£a. By uni-
formly normal we mean that in fact the quantities ß,(x) are bounded away from zero
by a constant independent of x E 3ß. Of course, when 3ß is bounded, then any
normal system is uniformly normal. When m > 1 we shall always assume that the
indexing of the boundary operators is such that 0 < m, < ■ • ■ < mm < 2m — 1.

3.1. One-dimensional case. Let us begin by considering the one-dimensional case;
for the sake of définiteness we shall take ß = (0, + 00), but it will be evident that the
arguments extend to any other type of interval. For the moment, we shall consider
the case where the problem does not include any condition at infinity. In the present
one-dimensional situation, the <$>. (1 </ < 00) of (2.10) are ordinary differential
operators of orders m ■ satisfying 0 < m < m2 < • • ■ . Without loss of generality we
can assume that the coefficient of the leading term is 1, i.e.

m j— 1

<&j = DmJ+   2  bJqD".
1=0

Assume for example that k < m, < a < m2; then our problem is the following:
given a function u E C*(ß), to approximate it by a sequence vn of functions
belonging to C°(ß) and satisfying the boundary condition %xv(0) — 0. For this, the
idea will be to take vn = u0 + #„, where w„ is any approximating sequence of
functions belonging to C°(ß), for example any sequence of the type (3.1), and <j>„ are
functions also belonging to C°(ß) and satisfying the following conditions:

®ift,(0) = -®i«„(0),       ||^||c*-0   as«-00.
If we have k < m, < m2 =s a < m3, then we will look for v„ in the form vn = un + <j>xn
+ 4>2, where un is the same as before, and <¡¡xn, $2 satisfy the following set of
conditions:

a,ri(o) = -%u„(o),
®,<i»2(0) = 0,
®A2(0) = -%(un + ^)(0),
H*illc*» ll^llc'-^Oas«^ 00.

Looking at examples like these, we see that it would be interesting to have a family
0m.o 0j rea¡ functions defined in ß = (0, +00) and satisfying the following proper-
ties:

(3.2) reC'(ß)>        sapp0r'=[0,e],
(3.3) DJe?>°(0) = 0    (V/<m),
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(3.4) DmOem°{0) = l,

(3.5) Il0e"",ollc* -0    ase-0    (Vk<m),

where m is a nonnegative integer and a > m. A little searching shows that, for
example, we can use the functions given in the following lemma.

Lemma 3.1. The functions 6™■": [0, + oo) -» R given by

em,o(x) = \(xm/m\)[\-x/e]°     if xE[0,e],
e    V   ;      [0 ifx>e

(m nonnegative integer, a > m) satisfy the preceding properties (3.2)—(3.5). In fact,
property (3.5) is satisfied in the following way:
(3.6) l!0;'-o||CP=£Cem-p        (0<p<a),

where p denotes any real number in the indicated interval, and the constant C depends
on m, a, p, but not on e.

Proof. Applying Leibniz' rule, the successive derivatives Dp0cm° (0 < p < a) are
given by

mm(m,p) _,_,        p-q-\ r , „_( }r

D"""<*> =   ,?„   (ÏÏjî—y.   H   C-4-f] h
from which we easily obtain properties (3.3), (3.4), (3.6). On the other hand, to see
that 8em° £ C°(ß) (ß = (0, + oo)), it suffices to verify that DP0tmo(E) = 0 (V/> ̂  [a]),
and for noninteger a, that Z)l"'ôema satisfies a Holder condition with exponent
a — [a]; both properties are also clear from the preceding formula.    Q.E.D.

We can easily see that these functions can indeed be used to solve our problem.
For example, in the case k < m, < a < m2, it suffices to take the functions §n in the
form </>„ = and™<-°, where an = -ífj,m„(0), and en will be a certain sequence tending to
zero. From properties (3.3) and (3.4) it follows that ^,«„(0) = 0, and from (3.6) we
obtain that

||on-u||c*< ||u„-u||c* + ll<i\llc*< \\u„-u\\CK + K\an\e^-k.

Therefore, it will suffice to take the sequence en tending to zero rapidly enough so
that | an | e™<~k -» 0 as n -» oo. On the other hand, using property (3.3), we can also
solve the case where there are several boundary conditions involved. For example,
when k < m, < m2 < a < m3, it suffices to take <j>xn - an0em>-°, <f>2 = bn8™2'", where
a„ = -V„(0), K = -%(»n + <í»I)(0), e„ = o(| a„ |*-->), r]„ = o(| b„ \k~^). Using
the same strategy we can handle any situation of the type k<mx<-<mj<a<

In fact, a similar strategy also solves the case where some of the m,'s are less than
or equal to k. For example, consider the case m, < k < m2 < a < m3; if we take vn
as in the last example, the problem is that, for m, < k, \\ 0Em"° || c* does not now tend
to zero as e -» 0. Nevertheless for m, < k, u E Ck(Q) imphes that it satisfies the
condition %xu(0) = 0, and therefore, the approximating sequence un satisfies | an | =
| %, w„(0) | -> 0 as n -» oo ; thus, considering that || <t>xn II c* < K \ an \ e™' ~k, we can still
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make ll^llc* tend to zero by taking as e„ any sequence tending to zero slowly
enough to have | an \ e™'~k -» 0.

In the case where the problem also contains the condition at infinity u \ao = 0, if
we take un in the form (3.1), then the problem is automatically solved, because
«1^=0 implies the same property for un (and all its derivatives); on the other hand,
this property extends automatically to vn = un + <j>n, since <frn has compact support.

With this, we have proved the result stated in §3.3 below in the case of a
one-dimensional domain.

3.2. Many-dimensional case. Let us now consider the case of ß being a domain in
R" (n > 2). As in the one-dimensional case, we shall begin by considering the case
where the problem does not include the condition at infinity. For the moment, we
shall restrict ourselves to boundary operators including only normal derivatives Dk;
more precisely, the boundary operators ©,. (1 *£ / *£ m ) are assumed to be of the
form

(3.7) <S, = Dvm- + lower order terms in Dv.

Provisionally, we shall also restrict abya<2m + m,;in that situation, from the
infinite set of conditions (2.2), the only ones that matter are those with r = 0.

In that case, the problem can be solved on the basis of the one-dimensional case
by proceeding as follows: Let us assume3ß uniformly of class Cx+a, and let T_s
denote the region adjacent to the boundary of ß, and defined by

r_Ä = { v - av(y) |y E 3ß, 0 < a < 8}

where v(y) denotes the outward normal to 3ß at the pointy, and 8 is a positive real
number small enough so that (a) r_8 C ß, and (b) for every x £ T_s there exists a
unique v E 3ß such that x = y — av(y) for some a E (0, 8). The maximal number 8
satisfying these conditions will be denoted by 8. As usually defined, to be uniformly
of class Cx+a implies that 8 > 0. For every x E T_s, we shall denote by a:* and £
those unique elements of 3ß and (0, 8) for which x = x* — >;v(x*). To treat our
problem, the idea will be to apply the one-dimensional procedure on every ray
normal to 3ß, so that our perturbations will have support in T_s.

For example, in the case k < m, < a < m2, given a function u E Ck(il), to
approximate it by functions v„ belonging to C°(ß), it suffices to take vH = u„ + <f>„,
where un is an approximating sequence of smooth functions given by (3.1), and <pn
are functions of the form

._\-^xun(x*)0^"(O    ïîxET_s,
*"(x)={o if*Eß\r_s,

where en = o(sup | GAxun(y) |). In order that the functions </>„ belong to C(ß) it
suffices that the un belong to Ca+"''(ß) and that 3ß be of class C, because then the
mappings x i-» x* and x h-» £ are of class C. From the way they are constructed, the
functions <f>„ will satisfy

%*n\iQ = A""^ L =-V„ L,        Htfjlc'^0    as«-00,
which imply that v„ E C0(ß) and II v„ — u || c* — 0.
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Following the idea of the one-dimensional case, we can solve similarly the case
involving different boundary conditions of the form (3.7), and also the case where
some of the m,'s are less than or equal to k. In general, for A: < m • < a < m-+l
(y=£m), the approximating sequence vn is obtained in the form v„ = ti„ + $i
+ • • • +QJ, where the functions <#, (1 < i <j) are of the form

,(x) = l<(x*K-°tt)   if*er_ä,
{o ifx£ß\r_s,

with a'n(x*) = -%¡[un + 4>l, + ■ ■ ■ + <f>¿~ '](x*), and the en are chosen suitably.
Now we can see that in fact the preceding method can be applied to boundary

conditions of more general form than (3.7). The reason for this is that, for m, > 0,
the functions <j>'n satisfy D¡!$n |3ß = 0 (0 < q < m,); this implies that all the tangen-
tial derivatives of the functions D¡¡$n (0 =£ q < mt) are zero, and therefore we see
that, for any boundary operator of order m¡ (not necessarily of the form (3.7)),

%Ú U = ßMDf'U u,
where /J,(x) = ®°(x, v(x)) (v: unit outward normal, @(°: principal part of ®().
Therefore, to treat the general case it will suffice to divide the coefficients a'n(x*) by
ßj(x*). In order that one can still choose the sequences e„ suitably, one needs that
the quantitites /3,(y) ( v E 3ß) stay bounded away from zero and from infinity; the
first part is assured if the system of boundary operators is assumed to be uniformly
normal; the second part will be true if we assume that the coefficients bia belong to
C(3ß) (in particular, if we assume condition (L40)). This reasoning also extends to
show that we can drop the restriction a <2m + mx, whenever we assume condition
(L45)with5 + a> a - 2m.

Finally, the result also extends to the case where the problem contains the
condition at infinity ù 1^ = 0. This can be seen by essentially the same argument
that we used in the one-dimensional case, with the only difference that when 3ß is
not compact the perturbations </>j, do not have compact support, but they are seen to
tend to zero as | x | -> oo as a consequence of the functions un having this property
together with all their partial derivatives (this follows from (3.1)).

3.3. The preceding reasoning gives a proof of the theorem stated below in the case
of scalar-valued functions. It can easily be seen that the result extends to the case of
functions with several components assuming that the boundary conditions consist of
a uniformly normal system for each of these components. In particular, this covers
the case of problem (X). Although we shall not enter into details, it is clear that the
result must remain true for systems of boundary conditions more general than
diagonal ones, in which case one should consider some generalization of the
condition of uniform normality.

Theorem 3.1. Let us consider problem (IL) with or without the condition at infinity
and subject to conditions (L1)-(L3) and (L4S) (s is a nonnegative integer); assume also
that the boundary conditions consist of a uniformly normal system for each one of the
components. For every integer k in the interval 0 < k < s + 2m, the space Cs+2m+a(ü)
is dense in Ck(ü). If the domain ß is one dimensional, then C°(ß) is dense in C/t(ß)
for every nonnegative integer k and any a > k.    D
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4. Nonlinear problem.
4.1. In this last section we apply the abstract results of §1.5 to the nonlinear

problem (I) of §1.3. To avoid repetition, we shall consider directly the general case
where A' is not necessarily zero. We shall use the following notations:

(4.1) w=(u,v),       h=(f,g),

Tw = vector consisting of D"u' (0 «£| p|*£ /, 1 < i < N)

plus the vJ (\ </< A').

The dimension of this vector will be denoted by M (specifically, M =
[(« + /)!/(«!/!)]A + A'); accordingly, /, g, « will be considered as functions of
xEß and a vector W £ Rw; the capital letter W will always denote a generic vector
inRw.

For £, we shall take spaces of the type Ck(Q,) X Ck(ü), where A; is a nonnegative
integer, and we define || w || ̂ x y = Il h II ̂  + || u II r. The linear operator A will be the
diagonal operator (Ak,0), where Ak denotes the generator of the semigroup
determined on Ck(ü) by the linear problem (IL) (assuming conditions (Ll)-
(L3),(L4/c) and (L5¿)), and O is the zero operator on Ck(Q), i.e. Aw =Aku. Note
that the zero operator is the generator of the analytic semigroup given by the identity
(4>t = I, t > 0). Since A has this diagonal structure, it is clear that it is the generator
of an analytic semigroup on C*(ß) X C*(ß). This gives hypothesis (HI) of §1.5;
using Theorem 2.4 we can see that hypotheses (H2) and (H3) will be fulfilled if we
take A = C*+?(fi) X C*(ß) with q being an integer in the interval 0 < q < 2m - 1
(for this we must assume conditions (L4/l+(/) and (L5k+q)). When A' = 0 and ß is
bounded, then the operator A = Ak has compact resolvent; this follows from the fact
that D =* C/t+2m~'(ß) (Theorem 2.4), and the compactness of the embedding
Ck + 2m~x(ti) — Ck(ti). Note, however, that this property is not true when A' > 0,
even if ß is bounded; this reflects the fact that the domain of O is the whole space
C*(ß).

Let us now consider the nonlinear operator £; we define it as

[F(w)](x)=h(x,Tw(x))    (VxEß),

where we are using notation (4.1). Let us consider hypotheses (H4) and (H5), and in
general the smoothness of F. Obviously, in order for £ to take X — Ck+q(ü) X C*(ß)
to £ = C*(ß) X Ck(ü), we shall need to take q>l.To reduce the requirements on
£ to conditions on « = (/, g), note that the general case q> l>0 reduces to the
case q = / = 0 by decomposing £ in the following way:

C*+"(ß) X C*(ß) CA(ß) C*(ß)
w h>     Tw = W    k>     h(x,W(x))

T F

Since £ is a bounded linear mapping (because q > /), it is clear that the conditions
on £ will reduce to analogous conditions on F. Similarly, the case k > 0 reduces to
the case A: = 0 by substituting for « a new vector consisting of the (d/dx)rh'(x, W(x))
(0<\v\<k, 1 <i<N + Ny
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Using these considerations, it can be seen that, for £ to take X — Ck+q(Q,) X
Ck(Q) to £ = Ck(Q) X C*(ß) and to satisfy the condition of being Lipschitz on
bounded sets, it suffices that the function « = (/, g) satisfies the following condi-
tions:

(Nk p0) (a) The function h(x, W) is of class Ck (jointly in x and W), and for
| a | +'| ß |< k, D«Dßwh( ■, W) E C(ß) (VW E RM).

(b) The partial derivatives DxDßwh(x, W) (\a\ + \ß\*^k) are locally Lipschitz
with respect to W E RM, with Lipschitz constants independent of x E ß.

(c) If u E Ck+q(ü), i.e. it satisfies the accessory conditions of order < k + q, then
f(x, Tw(x)) satisfies those of order < k (for any v E C*(ß)).

In general, in order_that£ be of class C(l < r *£ oo)fromA= C*+«(ß) X C*(Ö)
to £ = Ck(iï) X Ck(ü), the following condition must be substituted for the preced-
ing one:

(Nk r) (a) The function h(x, W) has the partial derivatives DxD^h for | a |< Ac
and | a ¡ +1 ß \ < k + r, and they satisfy D^Dßwh( ■, W) E C(ß) (W E RM).

(b) The partial derivatives D^Dßwh(x, W) (| a | < k, | a | +1 ß | < k + r ) are locally
Holder continuous with respect to W E RM, with Holder constants independent of
x E ß (this condition is required only if r < oo).

(c) For any s <r, if w, ̂ „..., ^E C*+«(ß) X C*(ß), then
d'h,/(x, 7v(jc))r^(jc) • • ■ r^(x)

satisfies all the accessory conditions of order *£ Ac.
In this case, the Fréchet derivatives DsF(w0) (0 *£ 5 < r) are given by

[D'F(w0)^ ■ ■ ■ *J(x) = fl'^Ai*, Tw0(x))Trpx(x) ■ • • £^(x)

(Vx £ ß), where we are using notation (4.1); in particular, DF(w0) is given by a
linear differential operator of order /, which we shall denote by §w (x, Dx).

Finally, let us assume (Nk ,), and consider hypothesis (H6). For the moment we
consider the case A' = 0. Let Lk = A + DF(u0) considered as an operator on
£ = Ck(Q); this operator is the generator of an analytic semigroup on £, call it </>,.
Let us define £( (i: = k, k + q) as the operator on C'(ß) given by the differential
operator & + %o with domain 6iii = C"+2m+a(ß); it is clear that Lk is the closure of
tk. On the other hand, the equation u = tk+ u is seen to determine an analytic
semigroup >p, on X= Ck+q(Çl); obviously, this semigroup must coincide with the
restriction of the semigroup <f>,, and the generator of \p„ which is the closure of tk+ ,
must coincide with the restriction of Lk to A, i.e. an operator with domain
{u E X\Lku E X). If A' > 0, we shall restrict ourselves to the case q = / = 0, in
which case hypothesis (H6) is obviously satisfied (since X = £), and A + DF(w0) is
easily seen to be the closure of the operator &+<$(& = diag(6E, O)) with domain
Ck+2m+a(ti) X C*(ß).

Applying Theorems 1.1 and 1.2 as indicated by the preceding arguments, we
obtain the following results:

Theorem 4.1. Let us consider problem (I) subject to conditions (L1)-(L3), (lAk+q),
(L5¿+¡?) and (N¿ q r), where k, q, r are nonnegative integers, I < q < 2m - 1, and r
can also be oo. In that situation, problem (I) determines a semiflow of class C on the
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space C*+<?(ß) X C*(ß). This semiflow §t satisfies the strong maximal property

(4.2) (o(w) < oo =>   lim   ||<í>,H'llc*+«xc* = oo.
t^oi(w)

If N' = 0 and the domain ß is bounded, one also has the compactness property

ifto(u) = oo and the orbit {<#>,« |0 < t < oo} is bounded in Ck + q($i),

then it is contained in a compact set of Ck+q(Q).    D

Remark. When the spatial domain ß is not bounded, the fact that the compact-
ness property (4.3) is not assured reflects the possibility of traveling waves or similar
phenomena. In the case A' > 0, the lack of the compactness property reflects the
possibility that the variable v (or some of its derivatives Dvxv of order | v |< A:) tends
to a discontinuous function of x E ß as / — oo.

Theorem 4.2. Let us assume the hypotheses of Theorem 4.1 with r = 1, and in the
case A' > 0 assume also that q = I = 0. Given a stationary state w0 = (u0, v0), let Lk
be the linearized operator A + DF(w0) as an operator on E — Ck(ü) X C*(ß), and let
Lk+ be its restriction to X = Ck + q(Q) X C*(fi); i.e. the domain of Lk+q is the set
{w E X\Lkw E A"}. Finally, let o, = sup Re 2(L,) (i = k, k + q). If ak+q > 0, then
the stationary state w0 is unstable in the semiflow on X — CAr+<7(ß) X Ck(£l); if
ok+ < 0, then it is asymptotically stable in the same semiflow. For i = k, k + q, the
operator L¡ can also be characterized as the closure of the operator ti on C'(ß) X CA(ß)
given by the differential operator &+c5w (6£ = diag(cE, O)) with domain 6¡)¡ =
C'+2m+a(ß) X C*(ß).    D

Remark. When A' = 0 and ß is bounded, the spectra of Lk and Lk+q consist only
of eigenvalues; furthermore, the eigenfunctions of Lk belong to D(Lk) C
Ck + 2m~x(ti) C X, which implies that they are also eigenfunctions of Lk+q. This
implies that in this case the spectra of Lk and Lk+ , and in particular the numbers ak
and ak+ , are the same.

4.2. Application to problem (X). Let us apply these results to the particular case of
problem (X) (with homogeneous boundary conditions, i.e. b'(x) = 0 for 1 < i; < A).
For the sake of simplicity, we shall restrict ourselves to the following situation: (a)
the functions / and g do not depend on x E ß; (b) the boundary conditions are of
the same type for all the components of u, and they are either of Dirichlet type
(S = A), or of Neumann type (S = 0, /?'' = 0 for 1 =£ ; < A); (c) in the Dirichlet
case we leave the condition at infinity as optional, but in the Neumann case we
consider the problem without the condition at infinity. We shall also restrict
ourselves to taking k = 0 and r = 0,1.

As we have seen in 1.3, for the problem (X), conditions (L1)-(L3) and (L4?)
reduce to (LI), (M2) and (M4(?). On the other hand, Theorem 3.1 guarantees that
these conditions imply (L5?). Finally, for the situation described above, conditions
(N0   0) and (N0   ,) (q = 0,1) reduce to the following ones:

(P0) The functions /(u, p,v) and g(u, p, v) are locally Lipschitz with respect to
u, p, v (p is a generic vector in R"N corresponding to V"). In the Dirichlet case, it is
also required that/(0, p,v) = 0 (V/> E R"N, Vu £ R"').

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SEMILINEAR PARABOLIC PROBLEMS 53

(P,) The functions/(u, p, v) and g(u, p, v) are locally of class C1+a with respect
to u, p, v. In the Dirichlet case, it is also required that/(0, p, v) — 0, Dvf(0, p, v) =
0, Dpf(0, p,v) = 0 (Vp E R"N, Vu E R"').

Therefore, we can state the following corollaries of Theorems 4.1 and 4.2.

Corollary 4.1. Consider problem (X) with the restrictions and described above, and
assume conditions (LI), (M2), (M4fl) and (?r), where qE{0,\}ifl = 0,q= \ifl- 1,
and r E {0,1} (I is 1 or 0 depending on whether the functions f and g depend on
p = Vu). Under these conditions, problem (X) determines a semiflow of class C on the
space Cq(&) X C(ß), where Cq(Q) is a closed subspace o/C(ß) given as follows: in
the Dirichlet case and for q = 0,1,

Cq(ü) = subspace of C(ß) consisting of the functions u that satisfy the accessory
conditions; in the Neumann case,

C°(ß) = C(ß);
C'(ß) = subspace of C'(ß) consisting of the functions u that satisfy the boundary

conditions. This semiflow satisfies the strong maximal property (4.2), and if N' = 0 and
ß is bounded, it also satisfies the compactness property (4.3).    D

Corollary 4.2. Assume the hypotheses of Corollary 4.1 with r = 1, and in the case
A' > 0 assume also that q = I — 0 (i.e. f and g do not depend on p = Vu). Then the
conclusions of Theorem 4.2 hold for the semiflow on Cq(Q) X C(ß) corresponding to
problem (X).    D

Remark. For problems of type (X), several results are known which provide
information about the qualitative structure of the semiflows on the spaces C(ß) and
C'(ß) (for the sake of simplicity, we consider A' = 0). In particular, we note the
existence of criteria to obtain bounded positively-invariant regions in these spaces,
and the application of topological methods like Conley's index (see, for example,
Smoller [18, Chapter 14,23]). In connection with the application of Conley's index, it
is interesting to have the following property, which can easily be obtained by making
use of relation (2.48): Consider problem (X) with A' = 0, and assume the hypotheses
of Corollary 4.1 ; assume also that one has a bounded positively-invariant region in
C'(ß), which we shall call 2. Then the solutions with initial state in 2 satisfy an
estimate of the form

(4.4) \\u(t)-u(s)\\c<C\t-s\->    (Vt,s>0),

where y is any real number in the interval 0 < y < {-, and the constant C can be
taken independently of u0 E 2. The main point is that the estimate holds uniformly
up to time zero; of course, for a general u0 this can only be obtained at the price of
using a weaker norm than the one in C'(ß). The way to obtain property (4.4) is the
following: We consider the problem in the abstract setting of §1.5 with £ = C(ß)
and A = C'(ß); without loss of generality we can assume that the order of growth
of the semigroup eAl is negative (otherwise it would suffice to redefine /4(new) = A
— ul and £(new) = F + toi with w large enough). By using the integral equation
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equivalent to (II) (see, for example, Henry [5]) we have that

(4.5)       u(t) - u(s) = (eA('~s) - I)u(s) + /V('-t)£(M(t)) dr
•'s

(0 ^í < t < oo).

The first term in the right-hand side of (4.5) can be estimated in the following way:

\\(eA('-s) - I)u(s)\\E ^ C(t - s)y \\u(s)\\ D,

<C'(t-s)y\\u(s)\\cl       (0<y<i),

where the first step uses a well-known property (see, for example, Henry [5, Theorem
1.4.3]), and the second one is based on property (2.48). On the other hand, the norm
of the expression under the integral sign is easily bounded by a constant, because of
the fact that m(t) stays in the bounded set 2, and the £ takes bounded sets of C'(ß)
to bounded sets of C(ß). Therefore, we obtain that

MO -n(j)||c<C'(/-.0Tll«(*)llc' + C"(t-s)       (0<s<t< oo),
which establishes property (4.4) for (t — s) small (we use again that u(s) belongs to
the bounded set 2). Of course, for (t — s) large, property (4.4) is a trivial conse-
quence of the fact that the solution stays in 2.
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