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Abstract: In this work, we use the technique of recurrence relations to prove the semilocal con-
vergence in Banach spaces of the multidimensional extension of Chun’s iterative method. This is
an iterative method of fourth order, that can be transferred to the multivariable case by using the
divided difference operator. We obtain the domain of existence and uniqueness by taking a suitable
starting point and imposing a Lipschitz condition to the first Fréchet derivative in the whole domain.
Moreover, we apply the theoretical results obtained to a nonlinear integral equation of Hammerstein
type, showing the applicability of our results.
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1. Introduction

In this paper, we focus on solving nonlinear systems of equations, that is F(x) = 0
where F : Ω ⊂ X −→ Y, is a nonlinear continuous and twice differentiable Fréchet operator
in an open convex set Ω, and X and Y Banach spaces. It is well known that these kind
of problems usually can not be solved analytically and then we use iterative methods for
approximating the solution.

One of the best known iterative method is Newton’s method, [1], whose iterative
function is given by

xk+1 = xk − ΓkF(xk)

with Γk = [F′(xk)]
−1 for k = 0, 1, 2, . . ., being x0 the starting point. The simplicity of its

iterative expression and second order of convergence confers to Newton’s method a very
useful efficiency in many applied problems.

Nevertheless, in the recent years, one can find in the literature a great variety of
iterative methods that can reach higher convergence order and better efficiency than
Newton’s method, see [2,3] and the references therein. In these texts, we can see the
study about the convergence order of the methods always related with the computational
efficiency reached.

However, it is also important to complete the study with theoretical results of semilocal
convergence of these iterative methods, not only to prove the convergence of the iterates
sequence, also because we can demonstrate the existence of solutions for a particular
problem. This can be of particular interest in some applied problems, where the existence
of solution is not trivial. Moreover, we obtain uniqueness domains for the solutions,
see [4,5] and the references therein.

The semilocal convergence ball, B(x0, R) gives us a neighborhood in the operators
domain centered in the starting guess where the sequence of iterates xk with k = 1, 2, . . .
remains. Moreover, it is proven that this sequence converges to x∗ ∈ B(x0, R) and it is
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verified that F(x∗) = 0, so it is called the existence domain for the solution. Then, the study
of the domain of uniqueness completes the analysis.

Specially relevant are the works on the convergence of derivative-free Banach spaces
(as can be seen in [3,6]). Different authors have devoted their efforts to this task, either
on Steffensen’s method [7], Steffensen-type [8–10], or the secant scheme [11–13]. In those
problems where the nonlinear operator F is not differentiable, we can approximate the
derivatives by divided differences using a numerical derivation formula, and so, one can
introduce iterative processes that use divided differences instead of derivatives. Let us
consider the operator [u, v; F] : Ω ⊂ X −→ Y, u, v ∈ Ω, with u 6= v, it is a first-order
divided difference [1,14,15] satisfying

[u, v; F] ∈ L(X, Y) and [u, v; F](u− v) = F(u)− F(v), (1)

where L(X, Y) is the set of bounded linear operators between X and Y. By using this
approximation for the derivative, we find in the literature the so called derivative free
iterative methods, see [4,16]. But, as it was stated originally in [17,18], the divided difference
operator can be used for extending an iterative method defined for the scalar case (without
direct extension) into a vectorial iterative method. Our aim is to analyze the fourth order of
convergence extension of Chun’s method (see [17]), whose iterative scheme is

xk+1 = yk − (3I − 2Γk[xk, yk; F])ΓkF(yk), (2)

where yk = xk − ΓkF(xk) is the Newton’s step, [x, y; F] is the divided difference operator,
and Γk = [F′(xk)]

−1.
This method was introduced and analyzed in [17], but now, we are interested in its

semilocal convergence study. For this purpose we use the recurrence relation technique.
This method was defined by Candela et al. in [19,20] as a system of four real sequences for
the third-order Halley’ and Chebyshev’s schemes. Hernández-Verón et al. simplified this
technique, establishing a system of as many scalar sequences as the order of convergence
of the iterative method minus one (see [21–24]).

The rest of the paper is organized as follows: in Section 2 we describe the recurrence
relations and the properties needed to prove the semilocal convergence of the fourth order
method, which is developed in Section 3. Next, Section 4 is devoted to the application of
the theoretical results obtained to a Hammerstein integral equation, with very good results.
Finally, in Section 5 we draw some final remarks.

2. Recurrence Relations

Let X and Y be Banach spaces and let F : Ω ⊆ X → Y be a twice differentiable
nonlinear Fréchet operator in an open Ω.

The iterative scheme of the fourth order Chun’s method extended to multidimensional
case is

xk+1 = yk − (3I − 2Γk[xk, yk; F])ΓkF(yk), (3)

where yk = xk − ΓkF(xk) is the Newton’s step, [x, y; F] is the divided difference operator,
and Γk = [F′(xk)]

−1.
Let us assume that the inverse of the Jacobian matrix of the system in the first iteration,

Γ0 ∈ L(Y, X), exists in x0 ∈ Ω, where L(Y, X) is the set of linear operators from Y to X.
Moreover, in order to obtain the semilocal convergence result for this iterative method,

Kantorovich conditions are assumed:

(C1) ‖Γ0‖ ≤ β,
(C2) ‖Γ0F(x0)‖ ≤ η,
(C3) ‖F′(x)− F′(y)‖ ≤ K‖x− y‖,
where K, β, η are non-negative real numbers. For the sake of simplicity, we denote a0 = Kβη
and define the sequence

an+1 = an f (an)
2g(an), (4)
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where we use the following auxiliary functions

h(x) = x + x2, (5)

f (x) =
1

1− x(1 + 1
2 h(x)),

(6)

and

g(x) =
x
2
+

1
2

(
x
η
+ 1
)

h(x) +
x
8
(h(x))2, (7)

that will play a key role for obtaining the main results of this work.

Preliminary Results

Once the needed recurrence relation and the auxiliary functions have been defined,
we proceed to analyze the iterative method step by step, as the basis for the later semilocal
convergence analysis.

The difference between the first two elements of the iterative sequence defined in (3) is

x1 − x0 = (y0 − x0)− (3I − 2Γ0[x0, y0; F])Γ0F(y0). (8)

The Taylor series expansion of F around x0 evaluated in y0 is

F(y0) = F(x0) + F′(x0)(y0 − x0) +
∫ y0

x0

(F′(x)− F′(x0))dx,

where the term F(x0) + F′(x0)(y0 − x0) is equal to zero, since it comes from a Newton’s
step. With the change x = x0 + t(y0 − x0), we get

F(y0) =
∫ 1

0

(
F′(x0 + t(y0 − x0))− F′(x0)

)
(y0 − x0)dt.

The divided difference operator can be expressed in an integral way by means of
the Genocchi-Hermite formula [x, y; F] =

∫ 1
0 F′(x + t(y− x))dt, see [1]. By replacing the

integral expression of F(y0) in (8),

x1 − x0 = (y0 − x0)−
(

3I − 2Γ0

∫ 1

0
F′(x0 + t(y0 − x0))dt

)
Γ0

(∫ 1

0

(
F′(x0 + t(y0 − x0))− F′(x0)

)
(y0 − x0)dt

)
.

Then,

x1 − x0 = (y0 − x0)− 3Γ0

∫ 1

0
(F′(x0 + t(y0 − x0))− F′(x0))(y0 − x0)dt +

+2Γ2
0

∫ 1

0
F′(x0 + t(y0 − x0))dt

∫ 1

0
(F′(x0 + t(y0 − x0))− F′(x0))(y0 − x0)dt.

Adding and subtracting F′(x0) to the second integral, the terms can be grouped

x1 − x0 = (y0 − x0)− Γ0

∫ 1

0
(F′(x0 + t(y0 − x0))− F′(x0))(y0 − x0)dt

+2Γ2
0

∫ 1

0
(F′(x0 + t(y0 − x0))− F′(x0))dt∫ 1

0
(F′(x0 + t(y0 − x0))− F′(x0))(y0 − x0)dt.
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Taking norms and applying Lipschitz condition, we get

‖x1 − x0‖ ≤ ‖y0 − x0‖+ ‖Γ0‖
K
2
‖y0 − x0‖2 + 2‖Γ0‖2

[
K
2
‖y0 − x0‖

]
K
2
‖y0 − x0‖2

≤ η + β
K
2

η2 +
1
2

K2β2η3 = η

(
1 +

1
2
(a0 + a2

0)

)
= η

(
1 +

1
2

h(a0)

)
,

so that

‖x1 − x0‖ ≤ η

(
1 +

h(a0)

2

)
, (9)

where a0 = Kβη and h(x) = x + x2.
By applying Banach’s lemma [1], one has

‖I − Γ0F′(x1)‖ = ‖Γ0F′(x0)− Γ0F′(x1)‖
= ‖Γ0‖ ‖F′(x0)− F′(x1)‖
≤ Kβ‖x1 − x0‖

≤ Kβη(1 +
1
2
(a0 + a2

0))

= a0

(
1 +

1
2

h(a0)

)
< 1.

Then, as far as a0

(
1 + 1

2 h(a0)
)

< 1 (by taking a0 < 0.650629), Banach’s lemma

guarantees that (Γ0F′(x1))
−1 = Γ1Γ−1

0 exists and

‖Γ1‖ ≤
1

1− a0(1 + 1
2 a0 +

1
2 a2

0)
‖Γ0‖ = f (a0)‖Γ0‖, (10)

being f (x) =
1

1− x
(

1 + 1
2 h(x)

) .

Now, the following bounds are proven by induction for n ≥ 1:

(In) ‖Γn‖ ≤ f (an−1)‖Γn−1‖,
(I In) ‖yn − xn‖ = ‖ΓnF(xn)‖ ≤ f (an−1)g(an−1)‖yn−1 − xn−1‖,
(I I In) K‖Γn‖‖yn − xn‖ ≤ an,

(IVn) ‖xn − xn−1‖ ≤
(

1 +
1
2

h(an−1)

)
‖yn−1 − xn−1‖.

Starting with n = 1, (I1) has been proven in (10).

(I I1): By means of the Taylor’s expansion of F(x1) around y0, we get

F(x1) = F(y0) + F′(y0)(x1 − y0) +
∫ x1

y0

(
F′(x)− F′(y0)

)
dx

= F(y0) + (F′(y0)− F′(x0))(x1 − y0) + F′(x0)(x1 − y0) (11)

+
∫ 1

0

(
F′(y0 + t(x1 − y0))− F′(y0)

)
(x1 − y0)dt.

To obtain a bound, it is necessary to calculate x1 − y0. Writing the terms of the iterative
Formula (3) in their integral form,
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x1 − y0 = −3Γ0F(y0) + 2[x0, y0; F]Γ2
0F(y0)

= −3Γ0

∫ 1

0
(F′(x0 + t(y0 − x0))− F′(x0))(y0 − x0))dt

+2Γ2
0

(∫ 1

0
F′(x0 + t(y0 − x0))dt

) ∫ 1

0
(F′(x0 + t(y0 − x0))− F′(x0))(y0 − x0)dt

= −Γ0

∫ 1

0
(F′(x0 + t(y0 − x0))− F′(x0))(y0 − x0))dt

+2Γ2
0

∫ 1

0
(F′(x0 + t(y0 − x0))− F′(x0))dt∫ 1

0
(F′(x0 + t(y0 − x0))− F′(x0))(y0 − x0)dt,

and bounding its norm, the following inequality is obtained

‖x1 − y0‖ ≤
1
2

Kβη2 +
1
2

K2β2η3 =
1
2

ηa0 +
1
2

ηa2
0 =

1
2

ηh(a0). (12)

Taking norms in (11) and replacing (12) in it, finally ‖F(x1)‖ is bounded

‖F(x1)‖ ≤
1
2

Kη2 +
1
2

Kη2h(a0) +
1

2β
ηh(a0) +

1
8

Kη2(h(a0))
2.

Therefore, by applying (I1),

‖y1 − x1‖ = ‖Γ1F(x1)‖ = f (a0)‖Γ0‖‖F(x1)‖ ≤

≤ f (a0)

[
1
2

a0 +
1
2
(a0 + 1)h(a0) +

1
8

a0(h(a0))
2
]

η,

that is,
‖y1 − x1‖ = f (a0)g(a0)η ≤ f (a0)g(a0)‖y0 − x0‖,

is obtained, where

g(x) =
x
2
+

1
2
(x + 1)h(x) +

x
8
(h(x))2.

(I I I1): using (I1) and (I I1),

K‖Γ1‖‖y1 − x1‖ ≤ K f (a0)‖Γ0‖ f (a0)g(a0)‖y0 − x0‖ = a0( f (a0))
2g(a0) = a1.

(IV1): for n = 1 it has been proven in (9).

Taking (In), (I In), (I I In), (IVn) as an inductive hypothesis for n ≥ 1 it can be proven
in a similar way that (In+1), (I In+1), (I I In+1), (IVn+1) are also true and these complete the
proof by induction.

3. Convergence Analysis

It is well known that to analyze the convergence of a sequence {xn} in a Banach
space, it is necessary to prove that it is a Cauchy sequence. To get this aim, we analyze the
properties of the recurrence sequence {an} and the auxiliary functions h(x), f (x) and g(x)
introduced in Section 2 by giving the following preliminary results.

Lemma 1. Let h(x), f (x) and g(x) be defined as in (5)–(7). Then,

(i) f (x) is increasing and f (x) > 1 for x ∈ (0, 0.650629),
(ii) h(x) and g(x) are increasing for x ∈ (0, 0.650629).

Proof. The proof follows by elemental procedures, so we omit it.
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Lemma 2. Let be f (x) and g(x) the auxiliary functions defined by (6) and (7). Then

(i) f (a0)g(a0) < 1 for a0 < 0.367826,
(ii) f (a0)

2g(a0) < 1 for a0 < 0.300637,
(iii) the sequence {an} is decreasing and an < 0.300637 for n ≥ 0.

Proof. It is straightforward that (i) and (ii) are satisfied. As f (a0)
2g(a0) < 1, then by

construction of an, (see (4)), it is a decreasing sequence. So, an < a0 ≤ 0.300637, for all
n ≥ 1.

Theorem 1. Let X and Y be Banach spaces and let F : Ω ⊆ X → Y be a twice differentiable
Fréchet nonlinear operator in an open set Ω. Let us assume that Γ0 = [F′(x0)]

−1 exists in x0 ∈ Ω
and conditions (C1)− (C3) are satisfied. Let be a0 = Kβη, and assume that a0 < 0.3. Then, if

B(x0, Rη) = {x ∈ X : ‖x− x0‖ < Rη} ⊂ Ω where R =
1 + 1

2 h(a0)

1− f (a0)g(a0)
, the sequence {xn}

defined in (3) and starting in x0 converges to the solution x∗ of F(x) = 0. In that case, the iterates
{xn} and {yn} are contained in B(x0, Rη) and x∗ ∈ B(x0, Rη). Moreover x∗ is the only solution
of equation F(x) = 0 in B(x0, 2

Kβ − Rη) ∩Ω.

Proof. By recursively applying (IVn), we can write

‖xn+1 − xn‖ ≤
(

h(an)

2
+ 1
)
‖yn − xn‖

≤
(

h(an)

2
+ 1
)

f (an−1)g(an−1)‖yn−1 − xn−1‖ (13)

≤ · · · ≤
(

h(an)

2
+ 1
)[n−1

∏
j=0

f (aj)g(aj)

]
‖y0 − x0‖.

Then,

‖xn+m − xn‖ ≤ ‖xn+m − xn+m−1‖+ ‖xn+m−1 − xn+m−2‖+ · · ·+ ‖xn+1 − xn‖

≤
(

h(an+m−1)

2
+ 1
)

η ∏n+m−2
j=0 f (aj)g(aj)

+

(
h(an+m−2)

2
+ 1
)

η ∏n+m−3
j=0 f (aj)g(aj)

+ · · ·+
(

h(an)

2
+ 1
)

η ∏n−1
j=0 f (aj)g(aj).

As h(x) is increasing and an decreasing, it can be stated that

‖xn+m − xn‖ ≤
(

h(an)

2
+ 1
)

η
m−1

∑
l=0

[
n+l−1

∏
j=0

f (aj)g(aj)

]

≤
(

h(an)

2
+ 1
)

η
m−1

∑
l=0

( f (a0)g(a0))
l+n.

Moreover, by Lemmas 1 and 2, f and g are increasing and an decreasing. So, we can
use the expression for the partial sum of a geometrical series,

‖xn+m − xn‖ ≤
(

h(a0)

2
+ 1
)

1− ( f (a0)g(a0))
m

1− f (a0)g(a0)
( f (a0)g(a0))

nη.

So, we conclude that {xn} is a Cauchy sequence if and only if f (a0)g(a0) < 1 (Lemma 2).



Axioms 2021, 10, 161 7 of 11

For n = 0,

‖xm − x0‖ ≤
(

h(a0)

2
+ 1
)

1− ( f (a0)g(a0))
m

1− f (a0)g(a0)
η ≤ Rη,

and by taking m→ ∞, we get the radius of convergence Rη =
1 + 1

2 h(a0)

1− f (a0)g(a0)
η.

To prove that x∗ is a solution F(x) = 0 we start bounding ‖F′(xn)‖,

‖F′(xn)‖ ≤ ‖F′(x0)‖+ ‖F′(xn)− F′(x0)‖
≤ ‖F′(x0)‖+ K‖xn − x0‖
≤ ‖F′(x0)‖+ KRη.

Then, from (13),

‖F(xn)‖ ≤ ‖F′(xn)‖‖xn − x0‖

≤ ‖F′(xn)‖
(

h(an)

2
+ 1
)[n−1

∏
j=0

f (aj)g(aj)

]
η,

as h, f and g are increasing functions and an is a decreasing sequence,

‖F(xn)‖ ≤ ‖F′(xn)‖
(

h(an)

2
+ 1
)
( f (a0)g(a0))

nη.

Taking into account that ‖F′(xn)‖ is bounded and ( f (a0)g(a0))
n tends to zero when

n→ ∞, we conclude that ‖F(xn)‖ → 0. As F is continuous in Ω, then F(x∗) = 0.
Finally, the uniqueness of x∗ in B

(
x0, 2

Kβ − Rη
)
∩Ω is going to be proven. We assume

that y∗ is another solution of F(x) = 0 in B(x0, 2
Kβ − Rη)∩Ω, and let us prove that x∗ = y∗.

Starting with the Taylor series of F around x∗,

F(x) = F(x∗) +
∫ 1

0
F′(x∗ + t(x− x∗))(x− x∗)dt,

then,

F(y∗) = F(x∗) +
∫ 1

0
F′(x∗ + t(y∗ − x∗))(y∗ − x∗)dt,

so that

0 = F(y∗)− F(x∗) = (y∗ − x∗)
∫ 1

0
F′(x∗ + t(y∗ − x∗))dt.

In order to guarantee that y∗ − x∗ = 0 it is necessary to prove that operator
∫ 1

0 F′(x∗ +
t(y∗ − x∗))dt is invertible. Applying hypothesis (C3),

‖Γ0‖
∫ 1

0
‖F′(x∗ + t(y∗ − x∗))− F′(x0)‖dt ≤ Kβ

∫ 1

0
‖x∗ + t(y∗ − x∗)− x0‖dt

≤ Kβ
∫ 1

0
((1− t)‖x− x0‖+ t‖y∗ − x0‖)dt

<
Kβ

2

(
Rη +

2
Kβ
− Rη

)
= 1.

Therefore, Banach’s lemma guarantees that the operator is invertible, so y∗ = x∗ and the
proof is finished.
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4. Numerical Experiments

Hammerstein’s integral equation appears in nonlinear physical phenomena, such as
the dynamics of electromagnetic fluids, in the reformulation of contour problems with
nonlinear boundary conditions of the Hammerstein type, etc. See, for instance, [25] or [26].

So, in order to show the applicability of the theoretical results, we apply the obtained
results for solving the following Hammerstein type integral equation,

x(s) = 1 +
∫ 1

0
G(s, t)x(t)2dt, s ∈ [0, 1], t ∈ [0, 1], (14)

where x ∈ C(0, 1), t ∈ [0, 1] with kernel G(s, t) =
{

(1− s)t, t ≤ s,
s(1− t), s < t.

To solve Equation (14) we transform it into a system of nonlinear equations through
a discretization process. We approximate the integral appearing in (14) by using Gauss-
Legendre quadrature, ∫ 1

0
h(t)dt ≈

m

∑
i=1

wih(ti), (15)

being ti and wi the nodes and the weights of the Gauss-Legendre polynomial. Denoting
the approximation of x(ti) as xi, i = 1, 2, . . . , m, then we estimate (14) with the system of
nonlinear equations

xi = 1 +
m

∑
j=1

aijx2
j , i = 1, 2, . . . , m (16)

where aij =

{
wjtj(1− ti), j ≤ i
wjti(1− tj), j > i.

The system can be rewritten as

F(x) = x− 1− Avx, vx = (x2
1, x2

2, . . . , x2
m)

T ,

F′(x) = I − 2AD(x), D(x) = diag(x1, x2, . . . , xm),

where F is a nonlinear operator in the Banach space Rm, and F′ is its Fréchet derivative
in L(Rm,Rm). We will use the extension of Chun’s method introduced in (3) to solve the
nonlinear system.

Taking x0 = (1.7, 1.7, . . . , 1.7)T , m = 8 and the infinity norm, we get

‖Γ0‖ ≤ β, β ≈ 1.6550,

‖Γ0F(x0)‖ ≤ η, η ≈ 0.6927,

‖F′(x)− F′(y)‖ ≤ k‖x− y‖, k ≈ 0.2471,

a0 = kβη, a0 ≈ 0.2833.

The convergence conditions are met and consequently the method can be applied
to the system. In addition, by Theorem 1, we guarantee the existence of the solution in
B(x0, 2.0725), and its uniqueness in B(x0, 2.8181). In Table 1 and in Figure 1, we show the
existence radius, Re, and the uniqueness radius, Ru for different values of the initial esti-
mation vector x0, with equal components. Let us remark that, for x0i > 1.77, i = 1, 2, . . . , 8,
convergence conditions are not satisfied and, therefore, the convergence is not guaranteed.
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Table 1. Parameters of (16) for different initial estimations.

x0i β η a0 Re Ru

0 1.0000 1.0000 0.2471 2.0825 6.0108
0.2 1.0516 0.8465 0.2200 1.5346 6.1614
0.4 1.1080 0.6864 0.1879 1.0901 6.2142
0.6 1.1699 0.5189 0.1500 0.7256 6.1925
0.8 1.2380 0.3428 0.1049 0.4238 6.1134
1.0 1.3134 0.1567 0.0509 0.1720 5.9899
1.2 1.3973 0.1879 0.0649 0.2123 5.5796
1.4 1.4912 0.3889 0.1433 0.5380 4.8892
1.6 1.5969 0.5911 0.2333 1.1986 3.8694

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-2

-1

0

1

2

3

4

5

6
Existence radius
Uniqueness radius

Figure 1. Radii of existence and uniqueness for different initial estimations.

The approximated solution of the system (16) after 5 iterations of multidimensional
Chun’s method taking x0 = (1.7, 1.7, . . . , 1.7)T and as stopping criterium ‖xn − xn−1‖∞ <
10−180 or ‖F(xn)‖∞ < 10−180, can be seen in Table 2. The software used is MATLAB 2019b
and the processor used has been Intel Core(TM) i7-9700 CPU @ 3.00 GHz with 32 GB of
RAM. Variable precision arithmetics has been used in the calculations with 2000 digits of
mantissa. The approximated computational order of convergence (ACOC) [27]

ρ =
ln ‖xn+1−xn‖∞
‖xn−xn−1‖∞

ln ‖xn−xn−1‖∞
‖xn−1−xn−2‖∞

, for each n = 2, 3, . . . (17)

is also calculated.

Table 2. Numerical solution of (16).

i 1 2 3 4 5 6 7 8

x∗i 1.0122. . . 1.0584. . . 1.1181. . . 1.1598. . . 1.1598. . . 1.1181. . . 1.0584. . . 1.0122. . .

As expected, the method converges to the solution if the Kantorovich conditions are
met, we obtain the same solution with any initial estimation of Table 1. As can be observed
in Table 3, by changing the initial estimation (with equal components x0i, i = 1, 2, . . . , 8), the
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number of iterations needed to converge to the unique root is always 5, the computational
order of convergence ρ fits exactly the theoretical order of convergence and the estimations
of the error, as it is intended, are lower as closer are initial guesses to the root.

Table 3. Numerical results extension of Chun’s method with different initial estimations.

x0i iter ‖xn− xn−1‖∞ ‖F(xn)‖∞ ρ

0.2 5 5.2749× 10−189 9.396× 10−757 4.0
0.4 5 2.9207× 10−211 8.8316× 10−846 4.0
0.6 5 9.5406× 10−242 1.0055× 10−967 4.0
0.8 5 2.2172× 10−288 1.7003× 10−1008 4.0
1.0 5 4.7315× 10−381 1.8738× 10−1008 4.0
1.2 5 1.28× 10−455 3.258× 10−1823 4.0
1.4 5 9.6618× 10−300 1.0576× 10−1199 4.0
1.6 5 4.943× 10−231 7.2453× 10−925 4.0

This kind of semilocal convergence demonstrations that guarantee the existence and
uniqueness of the solution under some assumptions are especially valuable in unsupervised
processes where it is difficult to prove the existence of solutions.

5. Conclusions

This paper completes the study of the multidimensional extension of Chun’s fourth-
order of convergence iterative method. We have analyzed the behavior of this method
under Kantorovich conditions assuming a Lipschitz condition for the derivative. In these
terms, we have been able to obtain the existence and uniqueness domain for the solution.

This is important not only because it gives us a theoretical proof of the iterates con-
vergence; moreover, it is the way to prove the existence of the solution for some applied
problems that cannot be solved analitically.

The theoretical study has been corroborated by solving an applied problem formulated
as a nonlinear integral equation of Hammerstein type. The efficiency of this method has
been proven numerically, by the calculation of high-precision approximation of the solution
of an integral equation with very few iterations and fourth-order of convergence. The future
work is centered in modifying the method and the corresponding semilocal convergence
study for the nondifferentiable case.
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