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Econometrica, Vol. 57, No. 5 (September, 1989), 1091-1120 

SEMINONPARAMETRIC ESTIMATION OF CONDITIONALLY 
CONSTRAINED HETEROGENEOUS PROCESSES: ASSET 

PRICING APPLICATIONS1 

BY A. RONALD GALLANT AND GEORGE TAUCHEN 

The overidentifying restrictions of the intertemporal capital asset pricing model are 
usually rejected when tested using data on consumption growth and asset returns, particu- 
larly when additively separable, constant relative risk utility is attributed to the representa- 
tive agent. This article investigates the extent to which specification error can explain these 
rejections. The empirical strategy is limited information maximum likelihood in conjunc- 
tion with seminonparametric (expanding parameter space) representations for both the law 
of motion and utility. We find that consumption growth and asset returns display 
conditional heterogeneity, but this fact does not account for rejection of the overidentifying 
restrictions as might be anticipated from the work of Hansen, Singleton, and others using 
generalized method of moments methods. We also find that expansion of the parameter 
space in the direction of nonseparable utility causes the overidentifying restrictions to be 
accepted. Our estimation strategy provides information on the manner in which the 
restrictions distort the law of motion. In particular, imposition of additively separable, 
constant relative risk aversion utility causes the conditional variance of consumption 
growth to be overpredicted, the conditional covariance of asset returns with consumption 
growth to be overpredicted, and an equity premium. Imposition of nonseparable seminon- 
parametric utility causes distortion in these same directions, though the distortions are 
much smaller which is consistent with the outcomes of the tests of the restrictions. 

KEYWORDS: Seminonparametric, nonparametric, Hermite expansions, conditional mo- 
ment restrictions, asset pricing, utility. 

1. INTRODUCTION 

THE EMPIRICAL FORCE of the intertemporal capital asset pricing model (I-CAPM) 
lies in the restrictions it places across the time paths of consumption and asset 
returns. In stationary environments, the statistical properties of the time paths 
are completely characterized by their law of motion, which is the one-step ahead 
joint probability density of consumption and asset returns. The restrictions, in 
essence, dictate that the series must co-vary in such a way that the product of a 
suitably defined marginal rate of substitution of consumption and each asset 
return has conditional mean equal to unity. Restrictions of this form are 
conditional moment restrictions that constrain the conditional means of nonlin- 
ear functions of the data. Equilibrium asset pricing relations leading to such 
conditional moment restrictions have been deduced in various contexts by Lucas 
(1978), Breeden (1979), Hansen and Singleton (1982, 1983), and many others. A 
variety of tests of the restrictions under different auxiliary assumptions about the 
law of motion or the functional form of the marginal rate of substitution have 
been reported in the literature. Generally speaking, the tests come out the way 

I This research was supported by National Science Foundation Grants SES-8207362, SES-8507829, 
SES-8520244, North Carolina Agricultural Experiment Station Projects NCO-5593, NCO-3879, and 
the PAMS Foundation. We wish to thank the referees, the co-editor, and many seminar participants 
for helpful comments. 
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1092 A. RONALD GALLANT AND GEORGE TAUCHEN 

they did in Hansen and Singleton (1982, 1983), who uncover evidence against the 
model. 

In this paper we address several empirical issues concerning the statistical 
properties of consumption and asset returns and the restrictions placed on their 
law of motion by the intertemporal capital asset pricing model. The empirical 
work begins with an examination of the characteristics of the law of motion itself, 
with the primary objective being to determine the extent to which it deviates 
from the Gaussian vector autoregressive (VAR) model. The effort is constructive, 
in the sense that it provides a consistent estimate of the law of motion when the 
process is non-Gaussian and conditionally heterogeneous as we find to be the 
case. The empirical work then proceeds to estimation of the law of motion 
subject to the conditional moment restrictions from the I-CAPM. The version of 
the model we test entails minimal assumptions on both the form of the utility 
function and the stochastic environment. One topic of particular interest is the 
nature of intertemporal nonseparability of the utility function, which is an aspect 
of utility that several authors have recently argued is important for understanding 
the co-movements of consumption and returns. Another is the impact that 
various assumptions about the intertemporal utility function have on the condi- 
tional first and second moment properties of consumption and returns. Overall, 
our empirical work can be viewed as an effort to understand the sensitivity of 
empirical conclusions concerning the I-CAPM to assumptions about the dynamic 
law of motion of the observables and the intertemporal utility function. 

The estimation strategy we use is seminonparametric (SNP), which is an 
approach that applies conventional estimation and testing to models derived 
from series expansions. The strategy provides a means for making inferences 
without imposing restrictive auxiliary assumptions that do not follow directly 
from theory. In our work, the components of the model that are not specified by 
the theory are the law of motion of the observables and the utility function of the 
representative agent. For the law of motion, we employ an SNP model, which is a 
truncated Hermite expansion where the leading term is a Gaussian VAR and 
higher order terms accommodate both deviations from Gaussianity and condi- 
tional heterogeneity. For the utility function, we employ a seminonparametric 
expansion where the leading term is the familiar constant relative risk aversion 
(CRR) utility function and the higher order terms capture intertemporal nonsep- 
arabilities of nondurable consumption. Our general estimation strategy, then, is 
the seminonparametric extension of the one used by Hansen and Singleton 
(1983), who employ a Gaussian VAR model for the law of motion and CRR 
utility. The impetus for our developing this strategy was the remarks of Hansen 
(1986). 

The remainder of the paper is organized as follows. Section 2 develops the 
basic theory of SNP models for multiple time series. Section 3 presents the 
empirical results from fitting SNP models to postwar data on consumption and 
returns. None of the fits discussed in Section 3 are subject to side constraints. 
Thus, readers whose main interest is SNP time series models and the mechanics 
of fitting them, and who might have only a subsidiary interest in asset pricing 
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ASSET PRICING APPLICATIONS 1093 

models, can confine attention to these two sections. Section 4 goes on to develop 
the conditional moment restrictions from the intertemporal asset pricing model 
and also presents the numerical methods used for estimation subject to the 
constraints. Section 5 reports the findings from the constrained estimation. 
Section 6 contains the concluding remarks, which are mainly an overall summary 
of our empirical results. 

2. SEMINONPARAMETRIC MODELS: THEORY 

The prefix semi means half and the term seminonparametric (SNP), coined in 
Elbadawi, Gallant, and Souza (1983), is intended to convey the notion that SNP 
procedures are halfway between parametric and nonparametric inference proce- 
dures. The method consists of applying classical parametric estimation and 
inference procedures to models derived from truncated series expansions. Be- 
cause one states precisely what one will do when specification error is detected, 
namely increase the truncation point, one can prove that these procedures have 
nonparametric properties. Nothing is lost, however, if the results are viewed as 
classical finite-dimensional inferences that have been subjected to a sensitivity 
analysis. We prefer to regard the empirical results as nonparametric but the 
reader is at liberty to regard them as parametric. 

We obtain our method by applying the results of Gallant and Nychka (1987). 
To do so, the problem must be structured so that the likelihood is a functional 
defined over a space of positive valued functions whose domain is a finite 
dimensional Euclidean space. Denote the space by XY and a typical element by h. 
Assumptions that will produce this structure are: (i) the data {t }7t=-L?1 are a 
realization from a stationary time series {(y,}'t= - . where each yt is a vector of 
length M; and (ii) the conditional distribution of yt given the entire past depends 
only on a finite number L of lagged values of yt. Denoting these lagged values by 

xt-= (YtQLI Yt-L+1 *... I Yt.) D 
which is a vector of length M- L, the likelihood can be written in terms of the 
joint density h(yt, xt,1) of yt and xt-1 as 

n 

[lJh(Ytlxt-1) h(y, xo) dy 
_t=1 

where 

h (yt Ixt- 1) = h(yt, xt- 1) h (y, xt- 1) dy. 

This likelihood has the appropriate form: it is a functional in h and h has a finite 
number of arguments. 

Next, following Gallant and Nychka, h is approximated by a truncated 
Hermite expansion. The truncated expansion is the SNP model. It replaces h in 
the likelihood and its parameters are estimated by maximizing the likelihood. 
Subject to regularity conditions that we will discuss below, the conditional 
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1094 A. RONALD GALLANT AND GEORGE TAUCHEN 

density h(ylx) that corresponds to h in XY is estimated consistently provided 
the truncation points grows (either adaptively or deterministically) with the 
sample size. 

To follow this recipe exactly, one must set forth the Hermite expansion of h 
and apply various algebraic simplifications to put it in a tractable form. Doing so 
will produce the SNP model that we use but will not provide an understanding of 
what sorts of processes it can approximate well. Instead, we shall present an 
intuitive derivation of the SNP model that does contribute to understanding. 

Observe that in most applications, notably prediction of yt given the past, it is 
enough to know the conditional density h(ytIx_-1) and knowledge of the joint 
density h(yt, xt-1) is not required. This includes determination of the conditional 
density by the method of maximum likelihood because the maximum likelihood 
estimate is obtained by minimizing 

n 

(-1n ) E In h (yt Ixt_l + (l/n)lIn Ih (y, x0) dy 
t=1 

and the term (-1/n) ln Jh (y, x0) dy is negligible in large samples. Also note 
that, while the density h(ytlxt-1) is time invariant under the two assumptions 
above, there is no restriction as to how the function h(yIx) depends on x: the 
process (yt} can exhibit any sort of conditional heterogeneity under these two 
assumptions. 

A natural approach in modelling such a process is to take a linear function 
bo + Bxt_1 of the past as the location parameter of yt, to scale by an upper 
triangular matrix R to obtain a standardized residual 

zt =R-(yt-bo-Bxt-1), 

and then get a conditional density from some parent density f(z) by putting 

h (ytlxt-1) =f [R 1(yt- bo - Bxt-1)I/det(R). 

The shape characteristics of f(z) will determine the distribution of yt given xt. 
For instance, if f(z) were taken as the standard (multivariate) Gaussian density, 
denoted hereafter as either T (z) or nM(z; 0, I), the result would be a Gaussian, 
vector autoregression (VAR). How can f(z) be chosen without imposing a 
potentially erroneous a priori shape on the fit? One needs a good general purpose 
density that can accommodate any shape, especially the Gaussian as it is most 
likely a priori. 

Using a Hermite polynomial as a general approximation to a density function 
is a long established tradition in statistics; examples are Gram-Charlier and 
Edgeworth expansions. The form of a Hermite expansion is a polynomial in z 
times the standard Gaussian density. This is its major strength; the leading term 
of the expansion is Gaussian; higher order terms accommodate deviations from 
Gaussianity, if any. To insure positivity we shall square the polynomial part, and 
to insure that the density integrates to one we shall divide by the integral over 
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ASSET PRICING APPLICATIONS 1095 

R M. The result is 

f(z) = [Eaoaza] (z) f[E aoa aua (](u) du 

where za maps the multi-index 

a = (all, a2,..., IaM) 

into the monomial 
M 

z= (zi) 
i=l 

of degree 
M 

lal= lail- 
i=l 

This density will generate a Gaussian VAR if Kz is put to zero and will 
accommodate arbitrary shape departures from the Gaussian VAR for large 
enough Kz. However, this form of the density cannot accommodate conditional 
heteroskedasticity or more general, nonlinear conditional shape variation with 
xt-1. 

The obvious remedy is to let the coefficients aa be polynomials in x by writing 

K., 

aa(x)= E aAx" 
101=0 

where 
/3= 

(Pl /1A /29 .. ML) A 

ML 

i=l 

ML 

X H (xi)", 

With this modification, the conditional density of a scaled residual given xt,1 is 

Ea.(Xt-l)Zt0 (Pzt) 

fK(ZtIxt-1) _a==0 _2 

I [ iaaa(xt_l)ua (p(u) du 

with K= (Kz, K); the conditional density of yt given x_1 is 

hK(YtlXt-l) =fK[R 1(yt- bo- Bxt-)Ixtl]/det(R). 
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1096 A. RONALD GALLANT AND GEORGE TAUCHEN 

When we wish to indicate explicitly that this density depends on the parameters 
a, ,, bog B, and R, we shall write hK(ytIxt1, 9). To be specific, 9 is a vector of 
length pe which has as its leading elements the polynomial coefficients a ,ai, the 
VAR location parameters bo and vec(B) as its next group of elements, and the 
upper triangle of the VAR scale parameter R stored columnwise as its last group 
of elements. If p, is the number of monomials in a polynomial of degree Kz 
defined on R M and p, is the number of monomials in a polynomial of degree KX 
on R ML, then the length of 9 is p= Pz Px + M + M- M- L + M(M + 1)/2. 

By increasing K, that is, by increasing Kz and KX simultaneously, an SNP 
model can be made to approximate the conditional density corresponding to an h 
in ,X' arbitrarily accurately. A mathematically precise description of X is in 
Gallant and Nychka (1987). Qualitatively, X#' contains distributions with fat 
t-like tails such as h(y, x) a (1 +y'y + x'x) - for 8 > (M + M L)/2, the 
Gaussian, and distributions with tails that are thinner than the Gaussian such as 
h(y, x) a exp[-(y'y + x'x)A] for 1 < A < 8 - 1. Off the tails, that is, on a ball 
with finite radius that contains all but a small fraction of the probability mass of 
the density, any sort of skewness, kurtosis, etc. is permitted. What is ruled out are 
violently oscillatory density functions. 

An SNP procedure is an expanding parameter space or sieve method 
(Grenander (1981), Severini and Wong (1987)). A distribution theory for SNP 
inference with cross-sectional data has been developed in the following papers: 
Gallant (1982), Eastwood and Gallant (1987), and Andrews (1987). These papers 
set forth deterministic and adaptive rules relating the truncation point to the 
sample size such that classical, finite dimensional hypothesis tests and confidence 
statements actually achieve their nominal a-level in large samples. Whether or 
not these results and methods of proof extend to time series data is an open 
question. 

The best known of the various time series models that try to accommodate 
conditional heterogeneity is the ARCH model (Engle, 1982). Since the stationary 
distribution of the ARCH model is not known in closed form, we cannot say 
definitely that the ARCH model is a member of X. It is in a qualitative sense 
since the stationary distribution of the ARCH model has fat tails and only a 
finite number of moments which is qualitatively like the t distribution. Condi- 
tionally, ARCH models have a variance that is a polynomial in a finite number of 
lags, the same as the SNP model. These remarks would lead one to expect that we 
can approximate the conditional density of an ARCH model to within arbitrary 
accuracy for large K. For large L, the same may be true for GARCH models. 
GARCH models have a variance that is a polynomial in an infinite number of 
lags. As yet, we do not know whether it would be possible to let the lag length of 
an SNP model grow with sample size and retain the consistency result. 

3. SEMINONPARAMETRIC MODELS: EMPIRICAL RESULTS 

The data used to fit the model are real, monthly: per capita consumption of 
nondurables and services, value weighted NYSE returns, and Treasury bill 
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ASSET PRICING APPLICATIONS 1097 

returns. We used two data sets: The first covers the years 1959 to 1978 inclusive 
and is identical to that used by Hansen and Singleton (1982, 1983, 1984); these 
data are published in Gallant (1987, Chapter 6) together with details regarding 
the timing conventions and transformations used to get per capita consumption 
and real returns. The second covers the years 1959 to 1984 inclusive and was 
constructed from these sources: real ($1972) and current dollar consumption of 
nondurables and services, Citibase (1983, Series GMCN72, GMCS72, GMCN, 
GMCS, 1959.01-1983.12) and Department of Commerce (1984, 1984.01- 
1984.12); the implicit deflator is the ratio of current to real dollar consumption of 
nondurables and services; population, Citibase (1983, Series POP, 
1959.01-1983.12) and Bureau of the Census (1985, 1984.01-1984.12); Treasury 
bill returns, Ibbotson Associates (1985, U.S. Treasury Bill Returns, Exhibit B-9); 
total value weighted market returns on NYSE securities, CRSP (1986). Transfor- 
mations and timing conventions in the second data set are the same as the first. 
The two data sets differ little in the overlapping years; the main discrepancy is 
due to a reversion of the monthly population series to reflect new information 
from the 1980 census. 

The per capita consumption series was converted to a consumption growth 
series by dividing each observation by its predecessor; this reduces series length 
by one. In addition, the first four initial values were not used in any fits, save 
those to produce Table I, to insure comparability of likelihoods having differing 
lag lengths. Fits using the 1959-1978 data set are based on 235 observations and 
fits using the 1959-1984 data set on 307 observations. The three series, consump- 
tion growth, stock returns, and bill returns are denoted as CG, SR, and BR 
respectively in the text, figures, and tables; natural logarithms of each are 
denoted as LCG, LSR, and LBR. 

Fitting VAR specifications to the series yt = (LBR, LCG) over 1959-1978 
testing at conventional significance levels, a one-lag VAR specification is rejected 
in favor of a two-lag, a two-lag is not rejected in favor of a three- or four-lag; the 
same is true for the series Yt = (LSR, LCG). Various descriptive statistics com- 
puted from two-lag VAR residuals for yt = (LBR, LCG) and yt = (LSR, LCG) 
are displayed in Table I. There are departures from a Gaussian VAR specification 
as indicated by the significant Kolmogorov-Smirnov statistics. Normal (or Q-Q) 
plots of these residuals indicate that consumption growth VAR residuals have 

TABLE I 

DESCRIPTIVE STATISTICS FOR Two LAG VAR RESIDUALS, 1959-1978 

Fitted Series Y, = (LBR, LCG) Y, = (LSR, LCG) 
Residual LBR LCG LSR LCG 

Skewness -0.6824 0.0417 - 0.1604 0.0570 
Excess Kurtosis 3.2356 0.4697 1.0491 0.4713 
Kolmogorov-Smirnov 

statistic 0.0701 0.0420 0.0684 0.0657 
p-value <.01 >.15 <.01 0.014 
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1098 A. RONALD GALLANT AND GEORGE TAUCHEN 

initially heavy then thin left tails and heavy right tails relative to the Gaussian 
distribution; both tails of the two returns series are heavy. The cause of these 
departures from a VAR structure with Gaussian innovations could be a non- 
Gaussian innovation distribution, a location parameter that depends nonlinearly 
on the past, conditional heteroskedasticity, some other type of conditional 
heterogeneity, or a mixture of these factors present at the same time. These are 
the sorts of departures from a Gaussian VAR specification that an SNP specifi- 
cation is designed to accommodate. 

Recall that, for a SNP of dimension M and degree K = (Ks, Kx) in L lags, the 
conditional density of Yt = (Yt,..., YMt)' given Xt-I = (Yt'-L, ,y' is 

hK(ytlxt-l, 0) 

K. 2 

Ea.(xt_1)R 1(yt-bo-Bxt1)j nM(ytIbO+BXt_l,RR') 
= aj= 0 

K, 2 

" Eia aa(xt_l)u0 ]T(u) du 

a,x(x)= a0,0xt- 

A 

with 0 estimated by 0 that minimizes the sample objective function 

n 

Sn(O) = (-1/n) E ln hK(YtlXt-l, 0) 
t=1 

In this section, and in Section 5, this minimization was carried out using 
NPSOL from the Stanford Systems Optimization Laboratory (Gill, Murray, 
Saunders, and Wright (1983)).2 NPSOL computes an unconstrained optimum, or 
a linearly constrained optimum, by minimizing successive quasi-Newton quadratic 
approximations to the objective function using a quadratic programming routine 
to find downhill directions; NPSOL computes a nonlinearly constrained opti- 
mum by substituting an augmented Lagrangian function for the objective func- 
tion. We have found that proper scaling is essential in computations to avoid 
cases where extremely large or small values of the polynomial part of the 
conditional density are required to compensate for extremely small or large 
values of the exponential part. Specifically, the computations reported below are 
based on the transformed data 

= 

S-12(yt 
-), 

2 NPSOL is available from the Office of Technology Licensing, 350 Cambridge Avenue, Suite 250, 
Palo Alto, CA 94306, U.S.A. 
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ASSET PRICING APPLICATIONS 1099 

where S = (l/n)Et(yt - Y)(yt - 5)', y = (1/n)Etyt, and S-1/2 denotes the 
Cholesky factorization of the inverse of S; the sum is over all observations: 239 
in the 1959-1978 data set, 311 in the 1959-1984 data set. 

A priori our preferred minimal specification is two lags (L = 2), a two degree 
polynomial in y (K, = 2), and a one degree polynomial in x (Kx = 1). Our 
reason for preferring this specification is that it is the minimal specification that 
can accommodate these two considerations: (i) Experience with linear Gaussian 
ARCH models suggests that typically at least two lags are needed to pick up 
ARCH effects (Engle (1982, p. 1002), Engle and Bollerslev (1986, pp. 19-20)); 
(ii) the polynomial in y must be at least of degree two to accommodate 
departures from Gaussian tails. To illustrate the number of parameters that this 
will entail, if one fits this specification to yt = (LBR, LCG), M = 2, then there 
are 13 Gaussian VAR parameters in the term NM(y Ibo + Bx, RR') and 30 
polynomial parameters (p = 6, p = 5) for a total of 43. Allowing for the 
normalization rule ao = 1 there are 42 effective parameters; with a sample size of 
n = 235 the saturation ratio is nM/p6 = 11 observations per parameter. If one fits 
to yt = (LBR, LSR, LCG), M = 3, there are 27 VAR parameters, 70 polynomial 
parameters (p, = 10, p, = 7), a total of 97, effective 96, and saturation ratio of 10 
with a sample of size n = 307. 

A detailed exploration of the likelihood surface of the series yt = (LBR, LCG) 
using the 1959-1978 data set is displayed in Table II. The p-values given under, 
for instance, the column heading Kx are for a comparison of the SNP (L, Kz, Kx) 
specification to its successor, an SNP (L, Kz, Kx + 1) specification, using the 
asymptotic x2 distribution of the likelihood ratio test statistic; the exception is a 
SNP (L, 0, K,) because its successor is considered to be an SNP (L, 2, Kx) 
specification for reasons discussed above. As an example, comparing a SNP 

TABLE II 

LIKELIHOOD SURFACE, yt = (LBR, LCG), 1959-1978 

p-value 

L KZ, K Po Stl ( &) L K, K. 

0 0 0 5 2.825500 .001 
1 0 0 9 2.719224 .01 .001 
1 2 0 14 2.649920 .01 .001 
1 2 1 26 2.572404 .01 .04 .04 
1 2 2 44 2.508069 .05 
1 3 1 38 2.526017 .01 
2 0 0 13 2.689188 .5 .001 
2 2 0 18 2.622474 .3 .001 
2 2 1 42 2.506675 .2 .03 .07 
2 2 2 102 2.343508 
2 3 1 62 2.435954 .4 
2 4 1 87 2.379054 
3 0 0 17 2.682065 .001 
3 2 0 22 2.612523 .001 
3 2 1 58 2.463787 
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(2,2, 1) specification with a SNP (2,3,1) specification gives a x2 statistic of 
X2 = (2)(235)(2.506675 - 2.435954) = 33.23 on (62 - 42) = 20 degrees of freedom 
which is significant at the 3% level. 

A Gaussian VAR specification is overwhelmingly rejected as indicated by the 
p-values of .001 in Table II under the column heading Kz for rows with 
Kz = Kx= 0. A homogeneous, non-Gaussian, VAR specification, is also over- 
whelmingly rejected as indicated by the p-values of .001 in Table II under the 
column heading KX for rows with Kz> 0 and Kx = 0. Note also from the 
p-values in Table II that L = 2 is the appropriate lag length. 

The heterogeneity implied by these significant test statistics can be assessed 
graphically using plots of which Figure 1 is representative. At the bottom of 
Figure 1 is a plot of the contours of the density h (y _x_1, 0) in units of yt, not 
units of Y9, for an SNP (2,2,1) specification fitted to the 1959-1978 data set with 
Xt-= (Y1973.07, Y1973.08); Y1973.08 is an observation at the southwest edge of the 

/\VAR-- 

-0.010 -0.605 0.000 0.005 0.010 
Y1 

Slice Through h(ylx) Compared to a Gaussian VAR 

/ \ VAR---- 

-0.015 -0.010 -0.005 0.000 0005 0010 0.015 
Y2 

Slice Through h(ylx) Compared to a Gaussian VAR 

0015 

0.007- 

Y2 
0.000- 

-0.007- 

-0.015 ( 
-0010 -0.005 0000 0.005 0.010 

Y1 
Contours of h(ylx) 

FIGURE 1.-SNP(2,2, 1), y = (LBR, LCG), X = (Y1973.07, Y1973.08), 1959-1978. 
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scatter plot of { y, } while its predecessor Y1973.07 is at the northeast edge. A 
comparison with similar plots at other points-specifically, x,_1 = 
(Y1965.0o9 Y1965.10), Y1965.10 is at the northeast edge with predecessor at the north- 
east edge, and xt_i = (Y1972.04' Y1972.05), Y1972.05 is at the center with predecessor 
at the center-suggest nonlinearities in excess of that which can be accounted for 
by conditional heteroskedasticity because the shape of the contours is not 
elliptical and depends on xt-1. The shape variation could be due to sampling 
variation or it could be due to significant nonlinearities in the data over and 
above conditional heteroskedasticity. What is important is that if such nonlinear- 
ities are present, our method can accommodate them. 

Above the contour plot in Figure 1 are plots of slices taken through the mode 
of h(y Ixt_l, 0); over plotted for comparison is a similar slice through the mode 
of a two-lag VAR conditional density. Figure 1, and plots at other points, 
indicate that SNP conditional location and scale estimates can differ substantially 
from VAR location and scale estimates. They also indicate that, for these data, 
estimates at a saturation ratio of about 10 observations per parameter are 
relatively free of oscillation due to instability in the polynomial part of the model 
although some deterioration in the tails is observed. 

If one tries to move to a more liberally parameterized model, say an SNP 
(2, 3,1) specification with a saturation ratio of 7.6 observations pelr parameter in 
the 1959-1978 data set, this oscillation becomes more severe as seen in Figure 2. 
However, if one fits the same SNP (2,3,1) specification to the 1959-1984 data 
set, the saturation ratio is once again about 10 and the oscillation disappears as 
seen in Figure 3. Also, as one might expect from the discussion in Section 2, 
estimates of the tails improve as the number of observations increases with the 
saturation ratio held constant. 

We also examined shape and tail behavior by looking at plots of slices, 
normalized to integrate to one, through the mode of h (y I xt_1, 0) (as estimated in 
the 1959-1984 data set using an SNP (2,3,1) specification, at xt_i = 

(Y1965.0o9 Y1965.10), (Y1972.04, Y1972.05), and (Y1973.07' Y1973.08)) and comparing them to 
plots of a Gaussian density with the same mode and variance. A conditional 
dependence of shape and tail behavior on the past was observed. Again, this 
could be due to sampling variation or it could be due to significant nonlinearities 
in the data over and above conditional heteroskedasticity. 

As a result of this specification search, we prefer specifications at a saturation 
ratio of about ten, the best, in our opinion, being an SNP (2,2, 1) for M = 2 in 
the 1959-1978 data set, an SNP (2, 3,1) for M = 2 in the 1959-1984 data set, and 
an SNP (2, 2,1) for M = 3 in the 1959-1984 data set. These fits, together with a 
few others for comparison, are displayed in Table III. 

In Section 5 we find that the bivariate (LBR, LCG) series can discriminate 
sharply between alternative specifications of utility whereas (LSR, LCG) series 
cannot. To help determine why, we computed the first and second conditional 
moments of the SNP (2,2,1), M = 3, specification as estimated from the 
1959-1984 data set for each of the 307 observations in the data set. We found 
that the coefficient of variation over the 307 observations for any moment 
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FIGURE 2.-SNP (2, 3, 1), y = (LBR, LCG), X = (Y1973.07, Y1973.08), 1959-1978. 

involving LSR was higher than the corresponding moment for LBR, ranging 
from 35% higher for the conditional covariance with LCG to 201% higher for the 
conditional mean. Also, the conditional mean of LSR, averaged over the 307 
observations, was 282% larger than for LBR. As to the pattern of conditional 
correlations, the conditional correlation of LBR and LSR with LCG, averaged, 
was nearly the same (0.21) but the conditional correlation between LSR and 
LBR was nearly zero. Of the characteristics of the SNP fits that we examined, 
these seem to be the main differences and might account for the differences 
observed in Section 5. 

4. CONDITIONAL MOMENT RESTRICTIONS FROM ASSET PRICING: THEORY 

4.1. Euler Equations 

We now derive the conditional moment restrictions that the intertemporal asset 
pricing model places on the SNP time series model. Assume the representative 
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FIGURE 3.-SNP(2, 3, 1), y -(LBR, LCG), X = (Y1973.07, Y1973 08)' 1959-1984. 

agent's intertemporal utility function is 
00 

vt = E8 (Ct* k)' 0 < 8 < 1, 
k=O 

and the agent's task is to maximize 45(v,), 
where c* = (c,j, c c,) is a 

vector comprised of contemporaneous and lagged consumption, u( ) = 

u(to 41, ..., j) is a subutility function of J + 1 arguments, 8 is the subjective 
discount factor, and 9t(-) is shorthand for &(- IV,), where Wt is the agent's 
information set (a a-field of events) at time t. 

This formulation of the intertemporal utility function permits very general 
patterns of nonseparabilities across finite stretches of time. Accommodation of 
intertemporally nonseparable utility is motivated in part by Sims (1980) and 
Novales (1984) who argue that adjustment cost terms in the utility function play 
an important role in determining the covariance structure of consumption and 
real asset returns. It is also motivated by Dunn and Singleton (1986) and 
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1104 A. RONALD GALLANT AND GEORGE TAUCHEN 

TABLE III 

OPTIMIZED LIKELIHOODS FOR THE UNCONSTRAINED LAW OF MOTION 

Saturation Ratio 
L KI K. Po (obs/parms) 

y, = (LSR, LCG), 1959-1978 

1 0 0 9 2.784882 58.8 
1 2 1 26 2.697092 18.1 
2 0 0 13 2.762652 39.2 
2 2 1 42 2.643757 11.2 
2 3 1 62 2.588922 7.6 
3 0 0 17 2.752573 29.4 
3 2 1 58 2.585973 8.1 

y,= (LSR, LGC), 1959-1984 
1 0 0 9 2.790343 68.2 
1 2 1 26 2.726719 23.6 
2 0 0 13 2.778216 51.2 
2 2 1 42 2.680522 14.6 
2 3 1 62 2.624858 9.9 
3 0 0 17 2.772228 38.4 
3 2 1 58 2.634346 10.6 

y,= (LBR, LCG), 1959-1978 

1 0 0 9 2.719224 58.8 
1 2 1 26 2.572404 18.1 
2 0 0 13 2.689188 39.2 
2 2 1 42 2.506675 11.2 
2 3 1 62 2.435954 7.6 
3 0 0 17 2.682065 29.4 
3 2 1 58 2.463787 8.1 

y,= (LBR, LCG), 1959-1984 

1 0 0 9 2.607457 68.2 
1 2 1 26 2.510188 23.6 
2 0 0 13 2.579602 51.2 
2 2 1 42 2.462479 14.6 
2 3 1 62 2.413526 9.9 
3 0 0 17 2.565491 38.4 
3 2 1 58 2.435519 10.6 

y, = (LSR, LBR, LCG), 1959-1984 

1 0 0 18 4.019321 54.2 
1 2 1 57 3.879348 16.2 
2 0 0 27 3.970963 35.4 
2 2 1 96 3.777279 9.6 

Eichenbaum and Hansen (1989) who argue that consumption goods may display 
local durability by yielding utility flows that extend for one or more periods 
beyond the period of acquisition. Finally, Constantinides (1988) uses a specific 
intertemporal utility function of this form to incorporate habit formation for 
nondurables and services consumption. He shows that, with it, the first and 
second moments of consumption growth and returns can, in principle, be 
reconciled given reasonable values of a risk aversion parameter. 
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In period t the agent's opportunity set for transferring consumption between 
periods t and t + 1 is a set of assets, indexed by 1. One unit of the consumption 
good invested in the lth asset yields the stochastic return of r, ,?+ units of the 
consumption good next period. Given this opportunity set, the Euler equations 
for maximizing intertemporal utility are 

[( d v1/dc,+1)r1,t+ l- ( dvl/cf)] = 0 

for each asset 1. The Euler equations can be expressed as 

Au [ (Ac(ct*+l)ri,t+ -A(ct* )] =0 

where Au(09, v1, ... , P2J) is a function of 2J + 1 arguments defined by 
J 

Au(v0, P1O,..., V2J) = E aV(d/daJ-U(V )( i+1, v ...9i+J) 

i=O 

and where 

ct** = (Ct j, ct_J+19 .. * *vct+J) 

is a stretch of the consumption realization centered at c, and extending for J 
time units backwards and J periods forward in time. With the Euler equations 
written this way, Au(*) is interpreted as a generalized marginal utility of 
consumption.3 

4.2. Transformation to Stationarity and Cross-sectional Aggregation 

Asset returns are reasonably modeled as stationary. Consumption, on the other 
hand, exhibits upward secular drift and is not stationary in levels, although it is 
reasonably taken as stationary in growth rates. Some device is therefore needed 
to re-express the Euler equations in such a way that they only depend upon 
stationary variables. 

Our strategy is the natural extension of the one utilized by Hansen and 
Singleton (1982, 1983) and Mehra and Prescott (1985). Specifically, we assume 
that the subutility function u(.) is a linear transformation of a function that is 
homogeneous of degree 1 - y, y E R, and proceed as follows. This assumption 
about u(.) implies that its partial derivatives are homogenous of degree -y; 
thus, Au is likewise homogeneous of degree - y. Consequently, multiplication of 
the Euler equation by c/y and bringing this inside the arguments of Au yields 

g[SAu(c*+*lc,)rl,,+ -u(ct**/Ct)] = 0 

where the / is interpreted in the sense of elementwise division. Now let q = 
c/lc- 1 denote consumption growth from t - 1 to t; the q, process is assumed to 
be jointly stationary with returns. Elementary multiplicative identities like 

Ct+2/ct= qt+2qt+lg Ct-2/Ce= 1/(qtqt-i) etc., imply that, given the homogeneity 
assumption, the Euler equations depend on consumption only through q, for 

3Hansen and Richard (1987) contains a useful discussion and characterization of the restrictions 
that Euler equations place on asset pricing relations. 
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1106 A. RONALD GALLANT AND GEORGE TAUCHEN 

s = t - J +1, ..., t + J + 1, which are stationary by assumption, and thus station- 
arity of the Euler equations is effected.4 

The assumption of a homogeneous utility function is more than enough to 
ensure that Gorman's (1953) conditions (see also Barnett, 1981, Appendix B) for 
cross-sectional aggregation are satisfied for a standard static demand problem, as 
what is required is that the utility function be an affine translation of a 
homothetic function. Under a complete contingent markets assumption, however, 
there is no logical difference between the static demand problem and our 
intertemporal problem, save for some technical difficulties arising from an infinite 
dimensional commodity space (Eichenbaum, Hansen, and Richard (1984)). One 
can expect, then, that under complete markets and further regularity conditions, 
preferences such as ours will aggregate in the sense of Gorman and a fictitious 
representative consumer will exist. In particular, it seems likely that there are 
sufficient conditions under which the economy evolves to a stochastic steady state 
where consumption/wealth ratios are the same across agents, though exploring 
this conjecture is well beyond the scope of this paper. 

4.3. Restrictions as Integrals Against the Law of Motion 

To estimate the law of motion h(ylx) subject to the I-CAPM restrictions we 
need to express the Euler equations as requirements that integrals against h must 
vanish. To do so, we first note that the observed vector Yt contains the logarithms 
of a subset of the returns, say Ma returns, and the logarithm of consumption 
growth. Thus there are mappings 

r,, t = exp (yl,t) (I = 1, 29 ... MA) 

qt= exp (YM,t) 

through which consumption growth and observed returns can be recovered from 
yt. Consequently, since the consumption ratios c, +?/ct and real returns r1 t+1 can 
be recovered from the elements of yt+j, the Euler equations 

t[8Au (ct*+llct)r, t+ - u(ct */ct)] = 0 
for the Ma observed assets imply that Ma functions of leads and lags of the 
variable y, have conditional expectations of zero, 

d't[g1(Yt-J+19 Yt-J+29 ... Yt+J+1)1 -? 

The functions g, are defined by comparison with the previous display. 
The integrals for the conditional moment restrictions will be simpler notation- 

ally if we move the time index back one period and view the expectations as 

4Eichenbaum and Hansen (1989) consider two models of growth. Their first model entails 
logarithmic detrending to induce stationarity while their second model entails logarithmic differenc- 
ing, and is thus similar to ours. On pure statistical grounds, they could find little reason to choose one 
model of growth over the other, though an asset pricing model estimated using the same variables and 
same specification of preferences fit the data somewhat better under their second model. (See their 
Tables 5.2 and 5.4.) 
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being taken at time t - 1. Therefore, we rewrite the Euler equations as 

4t -1[ ( Yt-J, Yt-J+ 1, , Yt+j)] = 0. 

Finally, by a familiar iterated expectations argument, conditional moment 
restrictions are preserved under a reduction of the conditioning set. That is, the 
information contained in { y,-j }, j 2 1, is reasonably assumed to be no larger 
than that available to the agent at time t - 1, and so the a-field generated by 
(Yt-L,.', y,-1) is a sub-c-field of that used to form St-&(.). Thus, by the law of 
iterated expectations, 

[(Yt-J, Yt-J+1 ..., Yt+J)IYt-L, Yt-L+1 I Yt-1= 0 
so the basic form of the restrictions remains the same when we condition only on 
the history of the observed process. 

This last conditional expectation translates directly into the restriction that Ma 
integrals against the law of motion must vanish: 

... Jg(Y_J, ..., Y-1, Yo, Y1,..., yJ) 

J 

xhJ (yo, Yl,-- YJIY-L' Y-L+1' ... Y-1) H dyi = 0 
i=O 

where h is the joint density of yt, yt+- y,t+j, conditional on the processes 
history. In other words, g, is a function of 2J + 1 vector arguments; the last 
J ? 1 arguments of g, are integrated out against hj and the resulting function 
must vanish identically. Some notational economy is gained by letting x here 
represent a vector of length M- max (J, L), putting y* = (Yo, Yi.. ., yj), and 
observing that the restriction is equivalent to 

Jg1(x, y*)h; (y* Jx) dy* = 0. 

There is one integral condition for each observed asset and each one must hold 
identically in the conditioning variable x. 

Note that here we are pricing one-period securities, though multi-period 
conditional moment restrictions arise because of nonseparable utility. In other 
applications, for example, term structure problems and pricing pure discount 
securities, multi-period conditional moment restrictions will arise even with 
additively separable utility. 

4.4. The Utility Function 

Following Gallant (1982) we employ a seminonparametric strategy for estima- 
tion of the subutility function u(s). By assumption, the function u(s) is a linear 
transformation of a function that is homogenous of degree 1 - -y in J + 1 
arguments. We can thus characterize it as linear transformation of the product of 
two functions, one which is a function of one argument and is homogenous of 
degree 1 - -y, while the other is a function that is homogeneous of degree zero. 
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1108 A. RONALD GALLANT AND GEORGE TAUCHEN 

We then expand the second function in a multivariate polynomial series, which in 
estimation is truncated at a degree determined empirically. 

The characterization of u(s) = u(40, j,..., {) is obtained by factoring out the 
argument {j, which corresponds to c, and thereby writing 

u(s) = (1 - y) 1- 

where iu(w) is a function of J arguments given by 

U~ ( Wl I W2 , . .. I WJ ) = U (W1 , W2~ I I I * ,WJ, 1) 

with Wk = {k- jl{j, k = 1, 2,.. ., J. Evidently, the function of one argument is the 
familiar CRR utility function. Thus we represent u(Q) as being a linear transfor- 
mation of the product of the CRR utility function and another function, iu(w), 
which depends only on the consumption ratios wk and captures nonseparabilities. 
For the special case J = 0, the function iu is set identically equal to unity, and 
then u(s) is the CRR utility function. For the other special case -y = 1, we set -u 
to unity and u to log({j). 

The expansion of ui(w) is 
K. 

u(w) =do+ (1-y)2 lim E dxwX 
KU>Xoo i=i 

where d0 is always normalized to equal unity. The multiplication by (1 - y)2 has 
no essential effect when -y # 1, since it amounts to a redefinition of the coeffi- 
cients of wx in the series expansion. But it forces the coefficients to vanish when 
-y = 1, so that we effectively make the class of functions generated by our 
approach to be of the form 

(linear transformations of homogeneous functions 

u(s) = ( of degree -y 1, 

tlog ({j) for y =1, 

and the partial derivatives of the u(s) converge continuously to those of log ({j) 
as -y -> 1. In estimation, we truncate the expansion of u at degree KU, that is, we 
use the approximating functions 

Ku 

UKu(W) do + (1Y) E dxw , 
iXi=1 

UKuMt (l - 7) -1[01 _)UKu(W)-] 

and employ a standard upward testing approach to determine the appropriate 
degree KU beyond which the dx contribute insignificantly to the likelihood. 

Our expansion can reach a wide class of subutility functions as KU- oo. The 
class includes, in particular, the function utilized in Dunn and Singleton (1986) 
and Eichenbaum and Hansen (1989), which in our notation is written 

U(s) = (1 - y) 1[v1--Y)(1 + a'w)(1-7) - I 

where a is a J x 1 parameter vector. 
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One potential drawback from introducing as much flexibility as we do is that 
the implied intertemporal utility function need not be globally regular, that is, 
have everywhere positive marginal utilities and be everywhere concave for each 
finite Ku. This difficulty is inherent in most work with flexible functional forms, 
since, among other things, regularity restrictions typically entail inequality con- 
straints which create difficulties of inference using classical estimation proce- 
dures. 

4.5. Numerical Methods for Imposing Conditional Moment Restrictions 

Recall from Subsection 4.3 that the conditional moment restrictions generated 
by the I-CAPM model require that certain integrals must vanish, where the 
integrals are taken against the J + 1 step-ahead conditional density of the 
observed data: 

g1(x, y*)h*(y*Ix) dy* = 0. 

Here y* is of length M(J + 1), x is of length M- max(J, L), and hj (yIx) is the 
J-step ahead density generated by the one-step true density of the data, h (y I x). 
There is one integral condition for each observed asset 1 = 1, 2,. . ., Ma. 

After replacement of the theoretical conditional density and the utility func- 
tion by their parametric approximants, then the conditional moment restrictions 
become parametric restrictions, obtained in the following way. Let h K( y I x, 01) 
denote the parametric SNP model for the one-step density where 91 contains all 
of the parameters of the law of motion. Denote by h i j(y* Ix, 01) the J + 1 step 
ahead density generated by hK(y Ix, 01). The J + 1 step density is obtained from 
the one step density by forming the appropriate products of the one step density. 
Now let 02 denote a vector containing the parameters of the utility function, 
which are the d. from the polynomial part, and 8 and y. Let g1, Ku(X, y*, 02) 
denote the function g, of the conditional moment restriction for asset I when the 
parameterized utility function UKU is used for u((). Finally, let = (D 02) be a 
vector containing all of the parameters of the model. Then if we put 

I(x,O) fg,KU(X, Y*, 02)h* Kj(y*|x,01) dy*, 

the restrictions take the form 

r1(x, 0) = 0 

identically in x for each asset 1. 
Unlike linear rational expectations models where the T,(x, 0) are linear in x 

and one can determine analytically the parametric restrictions on 0 inherent in 
the requirement that T,(x, 0) vanish, the functions here are too complicated to 
determine the parametric restrictions analytically. Indeed, the integrands are 
sufficiently complicated that we have to use numerical quadrature to do the 
integration. Nevertheless, we can effectively impose the restrictions by requiring 
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that Tr(x, 6) vanish for x's restricted to lie on a sufficiently fine lattice of discrete 
points, and then utilizing software that can accommodate side restrictions. 
Specifically, we take as the lattice a determining set for a multivariate polynomial 
(see the Appendix) and impose on the estimation the parametric restrictions 

TX(xk,6) =0 (k=1,2,...,K*; 1=1,2,...,Ma) 

where K* is the number of Xk in the determining set and, as before, Ma is the 
number of assets in the observed vector. If the functions T,(x, 6) are sufficiently 
smooth in x and 6 and if the lattice is fine enough so that K*Ma exceeds the 
length of 6, then this has to impose all of the restrictions; we find in estimation 
that much courser lattices suffice. 

We find that this scheme of evaluating the conditional moment restrictions on 
a determining set does effectively impose the restrictions on the estimation; in 
fact, in one sense it does too much, as many of the parametric restrictions turn 
out to be redundant. One can see intuitively why there has to be redundancies 
among the restrictions by thinking about what would happen if one employed 
our evaluation scheme to impose the restrictions of a linear rational expectations 
model. (We do not recommend actually doing this for linear models.) To be 
concrete, suppose the model dictates that the coefficients of three lags of a 
variable must vanish, and these three coefficients are possibly nonlinear functions 
of many more deep parameters. There are only three effective constraints on the 
deep parameters, but if one imposes the constraints by restricting the function T 

to vanish at 50 distinct points in RI, then 47 restrictions will be redundant. 
Mathematically speaking, the redundancy is irrelevant, though in practice it 

creates some difficulties for us in that the software we use for optimization 
cannot readily accommodate a Jacobian matrix with linearly dependent rows. We 
have no direct way of determining analytically which restrictions are redundant, 
and so we employ numerical methods to reduce the dimensionality of the 
restrictions and thereby achieve numerical stability in the optimization. Specifi- 
cally, we stack the restrictions into a vector T(O) of length K*Ma, find a matrix 
X0' with r* orthonormal rows such that the Jacobian of 38AT(6) has rank r*, 
and impose the r* constraints X'OT(O) = 0 on the estimation. These methods are 
described in more detail in the Appendix. 

5. CONDITIONAL MOMENT RESTRICTIONS FROM ASSET PRICING: 
EMPIRICAL RESULTS 

In this section, the seminonparametric specifications of the law of motion 
identified as reasonable in Section 3 are re-estimated subject to the conditional 
moment restrictions derived in the previous section. Table IV contains a sum- 
mary of the results of the estimation. Below, we first give a description of the 
reporting style used in the table and then give a summary of our findings. 

The first column of Table IV contains keys used to reference the rows of Table 
IV throughout the discussion; a key uniquely identifies the specification of the 
law of motion, the specification of the utility function, and the data set used in 
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TABLE IV 

OPTIMIZED LIKELIHOODS FOR THE CONSTRAINED LAW OF MOTION 

p-values 

Key L K. K, J K. pe NCNLN S y s,(0) Model y J KU 

Stocks: Yt = (LSR, LCG), 1959-1978 

(a) 2 2 1 - - 42 - - - 2.643757 
(b) 2 2 1 0 - 43 10/15 0.99852 - 2.663505 .4 .5 

(0.00360) 
(c) 2 2 1 0 - 44 10/15 0.99390 -1.84262 2.662323 .4 

(0.00820) (3.22596) 

T-bill: Yt = (LBR, LCG), 1959-1978 

(d) 2 2 1 - - 42 - - - 2.506675 
(e) 2 2 1 0 - 43 10/15 0.99958 - 2.581942 .001 .001 

(0.00035) 
(f) 2 2 1 0 - 44 10/15 1.00117 0.67659 2.544367 .02 .01 

(0.00070) (0.23019) 
(g) 2 2 1 1 1 45 10/15 1.01412 6.96761 2.531001 .1 .06 .1 

(0.02540) (12.27502) 
(h) 2 2 1 1 4 48 10/15 1.00233 1.21624 2.518563 .2 

(0.00325) (1.46321) 
(i) 2 2 1 2 1 46 10/15 1.00106 0.60313 2.523651 .2 

(0.00047) (0.08623) 

T-bill: y, = (LBR, LCG), 1959-1984 

() 2 3 1 - - 62 - - - 2.413526 
(k) 2 3 1 0 - 63 10/15 0.99876 - 2.485066 .001 .001 

(0.00041) 
(1) 2 3 1 0 - 64 10/15 1.00528 3.99358 2.436891 .07 .001 

(0.00790) (5.39684) 
(m) 2 3 1 1 1 65 10/15 1.00078 1.05406 2.419048 .8 .3 .6 

(0.00061) (0.24795) 
(n) 2 3 1 1 4 68 10/15 1.00069 1.00210 2.416341 .8 

(0.00076) (0.32540) 
(o) 2 3 1 2 1 66 10/15 1.00087 1.09866 2.417455 .9 

(0.00071) (0.29494) 

Stocks and T-Bills: Yt = (LSR, LBR, LCG), 1959-1984 

(p) 2 2 1 - - 96 - - - 3.777279 
(q) 2 2 1 0 - 97 40/56 0.99816 - 3.916960 .001 .001 

(0.00063) 
(r) 2 2 1 0 - 98 40/56 0.99398 - 2.23949 3.830767 .7 .07 

(0.00203) (0.91034) 
(s) 2 2 1 1 1 99 40/56 1.00558 3.75107 3.825561 .8 .1 .4 

(0.00430) (2.43682) 
(t) 2 2 1 1 4 102 40/56 1.00552 3.64713 3.820434 .8 

(0.00437) (2.39127) 
(u) 2 2 1 2 1 100 40/56 1.00586 3.77929 3.821816 .8 

(0.00506) (2.78394) 
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1112 A. RONALD GALLANT AND GEORGE TAUCHEN 

the estimation. The next five columns of Table IV display the tuning parameters 
of the law of motion and subutility function that were used for each estimation. 
The next column, labeled p6,, indicates the number of free parameters of the fit. 
The column labeled NCNLN indicates the number of rows of the orthogonal 
matrix used to reduce the restrictions to full rank; thus, the entry 10/15 means 
that T(O) has fifteen rows with ten effective restrictions and five redundant ones 
(see the Appendix). The next three columns show, respectively, the estimates of 8 
and y, with Wald-type standard errors computed from the inverse of the 
bordered information matrix, and the optimized value of the objective function. 

The p-values given in Table IV require more explanation. They are computed 
using the asymptotic x2 distribution of the likelihood ratio test statistic and are 
associated to the more restricted of two models being compared. Thus, in reading 
across a row, if all entries are larger than .05, then that model would be accepted 
at that significance level. A p-value under the heading Model is a comparison 
with the unrestricted law of motion. An entry under any other heading is a 
comparison with the next less restricted model with respect to that heading. For 
instance, to test whether consumption matters at all for the pricing of assets, that 
is, to test whether the restrictions of the constant discount factor hypothesis 
(J = 0, Ku= 0, y =0) can be imposed on the unrestricted SNP (2,2,1) specifica- 
tion using the series yt = (LSR, LCG) for the years 1959 to 1978 one has 
X2= (2)(235)(2.663505 - 2.643757) = 9.28 on 42 - (43 - 10) = 9 degrees of free- 
dom which is significant at the 40% level. Similarly, to test the constant discount 
factor hypothesis against the CRR subutility function (J = 0, Ku = 0) with the 
same data one has a x2= (2)(235)(2.663505 - 2.662323) = .56 on (44 - 10) - 
(43 - 10) = 1 degree of freedom which is significant at the 50% level. 

One apparent conclusion from Table IV is that the stock returns series alone 
does not have a lot of discriminatory power. In row (c), the estimate of the 
subjective discount factor 8 is less than unity, but the estimate of the curvature 
parameter y is imprecise and lies outside the region where utility is concave. The 
constant discount factor model (risk neutral asset pricing) for stock returns is 
acceptable at conventional significance levels, row (b). This model is acceptable 
when tested as a restriction of the law of motion, row (b) versus row (a), and as a 
restriction on the CRR utility model, row (b) versus row (c). 

The T-bill returns series, on the other hand, has considerably more discrimina- 
tory power. The constant discount factor model is strongly rejected for T-bills in 
the 1959-78 period, row (e), and in the 1959-84 period, row (k). It is also 
rejected for the joint estimation with T-bill returns and stock returns over the 
1959-84 period, row (q). For estimations including T-bills, 8 tends to exceed 
unity, though not significantly so in most cases, and y is generally positive, which 
is consistent with the pattern discussed by Singleton (1989). The estimations 
reveal reasonably convincing evidence against the CRR specification of utility, as 
indicated by the p-values in rows (f), (1), and (r), for the direct tests of the CRR 
restrictions on the law of motion and the tests that at least one lagged term is 
needed in our seminonparametric specification of utility. This evidence against 
the CRR specification complements that presented by Hansen and Singleton 
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ASSET PRICING APPLICATIONS 1113 

(1983) and Dunn and Singleton (1986), who employ much different estimation 
strategies for the shorter 1959-78 period, and with that presented by Eichen- 
baum and Hansen (1989), who work with both the 1959-78 and 1959-85 periods. 

We now undertake the specification search using the seminonparametric model 
for utility. The general form of the subutility function is 

U(Ct_J, . ,Ct) =(-){Ct(' -,) [I + poly (c _J/Ct * tlC -1 } 

where poly(*) is a polynomial of degree KU in J arguments. 
With the polynomial restricted to be linear, Ku = 1, the test for J = 1 versus 

J = 2 reveals some evidence suggesting that J = 2 is appropriate for the 1959-78 
period, row (g) versus (i), but little or no evidence for J - 2 being appropriate for 
the longer 1959-84 period, rows (m) versus (o) and (s) versus (u). On this basis, 
we consider J = 1 as the appropriate lag length for the subutility function. 

With J = 1, the test for a linear versus a quartic specification for the polyno- 
mial reveals virtually no evidence in favor of the more complex specification, 
rows (g) versus (h), (m) versus (n), (s) versus (t). A quartic was chosen since it was 
the highest degree that proved computationally feasible and could be expected to 
provide an excellent approximation to functions such as (1+ act 1/ct)(1-7), 
which is the adjustment for nonseparability implied by the utility function used 
in Dunn and Singleton (1986) and Eichenbaum and Hansen (1989). In additional 
work (not reported in the table) we made an effort to explore more fully the 
likelihood surface as the degree of the polynomial varies. The computations were 
expensive, and we did encounter some difficulties with obtaining convergence of 
the constrained optimization algorithm, which suggests that the data do not 
discriminate all that well among different functional forms for the nonseparabil- 
ity. In the end, though, this effort did not uncover any further evidence in favor 
of a more complex specification beyond the linear polynomial. On this basis, and 
since the tests of the overidentifying restrictions implied by the linear polynomial 
reveal little evidence against it (see the p-values under Model in rows (g), (m), 
and (s)), we choose the linear adjustment model as the preferred model from 
within our nested family of models. 

The preceding analysis of the fits obtained using both the CRR and the SNP 
utility specifications made extensive use of the x2 test of the overidentifying 
restrictions. The x2 test is an omnibus test of specification that provides an 
indication of whether a particular utility specification is consistent with the data. 
It does not, however, provide much insight about the dimensions along which the 
utility models do or do not do well in fitting the data. It is of particular interest, 
then, to explore and characterize the manner in which imposition of the restric- 
tions distorts the law of motion of the data. 

We computed the conditional means and variances at each data point using 
both the unrestricted and restricted laws of motion. This was done for all of the 
various specifications of utility reported in Table IV. A summary of the calcula- 
tions, which is representative of what we found, is reported in Table V. The 
entries in the table are the average restricted conditional moment less the average 
unrestricted conditional moment expressed as a percentage of the average unre- 

This content downloaded by the authorized user from 192.168.72.231 on Wed, 5 Dec 2012 16:46:38 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1114 A. RONALD GALLANT AND GEORGE TAUCHEN 

TABLE V 

PERCENTAGE ERROR IN RESTRICTED CONDITIONAL MOMENTS 

Conditional Momentb 

Mean Variance Covariance 

Keya Utility LSR LBR LCG LSR LBR LCG LSR - LBR LSR - LCG LBR - LCG 

(f) CRR - 3.3 2.1 12.3 4.0 24.5 
(g) SNP -5.0 0.0 0.3 0.9 5.9 
(1) CRR -0.5 -3.4 0.6 7.7 8.5 

(i) SNP -2.6 1.5 0.6 1.5 1.4 
(r) CRR - 80.0 6.2 8.6 3.0 5.7 9.9 0.7 14.2 33.2 
(s) SNP -38.9 6.0 12.3 2.2 0.7 3.4 2.8 - 1.2 -15.0 

a (f) and (g): T-bills, v1 = (LBR, LCG), 1959-1978. (1) and (m): T-bills, v, = (LBR, LCG), 1959-1984. (r) and 
(s): Stocks and T-bills, y, = (LSR, LBR, LCG), 1959-1984. 

bConditional moments were computed for each observation in the indicated data set and then averaged. 
Entries in the table are the average restricted conditional moment less the average unrestricted conditional 
moment expressed as a percentage of the average unrestricted conditional moment. 

stricted conditional moment. Two quite interesting conclusions emerge from 
Table V. First, imposition of the constraints from CRR utility causes the law of 
motion to overpredict the conditional variance of consumption growth and the 
conditional covariance of consumption growth with asset returns. Introduction of 
the nonseparability adjustment, however, mitigates this overprediction to a large 
degree. Second, for the estimations using both stock and T-bill returns, rows (r) 
and (s), the constrained laws of motion systematically underpredict the condi- 
tional mean return on stocks, which is a manifestation of the so-called equity 
premium puzzle. The introduction of the nonseparability adjustment helps shrink 
the gap, though it does not quite go all the way towards closing it. 

We now commence an extensive appraisal of the economic properties of the 
fitted SNP utility function. In view of the preceding discussion, our preferred 
specification of the subutility function is 

u(c,_1, c,) =1- y) {ct('-Y) [I + d l(ct-/t]1 

Sensible interpretation of the parameter estimates of y and d requires consider- 
ation of the implied intertemporal utility function. From Section 4 this function 
is 

00 

vt= E (Ct -l+j, Ct+j) 
j=O 

which maps contingent paths for current and future consumption into real 
numbers. 

Insight into the role of nonseparabilities can be obtained by using vt to 
compute a fictitious one-period sure return generated by a consumption path 
(assumed known to the agent) and then examining how this return varies with 
movements in ctr1. This return is 

rf vt/ct 
t 

,8t dctJr 
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ASSET PRICING APPLICATIONS 1115 

viewed as a function of the consumption path (ct-1, ct, Ct+1 cCt+2, ... ); r/ is the 
reciprocal of the marginal rate of substitution between ct and ct, . If rt goes up 
with an increase in previous consumption, ct-1, then the preferences between ct 
and ct+1 are tilted relatively in favor of current consumption, ct, which is 
consistent with habit persistence and adjustment cost notions of nonseparabili- 
ties. On the other hand, if rf goes down with an increase in ct1, then preferences 
are tilted in favor of future consumption, ct+1, which is consistent with a local 
durability of consumption notion of nonseparability, wherein previous acquisi- 
tions of nondurable goods yield a service flow into the subsequent period. 

One can show that when J = 1 and the polynomial is linear, then the sign of 
drtfl/dct1 depends both upon the sign of df and upon which side of unity y lies. 
Specifically, 

sign ( drtfld/ct1) = sign (d') if y > 1, 

sign ( drtf/ldct1) = - sign (d) if Y < 1. 

For each of the three estimations we did with J = 1 and a linear polynomial the 
point estimates of d' are negative, - 0.528 for the row (g) estimation, - 0.630, 
row (m), and - 0.410, row (s), and the estimates of y exceed unity which is 
consistent with the durability notion of nonseparability. Due to the nature of the 
parameterization (see Section 4), the estimates of d' are functions of other 
parameter estimates, and Wald type standard errors tend to be large. Invariance 
with respect to parameterization can be obtained by inverting the likelihood ratio 
test to get confidence intervals (Gallant (1987, pp. 108-110)). For the row (m) 
estimation, a 95 percent confidence interval for d' obtained in this manner is 
(-4.82, - 0.067), which is wide but lies entirely to the left of zero. Taken 
together, the evidence appears inconsistent with the adjustment cost notion of 
nonseparability and consistent with the local durability notion, which is in 
accordance with the findings of Dunn and Singleton (1986) and Eichenbaum and 
Hansen (1989) who employ GMM estimation and a different utility function. 

As an indication of the plausibility of our parameter estimates, we checked for 
whether the predicted marginal intertemporal utilities dvst/dct are positive and 
whether the implied intertemporal utility function vt is concave. For this purpose, 
we computed sign(dvt/dat) and checked for negative definiteness of the 3 x 3 
Hessian matrix [d 2V/dCt+idCt+Ji, j=0,1,2 at each available data point for the 
estimations, save for those lost due to lags or the leads required to compute the 
Hessian. This calculation yields: 

Positive marginal Hessian negative 
Key utilities definite 

(g) 228 of 233 228 of 233 
(m) 300 of 305 0 of 305 
(s) 300 of 305 300 of 305 

For all three estimations the marginal utilities are almost always of the right sign. 
The Hessian also almost always has the correct definiteness properties, except for 
the row (m) estimation which has been seen to yield point estimates somewhat 
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1116 A. RONALD GALLANT AND GEORGE TAUCHEN 

out of line relative to the other two. With the exception of that estimation, the 
utility function has the correct curvature properties. 

6. CONCLUSION 

We close with a summary of our empirical findings. We can say first, and 
rather emphatically, that for the version of intertemporal asset pricing model 
with a strictly Gaussian law of motion and time separable utility, both main- 
tained assumptions are wrong. The fact that the law of motion is misspecified is 
clear from Section 3 above, where we find that SNP models for consumption 
growth and real asset returns display substantial conditional heterogeneity. 
Misspecification of the law of motion, though, is not the source of the rejections 
of this model that were obtained by Hansen and Singleton (1983) using maxi- 
mum likelihood methods under Gaussian assumptions, but rather it is misspeci- 
fication of the utility function. The fact that a time separable utility function is 
misspecified is perhaps implicit in the findings of other work using GMM 
estimation and CRR utility. However, here we pin the conclusion down by 
actually estimating the SNP law of motion subject to the restrictions from CRR 
utility and we uncover evidence against the model. In particular, imposition of 
the restrictions from CRR utility forces the law of motion to overpredict the 
conditional variance of consumption growth and the conditional covariance of 
consumption growth with asset returns. Our findings indicate that one can expect 
a low payoff on effort directed towards specification and estimation of asset 
pricing models that take into account complicated higher order dynamics, for 
example, the multivariate ARCH effects described in Grossman, Melino, and 
Shiller (1987) and Bollerslev, Engle, and Wooldridge (1988), unless the restrictive 
assumption of time separable utility is relaxed as well. 

Second, taking our results together with those of Dunn and Singleton (1986) 
and Eichenbaum and Hansen (1989) indicates that the source of the intertempo- 
ral nonseparability is not habit persistence or adjustment costs, but rather it is 
the "temporary" or "local" durability of nondurable consumption that gives rise 
to the nonseparability. On this issue we get similar qualitative results, but with 
entirely different functional forms and estimation strategies. 

Third, although we ignore durable goods in the analysis, we are generally able 
to find qualitatively reasonable and quite parsimonious seminonparametric speci- 
fications for utility that fit the data, in the sense that the test statistics on the 
overidentifying restrictions are not rejected. This finding is supportive of the 
conclusions of Eichenbaum and Hansen (1989), whose work suggests that ignor- 
ing durable goods does not seem to represent serious misspecification. 

Finally, while the data are unable to resolve the quantitative characteristics of 
the intertemporal utility function to the degree of precision one might hope for, 
we are still very encouraged by our experience using SNP techniques for both the 
law of motion and the utility function. The methods are reasonably practicable 
and generally give sensible looking results. One extension that could increase 
precision is to work out a way to follow up on Barnett and Yue (1987) by 
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employing series expansions that always restrict the approximating utility func- 
tion to be globally concave while keeping the task of making statistical inference 
manageable. More fundamentally, though, our view is that additional precision 
can only come from using more assets and data spanning longer time periods 
with richer historical variation. (We have in mind expanded versions of the 
long-term data sets employed by Grossman, Melino, and Shiller (1987) and 
Muoio (1988).) Using such data will entail working out some very difficult 
problems concerning strategies for controlling dimensionality of parameter spaces 
and the temporal aggregation of both SNP time series models and nonseparable 
utility models. 

Department of Statistics, Department of Economics, North Carolina State Uni- 
versity, Raleigh, NC 27695-8203, U.S.A. 

and 
Department of Economics, Duke University, Durham, NC 27706, U.S.A. 

Manuscript received March, 1987; final revision received February, 1989. 

APPENDIX 

This appendix gives more of the numerical details behind the calculation of the restricted 
estimations reported in Table IV. 

The lattice upon which the constraints are evaluated is generated in such a way that the vectors 
Xk E RL are a determining set for a polynomial of degree Kr in xE RL, where L* = M max(J, L). 
Therefore an evaluation scheme like ours annihilates the coefficients of a polynomial of degree Kr in 
x c- R L. Construction of the determining set follows the algorithm given in Stroud (1971, pp. 54-55). 
We use as the "basis" numbers a sequence of the form {0, .50, - .50, 1.00, - 1.00, ... }, which in our 
case are interpreted as + / - multiples of .50 standard deviations, and generate a determining set 
{ Zk } based on these numbers. We then linearly transform the { Zk } of this lattice to one in natural 
units by applying the inverse of the transformation that takes the observed data vectors to vectors 
with sample mean zero and sample covariance matrix equal to the identity. Since x is a vector of 
length L* and the polynomial is of degree Kr, the algorithm generates exactly K* = (L* + 
Kr)!/(L*! Kr!) distinct vectors Zk and Xk. The linear transformation from the { Zk } to the { Xk } is 
applied piecewise to the M x 1 sub-blocks of { Zk }. 

The parametric restrictions take the form T(9) = 0 where T(9) is a vector-valued function 
comprised of TI(Xk, 0), with the dependence on Xk suppressed. The dimension of T is K*Ma X 1 
where K* is the number of determining Xk and Ma is the number of assets. In all estimations we use 
a determining set { Xk } that annihilates a quadratic, Kr = 2, and we use a two-point product 
Gauss-Hermite numerical quadrature rule to evaluate TI(Xk, 9). (This rule is exact for polynomials of 
degree three.) 

The redundancy of the restrictions is reflected in the Jacobian matrix 

/(O ) = ( d/dO')T (0) 
having less than full row rank. To remove the redundancy, we evaluate the Jacobian at the initial 
value 00 for the optimization and calculate an orthogonal matrix X' such that 

y(O0) = U 

where U is an upper trapezoidal matrix with nonnegative entries along the diagonal sorted in 
descending order. The matrix .)Y is the product of orthogonal (Householder) matrices (Gill, Murray, 
and Wright (1981)). We then form from X' a matrix 340 whose rows are consecutive rows of X*', 
starting with the first, such that V'0f(0o) is of full row rank. In estimation we impose the restrictions 

droT ( 0 = O. 
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To implement this reduction in the number of restrictions we need some means of determining the 
effective number of restrictions r* at the optimum, so that we know how many rows of 3X to use in 
forming VO. This is very close to the problem of numerical determination of the rank of a matrix, 
which is inherently inexact, and is complicated by the fact that we don't know where the optimum is 
until it is computed. 

One estimate of r* is the number of elements along the diagonal edge of U that exceed machine 
precision, with the Jacobian f(dO) computed at the start value for 0. Call this number ro. Given this 
putative value ro for r* we can perform a constrained estimation, i.e., maximize the likelihood subject 
to the restriction .)/f( 0) = 0, where as before X0 is the first ro rows of Xk computed from 

f( O). This gives an estimate #1. 
A second estimate of r* can be obtained by examining the rank of the bordered information 

matrix at O1; this is the matrix that has to be inverted to obtain standard errors. The bordered 
information matrix is 

E 0 O 

where J(01) is the sample information matrix at O1, which is computed from the outer product of the 
gradients while E is a 2 x po matrix that is present because of additional constraints due to the 
normalizations. The rows of E are unit vectors (that is, have all zeros except for a single one) that 
reflect the normalizations that the leading term of the density polynomial and the leading term of the 
utility function polynomial are set to unity; for those estimations reported below where the constraint 
y = 0 is imposed, then E has an additional row reflecting that constraint as well. The upper left piece 
of the inverse of the bordered information at the constrained optimum is the natural estimate of the 
covariance matrix of 0 at a constrained optimum. (See Silvey (1978, Section 4.7)i we use the sample 
information matrix as the estimate of minus the Hessian.) The computed value 01 may not have yet 
converged to the constrained optimum, though the rank deficiency provides a second means to 
calculate an estimate of r*. That is, ro should be reduced by an amount equal to the extent to which 
the bordered information matrix is not of full rank. 

The constrained estimation proceeds iteratively. From a starting estimate 00, determine X0, 
minimize sn(0) subject to 380X(0) = 0 to get 01, recompute X0 and so on, save that at some point in 
the iterations the number of leading rows from 3' that will be chosen to make up X0 are fixed once 
and for all. Actually, the computations are remarkably robust to the number of rows that are chosen 
and, upon termination, the entire vector T(6) will have been put to near zero. Various choices of 
number of rows for X0 affects how near zero T(O) will be upon termination and the stability of the 
NPSOL algorithm. No statistically significant digits of parameter estimates are much affected. In this 
discussion, bear in mind that 380X(&) is always put to zero within a tolerance of 10- 13 typically and 
10-9 at worst; this will imply that T(O) is zero to within a tolerance of 10-8 typically and 10-4 at 
worst. Of the two rank tests, the test on the bordered information matrix is the more sensitive. 

We did find that within a class of similar problems the number of rows that ought be in VO is not 
constant. This presents a problem as we wish to compare likelihoods and variation in the number of 
rows in X0 would cast doubt on these comparisons. Going to the minimal X0 within a class is too 
drastic a step and casts doubt on the claim that the minimization of sn(0) subject to T(0) = 0 has 
actually been carried out. We addressed this difficulty by imposing the median number of constraints 
within a class. This causes the bordered information matrix to be less than full rank in some 
instances. As we need to invert it to compute standard errors, we addressed this problem by using the 
Moore-Penrose g-inverse computed via the Singular Value Decomposition (Kennedy and Gentle 
(1980, p. 285)). The approach was successful. Computed standard errors vary little with variation in 
the number of rows in XO. The chief effect was the precision with which the standard errors of the 
two polynomial coefficients which had been pegged at one were computed; they ought to be zero 
exactly. 
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