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A method for solving the nonlinear second-order Fredholm integro-differential equa-

tions is presented. The approach is based on a compactly supported linear semiorthog-

onal B-spline wavelets. The operational matrices of derivative for B-spline scaling func-

tions and wavelets are presented and utilized to reduce the solution of Fredholm integro-

differential to the solution of algebraic equations. Illustrative examples are included to

demonstrate the validity and applicability of the technique.
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1. Introduction

Integro-differential equations have gained a lot of interest in many application fields, such

as biological, physical, and engineering problems. Therefore, their numerical treatment is

desired [2]. While several numerical methods for approximating the solution of Volterra

integro-differential equations are known for Fredholm integro-differential equations, not

many are discussed in the literature [8].

Consider the linear second-order Fredholm integro-differential of the form

2∑

i=0

µi(x)y(i)(x)= g(x) +

∫ 1

0
K(x, t)y(t)dt, 0≤ x ≤ 1, (1.1)

and the nonlinear second-order Fredholm integro-differential of the form

2∑

i=0

µi(x)y(i)(x)= f

(
x, y(x),

∫ 1

0
K
(
x, t, y(t)

)
dt

)
, 0≤ x ≤ 1, (1.2)

with

y(0)= y0, y(1)= y1, (1.3)
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where µi, i = 0,1,2, g, f , and K , are given functions in L2[0,1], y0 and y1 are given real

numbers and y is the unknown function to be found.

For linear first-order Fredholm integro-differential of the form (1.1), Linz [7] consid-

ered numerical methods by transforming it into a second kind of integral equation, and,

in [12], Volk applied projection methods. For nonlinear first-order of the form (1.2), an

iterative procedure was developed in Phillips [10], direct numerical spline methods were

discussed in [8], and a collocation procedure with spline functions was introduced in [2].

For linear second-order Fredholm integro-differential of the form (1.1), wavelet methods,

by using the Daubechies orthonormal scaling functions, were presented in [3].

In recent years, the application of methods based on wavelets have influenced many

areas of applied mathematics. In areas such as the numerical analysis of differential equa-

tions, wavelets are recognized as a powerful tool. Another area in which the wavelet is

gaining considerable attention is the study of integral equations. Wavelets can be sep-

arated into two distinct types; orthogonal and semiorthogonal [4]. Publications on in-

tegral equation methods have shown a marked preference for orthogonal wavelets [9].

This is probably because the original wavelets, which were widely used for signal process-

ing, were primarily orthogonal. In signal processing applications, unlike integral equa-

tion methods, the wavelet itself is never constructed since only its scaling function and

coefficients are needed. However, orthogonal wavelets either have infinite support or a

nonsymmetric and in some cases, fractal nature. These properties can make them a poor

choice for characterization of a function. In contrast, the semiorthogonal wavelets have

finite support, both even and odd symmetry and simple analytical expressions, ideal at-

tributes of a basis function [9].

In the present paper, we apply compactly supported linear semiorthogonal (SO) B-

spline wavelets, specially constructed for the bounded interval to solve the nonlinear

second-order Fredholm integro-differential equation of the form (1.2). The use of SO

compactly supported spline wavelets is justified by their interesting properties [1, 6].

Our method consists of reducing (1.2) and (1.3) to a set of algebraic equations by

expanding unknown function as linear B-spline wavelets with unknown coefficients. The

properties of linear B-spline scaling functions and wavelets are then utilized to evaluate

the unknown coefficients.

The paper is organized as follows. In Section 2, we describe the formulation of the B-

spline scaling functions and wavelets on [0,1], and derive the operational matrices of de-

rivative required for our subsequent development. In Section 3, the proposed method is

used to approximate the solution of nonlinear second-order Fredholm integro-

differential equation. In Section 4, we report our numerical finding and demonstrate the

accuracy of the proposed numerical scheme by considering numerical examples.

2. B-spline scaling functions and wavelets on [0,1]

When semiorthogonal wavelets are constructed from B-splines of order m, the lowest

octave level j = j0 is determined in [5] by

2 j0
≥ 2m− 1, (2.1)

so as to give a minimum of one complete wavelet on the interval [0,1]. In this paper, we
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will use a wavelet generated by a linear spline (m = 2) cardinal B-spline function. From

(2.1), the second-order B-spline lowest level, which must be an integer, is determined to

be j0 = 2. This constrains all octave levels to j ≥ 2.

As in the case with all semiorthogonal wavelets, the second-order B-splines also serve

as scaling functions. The second-order B-splines/scaling functions are given by

φ j,k(x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x j − k, k ≤ x j < k+ 1,

2−
(
x j − k

)
, k+ 1≤ x j < k+ 2, k = 0, . . . ,2 j

− 2,

0, otherwise,

(2.2)

with the respective left- and right-hand side boundary scaling functions

φ j,k(x)=

⎧⎨
⎩

2−
(
x j − k

)
, 0≤ x j < 1, k =−1,

0, otherwise,
(2.3)

φ j,k(x)=

⎧⎨
⎩
x j − k, k ≤ x j < k+ 1, k = 2 j

− 1,

0, otherwise.
(2.4)

The actual coordinate position x is related to x j , according to x j = 2 jx. The second-order

B-spline wavelets are given by

ψ j,k(x)=
1

6

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x j − k, k ≤ x j < k+ 1/2,

4− 7
(
x j − k

)
, k+ 1/2≤ x j < k+ 1,

−19 + 16
(
x j − k

)
, k+ 1≤ x j < k+ 3/2,

29− 16
(
x j − k

)
, k+ 3/2≤ x j < k+ 2, k = 0, . . . ,2 j

− 3,

−17 + 7
(
x j − k

)
, k+ 2≤ x j < k+ 5/2,

3−
(
x j − k

)
, k+ 5/2≤ x j < k+ 3,

0, otherwise,

(2.5)

with the respective left- and right-hand side boundary wavelets

ψ j,k(x)=
1

6

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−6 + 23x j , 0≤ x j < 1/2,

14− 17x j , 1/2≤ x j < 1,

−10 + 7x j , 1≤ x j < 3/2, k =−1,

2− x j , 3/2≤ x j < 2,

0, otherwise,

(2.6)

ψ j,k(x)=
1

6

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2−
(
k+ 2− x j

)
, k ≤ x j < k+ 1/2,

−10 + 7
(
k+ 2− x j

)
, k+ 1/2≤ x j < k+ 1,

14− 17
(
k+ 2− x j

)
, k+ 1≤ x j < k+ 3/2, k = 2 j

− 2

−6 + 23
(
k+ 2− x j

)
, k+ 3/2≤ x j < k+ 2,

0, otherwise.

(2.7)
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From (2.2)–(2.7), we get

φi, j(x)=
1

2
φi+1,2 j(x) +φi+1,2 j+1(x) +

1

2
φi+1,2 j+2(x), i= 2,3, . . . , j = 0,1,2, . . . ,2i− 2,

φi,−1(x)= φi+1,−1(x) +
1

2
φi+1,0(x), i= 2,3, . . . ,

φi,2i−1(x)= φi+1,2i+1
−1 +

1

2
φi+1,2i+1

−2(x), i= 2,3, . . . ,

(2.8)

ψi, j(x)=
1

12
φi+1,2 j(x)−

1

2
φi+1,2 j+1(x) +

5

6
φi+1,2 j+2(x)

−
1

2
φi+1,2 j+3(x) +

1

12
φi+1,2 j+4(x), i= 2,3, . . . , j = 0,1,2, . . . ,2i− 3,

ψi,−1(x)=−φi+1,−1(x) +
11

12
φi+1,0(x)−

1

2
φi+1,1(x) +

1

12
φi+1,2(x), i= 2,3, . . .

ψi,2i−2(x)=−φi+1,2i+1
−2(x)+

11

12
φi+1,2i+1

−3(x)−
1

2
φi+1,2i+1

−4(x) +
1

12
φi+1,2i+1

−5, i= 2,3, . . . .

(2.9)

2.1. Function approximation. For any fixed positive integer M, a function f (x) defined

over [0,1] may be represented by B-spline scaling functions as

f (x)=
2M+1

−1∑

k=−1

skφM+1,k = STΦM+1, (2.10)

where

S=
[
s−1,s0, . . . ,s2M+1

−1

]T
,

ΦM+1 =
[
φM+1,−1,φM+1,0, . . . ,φM+1,2M+1

−1

]T
,

(2.11)

with

sk =

∫ 1

0
f (x)φ̃M+1,k(x)dx, k =−1,0, . . . ,2M+1

− 1, (2.12)

where φ̃M+1,k(x) are dual functions of φM+1,k. These can be obtained by linear combina-

tions of φM+1,k, k =−1, . . . ,2M+1
− 1, as follows. Let Φ̃M+1 be the dual functions of ΦM+1

given by

Φ̃M+1 =
[
φ̃M+1,−1, φ̃M+1,0, . . . , φ̃M+1,2M+1

−1

]T
. (2.13)

Using (2.11) and (2.13), we get

∫ 1

0
Φ̃M+1Φ

T
M+1dx = I1, (2.14)
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where I1 is (2(M+1) + 1)× (2(M+1) + 1) identity matrix. Let

PM+1 =

∫ 1

0
ΦM+1Φ

T
M+1dx. (2.15)

The entry (PM+1)i, j of the matrix PM+1 in (2.15) is calculated from

∫ 1

0
φM+1, i(x)φM+1, j(x)dx. (2.16)

Using (2.2)–(2.4), (2.11) and (2.16), we get a symmetric (2M+1 + 1)× (2M+1 + 1) matrix

for PM+1, which is given by

PM+1 =
1

2M−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

12

1

24
0 ··· 0

1

24

1

6

1

24
··· 0

...
. . .

. . .
. . .

...

0 ···
1

24

1

6

1

24

0 ··· 0
1

24

1

12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.17)

From (2.14) and (2.15), we get

Φ̃M+1 =
(
PM+1

)
−1
ΦM+1. (2.18)

Furthermore, a function f (x) defined over [0,1] may be represented by B-spline wavelets

as

f (x)=
3∑

k=−1

ckφ2,k(x) +
∞∑

i=2

2i−2∑

j=−1

di, jψi, j(x). (2.19)

If the infinite series in (2.19) is truncated at M, then (2.19) can be written as

f (x)≃
3∑

k=−1

ckφ2,k(x) +
M∑

i=2

2i−2∑

j=−1

di, jψi, j(x)= αTΨ(x), (2.20)

where φ2,k and ψi, j are scaling and wavelets functions, respectively, and α and Ψ are
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(2(M+1) + 1)× 1 vectors given by

α=
[
c−1,c0, . . . ,c3,d2,−1, . . . ,d2,2,d3,−1, . . . ,d3,6, . . . ,dM,−1, . . . ,dM,2M−2

]T
, (2.21)

Ψ=
[
φ2,−1,φ2,0, . . . ,φ2,3,ψ2,−1, . . . ,ψ2,2,ψ3,−1, . . . ,ψ3,6, . . . ,ψM,−1, . . . ,ψM,2M−2

]T
. (2.22)

2.2. The operational matrices of derivative. The differentiation of the vectors ΦM+1 and

Ψ in (2.11) and (2.22) can be expressed as

Φ
′

M+1 =DΦΦM+1, Ψ
′
=DΨΨ, (2.23)

where DΦ and DΨ are (2M+1 + 1)× (2M+1 + 1) operational matrices of derivative for B-

spline scaling functions and wavelets, respectively. Using (2.10), (2.12), and (2.18) the

matrix DΦ can be obtained as

DΦ =

∫ 1

0
Φ
′

M+1(t)Φ̃T
M+1(t)dt =

(∫ 1

0
Φ
′

M+1(t)ΦT
M+1(t)dt

)(
PM+1

)
−1
= E

(
PM+1

)
−1

,

(2.24)

where

E =

∫ 1

0
Φ
′

M+1(t)ΦT
M+1(t)dt. (2.25)

In (2.25), E is (2M+1 + 1)× (2M+1 + 1) matrix given by

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ 1

0
φ′M+1,−1(t)φM+1,−1(t)dt . . .

∫ 1

0
φ′M+1,−1(t)φM+1,2M+1

−1(t)dt

...
. . .

...
∫ 1

0
φ′M+1,2M+1

−1(t)φM+1,−1(t)dt . . .

∫ 1

0
φ′M+1,2M+1

−1(t)φM+1,2M+1
−1(t)dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(2.26)

Since the element φM+1,k in the vector ΦM+1 given in (2.11) is nonzero between k/2M+1

and (k+ 2)/2M+1, for any entries of E j,k, we have

E j,k =

∫ 1

0
φ′M+1, j(t)φM+1,k(t)dt =

∫ (k+2)/2M+1

k/2M+1
φ′M+1, j(t)φM+1,k(t)dt

=

∫ (k+1)/2M+1

k/2M+1
φ′M+1, j(t)φM+1,k(t)dt+

∫ (k+2)/2M+1

(k+1)/2M+1
φ′M+1, j(t)φM+1,k(t)dt

=

∫ (k+1)/2M+1

k/2M+1
2M+1φM+1,k(t)dt+

∫ (k+2)/2M+1

(k+1)/2M+1
−2M+1φM+1,k(t)dt.

(2.27)
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From (2.27), we get

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
1

2
−

1

2
1

2
0 −

1

2

. . .
. . .

. . .

1

2
0 −

1

2
1

2

1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.28)

The matrix DΨ can be obtained by considering

Ψ=GΦM+1, (2.29)

where G is a (2M+1 + 1)× (2M+1 + 1) matrix, which can be calculated as follows. Let

Φ j =
[
φ j,−1,φ j,0, . . . ,φ j,2 j

−1

]T
, (2.30)

Ψ j =
[
ψ j,−1,ψ j,0, . . . ,ψ j,2 j

−2

]T
. (2.31)

Using (2.8) and (2.30), we get

Φ j = β jΦ j+1 (2.32)

with

β j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

2
1

2
1

1

2
1

2
1

1

2

. . .
. . .

. . .

1

2
1

1

2
1

2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.33)

where β j , j = 2,3, . . . , is (2 j + 1)× (2 j+1 + 1) matrix. From (2.9) and (2.31), we have

Ψ j = L jΦ j+1 (2.34)
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with

L j

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
11

12
−

1

2

1

12
1

12
−

1

2

5

6
−

1

2

1

12
1

12
−

1

2

5

6
−

1

2

1

12
1

12
−

1

2

5

6
−

1

2

1

12

. . .
. . .

. . .
. . .

. . .

1

12
−

1

2

5

6
−

1

2

1

12
1

12
−

1

2

5

6
−

1

2

1

12
1

12
−

1

2

11

12
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2.35)

where L j , j = 2,3, . . . , is 2 j
× (2 j+1 + 1) matrix.

From (2.32) and (2.34), we get

Φ j = β j ×β j+1×···×βMΦM+1,

Ψ j = L j ×β j+1×···×βMΦM+1.
(2.36)

Using (2.22) and (2.36), we have

G=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β2×β3×···×βM

−−−−−−−−−

L2×β3×···×βM

−−−−−−−−−

...

LM−2×βM−1×βM

−−−−−−−−−

LM−1βM

−−−−−−−−−

LM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.37)

From (2.23), (2.24), and (2.37), we get

Ψ
′
=GΦ′

M+1 =GDΦΦM+1 =GE
(
PM+1

)(−1)
ΦM+1 =GE

(
PM+1

)(−1)
G−1

Ψ=DΨΨ,

(2.38)
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where

DΨ =GE(PM+1)−1G−1. (2.39)

3. Nonlinear second-order Fredholm integro-differential equations

In this section, we solve nonlinear second-order Fredholm integro-differential equations

of the form in (1.2) with (1.3) by using B-spline wavelets. For this purpose, we first write

(1.2) as

2∑

i=0

µi(x)y(i)(x)= f
(
x, y(x),z(x)

)
, 0≤ x ≤ 1, (3.1)

where

z(x)=

∫ 1

0
K
(
x, t, y(t)

)
dt. (3.2)

We now use (2.19) to approximate y(x) and z(x) as

y(x)= CT
Ψ(x), (3.3)

z(x)=

∫ 1

0
K
(
x, t,CT

Ψ(t)
)
dt, (3.4)

where Ψ(x) is defined in (2.22), and C is (2(M+1) + 1)× 1 unknown vector defined sim-

ilarly to α in (2.21). We can approximate (3.4), using Newton-Cotes integration tech-

niques [11] as

z(x)=

∫ 1

0
K
(
x, t,CT

Ψ(t)
)
=

n∑

i=1

ωiK
(
x, ti,C

T
Ψ
(
ti
))
= F(x,C), (3.5)

where ωi and ti are weight and nodes of Newton-Cotes integration techniques. Using

(2.38) and (3.3), we get

y′(x)= CT
Ψ
′(x)= CTDΨΨ(x),

y′′(x)= CTD2
ΨΨ(x).

(3.6)

From (3.1), (3.5), and (3.6), we get

µ0(x)CT
Ψ(x) +µ1(x)CTDwΨ(x) +µ2(x)CTD2

wΨ(x)= f
(
x,CT

Ψ(x),F(x,C)
)
. (3.7)

Also, using (1.3) and (3.3), we have

CT
Ψ(0)= y0, CT

Ψ(1)= y1. (3.8)

To find the solution y(x) in (3.1), we first collocate (3.7) in xi = (2i− 1)/(2M+2
− 2),

i= 1,2, . . . ,2M+1
− 1, the resulting equation generates 2M+1

− 1 nonlinear equations which

can be solved using Newton’s iterative method. The initial values required to start New-

ton’s method have been chosen by taking y(x) as linear function between y(0)= y0 and
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Table 4.1. Absolute relative error for Example 4.1.

xi M = 4 M = 6

0.0 0.0 0.0

0.1 5.0× 10−5 3.1× 10−6

0.2 4.4× 10−5 2.7× 10−6

0.3 4.0× 10−5 2.5× 10−6

0.4 3.9× 10−5 2.5× 10−6

0.5 8.4× 10−5 5.3× 10−7

0.6 3.4× 10−5 2.1× 10−6

0.7 2.8× 10−5 1.7× 10−6

0.8 2.4× 10−5 1.5× 10−6

0.9 2.2× 10−5 1.4× 10−6

1.0 0.0 0.0

y(1)= y1. The total unknowns for vector C in (3.3) is 2M+1 + 1. These can be obtained by

using (3.7) and (3.8).

4. Numerical examples

We applied the method presented in this paper and solved three examples given in [2, 3].

This method differs from the collocation procedure with spline functions presented in [2]

and Daubechies orthonormal scaling functions given in [3], and thus these could be used

as a basis for comparison. Example 4.1 was carried out in [2] by using spline functions

with m= 1 and 2, where m equals to the order of spline functions. Examples 4.2 and 4.3

were carried out in [3] in both the wavelet Galerkin and the wavelet collocation methods

by using Daubechies 6, that is, M = 6.

Example 4.1. Consider first-order Fredholm integro-differential equation [2]

y′(x)=−y(x) +

∫ 1

0
y(t)dt+ e(−1)

− 1, 0≤ x ≤ 1, y(0)= 1. (4.1)

The exact solution of this problem is e−x. We applied the method presented in Section 3

and solved (4.1). The absolute relative error for M = 4 and M = 6 are shown in Table 4.1.

The absolute relative error in [2] with step size h= 0.1 at the point 0.4 are given as 1.5×

10−2 and 1.8× 10−3, for m= 1 and m= 2, respectively.

Example 4.2. Consider second-order Fredholm integro-differential equation [3]

y′′(x) + 4xy′ =−
8x4

(
x2 + 1

)3 − 2

∫ 1

0

t2 + 1(
x2 + 1

)2 y(t)dt, y(0)= 1, y(1)=
1

2
.

(4.2)

Exact solution of this problem is (x2 + 1)(−1). Table 4.2 presents the absolute relative error

for M = 4 and M = 6, using the present method at the same points as [3], together with

the results obtained by wavelet Galerkin and wavelet collocation methods for M = 6 given

in [3].
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Table 4.2. Absolute relative error for Example 4.2.

xi M = 4 M = 6 wavelet Galerkin [3] wavelet collocation [3]

0.000 0.0 0.0 0.0 0.0

0.125 9.2× 10−6 2.5× 10−7 7.9× 10−7 9.4× 10−4

0.250 4.2× 10−6 1.9× 10−7 1.3× 10−6 1.6× 10−3

0.375 2.6× 10−5 1.4× 10−6 1.6× 10−6 2.0× 10−3

0.500 3.9× 10−5 1.1× 10−6 1.7× 10−6 1.9× 10−3

0.625 3.9× 10−5 4.7× 10−7 1.5× 10−6 1.7× 10−3

0.750 2.9× 10−5 6.9× 10−7 1.2× 10−6 1.1× 10−3

0.875 1.2× 10−5 2.1× 10−7 6.5× 10−7 5.5× 10−4

1.000 0.0 0.0 0.0 0.0

Table 4.3. Absolute relative error for Example 4.3.

xi M = 6 wavelet Galerkin [3] wavelet collocation [3]

0.000 0.0 0.0 0.0

0.125 1.8× 10−5 2.7× 10−4 2.6× 10−2

0.250 1.5× 10−5 3.1× 10−5 1.6× 10−2

0.375 1.2× 10−5 2.6× 10−4 9.3× 10−3

0.500 1.0× 10−5 4.3× 10−4 5.2× 10−3

0.625 7.9× 10−6 5.6× 10−4 2.5× 10−3

0.750 6.0× 10−6 6.6× 10−4 1.0× 10−3

0.875 3.7× 10−6 7.2× 10−4 2.4× 10−4

0.100 0.0 0.0 0.0

Example 4.3. Consider second-order Fredholm integro-differential equation [3]

x2y′′(x) + 50xy′− 35y(x)

=
1− e(x+1)

x+ 1
+
(
x2 + 50x− 35

)
ex +

∫ 1

0
ext y(t)dt, y(0)= 1, y(1)= e.

(4.3)

Exact solution of this problem is ex. Table 4.3 presents the absolute relative error for M =

6, using the present method at the same points as [3], together with the results obtained

by wavelet Galerkin and wavelet collocation methods for M = 6 given in [3].

5. Conclusion

In the present work, a technique has been developed for solving nonlinear second-order

Fredholm integro-differential equations. The method is based upon compactly supported

linear semiorthogonal B-spline wavelets. The operational matrices of derivative for B-

spline scaling functions and wavelets are given. The problem has been reduced to solving

a system of nonlinear algebraic equations and applications are demonstrated through

numerical examples.
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